
MULTI-PROJECT SCHEDULING

UNDER MODE DURATION UNCERTAINTIES

by

E. ARDA ŞiŞBOT

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

Spring 2011

c©E. Arda Şişbot 2011 All Rights Reserved

to my family

Acknowledgments

First and foremost, I want to thank my thesis advisors Prof. Gündüz Ulusoy and

Assoc. Prof. Can Akkan for their guidance throughout this thesis. Their expertise,

patience and good humor turned my research experience into a pleasure.

I would like to thank my colleagues in the project: Berke Pamay, Gizem Kılıçaslan

and Anıl Can for their direct/indirect help to my research. Anıl Can deserves a spe-

cial mention for all his support at the beginning of this thesis.

I thank Mustafa for being there to help me whenever I needed. Many thanks

to Mahir, for making me come to Lab 1021. Among others Gizem Ç., Volkan,

Çetin, Semih, Birce, Özge, Yasir, Nükte, Ezgi thank you for all your support and

contributions.

Last but not least I’d like to thank my family for their endless support. I am

indebted to my brother, Akın for helping me on every occasion and always being

such a good model to follow.

To them I dedicate this thesis.

MULTI-PROJECT SCHEDULING

UNDER MODE DURATION UNCERTAINTIES

E. Arda Şişbot

Industrial Engineering, Master of Science Thesis, 2011

Thesis Co-Supervisors: Prof. Gündüz Ulusoy, Assoc. Prof. Can Akkan

Keywords: multi-project scheduling, multi-objective genetic algorithm, robust

project scheduling

Abstract

In this study, we investigate the multi-mode multi-project resource constrained
project scheduling problem under uncertainty. We assume a multi-objective set-
ting with 2 objectives : minimizing multi-project makespan and minimizing total
sum of absolute deviations of scheduled starting times of activities from their earliest
starting times found through simulation. We develop two multi-objective genetic al-
gorithm (MOGA) solution approaches. The first one, called decomposition MOGA,
decomposes the problem into two-stages and the other one, called holistic MOGA,
combines all activities of each project into one big network and does not require
that activities of a project are scheduled consecutively as a benchmark.

Decomposition MOGA starts with an initial step of a 2-stage decomposition
where each project is reduced to a single macro-activity by systematicaly using
artificial budget values and expected project durations. Generated macro-activities
may have one or more processing modes called macro-modes. Deterministic macro-
modes are transformed into random variables by generating disruption cases via
simulation. For fitness computation of each MOGA two similar 2-stage heuristics
are developed. In both heuristics, a minimum target makespan of overall projects is
determined. In the second stage minimum total sum of absolute deviations model
is solved in order to find solution robust starting times of activities for each project.
The objective value of this model is taken as the second objective of the MOGA’s.

Computational studies measuring performance of the two proposed solution ap-
proaches are performed for different datasets in different parameter settings. When
non-dominated solutions of each approach are combined to a final population, over-
all results show that a larger ratio of these solutions are genetared by decomposition
MOGA. Additionally, required computational effort for decompositon MOGA is
much less than holistic approach as expected.

REÇETE SÜRESİ BELİRSİZLİĞİ ALTINDA ÇOKLU PROJE ÇİZELGELEME

E. Arda Şişbot

Endüstri Mühendisliği, Yüksek Lisans Tezi, 2010

Tez Danışmanları: Prof. Gündüz Ulusoy, Doç. Dr. Can Akkan

Anahtar Kelimeler: çoklu proje çizelgeleme, çok amaçlı genetik algoritma, gürbüz

çizelgeleme

Özet

Bu çalışmada belirsizlik altinda çoklu kaynak reçeteli, kaynak kısıtlı çoklu proje
çizelgeleme sorunu incelenmektedir. Sorunun iki amaç işlevinin bulunduğu var
sayılmaktadır: bir olasılık limiti dahilinde aşılmaması sağlanan en düşük çoklu-proje
süresinin elde edilmesi ve belirlenecek faaliyet başlangıç zamanlarının benzetim ile
elde edilen en erken başlangıç sürelerinden toplam mutlak sapmayı en azlayacak
biçimde belirlenmesi. İki ayrı çok amaçlı genetik algoritma (ÇAGA) geliştirilmiştir.
Ayrışımlı ÇAGA olarak adlandrılan ilk yaklaşım sorunu iki aşamaya ayırmakta,
bütünsel ÇAGA ad verilen ise tüm projelerin faaliyetlerini tek bir birleşik ağ olarak
ele alıp, bütünsel bir yaklaşım sergilemektedir.

Ayrışımlı ÇAGA yaklaşımında öncelikle iki-aşamalı bir ayrışım uygulanmaktadır.
Her proje, farklı yapay bütçe değerlerinin sistematik bir biçimde kullanılmasıyla
oluşturulan bir veya daha çok sayıda kaynak reçetesine sahip tek bir makro faaliyete
indirgenir. Türetilen makro-faaliyetlerin, makro-kaynak reçetesi adı verilen bir ya
da birden fazla kaynak reçetesi olabilir. Makro-faaliyetlerin her biri için rassal
olarak türetilen kaynak reçetesi süreleri ile faaliyetlerin belirsizliği modellenmiştir.
Her iki ÇAGA’da da amaç işlevlerinin hesaplanmasında alt yöntemleri benzer iki-
aşamalı sezgiseller kullanılmaktadır. Çaprazlama ve kromozom temsilleri farklılık
göstermektedir. Her iki sezgiselde de ilk aşamada öncelikle düşük bir çoklu-proje
süresi elde edilir. İkinci aşamada toplam mutlak sapma modeli en azlanmaktadır.
Bu modelin amaç değeri ÇAGA’larn ikinci amaç değerine karşılık gelmektedir.

Bilişimsel çalışmalar, iki ÇAGA için de farklı veri setleri ve ağ parametreleri için
yapılmıştır. Her iki yaklaşımın çözümleri birleştirilip domine edilmeyen sınır bu-
lunduğunda, sonuçların büyük bir ölçüde ayrışımlı ÇAGA’dan geldiği ortaya çıkmaktadır.
Ayrıca çözümler, ayrışımlı ÇAGA için gereken çözüm süresinin bütünsel ÇAGA’ya
göre çok daha az olduğunu göstermektedir.

Table of Contents

Abstract 6

Özet 7

1 Introduction and Motivation 12
1.1 Contributions . 15
1.2 Outline . 15

2 Literature Review 16

3 Problem Environment 22
3.1 Resources . 22
3.2 Network structure . 22
3.3 Problem formulation . 23

3.3.1 Sets and indices . 23
3.3.2 Parameters . 24
3.3.3 Decision variables . 25
3.3.4 Mathematical model . 25

4 Decomposition Heuristic Approach 27
4.1 2-Stage decomposition . 29

4.1.1 Data reduction . 31
4.1.1.1 Eliminating non-executable modes 31
4.1.1.2 Eliminating redundant non-renewable resources . . . 31

4.1.2 A shrinking method: macro-mode generation 31
4.1.2.1 Shrinking models . 33
4.1.2.2 Macro-mode generation method 34

4.1.3 Macro-mode realization generation 36
4.1.4 Macro-mode realization clustering 37
4.1.5 Macro-mode generation, realization and clustering example . . 38

4.2 Macro-project scheduling . 41
4.3 Decomposition based multi-objective GA 43

4.3.1 Chromosome representation 44
4.3.2 Evaluation of chromosomes 45
4.3.3 A 2-stage serial scheduling heuristic 45

4.3.3.1 Resource profile transformation 46

8

4.3.3.2 Scheduling stage 1- serial scheduling 48
4.3.3.3 Scheduling stage 2 - buffer insertion 49
4.3.3.4 Scheduling individual projects for TSAD minimization 52
4.3.3.5 Heuristic example 54

4.3.4 Crossover . 55
4.3.5 Mutation . 55
4.3.6 Population management . 56

5 Holistic Heuristic Approach 59
5.1 Chromosome representation . 60
5.2 Evaluation of chromosomes . 61

5.2.1 Stage 1 : Target makespan computation 61
5.2.2 Stage 2 : TSAD minimization model 62

5.3 Crossover . 62
5.4 Mutation . 63
5.5 Population management . 63

6 Computational Studies 64
6.1 Data . 64

6.1.1 Resource conditions . 64
6.1.1.1 Resource factor . 65
6.1.1.2 Resource strength 65

6.1.2 Problem sets . 66
6.2 Software and hardware information 68
6.3 Measuring the performance of MOGA’s 68
6.4 MOGA parametric analysis . 71
6.5 Experimental studies . 73

6.5.1 Resource and probability limit analysis 75
6.5.2 Effect of number of projects and activities 76
6.5.3 Duration bound analysis . 77
6.5.4 Decomposition clustering analysis 78

7 Conclusions and Future Work 80

9

List of Figures

3.1 Composite multi-project network with N projects and dummy start-
finish nodes . 23

4.1 Macro-activities and macro-project [1] 28
4.2 Flow chart of the 2-stage decomposition approach 29
4.3 Macro-mode generation example network 39
4.4 Schedules and resource profiles for generated macro-modes [1] 40
4.5 An example of macro-mode and one realization 40
4.6 Flow chart of the decomposition approach MOGA 44
4.7 Chromosome representation . 45
4.8 Resource profile transformation . 47
4.9 Example - identifying resource sharing lists 48
4.10 Example - resource flow sequences . 50
4.11 Example : non-buffered schedule vs. buffered schedule 54
4.12 Crossover representation . 55
4.13 Swap mutation . 55
4.14 Bit mutation . 56

5.1 Holistic approach network structure composed of 3 projects 60
5.2 Gantt chart of a sample schedule generated as an output of the holistic

approach . 60
5.3 Chromosome representation . 61
5.4 Uniform crossover . 63

6.1 Example - combined final frontier solutions 69
6.2 Example - disjoint final frontier regions 70
6.3 Example - progression of non-domimated frontier under different pa-

rameter settings - D-MOGA . 72
6.4 Example - progression of non-domimated frontier under different pa-

rameter settings - H-MOGA . 72
6.5 Example - required CPU time under different parameter settings . . . 73

10

List of Tables

4.1 Macro-mode generation example data 39

6.1 Problem set A . 66
6.2 Problem set B . 67
6.3 Problem set C . 67
6.4 Problem set D . 68
6.5 MOGA parameter selection analysis 71
6.6 Ratio of solutions in the final combined frontier for data set A, B and

C . 74
6.7 Additional comparison measures for datasets A, B and C 74
6.8 CPU times for data sets A, B and C 74
6.9 Effect of RSR on ratio of solutions in the final combined frontier for

data set A . 75
6.10 Effect of RSR on average CPU for data set A 76
6.11 Effect of number of projects on CPU time for data set B 76
6.12 Effect of number of activities on CPU time for data set B 77
6.13 Effect of duration bound on CPU time for data set C 78
6.14 Effect of number of clusters on the ratio of solutions in the final

combined frontier . 78
6.15 Effect of number of clusters on the ratio of solutions in the final

combined frontier - revised results . 79
6.16 Effect of number of clusters on CPU time 79

11

CHAPTER 1

Introduction and Motivation

The world’s ancient architectural masterpieces are often cited as the earliest exam-

ples of projects. Egyptian pyramids or Temple of Artemis are perfect examples of

projects that are managed throughout the centuries requiring vast amount of re-

sources and manpower, holding extreme importance in the eyes of their executors.

Along with many practices of good project management as in the case of Hagia

Sophia constructed in 5 years, ancient history is full of cancelled, postponed or

tardy projects due to resource inadequacies, unanticipated events or poor manage-

ment. In today’s world, significant projects are widespread: from CERN’s hadron

collider to an Airbus plane design the importance and complexities of projects are

increasing. Correspondingly, management requirements to develop better tools for

better project management increases as well.

Basic project scheduling deals with scheduling the activities (tasks) to fullfill a

desired objective. Generally project related costs and project duration (makespan)

are observed as the most common objective functions. Dating back to fifties, PERT

(Program Evaluation and Review Technique) and CPM (Critical Path Method) are

widely applied techniques for this problem without any resource constraints. When

the resources are shared between activities, the problem is classified under the title

Resource Constrained Project Scheduling Problem (RCPSP). As the problem comes

from a very real setting, various extensions have been studied in the literature.

Operating on the same basis as RCPSP, RCMPSP is an extension of RCPSP to

multi-project setting.

12

Today’s competitive environment urges companies to manage more than one

project at a time. Big companies allocate same pool of resources to multiple projects

simultaneously. Simultaneously managed projects may use common resources with

different requirements, may have different deadlines and priorities. Payne [2] sug-

gests that up to 90%, by value, of all projects occur in a multiproject context.

The case with multi-mode availabilities, where each activity may have more

than one processing alternatives (modes) yields a better modeling of reality. Often

in real life, project managers have the choice of decreasing the duration of activities

at the cost of additional resources. In a construction project, for example, a specific

task can be accelerated by employing additional workers. The presence of activitiy

modes, although realistic, complicates the project and scheduling.

Another aspect of multi-project management is that the performance of each

project constitutes an essential part of the multi-project management. With or

without precedence relations imposed between projects, projects are inter-related

by resource sharing. For that reason, an unanticipated event occurring in a project

may effect others and consequently may have a major influence on the multi-project

management. Hence, dealing with uncertainty and avoiding unplanned disruptions

is extremely important in multi-project settings.

In project scheduling, uncertainty can take many different forms. Activity dura-

tion estimates may be off, resources may break down, work may be interrupted due to

extreme weather conditions, new unanticipated activities may be identified, etc. All

these types of uncertainties may result in a disrupted schedule which leads to higher

costs and penalties, undesired resource idleness and poor project performance levels.

In general, project management wants to avoid these schedule breakages. Thus the

need to protect a schedule from the adverse effects of possible disruptions emerges.

This protection is necessary because often project activities are subcontracted or

executed by resources that are not exclusively reserved for the current project. A

change in the starting times of such activities could lead to infeasibilities at the or-

ganizational level (e.g., in a multi-project context) or penalties in the form of higher

subcontracting costs or material acquisition and inventory costs.

