
PARALLEL ALGORITHMS FOR NONLINEAR OPTIMIZATION

by

FİGEN ÖZTOPRAK

Submitted to the Graduate School of Engineering

and Natural Sciences in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Sabancı University

Spring 2011





c©Figen Öztoprak, 2011

All Rights Reserved



Babama...

iv



PARALLEL ALGORITHMS FOR NONLINEAR OPTIMIZATION

Figen Öztoprak

PhD Thesis, 2011

Thesis Advisor: Assoc. Prof. Dr. Ş. İlker Birbil

Keywords: parallel algorithm design, nonlinear programming, parallel optimization

Parallel algorithm design is a very active research topic in optimization as parallel

computer architectures have recently become easily accessible. This thesis is about an

approach for designing parallel nonlinear programming algorithms. The main idea is to

benefit from parallelization in designing new algorithms rather than considering direct

parallelizations of the existing methods. We give a general framework following our

approach, and then, give distinct algorithms that fit into this framework.

The example algorithms we have designed either use procedures of existing meth-

ods within a multistart scheme, or they are completely new inherently parallel algo-

rithms. In doing so, we try to show how it is possible to achieve parallelism in algorithm

structure (at different levels) so that the resulting algorithms have a good solution per-

formance in terms of robustness, quality of steps, and scalability. We complement our

discussion with convergence proofs of the proposed algorithms.

v



DOĞRUSAL OLMAYAN ENİYİLEME İÇİN PARALEL

ALGORİTMALAR

Figen Öztoprak

Doktora Tezi, 2011

Tez Danışmanı: Doç. Dr. Ş. İlker Birbil

Anahtar Kelimeler: paralel algoritma tasarımı, doğrusal olmayan programlama, paralel

eniyileme

Paralel hesaplama mimarilerinin kolayca erişilebilir bir teknoloji haline gelmesi

sonucu, paralel algoritma tasarımı konusu optimizasyon alanında güncelliğini korumak-

tadır. Bu tez, paralel doğrusal olmayan programlama algoritmaları tasarlamaya yönelik

bir yaklaşımı konu almaktadır. Yaklaşımın ana fikri, mevcut yöntemleri doğrudan

paralelleştirmek yerine, paralel hesaplamadan faydalanarak yeni algoritmalar tasarla-

maktır. Dolayısıyla, önce yaklaşımıza uygun bir tasarım çerçevesi veriyor ve sonra da

bu çerçevede kalan farklı algoritmalar sunuyoruz.

Tasarladığımız örnek algoritmalar ya mevcut yöntemlere ait prosedürleri çokbaşla-

malı bir yapı içerisinde kullanmaktadırlar, ya da tamamen bu tezde geliştirilmiş yeni

paralel yöntemlerdir. Bu şekilde, algoritmalarin (değişik seviyelerde) yapısal paralelliği-

nin, elde edilen algoritmalar iyi bir çözüm performansına sahip olacak şekilde nasıl

başarılabi- leceğini göstermeye çalışıyoruz. Çalışmamızı önerilen algoritmaların yakınsa-

ma ispatları ile tamamlıyoruz.

vi



Acknowledgments

I am indebted to my thesis advisor Dr. Ilker Birbil for all his substantial guidance,

endless help, support, and encouragement throughout my Ph.D. study. He has been a

wonderful advisor and teacher, and always a great friend. I owe a great deal to him for

my academic progress, I can never thank him enough.

I would like to thank my thesis committee Dr. Orhan Feyziog̃lu and Dr. Güllü

Kızıltaş for their insightful comments that helped a lot with the progress of this research.

They have been always helpful and friendly. I thank Dr.Feyziog̃lu also for making

Galatasaray University our Bosphorus-office.

I am thankful to the dean of Faculty of Engineering and Natural Sciences, Prof.

Albert Erkip, for all his support during my graduate study at Sabancı University.

I am so much grateful to Prof. Jorge Nocedal for his invaluable mentoring and

support since my visit to Northwestern University. What I learned from him greatly

improved my understanding of several issues in nonlinear programming, and contributed

a lot to this research. I do not know how to thank him.

Many thanks to Dr. Pınar Yolum for all her help and friendship. I enjoyed so

much being a part of the MANGO project team. She made Bog̃aziçi University a home

for us.

I have had many good friends at Sabancı University during the five years I spent

there. I would like to thank all of them for their support and friendship. Special thanks

to Taner Tunç, the greatest colleague of the world; and to Belma Yelbay, Nurşen Aydın,

İbrahim Muter, Mahir Yıldırım, Ömer Özkırımlı, Halil Şen, Çetin Suyabatmaz, Nükte

Şahin, Ezgi Yıldız, the best friends possible for sharing an office. I cordially thank to

vii



my dear friends Nimet Cirnoog̃lu, Banu Turg̃ut, and Engin Maşazade, whose support

was always close even if they were far away. Many thanks to the nice friends and project

mates at Bog̃aziçi University, Akın Günay and Başak Aydemir. Also special thanks to

my great office mates at Northwestern University, Gillian Chin and Yuchen Wu.

Above all, I am hearty thankful to my family, my mum Nebahat, my brother

İlker, and my sisters Filiz and Elmas. Without their support and patience, I could

never complete this thesis. Finally, I would like to express my gratitudes to my dad

Bekir Öztoprak, who I know has always been behind me.

viii



TABLE OF CONTENTS

1 INTRODUCTION 1

1.1 Nonlinear Programming Problem . . . . . . . . . . . . . . . . . . . . . 2

1.2 Motivations and Proposed Approach . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions of The Thesis . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Outline of The Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 LITERATURE REVIEW 12

2.1 Parallel Programming Overview . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Parallel Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 General Optimization . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Nonlinear Programming . . . . . . . . . . . . . . . . . . . . . . 19

3 PROPOSED PARALLEL MULTISTART STRATEGIES 25

3.1 Concurrent Search Framework . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.3 Practical Performance . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Extensions to Global Optimization . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Concurrent Search for Multiple Solutions . . . . . . . . . . . . . 50

3.2.2 A Multiagent Framework . . . . . . . . . . . . . . . . . . . . . . 51

3.2.3 Implementation Examples . . . . . . . . . . . . . . . . . . . . . 56

ix



4 PROPOSED INHERENTLY PARALLEL ALGORITHMS 67

4.1 A Parallel Algorithm for Unconstrained Optimization . . . . . . . . . . 67

4.1.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1.4 Practical Performance . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 A Parallel Algorithm for Constrained Optimization . . . . . . . . . . . 87

4.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2.4 Practical Performance . . . . . . . . . . . . . . . . . . . . . . . 111

5 CONCLUSION 119

5.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . 120

A Review on Performance Profiles 123

x



LIST OF TABLES

3.1 Problem details and parameters . . . . . . . . . . . . . . . . . . . . . . 60

3.2 The average objective function values obtained by the individual agents

for the test problems over 10 runs . . . . . . . . . . . . . . . . . . . . . 62

3.3 The average statistics over 10 runs for all communication scenarios . . . 62

3.4 The average statistics over 10 runs for problem LJCluster-30 . . . . . . 66

4.1 Contribution of extra computations . . . . . . . . . . . . . . . . . . . . 84

4.2 Solution times (in seconds) for varying values of N and p . . . . . . . . 84

4.3 Efficiency of the parallel program as the problem sizes increase(%) . . . 84

4.4 Number of iterations and function evaluations from the original starting

points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

xi



LIST OF FIGURES

1.1 Local and global minimizers of a single dimensional problem [7] . . . . 3

1.2 Overview of the thesis content . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Flowchart of PTR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Steps of PTR2 on the LOGHAIRY problem starting from (-7,-5) . . . . 33

3.3 Steps of individual TRSR1 and TRBFGS algorithms on the LOGHAIRY

problem starting from (-7,-5) . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Flowchart of PTR2LS . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Performance profiles on the number of iterations on small-scale problems 44

3.6 Performance profiles on the number of gradient evaluations on small-scale

problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 Performance profiles on the number of iterations on medium-to-large size

problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8 Performance profiles on the number of gradient evaluations on medium-

to-large-scale problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.9 Performance profiles on the wall clock time on medium-to-large-scale

problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.10 Forked search for p = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.11 The MANGO environment . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.12 Communication scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Construction of the model function m̂t+1(d) . . . . . . . . . . . . . . . 69

4.2 Parallelization of the proposed algorithm . . . . . . . . . . . . . . . . . 78

xii



4.3 Plots of speed-up values as the problem sizes increase . . . . . . . . . . 85

4.4 CPU usage (per second) during the solution processes with 1,2, and 8

threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5 Illustration of the basic idea on a single dimensional problem . . . . . . 89

4.6 Flow of the step computation procedure . . . . . . . . . . . . . . . . . 95

4.7 Parallelization of the algorithm at the level of its tasks . . . . . . . . . 112

4.8 Illustration of the step computation for the new constrained algorithm . 116

4.9 Progress provided by the two algorithms – iterations 1-9 . . . . . . . . 117

4.10 Progress provided by the two algorithms after iteration 9 . . . . . . . . 118

xiii



Chapter 1

INTRODUCTION

In algorithm design, it is important to consider the following principal factors that

determine the performance of an implementation: The computational requirements

determined by the algorithm complexity and the problem scale, and the computational

resources provided by the available hardware. The large-scale problems of the last

decade are now considered as medium-sized thanks to the fast developments in computer

hardware in the recent years. Consequently, the costly operations avoided in the past

are now being used more frequently in algorithm design. The recent trend is, no doubt,

towards parallel and distributed architectures. Nowadays, an algorithm is almost always

designed by keeping in mind its parallelization. This brings the main question we focus

in this thesis: How to benefit from the available parallel processing resources for solving

nonlinear programming problems?

This thesis is about an approach for designing parallel nonlinear programming

algorithms. In this chapter, we first introduce very briefly the nonlinear programming

problem and its certain special cases that we will refer to throughout the dissertation.

Then, we motivate and explain our approach. Finally, we give an overall plan of the

thesis.

1



1.1 Nonlinear Programming Problem

Any optimization problem of n real variables can be defined using the generic form

given by

minimize f(x),

subject to x ∈ F .
(1.1)

Here, f : Rn → R is called the objective function. The set of feasible solutions F ⊆ R
n

is, in general, defined by using a set of constraint functions and bounds on the variables,

x ∈ R
n. Formally, we have

F := {x ∈ R
n : c(x) ≥ 0, l ≤ x ≤ u},

where c : Rn → R
m and l, u ∈ R

n.

Nonlinear programming (NLP) covers those optimization problems with a non-

linear objective function or nonlinear constraint functions. In this work, we deal with

nonlinear programming problems where the functions f and c are continuous, (first

order) differentiable, and do not necessarily have further special characteristics such as

convexity or separability.

A categorization of (1.1) is based on the set F . When there are no restrictions

on the value of x, i.e., F ≡ R
n, the resulting NLP problem is called an unconstrained

problem. Otherwise, it is a constrained NLP problem. Moreover, when there are no

constraint functions but only the bounds on the variables, i.e. F = {x ∈ R
n : l ≤ x ≤

u}, problem (1.1) is said to be a bound-constrained problem.

Another important definition is the solution of (1.1). In solving an NLP problem,

we need to distinguish between the local and global solutions because the function f

can have multiple minimizers in F . A solution point x∗ ∈ F is a local solution of (1.1),

if f(x∗) ≤ f(x) for all x ∈ N(x∗, ǫ) ∩ F for some ǫ > 0, where N(x∗, ǫ) denotes the

ǫ-neighborhood of x∗, i.e.,

N(x∗, ǫ) := {x ∈ R
n : ‖x− x∗‖ ≤ ǫ}.

2



A local solution x∗ is a global solution of (1.1), if f(x∗) ≤ f(x) for all x ∈ F . Fig-

ure 1.1 taken from [7] illustrates the concepts of local and global minimizers on a

two-dimensional unconstrained example. When the objective is to find a global min-

imizer, the NLP problem is called a global optimization problem. In the special case

where both f and F are convex, the global and local solutions of (1.1) are identical.

local minimastrict local minimum strict global minimum

x

f(x)

Figure 1.1: Local and global minimizers of a single dimensional problem [7]

This completes the definition of all the three classes of NLP problems covered in

this study; namely, unconstrained local optimization, constrained local optimization,

and bound-constrained global optimization problems. Unconstrained local optimiza-

tion part of NLP has quite powerful deterministic methods. Two important groups

are the line-search and trust-region methods. Global optimization has different chal-

lenges to cope with; therefore, seperate methods have been designed for the problems in

that class. Since the general global optimization problem has a combinatorial nature,

stochastic and heuristic methods have also been suggested. For constrained problems,

there is an additional concern of feasibility besides optimality, which has lead to specific

constrained optimization methods. Throughout this dissertation, we shall make use of

a number of existing methods. When it comes to the details of these methods, we will

refer to excellent books and reviews from the literature.

3



1.2 Motivations and Proposed Approach

Paradigm change in algorithm design. Considering the size and the complexity

of a typical real-life problem, computational power has long been a vital resource for

successful numerical optimization. Therefore, the researchers in scientific computing

have a keen interest in parallel processing, which is, by all accounts, full of promises

to generate the desired computational power for the resource-hungry algorithms. Fol-

lowing the recent developments in computer science, it is not hard to anticipate that

parallel processing will not be an optional technology in the near future. First, since the

improvement in the serial performance of a single processor has reached to its physical

limits, parallel architectures have become unavoidable to obtain more computational

power [2]. Thus, the current trend is towards the multi-level, multi-core parallel archi-

tectures [4]. Consequently, a new paradigm is in its adaptation process for scientific

computing [8, 73, 45]. Currently, the multi-core architecture is the de facto standard

even for rudimentary personal computers. Second, the distributed computing resources

are more available today than they were ever. Cluster computing networks include hun-

dreds of computers that can conduct computations simultaneously. This trend brings

us the concern of taking the maximum benefit of those available parallel resources for

solving optimization problems. Therefore, we need to adopt a new perspective and try

to propose new algorithms that are inherently parallel. Nonetheless, the instruction

level parallelism on such hardware is limited.

Two categories of parallel algorithms. Carrying parallel processing into NLP

applications has been studied especially after mid-1980s (see Section 2.2). An exist-

ing approach to obtain parallel NLP algorithms is to parallelize existing methods. For

example, the subproblem solution phase of the trust-region methods or the step calcu-

lation phase of the interior point methods are the most time-consuming parts of those

algorithms. Therefore, a proper parallelization of those operations can provide signif-

icant speed-ups for the overall algorithms [17, 38]. The resulting algorithms aim to

produce exactly the same results as their sequential counterparts; the only difference

is the shared workload among several parallel processors. It is generally not a simple

4



issue to achieve that kind of parallelization because costly operations can be sequential

in their nature, the parallelizable portion of the algorithm may not be large enough,

or there may be other problems such as load imbalance, start-up and memory traffic

overheads.

There are also studies where existing algorithms have been redesigned to introduce

parallel tasks into their main flows. Clearly, the parallel algorithms obtained by this

approach require modification to the original sequential algorithms. A nice example

is parallel subspace minimization, where the subproblems obtained by projecting the

original problem onto its subspaces are minimized in parallel, and then the distributed

results are gathered [28]. To the best of our knowledge, there are not many studies that

follow this second approach in the NLP field (see Section 2.2). The basic motivation of

these few examples are reducing the cost of synchronization [13], as well as improving

the workload distribution among parallel processors as in the above example. As we

shall point out in Section 2.2, examples of this kind of parallelization can be mostly

found in derivative-free optimization as well as in global and combinatorial optimization

implementations.