13

This study focuses on developing solution approaches to multi-mode RCMPSP

under mode duration uncertainties. We assume that uncertainty may only arise as

a result of different realized values of the activity modes. Durations of the modes

are subject to change within predefined lower and upper bounds. We consider two

of the most common objectives in robust project scheduling: solution and quality

robustness. Solution robustness refers to the stability of the activity starting times

and quality robustness refers to stability of the makespan over all projects.

The first solution approach, inspiring from macro-mode decomposition by Sper-

anza and Vercellis [3], is a decomposition based multi-objective genetic algoritm

(D-MOGA). Macro-modes that are systemic transformations of project network by

evaluating durations and artificial resource budgets are firstly generated. Then via

simulations of composing activity mode durations, each macro-mode is transformed

into combinations of random variables. D-MOGA searches for different project

sequences and macro-mode assignments. A two-stage heuristic is employed for the

evaluation of each solution. In the first stage, the heuristic serially schedules projects

considering probability of assuring resource feasibility. Then, buffers are inserted to

obtain solution robust starting times for the projects. In the second stage, each

project is scheduled individually with a solution robustness objective. Thus, both

a multi-project schedule and individual single-project schedules are obtained along

with objective pairs (solution robustness objective and makespan). MOGA then

finds non-dominated solutions throughout the generations.

Second solution approach applies similar ideas of the described heuristic to

whole network without decomposition. Another MOGA, called holistic MOGA (H-

MOGA) is developed which progresses on all activitities of all projects and their

selected modes. Having a longer chromosome length, this approach requires more

computational power as the results on section 6.5 suggest.

14

1.1 Contributions

The primary purpose of the present study is developing solution procedures to multi-

mode RCMPSP with mode duration uncertainties. The following list shows the

contributions of this study:

• To the best of our knowledge, there is no study dealing with multi-mode

RCMPSP under uncertainy. It can be said that even the studies on single

project RCPSP with multi-mode duration uncertainties are rather scarce. [4],

[5], [6], [7]

• As a solution procedure we proposed 2 heuristic approaches one taking its

roots from 2-stage decomposition and the other approaching the problem in a

holistic fashion.

• Macro-mode decomposition used solely on deterministic settings is applied

to this stochastic problem. Deterministic macro-modes are transformed into

random variables.

• This is the first study in robust scheduling that adopt a multi-objective setting

rather than a composite measure of multiple objectives or a single measure of

robustness.

1.2 Outline

Chapter 2 reviews briefly the literature. Chapter 3 presents the problem environment

and the notation used. The solution procedure, a decomposition based MOGA is

described in Chapter 4. Another solution approach is given in detail in Chapter

5. Afterwards we present computational studies in Chapter 6. Finally we close by

concluding thoughts and future research directions in Chapter 7.

15

CHAPTER 2

Literature Review

In its simplest form, RCPSP is defined on a deterministic single project network

with known activity durations and resource requirements. This problem intends

to determine an optimal schedule which satisfies generalized precedence relations

and resource constraints and with an objective function generally defined as the

makespan or some financial function. In the past decade as Brucker et al. observed in

1998 [8], the literature on RCPSP has extended fast such that major research tracks

on variants and extensions of RCPSP are now discussed. Major extensions of the

problem include multi-mode RCPSP (MRCPSP), RCMPSP and project scheduling

under uncertainty. In MRCPSP the activities have more than one mode and one

wishes to determine the optimal assignment of modes for the desired objective.

RCMPSP aims to extend the research to multiple project case, which makes the

problem harder to solve.

Project scheduling under uncertainty has been attracting the attention of re-

searchers particularly in the last decade. The schedule determined by deterministic

RCPSP is called the baseline schedule. Activity durations may not be constant,

thus may take more or less time than estimated. The arriving times of resources

may incur delays; priorities or due dates of activities may change. Resources may

break down, work may be interrupted due to extreme wheather conditions or new

unanticipated activities may appear. All these types of uncertainties may result

in the infeasibility of the baseline schedule or a disrupted schedule with inferior

performance levels. Thus the need to protect the initial baseline schedule from the

adverse effects of possible disruptions emerges. This can be achieved by generating a

16

baseline schedule in a proactive way trying to anticipate certain types of disruptions

so as to minimize their effect, if they occur. If the schedule would still break down

despite these proactive planning efforts, a reactive scheduling policy will be needed

to repair the infeasible schedule.

Correspondingly, the validity of deterministic project scheduling has been ques-

tioned and new tracks of research have emerged in the literature. According to Her-

roelen and Leus [9], research on project scheduling under uncertainty has been focus-

ing on 4 major research tracks: proactive scheduling, reactive scheduling, stochastic

project scheduling and fuzzy project scheduling. Proactive (robust) scheduling cor-

responds to determining a robust schedule facing the least disruptions during project

execution. Reactive scheduling includes attempts to restore and update the sched-

ule whenever an unexpected event occurs. Stochastic project scheduling literature

includes application of stochastic optimization procedures. Finally fuzzy project

scheduling uses fuzzy activity durations and produces fuzzy schedules. Our study

corresponds to proactive and stochastic project scheduling literature, thereby we

present here selected works from the related literatures.

Based on the work of Tavares et al. [10], Leus [11] and Herroelen and Leus [12];

Van de Vonder et al. [13] investigate the tradeoff between stability and makespan

of a schedule. The authors describe a heuristic procedure for generating buffered

baseline schedules for projects with ample renewable resource availability. After

generating a schedule via exact optimization methods (see, e.g. Demeulemeester and

Herroelen [14]), starting times of each activity are modified according to the so called

activity dependent float factors, functions of the weights of the predecessors and

successors of an activity. This modification of starting times guarantees prececedence

feasibility, however, it may yield resource infeasible schedules. To answer this need,

Van de Vonder et al. [13] propose resource flow-dependent float factor heuristic

(RFDFF), which considers resource flows in calculation of float factors. In RFDFF

heuristic, a new project network is created, where the resource flows among activities

in the baseline schedule are implemented as additional precedence relationships.

Starting times of the activities are modified with respect to new float factors taking

17

into account the new predecessors/successors from resource flow, therefore yield a

precedence and resource feasible schedule.

Van de Vonder et al. [15] have performed simulation-based experiments in order

to measure the performance of various buffering heuristics. In addition to RFDFF

heuristic, virtual activity duration heuristic use standard deviations of activities

to estimate possible disruptions and starting time criticality (STC) heuristic which

exploits information about the variance of the activity durations are among many

heuristics evaluated. STC outperforms others by incorporating the uncertainty in a

probabilistic way and making use of the variability in every stage.

Chtourou et al. [16] propose a two-stage priority-rule-based algorithm considering

both quality and solution robustness. After forming an activity list by a priority

rule, an earliest start schedule is generated. To increase variability of the schedule,

random partial destruction and reconstruction techniques are employed along with

generation of a backward schedule. Schedule (forward or backward) resulting in

smaller makespan is selected as the input of the second stage problem. In the

second stage, taking the previously found makespan as threshold same heuristic is

re-run to obtain a schedule with better robustness value and smaller makespan. To

measure robustness the authors make use of different measures such as sum of free

slack and average percentage increase in activity duration.

Another two-phase algoritm is developed by Hazir et al. [4] but in multi-mode

setting with the objective of total budget minimization and robustness maximiza-

tion. In order to select the most representative robustness metric they perform

experiments on measures such as average slack, weighted slack, slack utility func-

tion, dispersion of slacks, percentage of potentially critical activities and project

buffer. The robustness measure that the has the highest correlation with a perfor-

mance measure is selected as the best metric to represent robustness. The authors

provide empirical evidence that the project buffer size is the more appropriate ro-

bustness measure regardless of the network complexity. Based on this finding, they

develop a two-phase approach for generating robust schedules, where in the first

phase the minimum required budget is determined and in the second stage this bud-

18

get is slightly inflated by a specified amplification factor and then the buffer size is

maximized.

Bruni et al. [17] address project scheduling problem with random activity du-

rations. As a solution procedure, they propose a heuristic which uses joint prob-

abilistic constraints. For scheduling activities firstly a priority rule is employed to

decide which new activity to assign at a time point. If with the new activity, the

schedule’s probability of not exceeding the projected makespan is within limits, then

the activity is selected. If an activity with higher probability does not satisfy that

probabilistic constraint, then the algorithm passes to next activity. Thus, the pro-

posed heuristic limits the schedule’s probability of exceeding projected makespan.

The authors conclude that their approach demonstrates the effectiveness of rigorous

treatment of uncertainty leading to better uncertainty hedging.

For objective values differing between expected makespan and expected expenses

Golenko-Ginzburg and Gonik [18] consider random activity durations and propose

a heuristic in which each activity is prioritized by the product of its probability

(determined by simulation) of lying on the critical path and its average duration.

Golenko-Ginzburg and Gonik [19] consider in additon two types of renewable re-

sources: rare and not-rare. Golenko-Ginzburg et al. [20] extend the previous research

by incorporating uncertainties regarding activity resource usages. The authors ap-

proach combines simulation, a cyclic coordinate descent method and a knapsack

resource reallocation model. Golenko-Ginzburg and Gonik [21] enlarge the problem

of Golenko-Ginzburg and Gonik [18] into multi-project case.

Zhu et al. [22] propose a two- stage stochastic programming model for minimiz-

ing the expected deviations and total cost. First stage consists of the problem of

setting target finish times for each activity with respect to cost associated with the

target times. Second stage finds optimal starting times in order to minimize the

expected cost of deviating from the original plan. They show that in the absence

of a budget constraint, the second stage problem can be transformed into a mini-

mum cost network problem and therefore can be efficiently embedded in a stochastic

programming algorithm. They use the L-shaped method to solve LP relaxation of

19

stochastic program for the case without a budget constaint.

Klerides et al. [5] propose a decomposition-based stochastic programming ap-

proach for the project scheduling problem under time-cost trade-off settings and

uncertain durations. Assuming static assignment of activity modes, they show that

the stochastic extension of the discrete time-cost trade-off problem (SDTCTP) can

be formulated as a two-stage stochastic integer program with recourse. The execu-

tion modes for the activities are determined in the first stage in a context where

the exact duration of each activity for that particular mode is not known in ad-

vance. Given these first stage decisions, the values of the activity starting time

variables (second stage or recourse) are determined based on the realizations of the

activity durations. Their approach combines a path based formulation of the deter-

ministic discrete time−cost trade−off problem, and a delayed constraint generation

procedure, which allows for the decoupling of the different scenario subproblems via

decomposition. The proposed solution methodology contains effective constraint

selection criteria at each iteration and many large and hard test instances can be

solved in reasonable computational time.

Zhu et al. [6] study reactive procedures for RCPSP with finish to start precedence

constraints. They propose a classification scheme for the different types of disrup-

tions. By forming an integer linear model and solving it with hybrid mixed-inter

programming/constraint programming procedures, authors show that by defining

appropriate recovery time windows and penalty functions optimal solutions to the

recovery problem are well within reach.

Deblaere et al. [7] formulates a reactive scheduling problem for MRCPSP. Given

a baseline schedule and a resource or activity duration disruption that occurs dur-

ing the execution of the baseline schedule, their objective is to obtain a reactive

schedule that minimizes the rescheduling costs. If thougroughout the schedule an

activity switch its mode from the previous schedule, then mode switching costs are

incurred. In addition, rescheduling costs include the deviation in starting times of

each activity from the baseline schedule. They propose a branching scheme based on

mode and delaying alternatives for optimally solving the reactive scheduling prob-

20

lem. Given the high complexity due to structure of problem the authors to explore

other strategies than regular branch-and-bound namely: iterative deepening, binary

search and branch-and-bound with tabu seach. Their computational studies are in

favor of using branch-and-bound with tabu seach where they propose the use of a

tabu search procedure to obtain a heuristic solution for the reactive scheduing prob-

lem, and to use the objective value of this heuristic solution as an upper bound to

be used in the regular branch-and- bound procedure.

21

CHAPTER 3

Problem Environment

The examined problem environment contains multiple projects consisting of activi-

ties which have multiple mode alternatives. Each mode alternative has a duration

that is a triangular distributed random variable with pregiven lower and upper

bounds. It is assumed that activities cannot be preempted.

3.1 Resources

We consider two types of resource constraints: renewable and non-renewable. Re-

newable resources are constrained on a periodic basis and are assumed to be available

throughout the project. Examples for a renewable resource would be workforce or

available equipment. Nonrenewable resources on the other hand, are consumed and

are limited over the entire planning horizon with no restrictions within each period.

Supply of material or capital available are examples of nonrenewable resources.

3.2 Network structure

The project network is of activity-on-node (AoN) type with finish to start zero time

lag type precedence relations. The composite multi-project network is generated

by combining single project networks employing one dummy start node and one

dummy finish node. Figure 3.1 illustrates an example multi-project network.

22

Figure 3.1: Composite multi-project network with N projects and dummy start-
finish nodes

3.3 Problem formulation

A mathematical programming formulation is formed to represent this MRCMPSP

under uncertainty. With a decision environment considering 2 objectives, the pro-

posed formulation includes both makespan and total sum of absolute deviations

(TSAD).

3.3.1 Sets and indices

K = set of all realizations of activities

S = set of all projects including dummy projects

Sa = set of all actual projects

s = project indices; s ∈ S = {1, 2, . . . , |S|}

V = set of all activities including dummy activities

Vs = set of activities in project s including dummy activities

i,k = activity indices; i, k ∈ Vs
P = set of precedence relations between all activities i ∈ V

Ps = set of precedence relations between all activities i ∈ Vs in project s

Msi = set of modes of activity i of project s

23

j = activity execution mode indices; j ∈Mi = {1, 2, . . . , |Mi|}

R = set of renewable resources

r = renewable resource indices; r ∈ R = {1, 2, . . . , |R|}

N = set of non-renewable resources

n = non-renewable resource indices; n ∈ N = {1, 2, . . . , |N |}

T = set of time periods

t,θ = time indices; t ∈ T = {1, . . . , |T |}

3.3.2 Parameters

dsij = processing time for activity i of project s performed in mode j (Random)

¯dsij = expected processing time for activity i of project s performed in mode j

dminsij = minimum processing time for activity i of project s performed in mode j

dmaxsij = maximum processing time for activity i of project s performed in mode j

Ek
si = earliest starting time period for activity i of project s in realization k

esi = earliest starting time period for activity i of project s

lsi = latest starting time period for activity i of project s

Wr = amount of available renewable resource r

Qn = amount of available non-renewable resource n

wsijr = amount of renewable resource r utilized by activity i of project s performed

in mode j

qsijn = amount of non-renewable resource n consumed by activity i of project s

performed in mode j

T = total length of the time horizon

TargetMakespan = overall multi-project duration

All parameters except esi, lsi and T must be initially given to solve the problem.

Due to the stochastic nature of dsij values, esi, lsi are stochastic as well. However,

for a given schedule esi, lsi can be computed by generating various schedules by K

simulations and measuring various starting times for each activity i ∈ V . T , for

24

example, can be set by just summing up the maximum durations of the longest

modes of each activity.

3.3.3 Decision variables

A binary variable xsijt based on starting time period and mode selection of activities

is introduced along with two other integer variables based on it. It was also possible

to represent the precedence relation constraints without defining Ti and Di but they

are included for practical purposes.

xsijt = 1 if activity i of project s starts at time period t in mode j; = 0 otherwise.

Tsi = Actual starting time of activity i of project s; esi ≤ Tsi ≤ lsi,

Dsi = Actual duration of activity i of project s; minj∈Msi{dminsij } ≤ Di ≤ maxj∈Msi{dmaxsij }

3.3.4 Mathematical model

The mathematical model described here has two objectives: (i) minimization of

TSAD of activities from their early start times and (ii) minimization of the makespan

over all projects. Mimimization of TSAD objective (3.1) relates to solution robust-

ness and aims to obtain a schedule in which an activity related disruption causes

a delay to another activity’s starting time the minimum way possible. Makespan

minimization of overall projects (3.2) relates to quality robustness where assurance

of a minimum makespan is desired with a probability constraint (3.9). Note that

there is a tradeoff between these two objectives. A highly solution robust schedule

may be obtained by inserting long time-buffers between activities thus result in a

higher makespan. On the other hand, one may obtain a very compact schedule with

a low makespan and a high level of quality robustness but this schedule in general

will not be solution robust due to lack of time buffers between activities.

Constraint set (3.3) represents the start times and constraint set (3.4) the dura-

tions for the projects. Constraint set (3.5) ensures the precedence relationships be-

tween the activities. Constraint set (3.6) is the capacity constraint for the renewable

resources and constraint set (3.7) is the capacity constraint for the non-renewable

25

resources. Constraint set (3.8) ensures that for each project a mode alternative is

selected and it is started at some point. The zero-one variables xijt are expressed in

constraint set (3.10). Note that dij are random variables and hence starting times

are also random.

Model MPS :

Objective 1:

minTSAD =
∑
s∈S

∑
i∈Vs

∑
k∈K

|Tsi − Ek
si| (3.1)

Objective 2:

min TargetMakespan (3.2)

s.t.

Tsi =
∑
j∈Msi

lsi∑
t=esi

txsijt i ∈ Vs, s ∈ S, (3.3)

Dsi =
∑
j∈Msi

dsij

lsi∑
t=esi

xsijt i ∈ Vs, s ∈ S, (3.4)

Tsk − Tsi ≥ Dsi (i, k) ∈ Ps, s ∈ S, (3.5)∑
s∈S

∑
i∈Vs

∑
j∈Msi

min (lsi+dsij−1,t)∑
θ=max (esi,t−dsij+1)

wsijrxsijθ ≤ Wr r ∈ R, t ∈ T , s ∈ S, (3.6)

∑
s∈S

∑
i∈Vs

∑
j∈Msi

qsijn

lsi∑
t=si

xsijt ≤ Qn n ∈ N , (3.7)

∑
j∈Msi

lsi∑
t=esi

xsijt = 1 i ∈ Vs, s ∈ S, (3.8)

Prob(max
i∈Vs

Tsi < TargetMakespan) ≥ Limit s ∈ S, (3.9)

xsijt ∈ {0, 1}, dminsij ≤ dsij ≤ dmaxsij , i ∈ Vs, j ∈Msi, t ∈ T (3.10)

Note the randomness of dsij causes Tsi and Dsi to be random variables and brings

a stochastic nature to the MRCMPSP. The model presented above is a conceptual

model that we are not going to operationalize.

26

CHAPTER 4

Decomposition Heuristic Approach

In this chapter a 2-stage decomposition approach incorporating stochastic duration

information is presented. To get a grasp of the idea, first a general look is presented

below and details of the subprocedures are given in the following subsections.

Speranza and Vercellis [3] distinguished between a tactical and operational level

in project scheduling where in tactical level higher management sets due date of

projects and performs resource allocation, whereas in operational level project man-

agers determine the starting times and selected modes of the activities. Approaching

the problem in 2 stages as in Speranza and Vercellis [3] approximates the NP-hard

problem by simpler subproblems thus decreasing computational burden. In the

proposed decomposition, projects are transformed into macro-activities. Hence the

multi-project network becomes a single project network where the activities in this

network are macro-activities each representing a project. Figure 4.1 [1] illustrates

the described transformation.

Can [1] proposed a 2-stage decomposition approach for deterministic RCMPSP

with multi-modes. He applied a shrinking model for macro-mode generation pro-

posed by Speranza and Vercellis [3]. Afterwards, he solved the problem for NPV

maximization at the higher level and makespan minimization at the lower level. The

approach presented here inspires from Can’s thesis [1] and its 2−stage decomposi-

tion approach, however, the nature of the problem at hand is different than Can’s.

Mode duration uncertainties bring a stochastic dimension to MRCMPSP. When

stochastic activity durations are included, the decomposition is even more beneficial

due to high computational burden of solving stochastic models.

27

Figure 4.1: Macro-activities and macro-project [1]

Firstly macro-modes are generated with expected mode durations as in the de-

terministic case. Then with the uncertainty in mode durations macromode schedule

disruptions are formed via simulation (section 4.1.3). To search feasible solutions

of project sequence and macro-mode assignment a MOGA is introduced in Section

4.3. For each solution a target makespan, which the realized schedule guaranteed is

not to exceed, is determined in Section 4.3.3.2. Also, activities are scheduled with a

minimum deviation robustness objective and robust starting times are determined

as in Section 4.3.3.3. Figure 4.2 presents a general flow of this approach.

28

Figure 4.2: Flow chart of the 2-stage decomposition approach

4.1 2-Stage decomposition

Whole procedure begins by preprocessing methods as discussed in Sprecher et al. [23].

The decomposition procedure is started after eliminating all non-executable modes

due to insufficient resource capacities and removing the redundant non-renewable

resource constraints.

Single project MRCPSPs are solved with artificial budget constraints of resource

usage and their various combinations of resource allocation are evaluated in order

29

to form different macro-modes. In generation of macromodes, expected durations

of modes are employed.

In MRCPSP models activity mode durations are assumed to be in their expected

values, however, the variability of macro-modes associated with mode duration un-

certainties is represented by simulations. Previously found macro-mode schedule is

disrupted via random realizations of activity mode durations resulting in a disrupted

schedule. Each such disrupted schedule is called a realization of the macro-mode

and in each realization macro-mode can have different resource profiles. With a

high number of randomly generated disruption cases, we obtain macro-mode real-

izations which we define as data points in the discrete probability distribution of

macro-modes. A clustering procedure is employed in order to reduce the number of

realizations when the computational burden of evaluating high number of realiza-

tions is troublesome. A brief summary is given in Algorithm 1:

Algorithm 1 2-Stage decomposition approach

1: Stage 0 - Data Reduction:
2: Remove all non-executable modes
3: Delete the redundant nonrenewable resources
4: Stage 1 - Macro-mode Generation and Realization:
5: for s = 1 to |S| do
6: Generate macro-modes for projects
7: Generate realizations for macro-modes obtained
8: Apply K-means clustering to group realizations
9: end for

10: Apply transformation to resource profiles to eliminate time dimension
11: Decomposition MOGA
12: Fitness computation
13: for all chromosome c ∈ Population do
14: Stage 1a - Macro-Project Scheduling:
15: Serial scheduling with respect to probability bounds
16: Buffer insertion between projects
17: Target makespan calculation
18: Stage 2b - Min TSAD model
19: for s = 1 to |S| do
20: Solve projects for min TSAD
21: end for
22: end for

30

4.1.1 Data reduction

At the very beginning of the whole procedure, two of the preprocessing methods

discussed in Sprecher et al. [23] are applied to each project s ∈ Sa in order to reduce

the data size. First, all non-executable modes are eliminated and then all redundant

non-renewable resources are removed.

4.1.1.1 Eliminating non-executable modes

Comparing modes may show that some modes are dominated by the others in the

sense that a dominated mode of an activity will perform worse than or at the best

as good as the other modes of that activity regarding processing time and resource

usage efficiencies. These dominated modes, also referred to as non-executable modes,

can never be selected in an optimal schedule and hence are eliminated.

A mode mi of an activity i can be non-executable with respect to either a re-

newable and/or a non-renewable resource. Mode mi is a non-executable mode with

respect to a renewable resource r ∈ R, if wimir > Wr. Further, denoting min-

imal request of activity i for non-renewable resource n as qminin = min{qijn|j =

1, ..., |Mi|}, we call mi non-executable with respect to non-renewable resource n if
|Vs|∑

b=1;b 6=i

qminbn + qimin > Qn.

4.1.1.2 Eliminating redundant non-renewable resources

A non-renewable resource is redundant, if there is enough capacity to meet even the

maximal demand possible.

Let maximal request of activity i for non-renewable resource n be denoted

as qmaxin = max{qijn|j = 1, ..., |Mi|}. Non-renewable resource n is redundant, if
|Vs|∑
i=1

qmaxin ≤ Qn.

4.1.2 A shrinking method: macro-mode generation

Here the objective is to identify efficient macro-modes for each project. It should

be noted that as the number of macro-modes per project increases, the overall

31

complexity of assigning a macromode to a project increases. With this in mind, we

adopt the shrinking procedure by Speranza and Vercellis [3]. In this procedure, an

efficient search for makespan and resource usage costs of macro-modes is performed

and non-dominated macro-modes are generated. Two shrinking models M1
s and M2

s ,

which utilize artificial mode costs and an alterable budget based on resource usages

are used in the generation of macro-modes.

cur refers to the variable cost of utilizing one unit of renewable resource r for one

time period and cun refers to the variable cost of consuming one unit of non-renewable

resource n. Usage costs for renewable and non-renewable resources are incurred

periodically throughout each project. It is assumed that an activity’s consumption

of non-renewable resources as well as the variable cost distribution associated with

its consumption are uniform over the execution period of that activity. cur and cun

are both assumed to be 3 in our experiments in Section 6.

32

4.1.2.1 Shrinking models

Model M1
s :

xijt =

 1 if activity i starts at time t in mode j

0 otherwise
(4.1)

minTzs (4.2)

s.t. Ti =
∑
j∈Mi

li∑
t=ei

txijt i ∈ Vs, (4.3)

Di =
∑
j∈Mi

d̄ij

li∑
t=ei

xijt i ∈ Vs, (4.4)

Tk − Ti ≥ Di (i, k) ∈ Ps, (4.5)∑
i∈Vs

∑
j∈Mi

min (li+d̄ij−1,t)∑
θ=max (ei,t−d̄ij]+1)

wijrxijθ ≤ Wr r ∈ R, t ∈ Ts, (4.6)

∑
i∈Vs

∑
j∈Mi

qijn

li∑
t=ei

xijt ≤ Qn n ∈ N , (4.7)

∑
j∈Mi

li∑
t=ei

xijt = 1 i ∈ Vs, (4.8)

gij =
∑
r∈R

d̄ijwijrc
U
r +

∑
n∈N

qijnc
U
n j ∈Mi, i ∈ Vs, (4.9)

∑
i∈Vs

∑
j∈Mi

li∑
t=ei

gijxijt ≤ ks (4.10)

xijt ∈ {0, 1}, i ∈ Vs, j ∈Mi, t ∈ Ts (4.11)

As in a typical MRCPSP, constraints regarding start times (4.3), durations (4.4),

precedence relations (4.5), assignments (4.8), resource capacities (4.6) and (4.7)

and integrality (4.11) are included in Model M1
s . For project s, there is also an

artificial budget ks constraining the resource usages. Considering renewable and

non-renewable resources, variable usage costs, gij, are calculated as given in (4.9)

and are constrained by a budget ks as given in (4.10).

33

Model M2
s :

min ks (4.12)

s.t.
∑
i∈Vs

∑
j∈Mi

gij

li∑
t=ei

xijt = ks (4.13)

Tzs ≤ T hs (4.14)

(4.3), (4.4), (4.5), (4.6), (4.7),

(4.8) and (4.11) from Model M1
s

In Model M2
s , the budget is not included as a constraint (4.13) but it is taken as

the objective (4.12). An additional constraint (4.14) is introduced here, which sets

an upperbound, T hs , on the makespan of the project. It should be remembered that

there is a negative relation between project makespan and budget.