In this thesis we propose designing algorithms in the second category above, which

can also include parallelized portions in the sense of the first category. However, we do

not only try to obtain a nice parallel performance but also to further benefit from the

available parallel processing resources as we shall elaborate below.

The proposed approach. An algorithm can be more effectively applied on a par-

allel architecture, if it contains computationally-intense blocks of independent tasks

that can be executed concurrently. Thus, if we can partition the algorithmic opera-

tions in a proper way, we may expect to achieve a better parallel performance. Let

us define designed-as-parallel algorithms as inherently parallel algorithms, which are

not necessarily direct parallelizations of any sequential methods. However, unlike some

algorithms following the second approach mentioned above, the primary concern of our

focus on designed-as-parallel algorithms is not only the workload distribution among

parallel processing units, but also obtaining new, hopefully well-performing, standalone

5



algorithms. An important feature for designed-as-parallel algorithms is that they ben-

efit from parallel processing to execute additional operations that may or may not look

acceptable from a sequential point of view. An early nice example along these lines is

the parallel variable metric algorithm [65, 71]. Here, the approximate Hessian matrix is

updated along several independent directions instead of just the previous search direc-

tion as in the sequential method. In this example, the parallel computational power has

provided a better way of approximating the curvature of the objective function. This

example brings us to another important advantage of designed-as-parallel algorithms:

parallel generation and use of problem information. Notice that designed-as-parallel

algorithms can always include the first approach to parallelization. That is, while exe-

cuting additional tasks, we may also distribute the costly operations. A good example

is the multi-step multi-directional parallel variable metric algorithms [57]. In this ex-

ample, multiple search directions that use different quasi-Newton update formulas are

computed in parallel. Then, a parallel line-search routine is applied along each direc-

tion by doing parallel function and gradient evaluations which is, though not exactly,

very close to the first category of parallelization of a cubic interpolation procedure (see

Section 2.2.2).

In this thesis, we concentrate our efforts on an alternate point of view for using

parallel processing in nonlinear programming applications: parallel computation can

contribute to the performance of solution approaches not only by providing faster ex-

ecution of their operations but also by executing additional tasks that may improve

their operations.

Why would our approach work? When we consider general nonlinear optimization,

the quadratic or superlinear rates of convergence are valid in the close vicinity of a

solution point. Furthermore, it is hard to predict how fast an algorithm arrives to

that close vicinity starting from an arbitrary point, even if the algorithm is globally

convergent. We just restate what is well-known in NLP field; the practical performances

of the algorithms can be quite problem dependent. Moreover, almost all practical

algorithms use incomplete problem information. There are several ingenious examples

in the literature that motivate using additional information in traditional algorithms

6



like memory and hybrid algorithms, see for example [32, 10, 49, 27]. These works

have demonstrated how useful it may become to use some extra information within

the original routines. Here, we suggest using parallel resources for achieving this in a

way that the resulting overall algorithm has an inherently parallel structure suitable

for execution on parallel processors. The approach we propose here emanated while

we were working on the parallelization of a method for global optimization [54]. Our

initial ideas were on the global optimization applications but soon we realized that these

ideas could be generalized. Findings that came out of a literature survey on parallel

and hybrid methods in local and global nonlinear optimization provided us further

motivation, some of which are mentioned above. We then conducted some preliminary

tests and obtained supportive numerical results.

A general framework. The approach we follow in this thesis is constructed on the

basic ideas mentioned above. That is, we try to achieve two objectives in two ways:

(1) good parallel-execution features, by a designed-as-parallel algorithm structure, (2)

good solution performance, by using the extra problem information produced on parallel

resources. This suggests a framework with the following three properties:

1. The overall workload consists of blocks of tasks that can be executed in parallel.

2. Some of these tasks are included to provide extra problem information.

3. There is an interaction among the tasks which enables information exchange.

Consequently, we try to design tasks that provide both categories of parallelizations

mentioned above. It is important to consider the first category because providing an

improvement in overall solution time may not be even possible without the additional

gain one can obtain by extracting the existing parallelism in the originally sequential

tasks. In this way, we aim to have a fine task-based structure with a high level of in-

herent parallelism that is suitable for concurrent calculations, which can further benefit

from parallelization in developing efficient optimization algorithms.

In this thesis, we discuss different algorithms that apply the proposed approach

at various levels for solving different classes of NLP problems. In Section 1.4, we give

7



an overall explanation of how they fit into the above described framework.

1.3 Contributions of The Thesis

Parallel processing enables performing concurrent operations. Given a certain compu-

tational task, we expect to decrease its execution time by distributing its computations

among parallel processors. This is, in fact, the most common way used for designing

parallel algorithms.

This thesis proposes an alternative point of view for designing parallel algorithms.

Instead of following the path from sequential to parallel environments, we suggest to

design algorithms that would fit into a parallel architecture from the start so that we

do not carry the limitations of a sequential style of thinking into a parallel one. That

is, we go through the opposite way and try to come up with new designed-as-parallel

algorithms. Although the new algorithms themselves can be considered as sequential

algorithms, we should note that having parallelization in mind itself does lead us to

come up with such algorithms; otherwise, the proposed algorithms probably would have

never been considered as a new sequential algorithm. We emphasize once more that

we do not reject including conventional parallelization, e.g. parallel execution of linear

algebra operations.

We describe a general framework and introduce different example algorithms fol-

lowing the approach above in different ways. Each of these algorithms is concentrated

on a certain component of that approach to be able to provide more idea about its po-

tential. These attempts have resulted in two completely new algorithms (Chapter 4),

and two new mechanisms for extending the existing ones (Chapter 3).

Before we continue, we should note that our main purpose is to come up with

general-purpose algorithms. Needless to say, a problem with a special structure can

be solved in parallel with a greater efficiency using a problem dependent algorithm.

However, such an approach would most probably be limited for solving general nonlinear

programming problems.

To this end, we also need to state that designing new parallel algorithms is a

very demanding task. After his experience on parallel nonlinear programming algo-

8



rithms, Schnabel [61] concludes in 1995 that ‘... the consideration of parallelism has

not led to the development of existing new general purpose optimization methods for

small to medium size optimization methods. Instead, the capabilities of parallel comput-

ers have best been utilized by parallelizing existing sequential algorithms.’ However, his

observations are not completely discouraging; in particular, he indicates that ‘... once

one considers large-scale problems, there are many opportunities for the development

of interesting new parallel optimization algorithms, including possibilities that superior

sequential methods may be discovered through this process.’

1.4 Outline of The Thesis

There are three main parts in the rest of this dissertation. In the the first part (Chap-

ter 2), we briefly introduce the basic issues in parallel computing. Chapter 3 and

Chapter 4 are dedicated to the algorithms that are designed by following the ideas

described in Section 1.2 in different ways and at different levels. These two chapters

constitute the last two parts. We summarize the contents of Chapter 3 and Chapter 4

in Figure 1.2. This figure shows how each one of the proposed algorithms fit into the

general framework described in Section 1.2. As noted in this figure, in each section we

mainly aim to emphasize a certain component or property of the proposed approach.

The algorithms of Chapter 3 are higher level examples in the sense that their

tasks executed in parallel include the procedures of several identical or distinct existing

methods. Therefore, we call them multistart strategies. The main emphasis of that

chapter is on the exchange of information produced in parallel in a way that the overall

solution performance is improved. The resulting parallel algorithms are expected to

behave different from the included individual methods. The framework introduced

in Section 3.1 enables the use of multiple model functions and multiple parameter

values in interaction. Its extensions to global optimization is described in Section 3.2,

which finally yields an environment where cooperative optimization agents implement

(different) methods concurrently.

In Chapter 4, we introduce two new algorithms which are lower level examples

following the proposed approach. The main emphasis of this chapter is achieving

9



unconstrained
local

unconstrained
local

constrained
local

bound constrained
global

Scope

subproblems

procedures

algorithms

operations

generation of multiple

parallelization performance:

Emphasis

information (async.)

Interaction of Extra Information
Providing Tasks

Level of Task
Parallelism Tasks

trial points

depends on 
agents’ behaviour

production of curvature
related information

computations to obtain
a new direction

computations in 
subdomains (sync.)

overall step (sync.)
contribution to the 

to decide settings (sync.)
information exchange

send / receive any

revealing existing
inherent parallelism

solution performance:
robustness, step quality

search performance:
efficiency, solution quality

scalability, resource usageSection 4.1

Section 4.2

Section 3.1

Section 3.2

Figure 1.2: Overview of the thesis content

10



inherent parallelism, while introducing additional tasks to generate more problem in-

formation. The algorithm in Section 4.1 tries to generate and use a composite model

function by creating a completely separable workload. In Section 4.2, the idea is to re-

veal the existing inherent parallelism in the structure of the NLP problem itself. While

improving the parallelization features, we try to achieve a good solution performance

by including additional computations.

11



Chapter 2

LITERATURE REVIEW

In this chapter, we first introduce some basic parallel programming terminology. Then,

we present an overview of the existing work on parallel optimization algorithms.

2.1 Parallel Programming Overview

Two important milestones in the evolution of parallel computing technology until 80s

are accepted to be the Iliac IV project with its achievements on processing arrays of

data efficiently and the development of CRAY 1, which has introduced the concept of

vectorization [11]. Among the other important developments since then are the rise

of the multithreading paradigm, the emergence of the multicore architectures, and the

availability of large grid-computing resources. These developments on the hardware

side had a direct effect on programmers and algorithm designers. Consequently, several

different parallel programming models along with numerous issues have emerged. In

this section, we will only cover some of these concepts and issues that are referred in

the subsequent parts of this dissertation.

Parallelism. In developing parallel algorithms, data level and task level decomposi-

tions of the overall workload can be considered [58]. Data level parallelism is available,

if the same operations are to be applied to the small portions of a large amount of

data. On the other hand, task level parallelism exists if there are multiple indepen-

dent operations to be applied to the same data. The latter is also referred as control

12



level parallelism [11]. Apparently, both types of decompositions can be implemented

in the same algorithm. One such example is the pipelining structure where different

operations are implemented to different blocks of data at each given time unit.

Throughout this dissertation, we refer to the concept of inherent parallelism many

times to define a computational workload which can be divided into computationally

dense parts in a straightforward way. This can include both data and control level

decompositions.

Synchronization. Most of the time, the overall workload of a program cannot be

divided into completely independent parts. A simple example occurs when there is a

precedence relationship among the tasks of an algorithm. This requires the synchroniza-

tion of the ongoing operations on parallel processing units. There are many problems

that are caused by the need for synchronization: On a shared memory architecture,

synchronization increases the memory traffic overhead, whereas for an implementation

on a distributed memory system, it increases the cost of communication. Synchroniza-

tion is a very important factor causing load imbalance among processors. As a direct

consequence, some parts of the resources stay idle.

A measure that compares the time spent for parallel computations to the time

spent for communication is granularity. A parallel algorithm is said to have fine-grained

parallelism, if it has many synchronization points per unit time, and coarse-grained

parallelism otherwise.

Speed-up. A parallel application is expected to take less time than its execution on a

single processor. The ratio of the parallel and serial execution times is called speed-up,

and this is one of the basic performance measures used in parallel programming. To give

a formal definition, let T∗(n) denote the complexity of the best serial implementation

of an algorithm on a given n-dimensional input data, and Tp(n) be the complexity of

the parallel algorithm on p processors. Then,

Speed-up :=
T∗(n)

Tp(n)
.

13



We can never expect to see a speed-up over p. In fact, speed-up has another more

restrictive upper bound as stated by the so-called Amdahl’s Law. Let rs denote the

sequential portion of program, and rp = 1 − rs be the portion executed in parallel.

Then, Amdahl’s Law dictates the following relation

T1(n)

Tp(n)
≤ 1

rs + rp/p
.

A related performance measure is called efficiency, and it is defined as

Efficiency :=
T1(n)

pTp(n)
.

Apparently, the efficiency of a parallel execution cannot exceed 1, and it is generally

smaller than this upper bound due to the sequential portions of a program or due to

the synchronization-related inefficiencies.

Scalability. A parallel program is said to be scalable, if it achieves a better speed-up

as the number of processors increases. However, this definition limits the scalability of

an application with Amdahl’s Law. In fact, Amdahl’s Law is based on the assumption

that the overall workload of a program stays constant as the number of processors

increases, and this law also suggests that one needs to reduce the sequential portion of a

program to improve speed-up. As an alternate approach, Gustafson suggests increasing

the work done in parallel by executing the program on a larger data set [58]. Following

this approach, a program can said to scale as it is implemented on more processors, if

it keeps its efficiency when the dimension of the input data increases proportional to

the number of processors. That is,

lim
n→∞

Tp(n)

T∗(n)
= 0, when

n

p
is constant.

Concurrency. Threads are parts of a program that share the data of the program

but run independently unless they are synchronized explicitly by the program itself [58].

Multithreading brings concurrency to an application but it also raises new concerns.

14



For example, it is important to successfully manage the access of multiple threads to

the global variables of the program because otherwise conflicts can easily occur.

2.2 Parallel Optimization

Parallel computing technology has long been used in numerical optimization. In this

section, we try to give an overview of the existing work on parallel optimization, with

a special emphasis on parallel nonlinear optimization algorithms. Our objective is

not covering all the related work in the field, but rather providing an overall view

by mentioning some examples in different categories. More comprehensive reviews of

existing perspectives and different applications, particularly in nonlinear programming,

can be found in [48, 61].

2.2.1 General Optimization

There are various examples of parallel algorithms that have been designed for solving

different optimization problems. As nicely put in [11], the parallelism present in an op-

timization process can be related to the particular problem at hand or to the algorithm

implemented.

Parallelism in problem structure. Certain problems are naturally separable. Con-

sider, for example, an optimization problem with the objective function

f(x1, · · · , xn) = f1(x1, xK) + f2(xk+1, xn),

where k < n. Clearly, any optimization procedure can be separately (possibly in paral-

lel) implemented to the two components of f . An optimal solution point to this problem

is then obtained by merging the solutions found in the two independent subdomains.

A nice example of parallel problem structure is found in a typical global optimiza-

tion problem. Solving a general global optimization problem requires a complete search

in its feasible domain. Then, it is possible to partition the feasible region of this prob-

lem, and conduct search in each part of the feasible region in parallel. This strategy

15



can be implemented in a clever way along with the branch-and-bound (BB) technique

[18]. The idea is the communication of the information obtained in different branches.

For instance, an upper bound on the global objective function value is found by one of

the branches and then communicated to the other branches. However, the existence of

parallelism does not mean that the implementation is straightforward. The difficulties,

like the construction of the parallel search tree and the load balancing, arise in these

implementations.

It is also possible to follow the domain decomposition idea in a stochastic manner

for large unstructured global optimization problems. If the parallel search is done by

multiple starts of the same (local) method and each of these executions start from

a random point in a particular subset of the feasible region, this corresponds to a

parallel multistart method. Various implementations of this general idea can be found

in [18, 22, 59].