4.1.2.2 Macro-mode generation method

Algorithm 2 Macro-Mode Generation

1: for s = 2 to |S| − 1 do
2: for all activity i ∈ Vs do
3: for all mode j ∈Mi do
4: Calculate gij
5: end for
6: end for
7: Shift gij i ∈ Vs, j ∈Mi to 0
8: Remove all inefficient modes i ∈ Vs, j ∈Mi

9: Calculate kmaxs

10: Solve Model M1
s with ks = kmaxs and find Dmin

s

11: Solve Model M1
s with ks = 0 and find Dmax

s

12: for τ = Dmin
s to Dmax

s step size= 1 do
13: Solve Model M2

s with T hs = τ
14: if ks decrease and a new macro-mode is generated
15: end for
16: end for

Macro-mode generation procedure summarized in Algorithm 2 is initialized by

calculating the artificial mode costs as expressed in (4.9). Then artificial mode costs

34

are shifted to zero by calculating minimal artificial mode costs gmini for each activity

i ∈ Vs (4.15) and subtracting it from each artificial mode cost for each mode j ∈Mi

(4.16).

gmini = min{gij|j = 1, ...,Mi} i ∈ Vs (4.15)

gij = gij − gmini j ∈Mi, i ∈ Vs (4.16)

Later, inefficient modes are identified examining their durations and artificial

costs. A mode j of activity i is considered as inefficient, if there exists a mode h of

activity i such that d̄ij ≥ d̄ih and gij ≤ gih. After removing all the inefficient modes,

maximum budget required, kmaxs is computed by calculating maximal artificial mode

costs gmaxi for each activity i ∈ Vs (4.17) and adding them up (4.18).

gmaxi = max{gij|j = 1, ...,Mi} i ∈ Vs (4.17)

kmaxs =
∑
i∈Vs

gmaxi j ∈Mi, i ∈ Vs (4.18)

Considering duration range [Dmin
s , Dmax

s] for T hs , the upper limit on the makespan

is computed by solving Model M1
s once setting ks equal to 0 and once setting it equal

to kmaxs . Duration range for T hs signifies the durations for possible macro-modes to

be generated. Solving Model M2
s gives a schedule with a makespan equal to T hs and

most efficient mode selections regarding the resource usage cost budget. Starting

from Dmin
s , T hs is increased by one at each step until Dmax

s is reached. At each step,

Model M2
s is solved and if ks value is lower than that in the previous solution, a new

macro-mode v is generated using the duration and the renewable resource profile

obtained in the solution of the model as shown in (4.19) and (4.20).

qsvn =
∑
i∈Vs

∑
j∈Mi

qijn

li∑
t=ei

xijt (4.19)

wsvrt =
∑
i∈Vs

∑
j∈Mi

min (li+d̄ij−1,t)∑
θ=max (ei,t−d̄ij+1)

wijr(t−θ+1)xijθ (4.20)

35

This condition that ks decreases is considered in order to ignore schedules rep-

resenting identical mode selections but having different durations and, of course, it

is not checked for the first solution of Model M1
s where T hs = Dmin

s and an initial ks

value to be compared with has not been determined yet.

4.1.3 Macro-mode realization generation

The macro-modes generated with the expected mode duration assumption are un-

able to cope with disruptions resulting in higher resource usage or makespan level.

In that respect, in this stage, by simulation we are generating disruption cases re-

sulting from random generation of mode durations with each macro-mode profile.

Resulting disrupted macro-modes are called realizations. A disruption in a pregiven

macro-mode schedule may result in (a) higher makespan, (b) higher resource con-

sumption or (c) both. Each realization corresponds to a disruption scenario and

thus with a high number of realizations we represent the macromode as a combina-

tion of random variables with known discrete values. The probability of each case

corresponds to its frequency in the overall realizations.

The makespan level (realized makespan) of a macro-mode is especially important

in both setting a minimum makespan level and satisfying it with high probability.

Thus makespan level and maximum resource consumption level are the main perfor-

mance parameters of realizations hence it becomes possible to group the realization

data or eliminate common elements through these parameters.

Considering common or similar resource and makespan levels among numerous

realizations, it may become handy to group realizations and pick the most repre-

sentative ones for computational purposes. Although for our algorithm clustering

is not a necessary technique to adapt, higher number of realizations result in more

usage of computational power. Hence after weighing the benefits and drawbacks of

using a clustering techique to reduce the realization number, it has been decided to

employ one. In the next subsection, we present the clustering procedure employed

in detail.

36

4.1.4 Macro-mode realization clustering

Cluster analysis refers to techniques designed to find groups of similar elements

within a data set, and its assignment to representative groups. Each of these groups

is called a cluster and represents a region in which densitiy of objects are locally

higher than in other regions. The goal is to achieve the greater similarity (difference)

within (between) the clusters so that the clustering is more distinct.

Different types of clustering methods include hierarchical clustering, partitional

procedures, exclusive, overlapping and fuzzy algoritms [24]. Hierarchical clustering

methods produce a hierarchy of clusters from sub-clusters (smaller groups) within

large clusters. Hierarchical methods include divisive and agglomerative approaches

where the first approach progressively divides large clusters into smaller ones and

the latter one starts from small sized clusters and iteratively adds similar elements

to clusters. Partitional procedures essentially aim to divide the data set into a pre-

determined number of groups. Exclusive clustering groups data in such an exclusive

way that a data point belongs to a single cluster. However, in overlapping algorithms

a data point may belong to multiple clusters through the employement of fuzzy

clusters. Finally in fuzzy clustering, every object belongs to every cluster with a

membership weight. This broad suite of techniques is employed in many fields where

the interpretation of data is especially important. Information retrieval, psychology,

biology and medicine are among the many fields where cluster analysis is frequently

used.

One of the oldest and most widely used clustering procedures is K-means, an

exclusive partitional clustering algorithm that creates a one-level partitioning of

data objects and finds a user-specified number (K) of clusters [24]. K-means is a

local search procedure and the cluster number K fed into the algorithm is an input.

We perform experiments of different cluster numbers in Section 6.5.4.

K-means clustering algorithm aims to reduce total sum of squares (TSS) which

is a distance quantity defined in 4.21. Algorithm starts by randomly selecting K

centroids. Each point is then assigned to its closest centroid where closeness is

defined as the minimum euclidian distance between a point and a centroid. Centroids

37

are then updated with the change of data points belonging to each cluster. This

assigment is repeated until no change in the centroids occur.

TSS =
∑
k∈K

∑
p∈Clusterk

√
(Centroidk − p) (4.21)

One of the drawbacks of K-means clustering is the possibility of obtaining empty

clusters if case there are no points assigned to any cluster. At the end of algoritm,

some clusters may be empty which may result in an undesired solution. In that case,

a replacement stategy can be employed. There are two commonly used strategies

to prevent empty clusters: First is to find the farthest away point from all centroids

and assign it to the empty cluster- that strategy is beneficial since it at least reduces

TSS . Second is to choose the replacement centroid from the cluster that has the

highest sum of square errors. In case empty clusters are found, we employ first

strategy to obtained K-means solution, thus prevent void clusters. Algorithm 3

presents the described K-means algorithm.

Algorithm 3 K-Means clustering algorithm

1: Select K points as initial centroids
2: repeat
3: Form K clusters by assigning each point to its closest centroid
4: Recompute the centers of each centroid
5: until Centroids do not change
6: if Empty clusters found then
7: for all empty cluster c ∈ C do
8: Find the farthest point to all other points in data
9: Assign that point to empty cluster

10: end for
11: end if

4.1.5 Macro-mode generation, realization and clustering example

Here we present the same example given in [1] for the application of macro-mode

generation subprocedure. A project network with six activities is presented in Figure

4.3. Activities 0 and 5 are dummy activities. There is one renewable resource r
′

with 10 units capacity and one non-renewable resource n
′

with 50 units capacity.

38

Figure 4.3: Macro-mode generation example network

Usage costs are given as: cu
r′

= 1 and cu
n′

= 2. Duration and resource requirements

data about execution modes of activities are shared in Table 4.1 along with mode

cost calculations and shifted mode cost values. Note that dummy activities have 0

mode costs.

i j dij wijr′ qijn′ (dij)(wijr′)(c
u
r′

) + (qijn′)(c
u
n′

) = gij g
′
ij

1
1 3 3 2 (3)(3)(1)+(2)(2)= 13 3
2 4 2 1 (4)(2)(1)+(1)(2)= 10 0

2
1 5 4 3 (5)(4)(1)+(3)(2)= 26 8
2 7 2 2 (7)(2)(1)+(2)(2)= 18 0

3
1 4 3 4 (4)(3)(1)+(4)(2)= 20 8
2 6 2 0 (6)(2)(1)+(0)(2)= 12 0

4
1 1 2 0 (1)(2)(1)+(0)(2)= 2 0
2 2 0 3 (2)(0)(1)+(3)(2)= 6 4

Table 4.1: Macro-mode generation example data

By using (4.17) and (4.18), kmaxs is calculated to be 23. Solving Model M1
s once

setting ks equal to 0 and once setting it equal to 23 provides a duration range of

[7, 10]. Then four macro-modes presented in Figure 4.4 are generated by solving

Model M2
s with the upperbound values in the duration range set. At all steps

following the first one, a decrease in the objective function value is observed thus

making all the macro-modes generated acceptable as defined in the procedure.

Afterwards for each macro-mode generated their realizations are generated by

simulation. In each simulation, a realization of all activities in their selected modes

are obtained and a disrupted schedule is obtained. Figure 4.5 shows a visual example

of macro-mode 1 and one of its realizations. Activities that are marked red, have a

longer duration than their expected duration’s in this particular realization example.

39

Figure 4.4: Schedules and resource profiles for generated macro-modes [1]

Similarly K realizations are generated. Furthermore, representative realizations

in K realizations are determined via K-means algoritm. Suppose pre-given number

of clusters is 10, then total realization number of each macro-mode has been reduced

to 10.

Figure 4.5: An example of macro-mode and one realization

40

4.2 Macro-project scheduling

The macro-project scheduling model described here is a stochastic extension of MR-

CMPSP. The amount of renewable resource r utilized by an activity performed in

one of its modes is both time and distribution dependent. The randomness in the

resource amount increases the complexity of the problem, which is NP-hard in the

deterministic case. When it comes to scheduling resource profiles that are random

variables, two possible approaches emerge. The first option is to use the mean

or another frequently used statististical measure and solve the problem as in the

deterministic case. The other option is to use the random variables’ probability

information and compute joint probabilities when determining feasibility of con-

straints. Although the latter is much harder to compute, probabilistic constraints

are widely employed in literature (see e.g., [17], [19]) and probability limits give room

for parametric analysis and allow for observing the difference in resulting schedule.

It should be noted that the amount of randomness is a key issue affecting the

model. As macromodes are turned into realizations in which a specific macromode

may result in multiple resource profiles, the macro-modes themselves become com-

binations of random variables. In addition to resulting makespan value, resource

dimension of each time point is a random variable respresented by realizations.

Model MP :

x̃svt =

 1 if project s starts at period t in macro-mode v

0 otherwise
(4.22)

41

minTSAD =
∑
s∈S

∑
i∈Vs

∑
k∈K
|Tsi − Ek

si| (4.23)

minTargetMakespan (4.24)

s.t. Ts =
∑
v∈Ms

ls∑
t=es

tx̃svt s ∈ S, (4.25)

Ds =
∑
v∈Ms

dsv

ls∑
t=es

x̃svt s ∈ S, (4.26)

Tk − Ts ≥ Ds (s, k) ∈ Ps, (4.27)

Tsi ≥ Ts i ∈ Vs, s ∈ S, (4.28)

Prob(
∑
s∈S

∑
v∈Ms

min (ls+dsv−1,t)∑
θ=max (es,t−dsv+1)

wsvr(t−θ+1)x̃svθ ≤Wr) ≥ Limit1 r ∈ R, t ∈ T , (4.29)

Prob(max
s∈S

Ts < TargetMakespan) ≥ Limit2 (4.30)

∑
s∈S

∑
v∈Ms

qsvn

ls∑
t=es

x̃svt ≤ Qn n ∈ N , (4.31)

∑
v∈Ms

ls∑
t=es

x̃svt = 1 s ∈ S, (4.32)

wminsvrθ ≤ wsvrθ ≤ wmaxsvrθ , dminsv ≤ dsv ≤ dmaxsv , (4.33)

x̃svt ∈ {0, 1}, Tsi discrete, s ∈ S, v ∈Ms, t ∈ T (4.34)

Constraint set (4.25) represents the start times and constraint set (4.26) repre-

sents the durations for the projects. Note that dsv is a random variable, thus dura-

tions of projects and their starting times consequently become random. Constraint

set (4.27) ensures the precedence relationships between the projects. Constraint

set (4.28) assures the activities belonging to a project start later than the project

itself. Probabilistic constraint set (4.29) is the capacity constraint for the renewable

resources and constraint set (4.29) is the capacity constraint for the non-renewable

resources. Constraint (4.30) assures that the makespan of the multi-project sched-

ule is less than the target with a given probability limit. Constraint set (4.32)

ensures that for each project a macro-mode alternative is selected and is started at

some point in the interval [es, ls]. Although Wr, the renewable resource availability

for each renewable resource r is pre-known, still a probabilistic constraint (4.29) is

employed because of the uncertainty in resource usage levels of macro-modes.

42

4.3 Decomposition based multi-objective GA

As the name implies, GAs are global optimization search techniques inspired by

natural selection and evolution. GAs compose a pool of possible solutions named

chromosomes which are based on a particular representation scheme. Starting by

generating an initial population of solutions, algorithm progressively updates so-

lution pool by reproduction procedures (generating new individuals by modifying

parent individuals selected from population) or mutation procedures which modify

an existing individual in order to generate diversity.

Over the last decades, GA has been employed in many fields. One of the reasons

of their popularity is thier power in finding a global optimum and their flexibility

in their applicability to discrete spaces, nonlinear constraints, etc. [25]. The first

principles of GA were conceived in the seventies, Davis [26] composed the first

application of GA to scheduling context. Many researchers have developed GA

approaches to both single project scheduling and multi-project scheduling [27].

Hartmann applied GA to project scheduling problems with multiple modes [28].

Dealing with multi-objectives (in our case makespan and total sum of absolute

deviations) differentiates the algoritm’s structure. Presence of multi-objectives af-

fect especially parent selection and population update procedures and also definition

of an elite. A chromosome designated as an elite chromosome in a generation, is

reproduced in the next generation because of its desired fitness value. However, in

multi-objective case defining an elite can become troublesome since there is no single

dominating solution. For that purpose, algorithms, which use non-dominated fron-

tiers corresponding to elite solutions, have been developed. A very successful MOGA

algoritm (NSGA-II), suggested by Deb et al. [29], uses an explicit diversity gener-

ation procedure along with an elite-preservation procedure. Thus we adopt here

NSGA-II in our solution procedure. Figure 4.6 presents a general flow of the pro-

posed MOGA. Chromosome evaluation and population management are explained

in detail in 4.3.2 and 4.3.6, respectively.

43

Figure 4.6: Flow chart of the decomposition approach MOGA

4.3.1 Chromosome representation

First decision on the design of GA is the chromosome representation. In RCPSP

literature, there has been various representation of an individual. Although Kolisch

and Hartmann [30] distinguish up to 5 different schedule representations, activity-list

representation and random key representation are the most widely used ones [31].

Although these two representations have their own advantages, simulation experi-

ments performed by Kolisch and Hartmann [32] reveal that performance of activity-

list representation is superior to other discussed representations. In activity-list

representation an activity’s position represents its relative priority to other activ-

ities. In our case latest activity to be scheduled is the activity at the end of the

activity list.

In MRCPSP a single list of activities is not sufficient with the possible selection

of modes. Consequently, as in Alcaraz [33] we use two lists for representation of an

individual: a list of projects (Pc) and an ordered list of macro-mode assignments

(MMc). The mode assignment list represents the macro-mode executed for each

project. We do not use an ordered list for projects because it is easier to produce

offsprings from non-ordered lists. By definition there are no-precedence constraints

44

between the projects so there is no precedence-feasibility conditions required. How-

ever, for a generated chromosome non-renewable resource feasible, so non-renewable

resource constraints must be evaluated for each chromosome.

Figure 4.7: Chromosome representation

An example for a schedule representation with 7 projects and with macro-modes

each is given in Figure 4.1. Top row of the chromosome represents the priority

sequence for the activities meaning that project 5 has to be scheduled first and then

projects 4,1,2,7,6, and 3 have to follow in that order. Bottom row of the chromosome

represents the list of macro-mode selections for the activities. For example, project

2 is executed in its second macro-mode and project 7 is executed in its first macro-

mode.

4.3.2 Evaluation of chromosomes

A two stage serial scheduling heuristic, described in the following section is used

to calculate the objective values of a given chromosome. First part of the heuris-

tic, which consists of serial scheduling and buffer insertion, determines the target

makespan of the schedule (section 4.3.3.2), thus the first objective. The second

objective corresponds to the objective value of the minimum deviation linear pro-

gramming model (section 4.3.3.4) used to find robust starting times of activities.

4.3.3 A 2-stage serial scheduling heuristic

Here, the objective is to find a schedule that satisfies the renewable resource bounds

with a predetermined probability and also finds the minimum makespan bound

associated with the schedule obtained. A two-stage serial scheduling heuristic is

developed here, where in the first stage a serial scheduling routine along with buffer

45

insertion is performed and for the purpose of improving solution robustness consti-

tutes the second stage. Makespan bound should be satisfied with a probability of

not exceeding as in the resource case. Using similarly the joint probabilistic con-

straints as Bruni et al. [17], the heuristic schedules each project one by one from the

sequence list. If a project does not satisfy the probabilistic constraint, then the al-

goritm passes to the next project. Thus the proposed heuristic limits the schedule’s

probability of exceeding resource capacity and targeted makespan.

It should be noted that computation of probabilistic constraints becomes a chal-

lenge considering high number of random variables and the lack of a probability

distribution. With only discrete cases in hand, probability computation necessitates

exhaustive enumaration of possible cases thus becoming very expensive computa-

tionally. In order to overcome this challenge, we propose a resource profile trans-

formation to decrease the number of random variables within a macromode. We

propose to take solely the maximum of a random variable and its duration. So we

represent the randomness in resource consumption of each time point by a single

random variable. The details of this transformation may be found in the resource

profile transformation section.

4.3.3.1 Resource profile transformation

Previously generated macro-modes contain time dependent resource profiles whose

resource consumption at time t is a random variable that can take on different values

throughout realizations. Randomness in resource consumption at each time point in-

creases the complexity of resource feasibility constraints, decreases the performance

of the heuristic and consequently takes away the benefit of 2- stage decomposition.

On the other hand, a direct observation in later scheduling steps shows us that

when scheduling 2 or more time-dependent resource profiles at same time point

whilst sharing the same resource, the maximum amount of resource used by pro-

files becomes an important indicator on whether an overlapping is possible or not.

In other words, the over-use of a resource at a time point generally caused by a

conflict of higher resource levels of macromodes. Based on this observation, we pro-

46

pose a transformation of time dependent resource profiles into time constant profiles

where the amount of resource used is equal to the maximum resource consumption

in time-dependent profile.

Figure 4.8 below illustrates the described idea.

Figure 4.8: Resource profile transformation

Via the proposed transformation, we replace constraints (4.29) with (4.35) :

Prob(
∑
s∈S

min (ls+dsv−1,t)∑
v∈Ms

wsvrx̃svθ ≤ Wr) ≥ ResourceProbLimit r ∈ R, t ∈ T ,(4.35)

One possible drawback of this transformation is that it tends to overestimate

resource consumption by taking maximum values of each realization. A sched-

ule with overestimated resource consumption may result ina higher makespan than

in otherwise would. However, by imposing different limits posed on probabilistic

constraints(4.30,4.35), one may avoid this overestimation. If the resulting schedule

highly overestimates the resource usage, probability limits can be decreased in order

to compenstate overestimation. At the end of this step, time-dependent random

resource profiles of macromodes are transformed into rectangular resource profiles

with resource consumption levels and makespan being represented by discrete ran-

dom variables.

47

4.3.3.2 Scheduling stage 1- serial scheduling

In this stage given sequence and macro-mode list, projects with their selected macro-

modes are serially scheduled one by one. Algorithm 4 presents the the flow of serial

scheduling stage.

Algorithm 4 Serial scheduling

1: Already Scheduled Projects Ssch = ∅;
2: feasibletimepoints = ∅
3: for all Projects s ∈ S do
4: for time t ∈ feasibletimepoints do
5: if ∀r ∈ R, ResourceProbabilityV iolation(Ssch, s, i, r) = false;

then
6: Schedule Project s to time t
7: feasibletimepoints.Add(t+ ExpDuration[s]);
8: S = S \ s;
9: Ssch = S ′sch ∪ s;

10: end if
11: end for
12: Sort feasibletimepoints in non-decreasing order;
13: end for
14: Find minimum Target Makespan, such that:
15: Probability(

∑
cp∈criticalpathprojects cpmakespan ≤Target Makespan)≥ Limit;

In order to evaluate at time t, if renewable resource proababilistic constraint

is violated or not, projects that simultaneously share resources should be found.

We call RSLrt(resource sharing list), a list of projects using resource r in interval

[t, ExpDuration[s] + t]. These lists should be formed first and then the probability

that the sum of resource usages of all projects belonging RSLrt should be computed.

Figure 4.9 presents resource sharing lists on an example.

Figure 4.9: Example - identifying resource sharing lists

48

Computation of resource violation probability is given in Algorithm 5.

Algorithm 5 ResourceProbabilityViolation (Scheduled projects Ssch, time t,
project s , renewable resource r)

1: violation = false;
2: A list of all RSLrt : AllRSLrt → 0;
3: if ∃p ∈ Ssch using resource at [t, t+ Expdur(s)] then
4: if AllRSLrt is empty then
5: new RSLrt; RSLrt.Add(p);
6: AllRSLrt .Add(RSLrt);
7: else if ∃a ∈ RSLirt ∈ AllRSLrt s.t. a and p use simultaneously use r

then
8: RSLirt.Add(p);
9: else

10: new RSLrt; RSLrt.Add(p);
11: AllRSLrt .Add(RSLrt);
12: end if
13: end if
14: for all RSLrt ∈ AllRSLrt do
15: RSLrt.Add(s);
16: Compute Probability(

∑
p∈RSLrt

pr ≤ Wr));
17: if Probability(

∑
p∈RSLrt

pr ≤ Wr) ≤ Limit) then
18: violation = true;
19: break;
20: end if
21: end for
22: Return violation;

We assume that resource flow is fixed after obtaining an unbuffered schedule

hence even with the insertion of time-buffers between projects, resource flow stays

the same. The list of projects where same resource flow is taking place are denoted

as resource flow sequences(RFS).Figure 4.10 illustrates four RFS’s.

4.3.3.3 Scheduling stage 2 - buffer insertion

When robustness is desired for a schedule, one of the most common approaches is

to take an unbuffered schedule and insert time buffers to necessary time periods.

Although many robustness measures are reported in literature, many of these mea-

sures aim to minimize the deviation between preset and realized starting times. In

a robust schedule, disruptions in one activity affect another the minimum amount

49

Figure 4.10: Example - resource flow sequences

possible so that the preset starting times of activities are not much different than

in reality.

In literature there have been various approaches presented on generating buffered

schedules. Van de Vonder et al. [15] compare various buffering heuristics by simu-

lation based experiments. Their results favored the use of starting time criticality

(STC) heuristic. Therefore here we adopt a similar approach as in STC while in-

serting buffers to the schedule generated by Stage 1.

The basic idea is to start from an initial unbuffered schedule and iteratively create

intermediate schedules by adding a one-unit time buffer in front of that project that

needs it the most in the current intermediate schedule, until adding more safety

would no longer improve stability. For each project its scheduled time is denoted as

sj. The actual starting time of project j which is a random variable is denoted as

sj.

To quantify for each project how critical its current starting time is in the cur-

rent intermediate baseline schedule, stcj is defined as the probability that project j

cannot be started at its scheduled starting time.

stc(j) = P (sj ≥ sj) (4.36)

If we define k(i, j) the event that predecessor i disturbs the planned starting time

50

of project j, then the probability of that event to happen:

P (k(i, j)) = P (si + di + LPL(i, j) ≥ sj) (4.37)

Where LPL(i, j) denotes total sum of durations in the longest path between from i

to j and defined as:

LPL(i, j) =
∑

h∈LongestPath(i,j)

d̄h (4.38)

In STC heuristic as defined in Van de Vonder [15] STC is measured as:

stc(j) = P (
∑
i,j∈A

di ≥ sj − si − LPL(i, j)) (4.39)

This measure approximates the probability by addition thus does not describe

the actual probability. For that reason we propose to use a different formulation for

criticality of an project:

stc(j) = 1−
∏

i∈j′sPredecessors

(1− P (di ≥ sj − si − LPL(i, j))) (4.40)

The flow of buffering heuristic is given in Algorithm 6.

Algorithm 6 Buffering Heuristic

1: For each project s ∈ S calculate stcs and store in arraystc
2: while arraystc[index] ≤ 0 do
3: index = 0
4: Sort arraystc in decreasing order, choose p ∈ S with highest stc
5: if adding 1 time unit in front of p is feasible then
6: Shift p and its successors by 1 time unit
7: Update arraystc
8: Pick the next project with highest stc
9: end if

10: end while

Unbuffered and buffered starting times of each project s is denoted as ST unbuffs

and ST buffs and these project stating values are used in the following model. Note

51

that RFS do not change in the buffer insertion step.

4.3.3.4 Scheduling individual projects for TSAD minimization

After setting the resource capacities and the start times of the projects, a separate

min TSAD model is solved for each project. Each project is scheduled individually

therefore an individual target finish date for each project must be set. We define

Targets as below:

Targets =

 ST bufferedp if ∃ project p immidiately preceding s in any RFS

Target Makespan Otherwise
(4.41)

Note that a mode index is not employed in this formulation, since the modes of

the activities are already fixed in the generation of the macro-modes. Additionally

since this model is solved for each project, project index s is fixed. For project s

the corresponding Model Ss is given below:

Model Ss:

xit =

 1 if activity i starts at period t

0 otherwise
(4.42)

52

minTSADs =
∑
i∈Vs

∑
k∈K

|Ti − Ek
i | (4.43)

s.t. Ti =

li∑
t=ei

txit i ∈ Vs, (4.44)

Tj − Ti ≥ d̄i (i, j) ∈ Ps, (4.45)∑
i∈Vs

min (li+d̄ij−1,t)∑
θ=max (ei,t−d̄ij+1)

wijrxijθ ≤ W̃ s
rt r ∈ R, t ∈ Ts, (4.46)

li∑
t=ei

xit = 1 i ∈ Vs, (4.47)

Ti ≤ Targets i ∈ Vs, (4.48)

xit ∈ {0, 1}, t ∈ T (4.49)

The constraints for project duration (4.3), start time (4.4), precedence (4.5),

assignment (4.8) and integrality (4.11) constraints as in Model M1
s are included.

The right hand side of resource capacity constraints in (4.46) in Model Ss are dif-

ferent from the ones in Model M1
s . W̃ s

rt in constraint (4.46) are set as the average

values of the resource profiles of macro-mode assigned for project s. The renewable

resource capacity constraint does not (4.46) have a time index through resource

profile transformation in Section 4.3.3.1. Constraint 4.48 assures the non-violation

of the previously found target makespan and buffered project starting time values.

After solving model Ss for each s ∈ S, total TSAD value is the sum of each TSADs

value of all projects.

TSAD =
∑
s∈S

TSADs (4.50)

53

4.3.3.5 Heuristic example

In this section, a visual example of described heuristic is presented. Suppose chro-

mosome c, composed of project list Pc and macro-mode assignment list MMc is

given as:

Pc = {3, 6, 8, 5, 2, 10, 1, 9, 7, 4} (4.51)

MMc = {3, 1, 2, 2, 1, 3, 3, 2, 1, 1} (4.52)

Projects in their respective macro-mode selections in MMc, are scheduled by

the order of Pc. The output of Algorithm 4 is an unbuffered schedule which then

becomes the input of Algoritm 6, hence a buffered schedule is generated. Figure

4.11 illustrates a the output of stage 1 vs. the output of stage 2 of the heuristic.

Figure 4.11: Example : non-buffered schedule vs. buffered schedule

At the end of stage 2 of the heuristic, starting times of the projects and a target

overall makespan is determined. Afterwards for each project p ∈ Pc, Model Ss is

solved. For example, in case of project 7, given its buffered starting time 15 and

Target Makespan determined as 21, the Targets parameter in constraint (4.48), is

set as : 21− 15 = 6.