Another example that further exploits the parallelization in problem structure is

a special convex programming problem, where the feasible region is defined only by

bound constraints. This property makes the originally complex problem of computing

a projection onto the feasible region easy and completely separable. Therefore, a gra-

dient projection algorithm can be implemented easily. On the other hand, when the

objective function is given by f(x) =
∑m

i=1 fi(xi), where each fi is a strictly convex

function, and the feasible region is defined with a set of linear equations, then the dual

problem becomes unconstrained. Thus, an unconstrained method suitable for parallel

implementation is applicable [69]. A similar idea is also suggested for the subgradients

[40].

A related case is the block separability of the matrix of constraint coefficients,

which enables a natural decomposition of the problem again thanks to the structure

of the set of constraint functions as well as the objective function. Problems with this

16



structure can be written in the form

minimize f(x) =
m
∑

i=1

fi(xi)

subject to xi ∈ Fi, i ∈ 1, . . . , n

x ∈ Ω.

Two example problems with this property are the multicommodity network flow prob-

lems and the linear programming formulations of two-stage stochastic programming

problems. The (transpose of) constraint coefficient matrices of these problems has the

following structure






















A1

A2

. . .

Am

B1 B2 . . . Bm























.

Note that the last line violates block-diagonality of this matrix. Therefore, those prob-

lems can be solved in parallel first by modifying the original problem in a way that

the constraints x ∈ Ω are no more explicitly present, for instance, by moving them to

the objective function with penalty parameters. Then, the modified problem consists

of independent subproblems, and hence, can be solved in parallel. This procedure is

repeated until the modified problem yields a sufficient approximate solution to the origi-

nal problem. This overall procedure is referred to as the model decomposition approach

[11].

Parallelism in algorithm structure. Consider an iterative procedure in the form

xnext
i = Ti(x

current), i = 1, 2, . . . ,

where xcurrent denotes the current iterate, and xnext
i is ith component of the next iterate

point provided by the operator Ti. This quick example illustrates what we mean by par-

17



allel algorithm structure: The overall procedure has apparent independent components,

which can be executed in parallel.

To emphasize the importance of parallelism in algorithm structure, let us consider

two methods applied for solving linear programming problems, namely the simplex and

the interior point methods. In fact, the general class of active set optimization algo-

rithms, including the simplex method, are mostly sequential in nature. Although there

are successful parallel implementations of the simplex method for certain special types

of linear programming problems (see for example, [41]), there are no parallelizations of

the method providing significant performance improvements over its sequential imple-

mentations for general sparse linear programs [35]. Interior point methods, on the other

hand, seem to be more suitable for scalable parallelizations. The primary reason is the

fact that the number of iterations requires to solve a given problem by an interior point

algorithm is not very sensitive to the size of the problem. So, as the problem size gets

larger, the interior point method is expected to converge in around the same number of

iterations but the computational cost of each iteration increases. It is important to note

that the main part of the computational cost of a single iteration is due to solving a

linear system. So, its successful parallel implementations can be considered along with

successful parallel linear algebra routines, like sparse Cholesky factorization routines

[1, 38].

The pattern search algorithms of derivative-free optimization is another good ex-

ample of inherent parallelism in algorithm structure. Pattern search methods basically

compute the objective function value at some points that are selected with respect to

some specific pattern, like the vertices of a simplex. The current best is determined as

the point with the best function value. The dimensions of the pattern is expanded or

contracted until an improving step is achieved. This process is repeated with a new set

of points until some termination criterion is satisfied. Clearly, each new point selected

within the neighborhood is located on a direction originated at the current best. The

parallel pattern search algorithms simply distribute these directions among parallel pro-

cessors and parallelize the function evaluations. The more interesting application is the

asynchronous version of the idea, where computations on different directions are again

18



done in parallel but now each thread holds its own copy of the current best. When a

thread finds a value better than its current best, it broadcasts it to others, and when a

thread receives a message with a current best better than the one it has, it simply re-

places its current best information. It has been shown that the asynchronous processes

will eventually converge to a stationary point of the objective function [37, 43].

A distinct example for this type of parallelism is the asynchronous team (A-team)

environment, which has been originally designed for solving combinatorial optimization

problems. An A-team is defined as a set of autonomous agents and a set of memories

that are connected through a cyclic network [67]. Each agent applies (concurrently)

some algorithms or modification operations on the solutions selected from its input-

memory. The agents are possibly heterogeneous, and there is no central coordination

or planning mechanism. To provide cooperation, input and output memories of agents

are connected through communication channels so that an agent may select the output

of another agent as its input. The system terminates when a persistent solution is

obtained. The approach has been successfully adopted for solving different problems

including the global optimization problems [63, 70].

2.2.2 Nonlinear Programming

Existing parallel nonlinear optimization studies can be classified under two categories

that follow two main ideas for developing a parallel algorithm:

1. To parallelize an existing sequential algorithm.

2. To design a new inherently parallel method.

In this section, we will follow this categorization, and mainly discuss some examples of

the work in the second category since they are highly relevant to the approach we follow

in this thesis. We should mention that there are not many examples of parallel local

nonlinear optimization algorithms that fall into the second category. We shall only give

the main directions of the studies in the first category here. For more extensive review

studies on parallel nonlinear optimization, we refer to [21, 12, 19, 48, 61].

19



Direct parallelizations. The significant part of the computational cost of a local

optimization algorithm is generally related either to the function evaluations or the

linear algebra operations. Several studies in the literature are basically based on the

idea of increasing efficiency by parallelizing these costly parts of the existing sequential

algorithms. The resulting algorithms produce completely the same results as their

sequential counterparts (except the differences caused by round-off errors accumulated

in different ways because of the parallel implementation). The only difference is the

shared workload among several parallel processors. Careful implementations of this

approach can achieve very good parallelization performance (see for instance, [5]).

In some problems, the function evaluations may be very time consuming and

dominate the cost of linear algebraic operations. This can be, for example, due to the

need for processing a huge amount of data to compute the functions. In this case, the

parallelization of function evaluations can provide significant speed-ups. Computing or

approximating the derivatives of the objective function and constraint functions can also

be done in parallel (for example see [33], where automatic differentiation approach is

used along with graph coloring techniques). If finite difference approximations are used,

the parallel structure comes directly from the need for multiple function evaluations

[60]. When the objective function can be formulated as a separable one, the gradient

and Hessian calculations can be distributed among the parallel processors such that

each process is only responsible for the computations corresponding to the certain

components of the objective function [3]. The efficiency of function evaluations is

crucial for the performance of nonlinear optimization algorithms, but parallelization of

only these operations can hardly be seen as parallel optimization algorithm design.

On the other hand, especially for larger dimensional problems, efficiency of linear

algebra operations may become more or equally critical as compared to the function

or derivative evaluations. In this case, executing linear algebra operations in parallel

may contribute to the algorithmic efficiency to a certain extent. Most basic linear

algebra operations have already been redesigned and coded to be executed on parallel

machines, like the excellent ScaLAPACK routines [55]. D’Apuzzo et al. [19] give a

nice review of implementations that incorporate parallel linear algebra routines into

20



nonlinear optimization algorithms. Clearly, the success of the algorithms that follow

this idea is highly dependent on the success of parallel linear algebra routines among

many other issues. One important related subject is the parallelization of (sparse)

matrix factorizations [36]. The success in factorization directly affects the parallel

performance of (direct) interior point solvers of nonlinear optimization. Another hard

but also very important related subject is the design of parallel preconditioners. Such

a design would certainly affect a large class of nonlinear optimization algorithms like

the inexact-Newton methods. However, as in the case of sequential preconditioning,

it is hard to find out the absolutely best strategy: the scalability of a preconditioning

implementation seems to be highly dependent on the (sparsity) structure of the problem

at hand as well as the choice of the preconditioner [34].

Sequential to parallel. There are also parallel nonlinear optimization algorithms in

the literature that are not direct parallel extensions of the existing sequential algorithms,

but either modify the basic methods they extent or are new parallel algorithms in

themselves. In fact, examples of this category can be mostly found in derivative-free

optimization [20, 42] as well as in global and combinatorial optimization [18, 66, 67].

As a side note here, in some studies on combinatorial problems, it has been argued

that this type of parallel algorithms may provide not only speed-up, but also better

solutions within the same execution time [15, 16, 30].

An interesting example of parallel nonlinear programming algorithm in this cat-

egory is the parallel gradient distribution proposed by Mangasarian [44]. Here, the n-

dimensional gradient vector is distributed among p parallel processors so that processor

l has the part ∇f(xi)
l ∈ R

nl

so that
∑p

l=1 n
l = n, l = 1, . . . , p. Each parallel processor

l runs an independent sequential local optimization algorithm, like quasi-Newton and

conjugate gradient methods, for one or more iterations using ∇f(xi)
l. That step results

in different search directions dli ∈ R
nl

and step-sizes αl
i ∈ R obtained by the p proces-

sors, which are then synchronized by a convex combination operation to compute the

21



next iterate,

xl
i+1 = xl

i + ν l
iα

l
id

l
i, l = 1, . . . , p,

p
∑

l=1

ν l
i = 1, vli ≥ δ > 0.

This synchronized parallel search is repeated until some termination criterion is satis-

fied. For the convex case, the algorithm has proven to be convergent to a point that

satisfies first order necessary conditions. The descent condition on f required in each

subspace plays an important role in the convergence. In numerical tests conducted by

applying inexact Newton methods speed-up factors over 44% for p ≤ 16 and n ≤ 1024

have been observed.

We should also mention here another related work by Ferris and Mangasarian[25],

which extends the idea in parallel gradient distribution by assigning each parallel pro-

cessor an (nl + p − 1)-dimensional subproblem with the decision vector (xl, λl). The

additional variables λl are multipliers that allow the lth processor make changes in the

complement subspace R
nl̄

= R
n − R

nl

. So, each processor can compute a trial next

iterate x̃ ∈ R
n in the form x̃ = (x̃l, xl̄ +Dl̄λ̃l). Here, Dl̄ consist of some descent direc-

tions in the subspaces other than R
l. The resulting method is called parallel variable

distribution. Fukushima [29] has proposed a generalization of this idea that includes

both this algorithm and the parallel gradient distribution explained above, and he has

shown the global convergence for this general class.

An extension of the above idea for constrained optimization is to distribute the

constraints of the problem among p parallel processors [24]. Each processor then solves

a subproblem with a smaller set of constraints, and with an objective function that is

modified by adding the rest of the constraints to the augmented Lagrangian terms. The

convergence of the procedure has been shown for convex programs.

Another interesting example is the multi-step, multi-directional quasi-Newton al-

gorithms proposed by Phua et al. [57]. Here, at each iteration, p1 parallel processors

compute alternate search directions by applying different quasi-Newton update rules.

That is, letting Hj
k denote the approximate inverse Hessian produced by the update

22



formula j, the directions

djk = −Hj
k∇f(xk), j = 1, . . . , p1

are computed. Then, a parallel cubic interpolation is implemented as the line search

strategy with concurrent function evaluations at p2 points along each direction djk. Thus,

overall p1p2 processors are required. The direction and step length providing the lowest

function value is selected as the next iterate. Finally, the inverse Hessian is updated with

the BFGS formula to start the next iteration with a positive definite approximation.

In numerical tests, which have been conducted with three update formulas and a total

of 9 processors, the number of parallel function and gradient evaluations decreased up

to 200% and this ratio had been shown to be as large as 28 times for some large-scale

test problems.

The idea applied by Straeter [65] and van Laarhoven [71] in earlier papers has

another motivation: they suggest calculating the gradient vectors in n independent di-

rections in parallel, and use these values for updating the approximate Hessian. In other

words, given n vectors of length ǫ in n linearly independent directions, δ1, δ2, . . . , δn,

the gradient values are computed at points xj
k = xk + δj for j = 1, . . . , n and the

approximate Hessian matrix is partially updated with each ((∇f(xj
k) − ∇f(xk)), δj)

pair in a consecutive way. Both studies mentioned above have implemented the idea

with rank-one update, and the authors have also shown the quadratic convergence of

their methods. However, these methods may fail in practice because the approximate

Hessians are not guaranteed to be positive definite. Freeman [26] applies the same idea

with an update formula that provide positive definiteness. In practical tests, the re-

sulting parallel quasi-Newton method has been observed to require less iterations than

the existing sequential quasi-Newton algorithms.

Finally, let us note that the asynchronous parallelization of any algorithm would

end up in a parallel method in this category. Let us complete this section with such

an asynchronous parallel global optimization algorithm given in [6]. Here, each parallel

thread executes the same sequential clustering algorithm starting from different initial

23



points as in a usual multistart application. In addition, there is a cooperation among

the threads: Local minima obtained in any individual execution is kept in a shared

memory so that the parallel threads check this set of known local solutions before they

start a new execution, and try not to select an initial point in the attraction regions

of already explored solutions. Clearly, the resulting parallel algorithm is asynchronous,

and therefore it does not necessarily behave the same as its sequential counterpart.

24



Chapter 3

PROPOSED PARALLEL MULTISTART

STRATEGIES

In this chapter, we introduce a framework for unconstrained optimization that follows

the approach described in Section 1.2, and its extensions to global optimization. The

framework performs in parallel multiple step computation procedures that interact in

a certain way. This is why we categorize the framework and its extensions under

multistart strategies heading.

3.1 Concurrent Search Framework

The concurrent search (CCS) framework is designed for solving the unconstrained NLP

problem

minimize f(x),

subject to x ∈ R
n.

(3.1)

The proposed framework does not necessarily set forth completely new algorithms.

Instead, we try to improve the performance of existing methods by executing additional

operations in parallel as suggested in Section 1.2.

Basic idea. A basic challenge in solving the general unconstrained NLP problem is

to find a path to the close neighborhood of a minimizer without failing or wasting

too much effort in far-away regions. It is well-known that parameter initialization and

update procedures are very influential on the performances of the solution methods.

25



Moreover, the success of a solution method heavily depends on the problem at hand.

It is quite hard to guess which procedure would produce more successful steps starting

from an arbitrary initial point.

In CCS, we shall try to use procedures which apply different solution methods or

different parameter settings, and interact within an overall algorithm that is suitable for

parallel execution. That is, we shall compute multiple trial points at each iteration of

an overall algorithm. The main idea is to use different search procedures for computing

multiple trial points. Then, based on these computations, the procedures share relevant

problem information and aid each other in adjusting their own parameters. We then

decide the next iterate by selecting the most successful trial point with respect to some

success measure.

The framework does not exclude the parallel implementations of the individual

step computation procedures, but it tries to use parallel processing to achieve further

performance improvement by producing more successful overall steps.

General framework. To further explain and formalize the above idea, we provide

one possible generalization of the proposed framework for p trial points. The outline

is given in Algorithm 1. Let x̂t
k+1, t = 1, . . . , p denote the trial points computed at

iteration k. Each trial point is obtained by a first order convergent iterative local search

algorithm, and the acceptance test for the new trial point is also carried out by the same

algorithm (line 9). A trial step computation may consist of, for example, the solution of

a trust-region subproblem or a steplength computation of a line search method. It may

also be the case that some of the algorithms are not applied completely at each step;

for instance, a steplength search procedure may be distributed over several iterations

of the concurrent search algorithm (detailed examples are given in Section 3.1.1).

When p trial points are computed at iteration k, there are three possible cases:

1. x̂t
k+1 is the only acceptable trial point. In this case, the algorithm accepts this

point as the next iterate. That is xk+1 = x̂t
k+1.

2. There are multiple acceptable trial points. Then, the algorithm selects the trial

point which provides the largest improvement in the objective function value.