54

4.3.4 Crossover

Crossover operators are extremely important in creating diversified generations and

one of the most important factors on GA’s success. Here we use 2-point crossover

considering that there are no precedence constraints among projects. In the 2-point

crossover procedure, primarily 2 random points (genes) are selected. First parent

choromosome’s genes exluding the ones between two random points, are transferred

to child chromosome.The remaining genes are transferred from the second parent so

as to complete the child chromosome.

Figure 4.12: Crossover representation

4.3.5 Mutation

Modification of newly produced chromosomes plays an important part on increasing

population’s diversity. For that reason, we use two mutation operators : the swap

mutation operator and the bit mutation operator.

Swap mutation: It is executed on the priority order list to obtain different se-

quences, which may or may not lead to a different schedule, by swapping the places

of two activities randomly selected. For example, in Figure 4.13, activities 1 and 4

are swapped.

Figure 4.13: Swap mutation

Bit mutation: A project is selected randomly and the mode selection associated

55

with this project is replaced with another randomly chosen mode value as shown in

Figure 4.14.

Figure 4.14: Bit mutation

4.3.6 Population management

Presence of multi-objectives complicates population management of MOGA’s com-

pared to single objective GA’s. The steps of population management is given in

Algorithm 7.

The exact offspring will depend on the chosen pair of solutions participating in

a tournement and the chosen crossover and mutation operators, therefore parent

selection is very important. We fist duplicate population and then select random

pairs from this population. The idea here is to obtain different pairs of individuals.

Afterwards for each solution pair a tournament selection is performed where a so-

lution is selected if it belongs to a better frontier or has a higher crowding distance

value. Details of the crowded tournament selection can be found in Algorithm 8.

56

Algorithm 7 MOGA Population Management

1: Set populations Rt, Pt, Qt → 0;
2: Generate initial Population;
3: Pop = InitialPopulation;
4: for generation ∈ TotalGenerations do
5: for q = 0→ NewBornCount do
6: Crowded Tournament Selection for selecting 2 Parents;
7: Generate a child chromosome c by 2-point crossover;
8: if RandomNo ≤ SwapProbability then
9: ⇒ SwapMutation

10: end if
11: if RandomNo ≤ BitProbability then
12: ⇒ BitMutation
13: end if
14: Evaluate child c & find fitness pairs
15: Qt.Add(c);
16: end for
17: Combine Population and Offspring : Rt = Pt +Qt;
18: Perform non-dominated sort on Rt;
19: Identify different frontiers Fall in Rt;
20: Set new Population Pt → 0, count→ InitialPopulationCount;
21: while count > 0 do
22: for Frontier F ∈ Fall do
23: if |F | < count then
24: Add members of F → Pt
25: count⇐ count− |F |
26: else
27: Calculate crowded distance(F)
28: Add k = count individuals with highest cdi to Pt
29: count⇐ 0
30: end if
31: end for
32: end while
33: end for

57

Algorithm 8 Crowded Tournament Selection

1: Given population Pt composed of N individuals
2: Parent population Part → 0;
3: Set new popularion Rt = Pt + Pt;
4: for i = 0→ |Rt| do
5: individual c = Rti , randomly pick an individual d ∈ Rt[i, R]
6: if c belongs to a better frontier than d then
7: Part.Add(c);
8: else if d belongs to a better frontier than c then
9: Part.Add(d);

10: end if
11: if c and d belong to the same frontier then
12: if cdc ≤ cdd then
13: Part.Add(c);
14: else if Part.Add(d) then
15: Part.Add(c);
16: end if
17: end if
18: end for
19: Randomly select 2 individuals from Part → Parent 1 and Parent 2

We use crowding distance metric to compare solutions when selecting the off-

spring and forming a new population. This quantity is an estimate of the density of

solutions surrounding a particular solution. Details can be found in Algorithm 9.

Algorithm 9 Calculate crowding distance (Frontier F)

1: f lm denotes the mth objective value of solution l.
2: fmaxm, fminm denote the maximum and minimum mth objective values of all

solutions in F .
3: For each solution i ∈ F , initialize cdi = 0.
4: for Objective m ∈ Obj do
5: Sort the set in increasing order of fm
6: cd1 = cd|F | =∞
7: for Solution l = 2→ |F | − 1 do

8: cdl = cdl + f l+1
m −f l−1

m

fmaxm−fminm

9: end for
10: end for

58

CHAPTER 5

Holistic Heuristic Approach

Decomposing a problem into stages transforms a complex problem into simpler

subproblems, however, the solution of the decomposition may be different from a

holistic approach. Previous approach employs many stages in which approxima-

tions and heuristic procedures have been employed thus one may wonder the effect

of these procedures both on CPU time and performance quality. In order to make

such a comparison, we develop another GA based algoritm not using any decompo-

sition (macro-modes) but instead progressing on total activity list while generating

schedules. Figure 5.1 illustrates an example network by combining 3 projects. To

make the comparison significant, the main intuition behind chromosome evaluation

is similar but contains minor differences as a result of the different chromosome rep-

resentations of two algorithms. On the other hand, this approach as well employs

a multi-objective setting. Population management and parent selection steps are

exactly the same as in the decomposition approach.

Figure 5.2 presents an example of a schedule generated by holistic approach.

With a single renewable resource constraint, 3 projects composed of different number

of activities (5, 3, 2) are combined into single project network with 10 activities

preserving inter-project precedence relations. Hence, activities of a project may not

necessarily be processed consecutively. Note that mode durations are still uncertain.

Hence, in Figure 5.2 the finishing times of activities show the expected finishing times

and not the realized finishing times.

59

Figure 5.1: Holistic approach network structure composed of 3 projects

Figure 5.2: Gantt chart of a sample schedule generated as an output of the holistic
approach

5.1 Chromosome representation

In decomposition approach, chromosomes are composed of project sequence list and

selected macro-mode list. Since we do not have macro-modes in this approach, we

employ a different encoding. A chromosome is composed of an activity sequence

list and a corresponding mode list. Although projects are independent from one

another, there are precedence relations between activities of each project. So, for

each chromosome a precedence check must be performed, which increases the com-

putational burden. Non-renewable resource constraints are again satisfied for each

60

chromosome as in the decomposition case. Note that, in this approach chromo-

somes are much longer because of a much larger network structure compared to

decomposition approach.

Figure 5.3: Chromosome representation

An example for a schedule representation is given in Figure 5.3 with 3 projects

where one project consists of 4 activities and the other two projects consists of 3

activities (in total of 10 activities). Top row of the chromosome represents again the

priority sequence for the activities and bottom row of the chromosome represents

the list of mode selections for the corresponding activities. Note that the activities

of a project do not need to appear consecutively.

5.2 Evaluation of chromosomes

The fitness value for a chromosome is again calculated by a heuristic similar to the

one in decomposition approach. The heuristic, shown in Algorithm 10, is composed

of two stages where in the first stage a target makespan is determined and in the

second stage minimum TSGA solution robustness objective is calculated in order to

compute robust starting times of activities.

5.2.1 Stage 1 : Target makespan computation

In stage 1, we employ a serial scheduling procedure by generating durations of

activity modes by simulation. For each simulation step, the duration of selected

mode of project sequence list is randomly generated. Afterwards, all activities in

61

Algorithm 10 Holistic Approach Chromosome Evaluation

1: Given chromosome c, composed of activity list A and selected mode list M
2: for K simulations do
3: Randomly generate durations for each mode m ∈M of a ∈ A
4: for all Activity a ∈ A do
5: Schedule a to its earliest sequence and precence feasible starting

time
6: end for
7: Generate schedule and store its makespan value in arraymakespan
8: end for
9: Determine Target Makespan from arraymakespan sorted in increasing order

10: Solve Minimum TSAD Model and compute robust starting times

the sequence list are serially scheduled employing their mode selections in the mode

list.

In each simulation step, activities are scheduled to their earliest precedence

and sequence feasible starting time. Thus for K simulation steps we obtain K

schedules each having its own makespan and starting time values for all activities.

arraymakespan denotes the array of makespan values in each simulation step. After

sorting arraymakespan in increasing order, selected target makespan value is set as

the nth value of arraymakespan, where n = RoundUp(ProbabilityLimit ∗K).

5.2.2 Stage 2 : TSAD minimization model

The solution robustness objective model in the holistic approach is the same with

the one presented in Section 4.3.3.4 with the only difference being that here a single

model containing all activities of all projects is solved. Hence, the objective value

of TSAD model becomes the second objective of the chromosome.

5.3 Crossover

Presence of precedence constaints force the employement of precedence check pro-

cedures for any child generated from selected two parents. Checking precedence

feasibility is computationally expensive. Hence a procedure is needed which gener-

ates very diverse child chromosomes and preserves precedence feasibility throughout

the generation of the new chromosome as well. For that reason we make use of

62

a form of uniform crossover procedure [34], which applies crossover to the parents

chromosome’s gene by gene with a random choice ratio of 0.5.

Figure 5.4: Uniform crossover

Note that since the first and second parents are precedence feasible, the resulting

child chromosome is precedence feasible. Thus no additional precedence check pro-

cedure is necessary. However, non-renewable resource constaints must be checked

for violation with each newly generated off-spring.

5.4 Mutation

Employed mutation procedures are the same with the procedures in the decom-

position approach, however, after each mutation there is an additional precedence

feasibility condition imposed. The details of swap and bit mutation can be found in

section 4.3.5.

5.5 Population management

Considering the use of the same MOGA by Deb et al. [29] initial population gen-

eration, parent selection (crowded tournament selection) and crowded distance as-

signment procedure are the same as in the decomposition procedure. The details of

these procedures can be found in section 4.3.6.

63

CHAPTER 6

Computational Studies

Two solution approaches described in the previous two chapters are executed in

environments in which various factors affect the behaviour of solution procedures

significantly. Project size, resource based factors, probability limit and the range of

uncertainty in (mode) durations are common factors affecting both decomposition

and holistic solution procedures. Selected cluster number for grouping macro-mode

realizations affects solely decomposition procedure. Also, since both solution ap-

proaches are MOGA’s, GA parameter selection(population size, generation number,

mutation probabilities and newborn ratio) is also an important step while evaluating

their performance. A series of computational experiments are carried out in order

to observe the affects of these parameters and factors on the solution quality and

required computational effort.

6.1 Data

Data sets generated for MRCMPSP [1] are adapted to the current problem by adding

additional parameters. These data sets include a various combinations of single

project instances with different activity sizes developed by Kolisch and Sprecher [35].

Probability limits and duration ranges are added in these datasets.

6.1.1 Resource conditions

Resource factor (RFτ) and resource strength (RSτ), which were defined to repre-

sent the resource based conditions of resource categories τ ∈ {R,N} and shown to

exercise (Kolisch et al. [35]) a strong effect on the behavior of RCPSP solution pro-

64

cedures, are adapted here for multi-project scheduling environment. RFτ measures

the usage and consumption of resource type τ and RSτ measures the strength of

resource availabilities of resource type τ .

6.1.1.1 Resource factor

Resource factor of resource r ∈ R (or n ∈ N), reflects the average proportion of the

resource r (n) used and consumed [35]. RFR is given by (6.1) and (6.3); and RFN

is given by (6.2) and (6.4).

yijr = 1 if wijr > 0; 0 otherwise (6.1)

zijn = 1 if qijn > 0; 0 otherwise (6.2)

RFR =
1

|R|
1

|S| − 2

|S|−1∑
s=2

1

|Vs| − 2

|Vs|−1∑
i=2

1

|Mi|
∑
j∈Mi

∑
r∈R

yijr (6.3)

RFN =
1

|N |
1

|S| − 2

|S|−1∑
s=2

1

|Vs| − 2

|Vs|−1∑
i=2

1

|Mi|
∑
j∈Mi

∑
n∈N

zijn (6.4)

6.1.1.2 Resource strength

As described by Kolisch and Sprecher [36], RSτ ∈ {0,1} is a scaling parameter

expressing the resource availability as a convex combination of a minimum and

maximum level. Minimum and maximum levels for each non-renewable resource

n ∈ N are expressed by Kmin
n as in (6.5) and Kmax

n as in (6.6), respectively.

Kmin
n =

∑
i∈V

min
j∈Mi

{qijn} (6.5)

Kmax
n =

∑
i∈V

max
j∈Mi

{qijn} (6.6)

Minimum and maximum levels for each renewable resource r ∈ R are expressed by

Kmin
r as in (6.7) and Kmax

r is determined by the peak per period usage of renewable

resource r required in the earliest start schedule obtained by selecting project modes

65

with the greatest requirements for renewable resource r.

Kmin
r = max

i∈V

{
min
j∈Mi

{wijr}
}

(6.7)

Employing the maximum and minimum levels, resource availabilities for renewable

and non-renewable resources are determined as in (6.8) and (6.9), respectively.

Kτ
n = Kmin

n + round(RSτ (K
max
n −Kmin

n)) (6.8)

Kτ
r = Kmin

r + round(RSτ (K
max
r −Kmin

r)) (6.9)

6.1.2 Problem sets

Four problem sets (A,B,C,D) represent a variety of different environmental factors.

• Problem set A is formed to analyze the effect of resource based factors by

fixing other factors. It includes multi-project instances all having the same

number of projects and activities but different resource requirements and re-

source availability levels, categorized by RS and RF values for renewable and

non-renewable resources. Each instance includes 10 projects consisting of 14

activities each as shown in the first two columns of Table 6.1. Two levels

for RFR, RFN , RSR and three levels RSN are selected as given in the next

three columns of Table 6.1. To avoid any infeasibilities due to insufficient

non-renewable resources, a minimum value for resource strength factor of non-

renewable resources, RSminN , is determined by simple testing and a medium

level is also calculated by RSmidN = RSminN + (1 − RSminN)/2. Also the effect

of probability limit in computation of resource contraint and target makespan

is taken into account by 3 different probability limit values in the last col-

umn. Combinations of these five variable factors with different levels results

in problem set B with 72 instances in total.

noProj noAct RFR RFN RSR RSN ProbLimit

14 10 {0.75, 1} {0.75, 1} {0.6, 0.9} {RSminN , RSmidN , 1} {0.7, 0.9, 0.96}

Table 6.1: Problem set A

66

• Problem set B focuses on the effects of different number of projects and activi-

ties. In these multi-project instances, three levels are set for number of projects

and four levels are set for number of activities per project as provided in the

first two columns of Table 6.2. RF values for renewable and non-renewable

resources are fixed to be 0.5 as shown in the third and fourth columns of Table

6.2. Two levels are determined for RSN values as shown in the third column of

Table 6.2. Levels for RSN values are set using RSmid1
N = RSminN +(1−RSminN)/3

and RSmid2
N = RSminN + 2 ∗ (1 − RSminN)/3 as in [1]. The probability limit is

fixed to 0.96. Problem set B includes in total 24 instances.

noProj noAct RFR RFN RSR RSN ProbLimit

{10, 15, 20} {10, 14, 20, 30} 0.5 0.5 {0.7} {RSmid1
N , RSmid2

N } {0.96}

Table 6.2: Problem set B

• Problem set C is formed to analyze the effect of duration ranges. Similar

to problem set A, instances having the same number of projects consisting

of the same number of activities, are compared with different mode duration

ranges categorized by dminij and dmaxij values. Each instance includes 14 projects

consisting of 10 activities each as shown in the first two columns of Table 6.3.

Three levels are selected for duration ranges [dminij ,dmaxij] are as given in the

last four columns of Table 6.3. Problem set C includes 32 instances.

noProj noAct RFR RFN RSR RSN dmaxij - dminij ProbLimit

14 10 {0.5, 0.75} {0.75, 1} {0.6} {1} {2, 5, 10, 20} {0.7, 0.96}

Table 6.3: Problem set C

67

• Problem set D is formed to analyze the effect of various cluster numbers as an

input of the decomposition procedure. Multi-project instances having the same

number of projects consisting of the same number of activities, are compared

with different cluster numbers as an input of macro-mode genetation. Each

instance includes 14 projects consisting of 10 activities each as shown in the

first two columns of Table 6.3. Three levels for RFR, RFN , RSR are selected.

Four different number of cluster settings are compared. The last value in the

last column of Table 6.4, represents the case without any clustering procedure

employed. A total of 84 instances are generated.

noProj noAct RFR RFN RSR noCluster

14 10 {0.5, 0.75, 1} {0.5, 0.75, 1} {0.3, 0.6, 0.9} {5, 10, 20, None}

Table 6.4: Problem set D

6.2 Software and hardware information

All codes were written in GNU C# and the MIP solver in CPLEX 12.1. All experi-

ments were performed on a HP Compaq dx 7400 Microtower with a 2.33 GHz Intel

Core 2 Quad CPU Q8200 processor and 3.46 GB of RAM.

6.3 Measuring the performance of MOGA’s

The presence of multi-objectives in the model complicates the evaluation of an al-

gorithm’s performance. Some performance metrics include setting a utility weight

for each objective and compute a weighted sum of objectives thereby transforming

multi-objective formulation into a single objective one [37].

This approach does not fit to our setting since we don’t have information on

preference weights a priori. There are also approaches where non-dominated final

frontier solutions are compared to the pareto-optimal frontier which corresponds

to complete set of non-dominated solutions which are not dominated by any other

solution in the solution space. This does not fit into our problem neither since we

don’t know the pareto-optimal frontier.

68

For these reasons we propose to compare the non-dominated solutions of de-

composition to the non-dominated solutions of holistic approach. After obtaining

final non-dominated frontier for both H-MOGA and D-MOGA, we combine them

into a combined final non-dominated frontier and eliminate dominated solutions.

Solutions belonging to decomposition and holistic approaches in the combined final

non-dominated frontier are counted and reported. Figure 6.1 demonstrates described

idea.

Figure 6.1: Example - combined final frontier solutions

In order to measure the solution quality we propose to use the following measure:

• Ratio of solutions in the final combined frontier belonging to D-MOGA and

to H-MOGA to the total number of solutions in the combined final frontier,

respectively.

In Figure 6.1, 4 of the 7 solutions in the combined final frontier belong to D-

MOGA and 3 solutions belong to H-MOGA. Thus solution quality is determined as

4/7 for D-MOGA and 3/7 for H-MOGA.

69

As additional measures of performance, we propose to use the following metrics:

• Domination ratio is the ratio of the number of instances where an approach

dominates another to the number of all instances.

• Disjoint solution region ratio (DSRR) is a metric that measures whether so-

lutions in the final frontiers of each approach belong to disjoint solution re-

gions. D-Moga and H-Moga solutions in Figure 6.2 are separated both in

target makespan and TSAD dimensions, thus they belong to disjoint solution

regions. Hence DSRR, is the ratio of the number of instances where the solu-

tions of two approaches are not separated in makespan and TSAD dimensions,

to the number of all instances.

Figure 6.2: Example - disjoint final frontier regions

We also measure computation time performance of solution approaches denoted

for D-MOGA as CPUD−MOGA and for H-MOGA as CPUH−MOGA.

70

6.4 MOGA parametric analysis

Performance of a GA depends heavily on selected parameters: population size, gen-

eration number, newborn ratio, swap and bit mutation probability. In order to

measure the performance of D-MOGA and H-MOGA approaches in described data

sets A, B and C, we first perform experiments in order to catch the behaviour of

two algoritms under different parameter settings. Hence, we randomly selected 6

instances from generated data sets and obtained non-dominated frontier solutions of

each approach individually under different population number and number of gen-

erations. Under each setting, swap mutation and bit mutation probability are set

to 0.3.

Setting no Population size Number of generations
1 20 20
2 100 20
3 20 100
4 100 100
5 100 200
6 200 100
7 200 200

Table 6.5: MOGA parameter selection analysis

We present below the progression of final frontier of a sample problem instance.

The instance is selected from data set A, and is composed of 14 projects each having

10 activities. Both D-MOGA and H-MOGA approaches are analyzed individually.

Figure 6.3 presents the final non-dominated frontier for D-MOGA, and final non-

dominated frontier H-MOGA is presented in Figure 6.4.

Note that for the sample problem instance, the final non-dominated frontier of H-

MOGA approach require higher population size and generation number compared

to D-MOGA. This result is due to the fact that H-MOGA approach has a much

larger chromosome length and thus requires more computation in order to obtain

rather stable final-frontiers. This result is repeated among all randomly selected

instances.

71

Figure 6.3: Example - progression of non-domimated frontier under different param-
eter settings - D-MOGA

Figure 6.4: Example - progression of non-domimated frontier under different param-
eter settings - H-MOGA

72

Although the results of the parametric analysis are in favor of bigger population

sizes and higher number of generations, these parameter selections are very limiting

with respect to time performance. For the same example instance, Figure 6.5 shows

the required CPU time for each approach under different parameter settings.

Figure 6.5: Example - required CPU time under different parameter settings

Note that some of these results are obtained despite their violation the pregiven

CPU time limit (3 hours). For example, H-MOGA requires approximately 20 hours

under parameter setting 7. Anticipating that the CPU times would increase with

higher number of projects and activities we decided to set MOGA parameters pop-

ulation count, generation number, newborn ratio, swap mutation and bit mutation

probability respectively as 20, 20, 0.5, 0.4, 0.4 for data set B, C and D. For data

set A, all results are obtained easily within the runtime limit. Thus, we decided to

increase the population count to 50 in order to obtain better results.

6.5 Experimental studies

Data sets A,B and C are solved for both D-MOGA and H-MOGA. The ratio of D-

MOGA solutions compared to H-MOGA solutions in the combined non-dominated

frontier, domination ratio and DSRR values are presented. Table 6.6 shows ratio of

73

non-dominated solutions of the two approaches for each data set.

Ratio of solutions in the final combined frontier
Problem Set A Problem Set B Problem Set C

Average Stdev Average Stdev Average Stdev

D-MOGA 0.705
0.390

0.670
0.170

0.872
0.127

H-MOGA 0.294 0.330 0.235

Table 6.6: Ratio of solutions in the final combined frontier for data set A, B and C

The overall results for each data set show that a higher ratio of solutions in the

final combined frontier are coming from D-MOGA. Table 6.7 shows that in most of

the instances in data set A and C, solutions of D-MOGA fully dominate the solutions

generated by H-MOGA. However, for data set B, we do not see a similar result and

this fact could be due to the separation of solution regions along with the increase

in the number of projects and activities. Note that the solution regions in data set

B are fully disjoint. In Table 6.7 domination ratio is solely given for solutions where

D-MOGA fully dominates H-MOGA, because there is not a single instance where

solutions of H-MOGA fully dominate solutions of D-MOGA in all solved instances.

Domination Ratio (D-MOGA) DSRR

Data set A 0.708 0.445

Data set B 0.173 1

Data set C 0.593 0.25

Table 6.7: Additional comparison measures for datasets A, B and C

Table 6.8 shows required CPU times for the two approaches in data sets A, B

and C. Overall results show that D-MOGA requires much less time compared to H-

MOGA. This is expected since the chromosome length is much larger in H-MOGA

and precedence feasibility checks are additionaly employed.

CPU time (sec)
Problem Set A Problem Set B Problem Set C

Min Average Max Min Average Max Min Average Max

D-MOGA 374.2 679.3 1260.6 333.5 712.1 1451.6 145.1 259.4 501.5
H-MOGA 1212.3 1354.5 1564.2 1417.2 6053.9 20211.5 286.5 507.3 897.8

Table 6.8: CPU times for data sets A, B and C

74

In the following subsections we present general observations obtained for each

data set in their own setting.

6.5.1 Resource and probability limit analysis

In order to measure the effect of resource based factors (RFR, RFN , RSR and RSN)

and probability limit values problem set A is solved and analyzed. Results in Table

6.9 point out that an increase in (RSR) results in an increase of D-MOGA solutions

in the ratio of solutions in the final combined frontier. Hence, this observation shows

that when the multi-project problem has more renewable resources the overestima-

tion of resource usage (4.3.3.1) is compensated for.

Ratio of solutions in the final combined frontier
D-MOGA H-MOGA

Prob. Limit RSR = 2 RSR = 3 RSR = 2 RSR = 3
0.7 0.765 0.787 0.234 0.212
0.9 0.635 0.638 0.364 0.361
0.96 0.665 0.743 0.334 0.257

Table 6.9: Effect of RSR on ratio of solutions in the final combined frontier for data
set A

Note that with decreasing RSR as the abundance of renewable resources de-

creases in the network, the ratio of H-MOGA solutions in the final combined fron-

tier increases. Hence, in tight resource conditions a mixed approach employing both

D-MOGA and H-MOGA simultaneously, could be developed as a future research

direction.

The effect of RSR values on the required computational effort is also interest-

ing. As Table 6.10 shows, CPUD−MOGA increases with an increase in RSR whereas

CPUH−MOGA decreases. For D-MOGA it can be argued that with the more renew-

able resource availabilities RSLrt lists defined in section 4.3.3.2 will be longer which

would make the computation of probability constraints harder, thus requiring more

computational effort. Whereas for H-MOGA as the renewable resource tightness

decreases, the renewable resource-based infeasibilities in Model Ss (Section 4.3.3.4)

are prevented. It should be noted that in case a feasible solution is not found in

75

Model Ss, the model is re-run with an updated target makespan thereby requiring

additional computational effort.

Average CPU (sec)
D-MOGA H-MOGA

Prob. Limit RSR = 2 RSR = 3 RSR = 2 RSR = 3
0.7 669.3 702.3 1356.6 1347.2
0.9 623.6 708.5 1364.5 1346.5
0.96 673.2 712.7 1370.4 1338.6

Table 6.10: Effect of RSR on average CPU for data set A

6.5.2 Effect of number of projects and activities

The effect of number of projects and activities is analyzed in problem set B. Results

of the instances having different number of projects (Table 6.11) that as the project

number increases in the multi-project network, required computational time sharply

increases in H-MOGA. This fact coincides with the expectation that the number

of projects in the problem environment has a significant impact on the problem

difficulty. However, for D-MOGA approach, higher number of projects may not

result in higher CPU times and this fact could be due to joint probability calculations

in formulation. In some cases, infeasibilities of probabilistic constaints may be easily

computed by checking maximum renewable resource usage levels of simultaneously

resource sharing projects thereby accelerating computation of the overall algorithm.

CPU time (sec)
D-MOGA H-MOGA

noProj Average Stdev Average Stdev
10 433.2 137.8 4055.2 2071.2
15 814.8 254.1 6032.3 2456.2
20 802.375 396.1 8076.8 6563.3

Table 6.11: Effect of number of projects on CPU time for data set B

Table 6.12 presents the average CPUD−MOGA and CPUH−MOGA required to solve

the instances from problem set B and having different number of activities. In Table

6.12 we observe that D-MOGA’s CPU time requirement increases along with number

of activities. This fact is expected, since an increase in number of activities results

76

in an increase of variable numbers in Model Ss for each project. Although a similar

result is expected for H-MOGA, such a conclusion cannot be reached considering

the resulting time values. Although instances composed of 20 activities required

less computational time than instances composed of 14 activities, a sharp increase

in standart deviations is observed. Hence these average values can be deceptive to

reach a decisive conclusion.

CPU time
D-MOGA H-MOGA

noAct Average Stdev Average Stdev
10 539.2 219.2 2690.6 842.8
14 588.8 229.3 6883.4 590.4
20 595.33 240.7 4983.5 3123.2
30 1065.16 330.8 10907.5 5732.5

Table 6.12: Effect of number of activities on CPU time for data set B

6.5.3 Duration bound analysis

We assume that duration of activitiy i in its mode j is a triangular distributed

random variable with pregiven lower and upper bounds, dminij , dmaxij . Duration range

between dminij and dmaxij is an important parameter effecting the uncertainty of the

model. Hence, data set C includes three different range settings: 2, 5 and 10.

Expected durations kept constant in each instance, lower and upper duration bounds

are adjusted. Table 6.13 shows that both CPUD−MOGA and CPUH−MOGA increases

along with an increase of duration range in the instances. This fact is related

to the increase of the range between earliest and latest starting times obtained by

simulation. As the mode duration range increases, earliest starting times of activities

are pushed backward and latest starting times are pushed forward. Thereby, the

solution space of TSAD models increases thus result in higher computational times.