26



Formally,

xk+1 = argmin
t∈A

f(x̂t
k+1),

where A is the index set of the acceptable trial points (line 13).

3. There is no acceptable point. In this case, a new set of p trial points are computed

by applying some usual backtracking-type operations like shrinking the trust-

region radius or reducing the step size of the backtracking line-search.

This defines the trial point evaluation step (line 12), which is a synchronization point.

When it is completed, the stopping criteria are checked, and if CCS does not termi-

nate, then the next parallel iteration starts. Before starting the computation of the

next trial points, the p algorithms refresh their parameters according to the problem

information generated in the previous step by all included algorithms and the output

of the trial point evaluation step. In particular, algorithm t updates its current iterate

and parameters using the external information provided by others, if the previous step

of CCS was successful but the trial point computed by algorithm t was not selected

(line 6); otherwise, it applies its usual parameter update phase (line 8).

The resulting parallel algorithm always progresses from a single point, and hence,

the derivative evaluations are shared among the threads. Clearly, this provides a mem-

ory usage advantage as well as computational savings in a shared memory architecture.

Moreover, this structure is appropriate for obtaining further performance improvements

by parallelization of these common derivative evaluations as well as the possible costly

linear algebra operations within the step computation procedures. When those further

parallelizations are included, an implementation of CCS may be executed by more par-

allel threads than the number of included algorithms. However, let us ignore further

granularities here for simplicity, and assume that the operations of each algorithm is

assigned to a single thread.

3.1.1 Implementation

In this section, we illustrate the CCS idea with two example algorithms. In the first

example, we use two trial points (p = 2) at each iteration. We name the algorithm as

27



Algorithm 1: Concurrent Search

Input: x0, p1

k = 0;2

while checkStopping()=FALSE do3

/* Begin Parallel Tasks */

for t = 1, . . . , p do4

if xk 6= xk−1 & xk 6= x̂p
k then5

Set/Update parameters of (incomplete) algorithm t using information6

provided by algorithms {1, . . . , t− 1, t+ 1, . . . , p};
else7

Set/Update parameters of (incomplete) algorithm t individually;8

Compute x̂t
k+1 and test its acceptance ;9

if x̂t
k+1 is acceptable then10

A← A ∪ {t} ;11

/* End Parallel Tasks */

/* Begin Synchronization */

if A 6= ∅ then12

xk+1 = argmin
t∈A

f(x̂t
k+1);

13

/* End Synchronization */

k ← k + 1;14

28



stopYESNO

gradient

compute

value

stop
?

start

iteration
increase

region radius 1

set / update trust 

initialize / update 
model specific
storage 1 (SR1)

region radius 2

set / update trust 

initialize / update 
model specific

storage 2 (BFGS)

compute trial step 2
using model function 2

compute trial step 1
using model function 1

function 1
respect to model 
trial step 1 with 

test acceptability of

function 2
respect to model 
trial step 2 with 

test acceptability of

decide next
iterate

Figure 3.1: Flowchart of PTR2

PTR2 since both trial points are computed via solving trust-region subproblems. In

the second example, a line search procedure is also incorporated, i.e. p = 3, and the

resulting algorithm is called PTR2LS.

Implementation example with two trial points. PTR2 applies the concurrent

search idea by solving two trust-region subproblems concurrently in the trial point com-

putation phase. Each subproblem is set up with a different model function. Moreover,

each trust-region radius value is set by interaction. That is, an exchange of informa-

tion between two threads is used to determine the trust-region radii in the subsequent

iteration.

In Figure 3.1, we illustrate the inherently parallel structure of PTR2. In this

flowchart, each box stands for an algorithmic operation. In a task-based implementation

of the algorithm, a task may cover one or more operations of this kind. In addition,

an operation may be divided into multiple tasks, if Type-I parallelization is also in

use. However, in the parallel software we implemented in this study, we designed tasks

to achieve primarily Type-II parallelization. On the flowchart, independent blocks of

operations are marked with dashed rectangles, which are suitable candidates to be

defined as tasks of a Type-II parallelization.

29



The outline of our PTR2 implementation is given in Algorithm 2. We use two

quadratic functions with different Hessian approximations, SR1 and BFGS, to setup

the two model functions used in the respective subproblems. Based on the current

(common) iterate of CCS, two trial points are computed and tested for acceptability by

both tasks that are executed in parallel (lines 6 and 7 of Algorithm 2). Each task first

sets the current iterate and the new trust-region radius value is determined according to

the output of the previous iteration of CCS. Then the curvature approximation is up-

dated when necessary. If both threads return acceptable points (line 8 of Algorithm 2),

then the one providing the largest decrease in the objective function value is selected

as the next iterate of CCS (line 9 of Algorithm 2). The details of the subprocedures

interactAndComputeTrialPointUseTR and evaluateTrialPoints are given in Algo-

rithms 5 and 3, respectively. Note that when there is at least one acceptable point at an

iteration, PTR2 can take a nonzero step. Thus, when a particular TR implementation

cannot find a successful iterate, the strategy may provide one for that particular thread.

Likewise, when the strategy provides a successful iterate, it also provides information

about a reasonable trust-region radius value in the new region. The threads work with

different sizes of trust-regions to improve the exploration of the new region. When

possible, one of the threads selects a larger radius value to enable taking larger steps

from the current solution point.

Algorithm 2: An implementation of P2TR

Input: x0, kmax, ǫ, B
BFGS
0 ∆BFGS

0 , BSR1
0 ,∆SR1

0 , ρ, σ1, σ2, β1

P = {‘SR1’, ‘BFGS’};2

initializeAlgorithms();3

A = ∅; k = 0;4

while checkStopping()=FALSE do5

Throw task interactAndComputeTrialPointUseTR(‘SR1’) ;6

Throw task interactAndComputeTrialPointUseTR(‘BFGS’) ;7

waitForAllTasks() ;8

evaluateTrialPoints() ;9

k ← k + 1;10

Figure 3.2 illustrates the behavior of P2TR on the highly nonconvex LOGHAIRY

30



Algorithm 3: evaluateTrialPoints()

if A = ∅ then1

xk+1 = xk; bestAlgo = NULL;2

else3

xk+1 = argmint∈P f(x̄t
k+1); bestAlgo = t ;4

refreshGradient(); A = ∅ ;5

problem of the CUTEr set [31]. In this illustration, the trial steps computed by using the

BFGS-based model function are marked with (red) plus signs, the trial steps computed

by using the SR1-based model are marked with (blue) cross signs, and the steps of PTR2

itself are marked with (black) circles. Figure 3.2(a), shows the starting point. The initial

Hessian approximation is set to the identity matrix for both models in this preliminary

implementation, and both threads start with the same trust-region radius value. Thus,

the first trial points computed by both model functions are the same and that point is

an acceptable one, so it is selected as the next iterate of PTR2 as we can see in Figure

3.2(b). The trust-region radii for both subproblems are not the same in the second

iteration. As shown in Figure 3.2(b), the trial points computed by the algorithms could

be quite far away from each other, since the model functions and trust-region radii are

different. The point marked with a (red) plus sign is acceptable but the point marked

with a (blue) cross sign is not. Therefore, as shown in Figure 3.2(c), the trial point

marked with a (red) plus sign is selected even though it gave a higher objective function

value. Next, both step computation operations are applied based on this new iterate.

The thread marked with (blue) cross signs jumps to the successful point and updates its

trust-region radius according to the radius of the thread marked with (red) plus signs

(see Algorithm 5, lines 1-1). Therefore, new function information is provided to the

blue (cross) thread and it is encouraged to take a larger step, if it is possible by starting

its search on a larger trust-region than the red (plus) thread. Repeating this procedure,

PTR2 reaches the solution in 53 parallel iterations. The complete path of suggested

trial points and the steps of PTR2 are given in Figure 3.2(d). Figure 3.3 illustrates

the behavior of both model functions when they are individually applied to solve the

same problem. Comparing the complete paths of PTR2 and the individual algorithms,

31



we observe that CCS may follow a completely different sequence of iterates. There is

also another important observation: Note that the individual trust-region algorithm

applied by the SR1-based model has required 249 iterations as shown in Figure 3.3(a).

Likewise, Figure 3.3(b) shows that the individual algorithm applied by the BFGS-based

model has required 113 iterations. Since PTR2 is able to solve the same problem in

only 53 iterations, we observe that even if we could perfectly distribute the required

iterations for either one of the individual algorithms on two parallel processors, the

parallel number of iterations would be still higher than CCS.

To get a more comprehensive view about the potential of the proposed idea, we

have tested PTR2 on a set of small-scale problems. The implementation details and

the test results shall be presented in Section 3.1.3. These tests have shown us that

we could get a decrease in the number of parallel iterations for most of the problems.

Even better, we have observed that PTR2 could also decrease the number of gradient

evaluations, which is equal to the total number of steps taken by the algorithm.

In the next example algorithm, PTR2LS, we expand PTR2 with another step

computation procedure. To obtain a nonhomogenous CCS strategy, we include a line-

search method in the new algorithm.

32



(a) Iteration 1: Initialization (b) Iteration 3: The trial points

(c) Iteration 3: One iterate selected (d) Iteration 53: Complete path of PTR2

Figure 3.2: Steps of PTR2 on the LOGHAIRY problem starting from (-7,-5)

33



(a) Iteration 249: Complete path of individual TR with SR1

(b) Iteration 113: Complete path of individual TR with BFGS

Figure 3.3: Steps of individual TRSR1 and TRBFGS algorithms on the LOGHAIRY
problem starting from (-7,-5)

Implementation example with three trial points. In PTR2LS, we also add to

PTR2 a third trial step calculation task that apply a line-search algorithm. Thus, at

each iteration of PTR2LS, three trial points are computed and tested in parallel as illus-

trated on a flowchart in Figure 3.4. Since line search is a special trust-region algorithm

[14], PTR2LS can be seen as an extension of PTR2 which solves three different trust-

region subproblems. However, as we explain below, we apply an incomplete line-search

algorithm with the motivation of providing a better balanced workload distribution at

each iteration.

Algorithm 4 is obtained by adding a third task (line 8) to Algorithm 2. The de-

tails of the new subprocedure interactAndComputeTrialPointUseLS is given in Algo-

34



stop

YES

NO?
stop

start

iteration
increase

gradient

value

compute

region radius 1

set / update trust 

initialize / update 
model specific
storage 1 (SR1)

region radius 2

set / update trust 

initialize / update 
model specific

storage 2 (BFGS)

update search history

set initial step lenght / 

specific storage 2
direction using model
compute / reuse search

function 2
respect to model 
trial step 2 with 

test acceptability of
compute trial step 2

using model function 2

compute trial step 1
using model function 1

function 1
respect to model 
trial step 1 with 

test acceptability of

compute trial step 3

start / continue
line search to

decide next
iterate

Figure 3.4: Flowchart of PTR2LS

rithm 6. The additional trial point is computed by an incomplete line-search procedure

and shares the curvature information of the BFGS trust-region thread. The line-search

thread sets its initial step size according to the output of the previous iteration, and

this value may be affected by the trust-region radii of the two trust-region threads (see

Algorithm 6, lines 1-1). Likewise, if the trial point computed by the line-search task

is selected as the next iterate of CCS, its step size may affect the trust-region radius

values of the trust-region threads (see Algorithm 5, lines 1-1). The interaction and

exchange of information among the trust-region threads are quite similar to PTR2 .

To get some idea on the performance of PTR2LS, we again apply it first on a

set of small-scale problems (see Section 3.1.3). Overall, the results revealed that the

new algorithm has a better performance than PTR2 in terms of number of parallel

iterations. However, we have observed that PTR2LS has taken smaller steps more

frequently, which led to a slight increase in the number of gradient evaluations when

compared against PTR2. We elaborate more on our findings in Section 3.1.3.

Details of step computation. The details of the step computation subprocedures

used by PTR2 and PTR2LS are given in Algorithms 5 and 6.

Algorithm 5 explains the trust-region trial step calculation task. If there are

35



Algorithm 4: An implementation of PTR2LS

Input: x0, kmax, ǫ, B
BFGS
0 ∆BFGS

0 , BSR1
0 ,∆SR1

0 , ρ, σ1, σ2, β, α0, µ1

P = {‘SR1’, ‘BFGS1’, ‘BFGS2’};2

initializeAlgorithms();3

A = ∅; k = 0;4

while checkStopping()=FALSE do5

Throw task interactAndComputeTrialPointUseTR(‘SR1’) ;6

Throw task interactAndComputeTrialPointUseTR(‘BFGS1’) ;7

Throw task interactAndComputeTrialPointUseLS(‘BFGS2’) ;8

waitForAllTasks();9

evaluateTrialPoints();10

k ← k + 1;11

Algorithm 5: interactAndComputeTrialPointUseTR(myAlgo)

if bestAlgo 6= NULL & bestAlgo 6= myAlgo then1

if ∆
bestAlgo
k 6= NULL then2

∆
myAlgo
k = 2

β
∆
bestAlgo
k ;3

else if α
bestAlgo
0 6= NULL then4

∆
myAlgo
k = max(∆

myAlgo
k , α

bestAlgo
0 ‖dbestAlgo

k−1 ‖) ;5

if bestAlgo 6= NULL then6

B
myAlgo
k = update(B

myAlgo
k−1 );7

x̄
myAlgo
k+1 =solveSubproblem(myAlgo) ;8

ρ =
f(x̄

myAlgo
k+1

)−f(xk)

m
myAlgo
k

(x̄
myAlgo
k+1

)−m
myAlgo
k

(xk)
;

9

if ρ ≥ σ1 then10

A← A ∪ {myAlgo};11

f
myAlgo
k+1 = f(x̄

myAlgo
k+1 ) ;12

if ρ ≥ σ2 then13

∆
myAlgo
k+1 = 1

β
∆
myAlgo
k ;14

else15

f
myAlgo
k+1 =∞ ;16

∆
myAlgo
k+1 = β∆

myAlgo
k17

36



no acceptable points at the previous iteration, then the trust-region radius parameter

is kept as it has been updated by shrinking in the previous iteration. If one of the

trial points is accepted, then before starting the computation of the new trial points,

the trust-region radii are updated by setting ∆r = 2
β
∆a, where ∆a and ∆r are the

radii corresponding to the accepted and rejected trial points, respectively, and β is

a parameter in (0, 1). If the step by a line-search procedure is accepted as the next

iterate of CCS, and the current radius of any trust-region procedure, ∆c, is smaller

than norm of the successful initial line-search step of the last iteration, α0‖dk−1‖, then
we set ∆c = α0‖dk−1‖ (lines 1-1). If a nonzero step is taken, the information used

in approximating the curvature (Bk) is updated (lines 6-6). The trial point is then

computed by solving the trust-region subproblem (line 8). The acceptance test for the

trial point is carried out and the trust-region radius is updated by standard trust region

acceptance decision and radius update procedures (lines 9-15).

Algorithm 6: interactAndComputeTrialPointUseLS(myAlgo)

if bestAlgo 6= NULL & bestAlgo 6= myAlgo then1

αk ← min(αk,
∆
bestAlgo
k

‖dk−1‖
);2

if bestAlgo 6= NULL then3

dk =computeDirection(myAlgo) ;4

searcHistory = NULL; acceptanceFlag = FALSE;5

else6

dk = dk−1 ;7

[αk, acceptanceFlag, searcHistory] =incompleteLineSearch(myAlgo) ;8

x̄
myAlgo
k+1 = xk + αkdk; αk+1 = α0 ;9

Algorithm 6 gives the details of the line-search computation task. If a step com-

puted by a trust-region algorithm has been accepted in the previous iteration and the

norm of the initial step in the most recent iteration, α0‖dk−1‖, is larger than the radius

of the accepted trust-region step, ∆a, then the initial step-length of the line-search

algorithm is set as αk = ∆a/‖dk−1‖ (lines 1-1). The quasi-Newton search direction dk

is then updated, if a nonzero step has been taken in the previous iteration (line 4).

Then, an incomplete line-search is implemented (line 8). That is, we give an upper

37



bound for the number of inner iterations of the line-search algorithm. If the line-search

procedure is not completed before the given limit, then it is hibernated and labeled as

unacceptable but its computations are stored. If none of the remaining trial points were

acceptable in the previous iteration, then the line-search procedure continues its calcu-

lations from the point where it has been hibernated using the stored data. Otherwise,

it restarts its calculations from the new iterate with an empty history.

Recall the first illustrative example, where the path of the concurrent search

strategy was completely different than the paths of the individual algorithms (compare

Figure 3.2(d) against Figure 3.3). This raises a natural question: Does switching among

the threads prevent CCS from converging?

3.1.2 Convergence

Let us consider the CCS strategy applied with p trial points. As we mentioned in the

introduction part, each trial point is computed by the step computation procedure of a

convergent iterative algorithm. To make this statement more concrete, we require the

each algorithm t ∈ {1, 2, . . . , p} satisfy the following property:

(A1) At a nonstationary point xk, algorithm t computes a step satisfying

f(xk)− f(x̂t
k+r) ≥ ξ‖∇f(xk)‖q (3.2)

for a finite value of r, r ∈ {1, 2, . . . }, and ξ > 0.

In correspondence to the notation in Algorithm 1, x̂t
k+1 denotes here the trial

point computed by algorithm t at iteration k. The condition (3.2) also gives a generic

acceptence rule for the framework given in Algorithm 1; that is, if x̂t
k+1 satisfies (3.2),

we set A← A∪{t}. Note that the methods used in the implementation examples given

in Section 3.1.1 satisfy the condition (A1). In particular:

• Let mk be the model function of f , ∆k be the trust region radius and Bk the

Hessian of f or an approximation to it (see [53] for the notation commonly used

for trust region algorithms). If we then denote the steps produced by trust-region

38



algorithms at a nonstationary point xk by sk(∆k), then we know these steps satisfy

the Cauchy decrease condition

mk(0)−mk(sk(∆k)) ≥ c1‖∇f(xk)‖min

(

∆k,
‖∇f(xk)‖
‖Bk‖

)

,

where ‖Bk‖ <∞, c1 ∈ (0, 1], and mk is a model of f at xk so that

f(xk)− f(x̂t
k) ≥ c2(mk(0)−mk(x̂

t
k − xk))

≥ c2c1 min(∆k‖∇f(xk)‖, ‖Bk‖−1‖∇f(xk)‖2).

is provided after finite number of trial step computations.

• Well-known line search methods based on Armijo or Wolfe conditions provide

steps sk(α) that follow the gradient related directions so that

−∇f(xk)
T sk(α) ≥ c3α‖∇f(xk)‖r1 and ‖sk(α)‖ ≤ c4α‖∇f(xk)‖r2

hold for r1, r2 ≥ 1, c3, c4 > 0. That guarantees to find α > 0 satisfying

f(xk)− f(x̂t
k) ≥ −c5∇f(xk)

T (x̂t
k − xk)

≥ c5c3α‖∇f(xk)‖r1 .

That is, α stays bounded away from zero [7].

Note that at any iterate k, the interactive parameter selection scheme does not

cause the above convergence properties fail for all trial steps computed by all algorithms

because (i) there is no interaction, if there is no acceptable trial point at an iteration;

(ii) a trial step cannot be acceptable, if it does not satisfy the above conditions; (iii) the

parameters of the algorithm that has determined the current iterate are not affected by

others.

Finally, let us give one more assumption about the problem before we give the

convergence result.

39



(A2) The level set L0 = {x : f(x) ≤ f(x0)} is compact, and within L0, f is differentiable

and the gradient function ∇f is continuous.

Theorem 3.1.1 Let {xk} be a sequence of iterates generated by Algorithm 1 with in-

finitely many elements. Suppose assumptions (A1) and (A2) hold. Then, all limit

points of {xk} are stationary points of f .

Proof. Since the CCS framework requires f(xk+1) ≤ f(xk), the sequence {xk}
stays in the level set of f at x0 – which is a compact set by (A2).

Recall that assumption (A1) enforces that a step satisfying (3.2) is computed (by

any algorithm) at a nonstationary iterate xk within at most r iterations. So, the set A

defined in Algorithm 1 will be nonempty in at most r iterations and the algorithm will

accept a new iterate. Therefore {xk} cannot have a constant subsequence.

Consider any convergent subsequence of {xk}, and let S denote the index set of

the elements in this subsequence. Let k′, k′′ ∈ S such that k′′ > k′ and xk′′ 6= xk′ . Recall

that Algorithm 1 assigns xl+1 = xl if A = ∅ at iteration l. So, xk′ = xk should hold for

k ≤ k′ such that either we have A 6= ∅ at iteration k, or xk = x0. Then, using line 13

of Algorithm 1 we have

f(xk′)− f(xk′′) = f(xk)− f(xk′′)

≥ f(xk)− f(xk+1) ≥ f(xk)− f(x̂t
k+1), for all t ∈ A,

which implies by assumption (A1) that

f(xk′)− f(xk′′) ≥ ξ‖∇f(xk′)‖q, for q ≥ 1. (3.3)

On the other hand, the continuity of f implies limk∈S f(xk)→ f∗. So,

f(xk′)− f(xk′′)→ 0 as k′, k′′ →∞, k′, k′′ ∈ S.

This gives ‖∇f(xk)‖ → 0, k ∈ S by (3.3). �

40



Note that it would also be possible to discuss that the CCS framework guarantees

to converge to a minimizer of f rather than only a stationary point. This would require

at least one of the algorithms in CCS to have this property as well as a simple alteration

of the termination criteria.

The discussion in this subsection also clarifies the motivation behind our CCS

design. The application of the acceptance tests and the trial point selection rule guar-

antee convergence of the overall algorithm. Note that it is also possible to apply a

nonmonotone version of CCS, and another option would be to apply synchronization

after a fixed number of iterations instead of every iteration (line 14, Algorithm 1). In

both cases, the convergence of the resulting algorithms could be shown following the

similar arguments above.

3.1.3 Practical Performance

In this section, we present the results we have obtained with both illustrative CCS

algorithms, PTR2 and PTR2LS. Throughout this section, we mainly investigate the

performance of CCS against the individual algorithms included in CCS. We also intro-

duce the large-scale versions of the two illustrative algorithms. We denote the large-scale

versions of PTR2 and PTR2LS by L-PTR2 and L-PTR2LS, respectively.

We do benchmarks based on three criteria:

1. Number of parallel iterations until convergence, to see whether the new algorithms

could really achieve a reduction in the number of parallel trial step calculations.

2. Number of gradient evaluations, which reflects the number of successful steps to

the solution as well as the computational cost of gradient calculation.

3. Wall clock time, to evaluate if any reduction in number of iterations is large

enough for providing a reduction in the total solution time.

The parallel algorithms are coded in C++ and compiled with Intel C++ compiler

by using the -fast option. To code the parallel tasks, we have used Intel’s Threading

Building Blocks (TBB) library [68], and for the linear algebra operations, we have

41



used the Intel Math Kernel Library (MKL) [46]. The experiments are conducted on a

computer with Quad-Core Intel(R) Xeon(R) CPU running at @ 2.66GHz and operating

under GNU/Linux system.

The algorithms are tested on the unconstrained problems of the CUTEr collection

[31]. The dimensions of these problems range from 2 to 10,000. The algorithms are

first applied on small-scale problems (n ≤ 500). After observing encouraging results

on this set, the tests are repeated for larger problems (1000 ≤ n ≤ 10, 000) using the

large-scale adaptations of algorithms. Four standard termination conditions are used,

setting ǫ = 10−5,kmax = 10, 000, PREC = 10−8 and D MAX = 1016:

1. The gradient norm is sufficiently small, ‖gk‖ < ǫ.

2. The algorithm stalls, ‖xk+1 − xk‖ < 1.1PREC.

3. The problem is probably unbounded, ‖xk+1 − xk‖ > 0.9D MAX.

4. The maximum number of iterations are exceeded, k > kmax.

In our implementation, both trust-region models of PTR2 use quadratic models

based on BFGS and SR1 quasi-Newton updates. For medium-to-large scale problems,

we have used limited memory versions of these updates and set the number of corrections

to 5 [52]. For the two update procedures, separate memories are reserved because

a pair suitable for applying the SR1 update might not be suitable for applying the

BFGS update. We have used compact form formulations of both limited memory

update procedures. The line-search procedure of PTR2LS also implements the BFGS

approximation of the curvature. For solving the trust-region subproblems, we have

applied a dogleg strategy for small-scale problems, and for large-scale problems, we

have used the Conjugate Gradient (CG) algorithm following the strategy proposed by

Steihaug [64]. In our line-search procedure we have applied quadratic interpolation to

determine the step-length. If an acceptable step length cannot be found in 5 line-search

steps, then the incomplete line-search procedure is paused. In our numerical trials, we

have observed that this number is a good choice to balance the time required for one

trust-region iteration.

42



For scaling purposes, we have selected the initial Hessian approximation at it-

eration k as B0
k = δBI with δB =

yTk−1yk−1

sTk−1yk−1
as suggested in [53]. For the line-search

algorithms, on the other hand, this scaling factor for the initial inverse Hessian approx-

imation at iteration k is selected as δH = 1/δB. We did not apply any preconditioning

in the CG procedure.

The remaining parameters are as follows: initial trust-region radius, ∆0 = ‖x0‖;
initial step-size, α0 = 1; trust-region acceptability test and trust-region update param-

eters, ρ = 0.1, σ1 = 0.25, σ2 = 0.75; trust-region rescaling parameter, β = 0.5. Initial

points are selected as the default ones provided by the CUTEr collection.

Small-scale problems. This first test set includes a total of 85 problems. There are

no instances that either one of the individual algorithms, TR with BFGS (TRBFGS)

or TR with SR1 (TRSR1), has successfully converged but PTR2 has failed. Except

two cases, PTR2 has been able to find the solution found by the successful individual

algorithm. Nonetheless, there are another two cases where both individual algorithms

fail but PTR2 converges. For a clear comparison, the benchmark includes only those

instances for which all three algorithms have converged to the same solution point.

Therefore, 67 cases are included in the first benchmark. Figure 3.5(a) and Figure 3.6(a)

give the performance profiles for the parallel number of iterations and the number of

gradient evaluations, respectively (see Appendix A for a review on performance profiles).

These profiles show that PTR2 indeed achieves a significant reduction in the number

of parallel iterations. We do not report the wall clock time figures, since almost all

problems are solved within less than a second.

In a similar way, we have also tested the performance of PTR2LS on these small-

scale problems. The inclusion of line-search thread has caused a few instances to ter-

minate with termination condition (ii). That is, the concurrent search stopped before

convergence, since the steps have become very small. However, as Figure 3.5(b) illus-

trates, on average PTR2LS has provided a nice performance improvement over PTR2.

For the number of gradient evaluations, however, Figure 3.6(b) shows that PTR2LS

falls slightly behind PTR2 but still outperforms the individual algorithms.

43



1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PTR2
TRBFGS
TRSR1

(a) PTR2

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PTR2
PTR2LS

(b) PTR2LS

Figure 3.5: Performance profiles on the number of iterations on small-scale problems

44



2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PTR2
TRBFGS
TRSR1

(a) PTR2

2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PTR2
PTR2LS

(b) PTR2LS

Figure 3.6: Performance profiles on the number of gradient evaluations on small-scale
problems

45



Medium-to-large-scale problems. The second test set includes 64 problems with

dimensions ranging from 1,000 to 10,000. The benchmark results for L-PTR2 are

obtained with only 32 instances, for which all three algorithms, L-TRBFGS, L-TRSR1

and L-PTR2 have converged to the same solution point. When we examine these results,

we observe that there are more instances than the small scale results (9 instances) such

that all three algorithms have converged to different solution points. For the remaining

23 instances, at least one of the algorithms has failed to find a solution within the

given tolerances. There are no instances that either one of the individual algorithms

converges successfully but L-PTR2 can not.

When it comes to L-PTR2LS, there are 29 instances where all three algorithms

have converged to the same solution point. We have not included the line-search as a

separate individual algorithm in our benchmark for only an incomplete line-search is

applied within L-PTR2LS. As compared to L-PTR2, there are more cases for which

all three algorithms have converged to different solution points (9 instances versus 14

instances). This could mean that the line-search procedure has diverted the algorithm to

different solution points. Again, there are no instances that either one of the individual

algorithms converges successfully but L-PTR2LS can not.

We first compare L-PTR2 and L-PTR2LS against the individual algorithms to

see whether concurrent search could achieve a reduction in the number of iterations.

The benchmark results are given in Figure 3.7. The success of L-PTR2LS is much more

significant. As the figure shows L-PTR2LS reduces the number of iterations more than

2 times for around 20% of the cases. The second benchmark is about the number of

gradient evaluations. Figure 3.8 demonstrates the success of L-PTR2 in reducing the

number of gradient evaluations. On the other hand, L-PTR2LS performs slightly worse

than L-PTR2 in terms of gradient evaluations. Recall that this difference between the

number of iterations (total number of steps) and the number of gradient evaluations

(number of successful steps) has been also observed with the small-scale problems.

Finally, we have compared the solution times for all algorithms to see whether

the reduction in the number of parallel function evaluations and subproblem solutions

has been really reflected to the wall clock time. To have a fair comparison with L-

46



1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L−PTR2
L−TRBFGS
L−TRSR1

(a) L-PTR2

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L−PTR2LS
L−PTR2
L−TRBFGS
L−TRSR1

(b) L-PTR2LS

Figure 3.7: Performance profiles on the number of iterations on medium-to-large size
problems

PTR2, we have configured the individual algorithms so that they use two threads in all

their linear algebra operations [46]. Similarly, we compare the results of three-threaded

L-PTR2LS after we have configured the individual algorithms to use three threads in

their linear algebra operations. As shown in Figure 3.9, both L-PTR2 and L-PTR2LS

have provided some improvement in the wall clock time figures. However, the increase

in their performances is not as large as it has been for other performance criteria.

47



1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L−PTR2
L−TRBFGS
L−TRSR1

(a) L-PTR2

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L−PTR2LS
L−PTR2
L−TRBFGS
L−TRSR1

(b) L-PTR2LS

Figure 3.8: Performance profiles on the number of gradient evaluations on medium-to-
large-scale problems

48



1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L−PTR2
L−TRBFGS
L−TRSR1

(a) L-PTR2

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L−PTR2LS
L−TRBFGS
L−TRSR1

(b) L-PTR2LS

Figure 3.9: Performance profiles on the wall clock time on medium-to-large-scale prob-
lems

49



3.2 Extensions to Global Optimization

The CCS framework proposed in the previous section mainly concentrates on the part

of the solution process until the algorithms arrive at a region in the close proximity

of a local solution point. It may have little to contribute to the local convergence of

the included methods in a region where full steps are always acceptable and trust-

region constraints are always inactive. Therefore, when the process is quite close to the

optimal solution, it may not be able to provide a better convergence rate than any of

the included methods. However, we may expect significant performance improvement

when the framework is modified with the purpose of recovering multiple local optimal

solutions. This is an important objective, when one concentrates on global optimization.

In this section, we first consider an extension of CCS that can provide multiple

different local local solutions of (3.1) when f is multimodal. Then, we discuss how

it can be further extended to solving global optimization problems. In particular, we

consider the case where the objective function f of problem (3.1) is not convex, and

the aim is to find its global minimum in a region defined by a hypercube.

3.2.1 Concurrent Search for Multiple Solutions

The question in our mind is as follows: Would it be a good idea to compute within

CCS framework as many candidate trial points as the number of available parallel units?

Apparently, such an attempt may not necessarily scale well in converging to a single

solution point. When the problem size is large, using more threads in Type-I paral-

lelization would be more beneficial in improving the speed of overall solution process.

However, when the objective becomes finding multiple different solutions rather than

fast convergence to a single solution, it is then quite reasonable to increase the number

of local search algorithms that run in parallel.

One such option is to fork the search over the solution space. That is, we modify

the CCS framework as follows: When there are more than one acceptable points, we

follow all or a number of them instead of selecting the one with the least objective

function value. This modification is illustrated in Figure 3.10. Here, the symbols,

50



Figure 3.10: Forked search for p = 3

‘×’,‘∗’, and ‘+’ show the trial points computed by the three algorithms of CCS. In

the first iteration, two of them was acceptable, so a seperate search is started from

both points. So, we have 6 parallel trial point calculations in the second step. When

the iterates in two branches become close, one of them are cut. Since the number of

parallel resources is limited, it may become necessary to fathom some of the branches

from further forking. The algorithm is not stopped when the first local solution is

found. The search process seizes until a given time limit is exceeded or when the

required number of local solutions is obtained.

In fact, the transition from basic NLP algorithms to CCS, and then to the forked

CCS is a very nice example of the transition from local search to global search. In

the next section, we will consider another transition step to a framework for global

optimization. In this case, the tasks will consist of complete algorithms, and the task

interaction will be asynchronous and flexible.

3.2.2 A Multiagent Framework

The aim in global optimization is finding the globally best solution of (3.1), usually

within a bounded set F ⊂ R
n. Thus, global optimization methods have different

concerns than the local optimization methods (important reviews of global optimization,

its popular solution methodologies and applications can be found in [51, 62, 56]). In

this section, we shall provide an example that adopts our parallel algorithm design

approach to deal with the specific difficulties arising in global optimization problems.

Basic ideas. Solving a general global optimization problem, which does not have a

special structure, requires an extensive search on the set of feasible solutions, F . Thus,

51



it is very suitable for the application of various decomposition schemes, which can be

described by a group of tasks and task interrelationships.

An approach that fits into this scheme is to run several instances of an algorithm

in parallel starting from different points, which share information in a prescribed way.

It has been argued that the resulting parallel algorithms may perform better in terms of

solution quality thanks to the cooperation among individual search algorithms [30, 15].

The next idea would be to run different search algorithms in parallel and let them

cooperate, which is referred as parallel hybrid algorithms. In this case, the tasks are no

more identical, but the interaction is again predefined. There are existing examples of

parallel hybrid algorithms that are reported to perform quite well [66, 47, 39]. While

parallel hybrid algorithms cover various combinations of algorithms, a more adaptive

and efficient scheme would be possible by allowing the interaction among the algorithms

emerge during the solution process.

Let us consider the following example. Suppose that different local search algo-

rithms run in parallel starting from different initial points, and at some point of their

execution, each algorithm receives an external information like an incumbent solution

obtained by another algorithm. Possibly, the new information is processed in a different

way by each algorithm; i.e., one uses the information in directing its search, whereas

another one disregards it for various reasons. Moreover, since the received information

can be used in the middle of an ongoing execution, it will cause modifications in the

original tasks of the algorithm. This suggests a system that will run various algorithms

or procedures concurrently and enable them to cooperate in the way they determine. It

may be the case that during the beginning of its execution, an algorithm may want to

ask others in the system about their experiences (e.g., their current best point, poten-

tial areas worth exploring, and so on) but may decrease its communication with others

as it explores the environment better. Thus, it is not feasible for a system designer

to hard code expected communications; the need for such communications will only

become apparent during run time. This defines an asynchronous algorithmic structure

where a team of algorithms run concurrently and cooperate flexibly as they see fit.

The above requirements make a platform consisting of software agents an ideal

52



tool for implementing the proposed scheme. With this in mind, we have designed

a new software environment called MultiAgent eNvironment for Global Optimization

(MANGO).

Environment. MANGO is a Java-based multiagent environment that provides the

necessary utilities to develop agents that can participate in a multiagent system to solve

global optimization problems.

Each agent is implemented as a Java program that is developed using MANGO

API. Agents may run on the same computer or may reside on different computers, which

are distributed over the network. Every task, such as running an optimization algo-

rithm, visualization of optimization results and administrative issues, is performed by

agents. In general, each agent performs a specific task. However, there is no limitation

on the number of tasks that an agent can perform in parallel.

MANGO enables agents to find each other through a directory system. It con-

tains an extensible protocol for agents to communicate with each other. The protocol

messages are related to solving problems, such as exchanging current best points, sig-

naling areas already explored by others, and so on. Hence, agents can find others and

cooperate with them on their own.

MANGO Environment

Directory Agent Code

MANGO API

Directory Agent

Agent Code

MANGO API

Agent 1

... Agent Code

Agent N

MANGO API

JMS Provider

Figure 3.11: The MANGO environment

When a MANGO agent is being designed, there are three decision points that

need to be considered:

1. Optimization Algorithm: The first point is the agent’s main algorithm for at-

53



tacking the global optimization problem. This algorithm may be any known or

newly-developed algorithm for solving a global optimization problem. The agent

designer decides on this algorithm and implements it in the agent. The MANGO

environment comes with a set of algorithms that can be used when developing

new agents.

2. Outgoing Messages: The second point is related to when and with whom the agent

is going to communicate during its execution. The communication is necessary for

various reasons, but most importantly for coordination. That is, it is beneficial

for an agent to position itself correctly in the environment. For example, two

agents may not want to be searching the same area since probably if they search

two different areas they may find a solution faster. Conversely, they may want to

focus on a certain area rather than diverging.

The questions of when and with whom to communicate are strictly related to

the optimization algorithm that the agent is using. If the agent’s own algorithm

cannot handle certain tasks, the agent would need others’ services to handle these.

For example, if the agent’s optimization algorithm cannot perform local search

well, the agent may find it useful to find other agents that can offer local search

service. As explained before, whether an agent does offer this service can be found

out by querying the directory agent that keeps track of the services associated

with each agent. Alternatively, an agent that can do local search well may be

interested in finding out new areas to search when it finishes its local search.

Hence, the agent may be interested in finding other agents that can suggest new

areas to search.

An agent may decide to take a leader role in the multiagent system and influence

the others by suggesting areas to explore or refrain from. The choice of taking

this role is up to the agent, but is also affected by the particular algorithm the

agent is executing. That is, some algorithms can identify possibly promising areas

quickly, and thus, it is reasonable for the agent to take this role and to inform

others about the potential of these areas. Conversely, an agent may be designed to

54



play a leader or a follower role during design time. For example, a relatively rigid

setting consisting of a leader agent executing an interval search-type algorithm,

and a group of agents executing local search algorithms is also possible. In this

example setting, the leader agent is intended to manage the overall search whereas

the rest of the agents have only local tasks. The algorithm of the leader is able

to partition the solution space in a specific way and process the information

collected from different parts. That is, it assigns lower bounds to the objective

function value attainable in each partition, eliminates some partitions based on

these bounds, and does a new partitioning for the remaining area. The local

search agents apply their algorithms as requested by the leader: within the region

it tells, using the parameters it decides, and stop according to the termination

criteria it asks.

3. Incoming Messages: The third decision point is related to if and how the agent

is going to handle incoming messages. Note that since the communication is

asynchronous, the agent will receive incoming messages during the execution of its

algorithm. Incoming messages can be handled by the agent in two different ways.

The first way is, interrupting the agent immediately when a message is received.

In this case, the agent stops execution of its algorithm to handle the incoming

message. The second way is, storing incoming messages without interrupting

the agent. In this case, the agent checks for incoming messages whenever it is

appropriate.

One naive approach is to always answer or follow the incoming messages. For

example, if an agent receives an explore message, it can always jump to the areas

that is being suggested for exploration. Or, whenever it is prompted for the

best solution it has found, it can return its current best solution. However, the

following play an important role in how the incoming messages can be handled

intelligently.

The exploration state, that is how well the agent has explored the environment,

is important in answering questions, since an agent may prefer not to answer

55



questions if it has not explored the environment well, or conversely, prefer not

to follow orders (such as refrain messages) if it has explored the environment

carefully. For example, in the beginning of the execution, when the agent did

not have enough time to search properly, it may decide not to answer incoming

messages related to the best solutions it has found, since its solution may not be

representative.

Over the course of execution, an agent may model other agents based on the types

of messages they are sending. Based on this model, an agent may decide how and

if it is going to handle a message. For example, after certain iterations an agent

may decide to ignore messages from a particular agent, if these messages have

become too restrictive for the receiving agent to explore the region.

The structure and tools of MANGO allow the execution of a wide range of global

optimization algorithms described as a set of interacting operations. In one extreme,

it welcomes individual noncooperating agents, which is basically the traditional way

of solving a global optimization problem. In the other extreme, autonomous agents

existing in the environment cooperate as they see fit during run time.

3.2.3 Implementation Examples

The implementation examples in this section illustrate the main proposition of this

thesis from a broader perspective. Here, as an extreme form of interrelated parallel

tasks, we have cooperating agents. We next give examples of three optimization agents

and three interaction scenarios that are implemented in the MANGO environment.

Agent realizations. In our implementation examples, we develop and run three

sample agent types: Agent B, Agent T and Agent R. For each agent below, we describe

the three important points: its algorithm, treatment of outgoing messages and incoming

messages.

Agent B applies a BFGS quasi-Newton algorithm with line-search. The algorithm

terminates either by recovering a local optimum or exceeding the maximum number of

iterations. In fact, Agent B applies a modification to the BFGS quasi-Newton algorithm

56



as a result of its interaction with other agents, which shall be explained below. Also,

since (3.1) has bound constraints in our case, it projects the steps computed by the

original algorithm to the feasible region whenever the next iterate falls outside. We

should also note that the agent repeatedly executes its local algorithm, i.e., when it

converges to a local solution or exceeds the maximum number of iterations, it starts a

new algorithm instance from a different initial point.

Within a system consisting of these three agents, Agent B has two types of out-

going messages. When the agent converges to a point xf , starting from a point x0, it

sends the ball with center xf and radius ‖xf − x0‖ to all others, i.e., agents of type

Agent T and Agent R, as a REFRAIN REGION message. The intended meaning of

this message is that the ball has been already explored by Agent B; so, others are bet-

ter off searching elsewhere to increase their chances of finding the global minima. Note

that the receiving agents are free to honor or ignore the message. The second type of

message that this agent can send is INFORM SOLUTION message. By design, it only

sends this message to Agent T to notify its current best solution. This is to depict that

an agent’s outgoing message behavior may differ. In different settings, Agent B can

send one of these two types, or both.

The only type of incoming message that Agent B is interested in is INFORM SOLUTION

message. When the agent receives this message, it assumes that the received point xr

is a local minimizer. So, in order not to converge one more time to one of the already

discovered local solutions, it adds xr to a list of known local minimizers, and tries to

stay away from those points using a penalty function as its objective. The penalty

function φ is obtained by adding a penalty term to the original objective function f so

that approaching to the known local minimizers increases the value of φ. Formally, we

have

φ(x, P ) := f(x) + θ
∑

y∈P

1

‖x− y‖2 + ǫ
, (3.4)

where P is the set of known local minimizers, ǫ is a small positive number, and θis

a constant multiplier. In this way, the minimization algorithm applied by Agent B is

expected to direct it towards different local solutions, providing a more extensive search

57



in the overall solution space. If Agent B receives any other type of message, it simply

ignores it.

Agent T applies a trust-region algorithm, another local search method that also

guarantees convergence to a local solution of (3.1) under some mild assumptions. Like

Agent B, we also impose an upper bound on the maximum number of iterations that

could be spent by the algorithm. Agent T does not modify the step computation

procedure of the original algorithm, but it may stop a run before converging to a

solution by using the information it receives from other agents. If there is no interaction,

it restarts its algorithm from a random initial point after the termination of each single

run, as in the case of Agent B. It also handles the bound constraints of (3.1) the same

way as Agent B does.

In its interaction with Agents B and R, the only type of message Agent T sends is

INFORM SOLUTION message. It sends messages only to Agent B to share its current

best solution when it converges to a local minimizer xf or exceeds a predetermined

maximum number of iterations.

Agent T processes two types of incoming messages: REFRAIN REGION and

INFORM SOLUTION. It assumes that the REFRAIN REGION messages include non-

promising regions; thus, instead of spending its effort within such discouraged regions,

it prefers starting a new local search in a possibly unvisited part of the solution space.

The content of REFRAIN REGION messages are balls B(xc, r) that are characterized

by a center xc and a radius r. The received regions are added to a refrained regions set

R as new elements, or they are merged with existing elements of this set. Whenever

its current iterate xk falls inside one of the balls in R, i.e,

‖xk − xc‖ ≤ r, for some B(xc, r) ∈ R,

Agent T immediately stops its ongoing run and starts a new run from a different initial

point. If it receives an INFORM SOLUTION message (i.e., another agent’s current

best solution), then Agent T acknowledges the message content solution point xr, and

starts its next run from this point if it confirms that xr is not a local minimizer of f .

58



This is likely to be the case when the sender of the INFORM SOLUTION message is

Agent R.

Agent R uses a simple random search as its algorithm. In a single run, it evaluates

the value of the objective function at a set of points that are uniformly sampled from

the feasible region. The agent repeatedly executes this procedure. Its current solution

is the point with the minimum objective value within all the evaluated sample points

up to that moment; so, it is updated if a better solution is obtained in the most recent

run.

When its current solution is updated, Agent R sends this point to Agent T via

an INFORM SOLUTION message. On the other hand, it is able to benefit from RE-

FRAIN REGION messages. As Agent T, it keeps the content of received messages in

a list. The evaluation of the objective function is dismissed at the sampled points that

fall into one of the balls residing in that list of refrained regions. This agent is very

quick in exploration and provides diversification; nonetheless, it may be very inefficient

in finding a global optimal solution.

Note the flexibility of the interactions among agents. First, the communications

need not be symmetric. For example, Agent R sends messages to Agent T, but only

receives messages from Agent B. Second, an agent can send certain types of messages to

a particular agent but not others. For example, Agent B sends INFORM SOLUTION

to Agent T but REFRAIN REGION to Agent R. Such variations on communication

can be easily adapted in MANGO environment with minimal modifications on the agent

and no modifications on the agent’s algorithm.

Another important point to note is that while agents are built to cooperate, they

can still operate without cooperation. That is, none of these agents have to receive

messages to start working or need to send messages to continue. The cooperation is

only an added value to the agents. If the other agents in the system fail for some

reason, the remaining agents can still operate. In a similar vein, addition of agents to

the system would not need any modifications on the agents’ realizations. For example,

we could have several Agent R’s in the system and they would all receive messages that

are directed to them. This enables agents to enter or leave the system as it suits them.

59



Cooperation scenarios. We next present several cooperation scenarios to illustrate

an actual implementation of the sample agents introduced above. Our main purpose

in this section is to show the possible effects of communication on individual agents

as well as on the overall success of the cooperation for solving a problem. For ease

of exposition, we shall start with a base scenario involving a very simple cooperation

among the agents. Then, we shall gradually extend this scenario by adding other

communication channels among the agents and point out some important observations.

We test our scenarios on three global optimization problems from the literature

with different attributes, such as; dimension, structure and application domain. Table

3.1 gives the details of our test problems. The first two problems are given by More

et al. [50]. These problems are reformulations of systems of nonlinear equations as

optimization problems. Therefore, the known global optimal objective function values

for both problems are zero (see third column of Table 3.1). They both have multiple

minima and involve rather flat regions causing performance deterioration for gradient-

based methods. The last problem is related to finding the lowest energy configuration

of a molecular system. This particular problem is taken from Lennard-Jones clusters

with 15 atoms [72]. Here, we note that 3 times the number of atoms gives the problem

dimension as shown in the second column of Table 3.1. To bound the feasible region for

sampling, we have assumed the problems are box constrained with the variable bounds

given in the last column. Naturally, we make sure that the global optimum for each

problem resides within the imposed bounds.

Table 3.1: Problem details and parameters

Problem Name Dimension Global Optimum Imposed Variable Bounds

Rosenbrock 2 0.0000 [-100, 100]
Broyden Tridiagonal 10 0.0000 [-100, 100]

LJCluster-15 45 -52.3226 [-5, 5]

In the subsequent part we solve these test problems for different communication

scenarios. Since we use random sampling, we report for each problem the average

statistics over 10 runs. All runs are terminated after a duration (wall clock time)

60



proportional to the problem dimension has elapsed. That is, for each problem, the time

to complete a run is taken as the minimum of 5 seconds times the dimension and 5

minutes. Clearly, this setting is to the advantage of the runs taken for individual agents

because the entire computing resource is then dedicated to a single agent. We also note

that all results are obtained on a dual core personal computer with an Intel Core i5

processor and 4 GB of RAM.

We first start with the results obtained with the individual agents. These results

demonstrate the performances of the agents when they are started from randomly

selected points. Since it is very common to use local search methods in such a multi-

start setting for solving global optimization problems, these results illustrate what

would most of the decision makers do in practice. We shall later use these results for

comparing against the results obtained with the communication scenarios. Table 3.2

gives the average objective function values obtained by two agents separately. Since

Agent R applies a simple random search, we have observed that its results are very far

away from the global optimum. Therefore, we omit its results for further comparison

but note that Agent R plays a role in the communication scenarios.

In Table 3.2 the figures that we shall later use for comparison are marked with

boldface letters. As the figures show both agents are able to solve the first problem.

However, Agent T finds the global optimum solution within fewer number of function

evaluations on average than Agent B. Therefore, Agent T is used for comparison. When

we check the last two problems, we observe that only one agent can find a solution

individually. For problem 2, Agent B fails to find the global optimum solution but

Agent T does converge to the global optimum. However, the performances of the

agents are reversed for the last problem, and Agent B converges to the global optimum

whereas Agent T fails.

Next we discuss the communication scenarios as illustrated in Figure 3.12. In

Table 3.3, we compare the results obtained with the scenarios against the individual

results that are summarized from Table 3.2. The third column of Table 3.3 gives the

average objective function value obtained by the most successful agent, which is the

one reported in the last column. Likewise, the fourth column shows the percentages

61



Table 3.2: The average objective function values obtained by the individual agents for
the test problems over 10 runs

Problem Name Agent B Agent T

Rosenbrock 0.0000 0.0000

Broyden Tridiagonal 0.0745 0.0000

LJCluster-15 -52.2270 -47.2386

related to the average number of calls to the objective function until the best objective

function value is recovered. These figures are given relative to the number of objective

function calls required by the individuals. Thus, the values for the individual runs are

omitted and the corresponding cells are marked with (-) signs. For instance, consider

the problem LJCluster-15. In Scenario 1, Agent B is the most successful agent (see

last column) in terms of average objective function value. As shown in the third column,

Agent B required on average 82% of the number of function calls used by the individual

runs for the same problem. However in the latter two scenarios the successful agents

(Agent T for Scenario 1, Agent B for Scenario 2) have required on average slightly more

function calls than the individual runs (4% and 5%, respectively). The fifth column

gives a similar percentage comparison relative the individual runs in terms of wall-clock

time.

Table 3.3: The average statistics over 10 runs for all communication scenarios

Average OF∗

Obtained by
Value Calls (% ) Time (% )

Rosenbrock 0.0000 - - Agent T
Individuals Broyden Tridiagonal 0.0000 - - Agent T

LJCluster-15 -52.2270 - - Agent B

Rosenbrock 0.0000 43% 67% Agent T
Scenario 1 Broyden Tridiagonal 0.0000 32% 57% Agent T

LJCluster-15 -52.1326 82% 79% Agent B
Rosenbrock 0.0000 25% 42% Agent T

Scenario 2 Broyden Tridiagonal 0.0000 41% 54% Agent T
LJCluster-15 -52.3226 104% 84% Agent T
Rosenbrock 0.0000 23% 38% Agent T

Scenario 3 Broyden Tridiagonal 0.0000 73% 93% Agent T
LJCluster-15 -52.2321 105% 109% Agent B

∗Objective function value

62



refrain region

solution point

refrain region

Agent B

Agent T

Agent R

(a) Scenario 1

solution point

solution point

refrain region

Agent B

Agent T

Agent R

(b) Scenario 2

solution point

refrain region

solution point

refrain region

Agent B

Agent T

Agent R

(c) Scenario 3

Figure 3.12: Communication scenarios

In the first scenario as shown in Figure 3.12(a), Agent B sends refrain messages

to both Agent R and Agent T. The two receiving agents then try to avoid those regions

exploited by Agent B. Aside from the refrain messages from Agent B, Agent T also

receives some promising solution points to start with from Agent R. In this scenario,

we expect Agent T to recover the global optimum quicker than it does when it works

individually. As the average numbers of objective function calls in the fourth column

of Table 3.3 show, for the first two problems, Agent T indeed finds the global optimum

with less than half of the function calls it uses individually. As we observed with the

individual runs, in the last problem Agent B is still the one that converges close to

the global optimum. This is expected because Agent T is refrained from the regions

that are exploited by Agent B, and hence, the success of Agent B in the vicinity of

the global optimum keeps Agent T away from those regions. Although Agent B finds

this solution faster than it does individually both in terms of wall-clock time and the

number of objective function calls (columns 4 and 5), the quality of solution deteriorates

slightly. This decrease in the solution quality can be attributed to the decrease in the

computing power that is allocated to the individual agents when they communicate

within a scenario.

63



Having observed the success of Agent B for the last problem, we next construct

Scenario 2, where we try to lead Agent T to the global optimum in all problems.

As illustrated in Figure 3.12(b), we accomplish this simply by replacing the refrain

message sent from Agent B to Agent T with a solution point message. This change then

encourages Agent T to start with those points, which have been recognized as promising

but not properly exploited by Agent B particularly when, it terminates its procedure

after exceeding the maximum number of iterations. The last column corresponding

Scenario 2 in Table 3.3 shows that Agent T succeeds to find the global optimum in all

problems. Moreover, it finds the exact global optimum in all 10 runs at the expense of a

slight increase in the average number of objective function calls but an ample decrease

in the wall-clock time. When it comes to the first two problems, as in Scenario 1, we

observe a significant decrease in the average numbers of objective function calls as well

as in the wall-clock times.

Figure 3.12(c) shows the last and the most versatile scenario in terms of com-

munication. Unlike the previous two scenarios, Agent B now receives a feedback from

Agent T. This feedback pays back for the last problem and Agent B finds a solution

closer to the global optimum than the solutions it finds individually and in Scenario 1.

However, this improvement comes with a small increase in the average number of ob-

jective function calls and the wall-clock time. On the other hand, we obtain the fastest

convergence to the global optimum for the first problem with this scenario. Although

not as good as the previous two scenarios, the global optimum for the second problem is

found within fewer number of function calls than the individual runs. More remarkably,

the wall-clock time to obtain this solution has significantly improved.

One important concern with distributed systems is related to their scalability.

This concern can be posed as how much the system performance degrades when the

size of the system increases in terms of number of threads and processed jobs. When

discussing the scalability of MANGO in such a sense, we need to consider the increase

in size with respect two different entities: agents and messages. Since each agent is a

stand-alone Java program, the number of agents that can be run on a single machine

depends on the individual specification of the machine. Nonetheless, as the MANGO

64



architecture permits running each agent on a different computer, the increase in the

number of agents is not expected to cause a significant problem. Therefore, our focus

in terms of scalability of physical resources is with the number of exchanged messages.

Each message in the system passes through a central messaging system to reach its

destination. If agents generate significantly more messages than that can be consumed

by other agents, we expect to have delays and performance loss, even when the number

of agents is low. This is an obvious observation, since in our implementation the agents

shall then seize their major function of problem solving and devote all their resources

to processing messages. This drawback can easily be avoided by limiting the number

of messages sent and received by the agents, or processing the incoming messages only

when the agent sees it fit.

Another important question about scalability is related to the performance im-

provement in solving a global optimization problem. That is, if we increase the number

of agents when solving a particular problem, does this effort necessarily improve the

success of the agents for finding the global optimum of a particular problem. Table

3.4 shows the average statistics over 10 runs for the ninety-dimensional cluster problem

LJCluster-30. As before, we have assumed that each variable comes from the bounds

[−5, 5]. The objective function value of the global optimum for this particular problem

is −128.2515. The number of function calls are given relative to the numbers obtained

with 2 agents (row 3). The results in the table demonstrate that as we increase the

number agents up to a certain value we do obtain performance increase. When we reach

10 agents in total, we finally recover the global optimum in the best run. However, as

we continue increasing the number of agents, the performance deteriorates. This can be

attributed to two reasons: (i) the agents could be overwhelmed by processing excessive

message passing, (ii) too much information creates pollution. The latter reason may

be complemented with further explanation: As each agent tries to direct the others to

different parts of the feasible region, it is quite possible that, particularly in earlier iter-

ations, agents receive conflicting messages and hence, fail to explore the feasible region

properly. Consequently, we note that one should not indiscriminately assume that the

performance shall increase as the number of agents increase. The optimal parameter

65



for the number of agents is clearly problem-dependent and unfortunately, requires some

parameter fine-tuning.

Table 3.4: The average statistics over 10 runs for problem LJCluster-30

Number of Agents
OF∗Value OF Calls (%) Time (%)

Obtained by
Best Average Best Average Best Average

1 B, 1 T -127.4218 -126.6161 - - - - Agent T
2 B, 2 T -128.0966 -126.2599 60% 95% 59% 147% Agent B
5 B, 5 T -128.2515 -126.9845 79% 65% 157% 128% Agent B
10 B, 10 T -127.4218 -126.5504 11% 25% 66% 146% Agent T

∗Objective function value

66



Chapter 4

PROPOSED INHERENTLY PARALLEL

ALGORITHMS

The concurrent search framework of the previous chapter follows the approach of this

thesis at a high level, in the sense that the tasks providing its inherent parallelism consist

of complete algorithmic procedures. Thus, it can be seen as an extension of the included

methods, since the interaction among the original operations causes their modification.

In this chapter, we introduce two new algorithms that follow a similar approach at

a lower level. In other words, we aim at designing algorithms that are themselves

inherently parallel. The first algorithm is designed for unconstrained problems, whereas

the second one is a constrained optimization algorithm.

4.1 A Parallel Algorithm for Unconstrained Optimization

The algorithm that shall be described in this section is a new algorithm, which aims to

achieve inherent parallelism in lower level computational tasks. The additional opera-

tions are mainly used in constructing the model function for step computation.

4.1.1 Algorithm

Basic ideas. Classical methods of unconstrained optimization are based on local

models of the problem, that are very powerful once the algorithm arrives at a close

proximity of a local solution. However, the local models may not provide very efficient

67



steps if the algorithm starts from a remote point. The algorithm in this section attempts

to use some extra problem information produced by additional computational resources.

This extra information is then utilized to take globally more efficient steps as in the

concurrent search example. However, unlike concurrent search, the proposed algorithm

is based on a completely new model function. It has operations that can be executed

in parallel but the output of individual threads are all lower level values that are not

meaningful by themselves.

Thus, our basic motivation —as before— is to design a new algorithm that

achieves both a good parallelization performance (i.e. an inherently parallel struc-

ture of computations) and a good solution performance as compared to some standard

sequential algorithms. As we continue describing our algorithm, its connection with

certain well-known methods, like nonlinear conjugate gradient algorithm, will become

clear.

The new method starts its iterations with a gradient-related related direction and

then, instead of applying a standard line search, it tries to improve this direction as

well as determine its length. This is achieved by using an extended model function,

that is constructed based on two linear models at two reference points. The step com-

putation is done in an almost completely separable way. This provides the scalability

of the new parallel algorithm. Furthermore, the scalability is maintained by keeping

the synchronization operations at a minimum level. Another nice property of the new

algorithm is that it is almost parameter-free.

Before we start explaining the new algorithm, we would like to emphasize that the

consideration of a global model that can reduce to the local models at multiple reference

points led us designing the new algorithm of this section, rather than concentrating

on the parallel implementation ideas that are originated from the existing large-scale

unconstrained optimization methods.

In the remaining part of this section, we shall describe the details of the step com-

putation, then discuss its expected and observed parallelization properties. The section

continues with the implementation details and a formal discussion on the convergence

properties of the proposed method. We then conclude with some numerical results on

68



a set of problems.

Step computation. Let us start by considering the kth iteration of the algorithm

with the current iterate xk. To obtain the next iterate of the algorithm, xk+1 we need

to find sk so that we can set xk+1 = xk + sk. The proposed algorithm obtains sk

by executing inner iterations t = 0, 1, · · · and computing trial steps stk. When this

procedure exits, the incumbent stk becomes sk that we are after.

s
t

k

x
t

k

s− s
t

k

s

m
t+1(s) = α

0(s)l0(s) + α
t(s)lt(s− s

t

k
)

l
t(s− s

t

k
)

xk

l
0(s)

Figure 4.1: Construction of the model function m̂t+1(d)

To simplify the exposition, let us first define

xt
k := xk + stk, f t

k := f(xt
k), gtk := ∇f(xt

k), ytk := gtk − gk, and δtk := (stk)
T stk.

At each inner iteration, the trial step, stk is accepted as sk, if it satisfies

f(xk + stk)− fk ≤ ρgTk s
t
k (4.1)

for some ρ ∈ (0, 1). Otherwise, we use the information gathered around xk and xk + stk

to come up with a model function that hopefully has a similar local behavior as f within

the region in between those two reference points. Using already available fk, gk, f
t
k and

gtk values, this model function is constructed in two steps. In the first step, a quadratic

function based on combination of two linear reference models at xk and xk + stk are

69



constructed. That is, we start with

m̂t+1(s) := α0(s)l0(s) + αt(s)lt(s− stk),

where

l0(s) := fk + gTk s,

lt(s− stk) := f t
k + (gtk)

T (s− stk).

This construction is illustrated in Figure 4.1.1. Note that both weights, α0(s) and αt(s)

are functions of s. We shall show in our subsequent discussion that by construction,

these weights always provide a convex combination, i.e., they are in [0, 1] and add up

to 1. We want to make sure that if s is closer to stk, then the weight αt(s) of the linear

model around xk increases. Similarly, αt(0) should increase as (s − stk) gets closer to

(−stk). This is achieved by measuring the length of the projections of s and (s− stk) on

stk as

α0(s) =
(s− stk)

T (−stk)
(−stk)T (−stk)

and αt(s) =
sT stk

(stk)
T stk

. (4.2)

In the second step, we control the lengths of s and (s−stk) by adding two regularization

terms to m̂t+1(s). Thus, our final model function becomes

mt+1(s) = m̂t+1(s) +
1

2
β1s

T s+
1

2
β2(s− stk)

T (s− stk). (4.3)

After some derivation, the quadratic model (4.3) simplifies to

mt+1(s) = fm + gTms+
1

2
sTBms, (4.4)

where

fm := fk +
1
2
β2δ

t
k,

gm := gk +

(

1

δtk
(f t

k − fk + (gtk)
T (−stk))− β2

)

stk,

70



and

Bm :=
1

δtk
((β1 + β2)I + stk(y

t
k)

T + ytk(s
t
k)

T ).

The parameters β1 and β2 play an important role in generating descent directions for

the original function f , by using model function (4.4). These two parameters are also

crucial to guarantee that s = 0 is not the minimizer for the model function mt+1(s),

unless the current iterate is a stationary point for the original function. In other words,

since

‖∇mt+1(0)‖2 ≥ ‖gk‖2,

the model mt+1 shall always provide a nonzero step st+1 unless ‖gk‖ = 0. Therefore, to

provide a definite relationship between ∇mt+1 and ∇f , we set

β1 =
1

δtk
(fk − f t

k + gTk s
t
k) and β2 =

1

δtk
(f t

k − fk − (gtk)
T stk). (4.5)

Clearly, β1 and β2 may take negative values at some iterations. Interestingly, if f is

convex, they are always negative and a trial point close to any of the reference points

is discouraged. However, it is not difficult to show that both β1 and β2 are bounded,

when we assume that f is twice Lipschitz continuous. To be exact, we have

|β1| ≤
L

2
and |β2| ≤

L

2
,

where L is the Lipschitz constant for f .

When the parameter values β1 and β2 are set as given in (4.5), the components

of the model function (4.4) become

fm =
1

2
(fk + f t

k − (gtk)
T stk), gm = gk,

and

Bm =
1

δtk
(−((ytk)T stk)I + stk(y

t
k)

T + ytk(s
t
k)

T ).

Remark 4.1.1 summarizes the established relationship between the model function mt+1

and the original objective function f .

71



Remark 4.1.1 The model function mt+1(s) satisfies

mt+1(stk) = f t
k +

1

2
β1δ

t
k =

1

2
(f t

k + fk + gTk s
t
k),

and

mt+1(0) = fk +
1

2
β2δ

t
k =

1

2
(fk + f t

k − (gtk)
T stk).

Therefore,

min
d

mt+1(d) <
1

2
(fk + f t

k).

Moreover, the gradient of the model function at the two reference points, xk and

xk + stk are given by

∇mt+1(0) = gk +

(

1

δtk
(f t

k − fk + (gtk)
T (−stk))− β2

)

stk

and

∇mt+1(stk) = gtk +

(

1

δtk
(fk − f t

k + gTk s
t
k)− β1

)

(−stk),

respectively. This implies

∇t+1m(0) = gk and ∇t+1m(stk) = gtk.

As indicated in Remark 4.1.1, the model values at xk and xt
k correspond to the averages

of the original function value f and the approximations of the linear models lt and l0

at those points, respectively. Since the model gradient at s = 0 is equal to the gradient

of f at xk, any descent direction computed for mt+1 is also a descent direction for f .

The next step is to find an approximate solution to subproblem (4.4). We first

start as if the model function mt+1(s) is convex (we shall later consider the nonconvex

case). If we denote the minimizer of mt+1(s) by sN , then after some derivation we

obtain

sN = θggk + θyytk + θsstk, (4.6)

72



where

θg =
δtk

(ytk)
T stk

,

θy = − δtk
(ytk)

T stk

(ytk)
Tgk

‖ytk‖2
,

and

θs = − δtk
(ytk)

T stk

(stk)
Tgk

‖stk‖2
= −(stk)

T gk
(ytk)

T stk
.

Note that the basic trial stepin inner iteration t + 1 is in the subspace spanned by gk,

gtk, and the previous trial step stk. We should also emphasize at this point that the

computation of sN requires just a few floating point operations, once the necessary

inner products are completed. Therefore, the computation of sN is very suitable for

parallelization, since inner products require only n independent basic operations. Fur-

thermore, there is no need to wait for the completion of an inner product before starting

another one; i.e., they are all independent. As (4.6) is the main component of the trial

step computation used in our algorithm, we are on the right track to come up with a

fast and scalable method. In Section 4.1.2, we shall elaborate on the number of basic

operations required by the proposed algorithm and discuss in detail its almost-purely

parallel implementation.

We handle the nonconvex model function mt+1 by applying a constraint on the

length of the selected step, s. Such a restriction on the length is crucial because a

nonconvex mt+1 may not have a bounded minimizer along the directions given by some

s. Recall that our model function is constructed around the previous trial step stk, by

considering the area lying between xk and xk + stk. With this consideration in mind,

we require our step s satisfy

‖s‖2 + ‖s− stk‖2 ≤ ‖stk‖2. (4.7)

Note that this constraint controls not only the lenght of s but also its variation from

the previous trial point stk. More importantly, this choice of the constraint ensures that

both weight functions α0(s) and αt(s) are in [0, 1]. This observation is formally given

in Lemma 4.1.1.

73



Lemma 4.1.1 The weighting functions α0 and αt given in (4.2) satisfy

α0(s) ∈ [0, 1] and αt(s) ∈ [0, 1],

provided that the constraint (4.7) holds at inner iteration t+ 1 of iteration k.

Proof. By constraint (4.7), we have

‖s‖2 + ‖s− stk‖2 ≤ ‖stk‖2 ⇒ 0 ≤ sT stk ≤ (stk)
T stk.

Both sides of the inequality on the right can be obtained by

0 ≥ sT (s− stk) = ‖s‖2 − sT stk ≥ −sT stk =⇒ sT stk ≥ 0,

and

sT stk − (stk)
T stk = (stk)

T (s− stk)

= (−(s− stk) + s)T (s− stk)

= −‖s−stk‖2 + sT (s− stk) ≤ 0 =⇒ sT stk ≤ (stk)
T stk.

�

Note that the region defined by (4.7) is never empty. First of all, any step s = γstk

is feasible. Also, there is always a feasible step in the steepest descent direction. In

fact, the step minimizing mt+1 along that direction by satisfying (4.7) is given by

sC = −θCgk, where

θC = min

{

gTk s
t
k

gTk gk
,max

{

0,
δtk(g

T
k gk)

2(gTk y
t
k)(g

T
k s

t
k)− (gTk gk)((y

t
k)

T stk)

}}

.

The only loose end in our algorithm is how to determine s0k, i.e, the direction to

start the inner iterations. We shall discuss in our analysis that any gradient related

direction can be chosen for s0k to obtain a convergent algorithm. However, we note that

at iteration k, we already have the step, sk−1 and the gradient, gk−1 of the previous

iteration as well as the current gradient, gk. Therefore, we choose to apply the so-called

74



memoryless BFGS method and obtain a local model at xk as

m0
k(s) = fk + gTk s+

1

2
sT

(

βI − β
sk−1s

T
k−1

sTk−1sk−1
+

yk−1y
T
k−1

yTk−1sk−1

)

s.

The curvature term in m0
k is obtained by applying the standard BFGS update formula

with Bk−1 = βI and the pair (sk−1, yk−1), where yk−1 = gk − gk−1. Consequently, the

first step of the inner iterations becomes

s0k = −
1

β
gk+

[

1

β

yTk−1gk

yTk−1sk−1
− sTk−1gk

yTk−1sk−1

(

1 +
1

β

yTk−1yk−1

yTk−1sk−1

)]

sk−1+
1

β

sTk−1gk

yTk−1sk−1
yk−1. (4.8)

It is well-known that the curvature condition sTk−1yk−1 > 0 is required to be able to

guarantee that the resulting step s0k follows a descent direction[53].

Finally, note that we have s0k ∈ span(gk−1, sk−1, gk); for the step sN given in (4.6)

this yields sN ∈ span(gk−1, sk−1, gk, g
1
k, . . . , g

t
k).

4.1.2 Implementation

The overall algorithm fits into the basic framework covering most iterative nonlinear

programming algorithms. An outline, explaining the computation of trial steps stk, is

given in Algorithm 7. The details of the step computation and its parallel implemen-

tation follow.

Standard inner iteration. Following the discussion in the previous section, we de-

fine our step computation subproblem in inner iteration t+ 1 of iteration k as

minimize mt+1(s),

subject to ‖s‖2 + ‖s− stk‖2 ≤ ‖stk‖2.
(4.9)

At a standard inner iteration, basically a bunch of inner products shall be required

to compute the step and evaluate its success. Let us introduce the following notation

75



Algorithm 7: Overall algorithm

Input: x01

k = 02

while checkConvergence()=FALSE do3

k = k + 14

t = 05

Compute s0k using (4.8).6

while checkStepAcceptability()=FALSE do7

Compute v1, v2, v3, v4, v5, v6.8

Compute θg, θs, θy as in (4.10), and γ as in (4.11)9

Compute v7 = gTk s
N and κ as given in (4.12) and (4.13), respectively.10

Set the value of trial step st+1
k :11

st+1
k =











sN if v7 ≤ −ǫv5 and κ > 1,

κsN if v7 ≤ −ǫv5 and κ < 1,

γstk if v7 > −ǫv5 or κ = 1.

t = t+ 1

xt
k = xk + stk12

xk+1 = xt
k13

for these vector multiplications

v1 = (stk)
Tytk, v2 = (stk)

T stk, v3 = (ytk)
Tytk,

v4 = (ytk)
Tgk, v5 = gTk gk, v6 = (stk)

T gk.

An (approximate) solution to subproblem (4.9) is obtained as given in lines 8-11

of Algorithm 7. The details of these computations are as follows:

θg =
v2
v1
, θy = −v2

v1

v4
v3
, θs = −v6

v1
, (4.10)

γ = − v6
2(f t

k − fk − v6)
, (4.11)

v7 = gTk s
N = θgv5 + θyv4 + θsv6, (4.12)

κ =
θgv6 + θyv1 + θsv2

(θg)2v5 + (θy)2v3 + (θs)2v2 + 2(θgθyv4 + θyθsv1 + θgθsv6)
. (4.13)

76



Here, the relation (4.10) is obtained by simply rewriting (4.6), the relation (4.13)

computes the length of the projection of stk on sN , and the relation (4.11) is a steplength

in the direction of stk obtained via quadratic interpolation. There is no need to do

another vector multiplication during the acceptability check since we have

gTk s
t+1
k =



























v7 if st+1
k = sN ,

κv7 if st+1
k = sN ,

γv6 if st+1
k = γstk.

Clearly, the total cost of non-parallelized operations becomes negligible as n in-

creases. The costly operations are completely done in independent subdomains as

explained in detail in Figure 4.2.

First inner iteration. Recall that the first inner iteration of the algorithm is com-

puted using the memoryless BFGS update as given in (4.8). Similar to the standard

inner iteration, the most costly operations are vector multiplications. In particular, the

following inner products are required.

u1 = yTk−1gk, u2 = yTk−1sk−1, u5 = gTk gk,

u3 = sTk−1gk, u4 = yTk−1yk−1.

Clearly, the computational properties of the first inner iteration is very close to that of

iteration t > 1. As a side note, we note that the initial scaling is carried out by setting

β = u4/u2.

To be able to compute the memoryless BFGS step do1 at the first iteration, the

value of∇f is computed at x0+s0 prior to the computation of d01, where s0 is a very tiny

step along the gradient at x0. This can be seen as a (kind of) preprocessing operation

since it provides an idea about the scale of the problem, and hence, enables setting the

initial β reasonably.

77



12

13

9

10

21 22

23

A

B

1

2

3

4

5

6

7

18

8

20

24

14

15

16

11

19

17

B: Number of basic operations

A: Evaluation

n/p

n/p

n/p

n/p

n/p

(n− 1)/p

(n− 1)/p

(n− 1)/p

3 + n/p

1) (ytk)i, i = 1, · · · , n

2) (stk)i(s
t
k)i, 1 ≤ i ≤ n

3) (gk)i(gk)i, 1 ≤ i ≤ n

4) (stk)i(gk)i, 1 ≤ i ≤ n

6) (ytk)i(y
t
k)i, 1 ≤ i ≤ n

7) (ytk)i(gk)i, 1 ≤ i ≤ n

8) v2 =
∑n

i=1
(stk)i(s

t
k)i

5) (yk)i(s
t
k)i, 1 ≤ i ≤ n

12) v3 =
∑n

i=1
(ytk)i(y

t
k)i

10) v6 =
∑n

i=1
(stk)i(gk)i

11) v1 =
∑n

i=1
(yk)i(s

t
k)i

9) v5 =
∑n

i=1
(gk)i(gk)i 17) γ

18) sN

19) v7

20) κ

(n− 1)/p

5

5

23

O(n)

14) θg

15) θs

16) θy

13) v4 =
∑n

i=1
(ytk)i(gk)i

n/p

n/p

(n− 1)/p

21) Set st+1

k

22) Evaluate f t+1

k

23) Evaluate gt+1

k

24) Check acceptance

O(n)

5n/p

(n− 1)/p

3

1

2

3

Figure 4.2: Parallelization of the proposed algorithm

78



4.1.3 Convergence

The convergence of the proposed algorithm is provided basically by keeping the direc-

tions of its steps gradient related. However, we could not directly refer to the existing

convergence results for line-search algorithms since the directions of steps of our algo-

rithm change during inner iterations, and the steplength is not computed through a

one dimensional function. In the following convergence note, we only assume that the

objective function f is continuous and differentiable, and its gradient ∇f is continuous

and bounded.

Lemma 4.1.2 For any two consecutive inner iterations t and t + 1 at iteration k of

Algorithm 7, the trial steps satisfy

‖st+1
k ‖ ≤ ν‖stk‖, for some 0 < ν < 1.

Proof. First recall that the feasible solution st+1
k = stk is not allowed by the

algorithm. Suppose that ‖st+1
k − stk‖ ≥ τ‖stk‖, for some small enough τ < 1. Then

relation (4.7) provides

‖st+1
k ‖2 + ‖st+1

k − stk‖2 ≤ ‖stk‖2 ⇒ ‖st+1
k ‖2 ≤ ‖νstk‖2

for ν =
√
1− τ 2. Since ‖stk‖, ‖st+1

k ‖ > 0, this implies ‖st+1
k ‖ ≤ ν‖stk‖. �

Lemma 4.1.3 Suppose stk is a sufficient descent step in the sense that

gTk s
t
k ≤ −ǫgTk gk and ‖stk‖ ≤M‖gk‖