77

Average CPU time
Range D-MOGA H-MOGA

2 180.1 317.2
5 189.2 378.1
10 241.3 506.6
20 426.3 825.7

Table 6.13: Effect of duration bound on CPU time for data set C

6.5.4 Decomposition clustering analysis

Clustering analysis described in Section 4.1.4 aims to pick the most representative K

realizations among many realizations generations generated for a macro-mode. Each

realization symbolizes a point in the discrete probability distribution of a macro-

mode and joint probability constraints (4.29) and (4.30) are making use of this

probability distribution in evaluation. However, each realization has a usage level

for each resource and a makespan by resource profile transformation discussed in

Section 4.3.3.1. On the other hand, probabilities in (4.29) and (4.30) are computed

by conditioning on each variable and the more the number of points the harder the

computation. This fact motivated us to perform a clustering analysis and decide on

the pregiven number of clusters for K-means clustering algorithm.

In order to catch the behaviour of D-MOGA under different number of clusters,

four number of cluster levels (5, 10, 20, None) are included in data set D. Table 6.14

shows the effect of selected number of clusters on the ratio of solutions in the final

combined frontier.

Number of clusters Ratio of solutions in the final combined frontier
5 0.236
10 0.273
20 0.317

None 0.197

Table 6.14: Effect of number of clusters on the ratio of solutions in the final combined
frontier

In 23 of the 84 instances solved, decompositon MOGA without employing any

clustering procedure could not generate solutions within the pregiven time limit (1

hour for initial population generation). For that reason, Table 6.15 presents revised

78

results in which those instances are not included. Note that when time limit is

exceeded for any instance, its non-dominated final frontier does not include any

solutions thereby gets dominated by other procedures with pre-set cluster numbers.

Number of Clusters
NoProj 5 10 20 None

10 0.271 0.208 0.238 0.281
20 0.203 0.182 0.509 0.107

(10+20) 0.273 0.153 0.296 0.276

Table 6.15: Effect of number of clusters on the ratio of solutions in the final combined
frontier - revised results

Along with general solution performance findings, in Table 6.15 also an inter-

esting finding appears in project-wise comparison. Note that although 10 number

of clusters dominates 5 number of clusters in all instances, this result is not ob-

tained after eliminating instances where time limit is exceeded for no-clustering

case. Thereby, as the results suggests a different number of cluster can be set de-

pending on network conditions as there seems to exist different highly performing

number of clusters.

Table 6.16 shows the effect of number of clusters on CPU time for the given

instances. In time performance results indicate the benefit of using a clustering

procedure, however, employing less number of clusters does not necessarily result in

lower CPU time requirements for all instances. One of the reasons this has occured in

20 project instances is that it is possible to obtain different schedules with different

RSLrt and RFL sequences. This difference may lead to increase or decrease in

the required computational effort of computing joint probabilistic constraints. In

addition to solution performance, CPU time results also show that different number

of clusters may be more suitable depending on the instance under consideration.

Number of Clusters
NoProj 5 10 20 None

10 451.7 485.3 539.1 726.2
20 2962.8 3645.4 3235.2 4628.5

Table 6.16: Effect of number of clusters on CPU time

79

CHAPTER 7

Conclusions and Future Work

In this study, we investigate MRCPMSP under uncertainty. The problem has a

multi-objective setting related to quality and solution robustness. First objective is

obtaining a minimum multi-project duration target from which the realized schedule

is not to exceed with a preset probability. Second objective is the TSAD of scheduled

starting times of activities from their earliest starting times generated by simulation.

We develop two MOGA solution approaches, first one decomposing the problem into

2-stages and the other approaching the problem in a holistic fashion.

Initial step of D-MOGA includes a two-phase decomposition where each project

is reduced to a single macro-activity by systematical using of artificial budget values

and expected project durations. Generated macro-activities may have one or more

processing modes (macro-modes). The uncertainty in macro-modes is modeled via

simulations where randomly generated activity mode durations result in disrupted

macro-activity schedules. These disruptions compose the discrete probability func-

tion of macro-activities and representative cases are selected by K-means clustering

procedure.

Afterwards, nondominated sorting genetic algoritm (NSGA-II) is executed [38].

For fitness computation a two stage heuristic is developed. In the first stage given the

probability constraints, a serial scheduling routine along with a buffering procedure

is applied to a project list and a minimum target makespan of overall projects is

determined. In the second stage minimum total absolute sum of deviations model

is solved in order to find solution robust starting times of activities for each project.

The objective value of this model is taken as the second objective of the MOGA.

80

Using the same multi-objective formulation and population management, an-

other MOGA is developed. H-MOGA combines all activities of each project into

one big network and does not require that activities of a project are scheduled con-

secutively. There is also a similar two-stage heuristic for assigning fitness values.

In the first stage, for K simulations given the same activity sequence, mode dura-

tions of activities are randomly generated. Activities in their respective modes in

the mode list are serially scheduled thereby K schedules are obtained. Resulting

from makespan values of these K schedules, a target makespan is computed. In

the second stage, a similar TSAD minimization model is solved as in D-MOGA is

solved.

Computational studies measuring performance of the two proposed solution ap-

proaches are performed for different datasets. When non-dominated solutions of

each approach combined in a final population, overall results show that a larger

ratio of these solutions are genetared by D-MOGA. Additionaly, required compu-

tational effort for D-MOGA is much less than the holistic approach. As the the

abundance of renewable resources decreases with decreasing RSR in the network,

the difference between the ratio of solutions in the final combined frontier belonging

to two approaches decreases.

As a future research direction fast heuristics could be employed in solving min-

imum TSAD models which currently compose a major bottleneck on the compu-

tational performance of the proposed algorithms. Another direction would be on

setting individual project target makespans in addition to multi-project target and

on obtaining more solution robust schedules at project level. Furthermore, resource

based uncertainties could be incorporated into the mode. Also experiments could

be performed with different distribution assumptions. Considering future research

possibilities and the voidness of robust scheduling literature in MRCMPSP, the

topic has a rich potential of problems and extensions. We hope this first study on

MRCMPSP under uncertainty would motivate researchers to this intriguing field.

81

Bibliography

[1] A. Can, “Multi-project scheduling with 2-stage decomposition,” Master’s thesis,

Sabanci University, Istanbul, 2010.

[2] J. H. Payne, “Management of multiple simultaneous projects: a state-of-the-

art review,” International Journal of Project Management, vol. 13, pp. 163–168,

1995.

[3] M. G. Speranza and C. Vercellis, “Hierarchical models for multi-project plan-

ning and scheduling,” European Journal of Operational Research, vol. 64, pp.

312–325, 1993.

[4] O. Hazr, M. Haouari, and E. Erel, “Robust scheduling and robustness measures

for the discrete time/cost trade-off problem,” European Journal of Operational

Research, vol. 207, no. 2, pp. 633–643, Dec. 2010.

[5] E. Klerides and E. Hadjiconstantinou, “A decomposition-based stochastic pro-

gramming approach for the project scheduling problem under time/cost trade-

off settings and uncertain durations,” Computers and Operations Research,

vol. 37, no. 12, pp. 2131–2140, 2010.

[6] G. Zhu, J. F. Bard, and G. Yu, “Disruption management for resource-

constrained project scheduling,” Journal of the Operational Research Society,

vol. 56, no. 4, pp. 365–381, Oct. 2004.

[7] F. Deblaere, E. Demeulemeester, and W. Herroelen, “Reactive scheduling in

the multi-mode RCPSP,” Computers and Operations Research, vol. 38, no. 1,

pp. 63–74, Jan. 2010.

82

[8] P. Brucker, A. Drexl, R. Möhring, K. Neumann, and E. Pesch, “Resource-

constrained project scheduling: Notation, classification, models, and methods,”

European Journal of Operational Research, vol. 112, no. 1, pp. 3–41, 1999.

[9] W. Herroelen and R. Leus, “Project scheduling under uncertainty: Survey and

research potentials,” European Journal of Operational Research, vol. 165, no. 2,

pp. 289–306, Sep. 2005.

[10] L. Tavares, J. Antunes Ferreira, and J. Silva Coelho, “On the optimal man-

agement of project risk,” European Journal of Operational Research, vol. 107,

no. 2, pp. 451–469, 1998.

[11] R. Leus, “The generation of stable project plans,” Ph.D. dissertation, Oct.

2004.

[12] W. Herroelen and R. Leus, “Robust and reactive project scheduling: a review

and classification of procedures,” International Journal of Production Research,

vol. 42, no. 8, pp. 1599–1620, Apr. 2004.

[13] S. Van De Vonder, E. Demeulemeester, W. Herroelen, and R. Leus, “The trade-

off between stability and makespan in resource-constrained project scheduling,”

International Journal of Production Research, vol. 44, no. 2, pp. 215–236, Jan.

2006.

[14] E. Demeulemeester and W. Herroelen, “A branch-and-bound procedure for

the multiple resource-constrained project scheduling problem,” Management

science, 1992.

[15] S. Vonder, E. Demeulemeester, and W. Herroelen, “A classification of

predictive-reactive project scheduling procedures,” Journal of Scheduling,

vol. 10, no. 3, pp. 195–207, May 2007.

[16] H. Chtourou and M. Haouari, “A two-stage-priority-rule-based algorithm for

robust resource-constrained project scheduling,” Computers and Industrial En-

gineering, vol. 55, no. 1, pp. 183–194, Aug. 2008.

83

[17] M. Bruni, P. Beraldi, F. Guerriero, and E. Pinto, “A heuristic approach for re-

source constrained project scheduling with uncertain activity durations,” Com-

puters and Operations Research, vol. 38, no. 9, pp. 1305–1318, Sep. 2011.

[18] D. Golenko-Ginzburg and A. Gonik, “Stochastic network project scheduling

with non-consumable limited resources,” International Journal of Production

Economics, vol. 48, no. 1, pp. 29–37, 1997.

[19] D. Golenkoginzburg and A. Gonik, “A heuristic for network project scheduling

with random activity durations depending on the resource allocation,” Inter-

national Journal of Production Economics, vol. 55, no. 2, pp. 149–162, Jul.

1998.

[20] D. Golenko-Ginzburg, A. Gonik, and S. Sitniakovski, “Resource supportability

model for stochastic network projects under a chance constraint,” Communi-

cations in Dependability and Quality Management, vol. 3, no. 1, pp. 89–102,

2000.

[21] D. Golenko-Ginzburg, S. Lyubkin, V. Rezer, and S. Sitnyakovskii, “Algorithms

of optimal supply of resources to a group of projects (stochastic networks),”

Automation and Remote Control, vol. 62, no. 8, pp. 1366–1375, 2001.

[22] G. Zhu, J. F. Bard, and G. Yu, “A two-stage stochastic programming approach

for project planning with uncertain activity durations,” Journal of Scheduling,

vol. 10, no. 3, pp. 167–180, May 2007.

[23] A. Sprecher, S. Hartmann, and A. Drexl, “An exact algorithm for project

scheduling with multiple modes,” OR Spektrum, vol. 19, pp. 195–203, 1997.

[24] P. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining. Pearson

Addison Wesley Boston, 2006.

[25] D. Montana, M. Brinn, S. Moore, and G. Bidwell, “Genetic algorithms for com-

plex, real-time scheduling,” SMC’98 Conference Proceedings. 1998 IEEE Inter-

84

national Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218),

pp. 2213–2218.

[26] L. Davis, “Job shop scheduling with genetic algorithms,” in Proceedings of the

1st International Conference on Genetic Algorithms. Hillsdale, NJ, USA: L.

Erlbaum Associates Inc., 1985, pp. 136–140.

[27] S. Kumanan, G. Jegan Jose, and K. Raja, “Multi-project scheduling using

an heuristic and a genetic algorithm,” The International Journal of Advanced

Manufacturing Technology, vol. 31, no. 3-4, pp. 360–366, May 2006.

[28] Hartmann, “Project scheduling with multiple modes: A genetic algorithm based

approach,” Annals of Operations Research, pp. 1–23, 2001.

[29] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiob-

jective genetic algorithm: Nsga-ii,” Evolutionary Computation, IEEE Transac-

tions on, vol. 6, no. 2, pp. 182–197, 2002.

[30] R. Kolisch and S. Hartmann, “7 heuristic algorithms for the resource-

constrained project scheduling problem: Classification and computational anal-

ysis,” J. Weglarz, Ed. Springer Netherlands, 1999, p. 147.

[31] V. Van Peteghem and M. Vanhoucke, “A genetic algorithm for the multi-mode

resource-constrained project scheduling problem,” Working Papers of Faculty

of Economics and Business Administration, Ghent University, Belgium, 2008.

[32] S. Hartmann and R. Kolisch, “Experimental evaluation of state-of-the-art

heuristics for the resource-constrained project scheduling problem,” European

Journal of Operational Research, vol. 127, no. 2, pp. 394–407, 2000.

[33] J. Alcaraz, C. Maroto, and R. Ruiz, “Solving the multi-mode resource-

constrained project scheduling problem with genetic algorithms,” Journal of

the Operational Research Society, vol. 54, no. 6, pp. 614–626, 2003.

85

[34] F. Şerifoğlu, “A new uniform order-based crossover operator for genetic algo-

rithm applications to multi-component combinatorial optimization problems,”

Ph.D. dissertation, Boğaziçi University, Istanbul, 1997.

[35] R. Kolisch, A. Sprecher, and A. Drexl, “Characterization and generation of

a general class of resource-constrained project scheduling problems,” Manage-

ment Science, vol. 41, pp. 1693–1703, 1995.

[36] R. Kolisch and A. Sprecher, “PSPLIB - a project scheduling problem library,”

European Journal of Operational Research, vol. 96, pp. 205–216, 1996.

[37] C. Grosan, M. Oltean, and D. Dumitrescu, “Performance metrics for multiob-

jective optimization evolutionary algorithms,” in Proceedings of Conference on

Applied and Industrial Mathematics (CAIM), Oradea, 2003.

[38] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist mul-

tiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary

Computation, vol. 6, no. 2, pp. 182–197, Apr. 2002.

86

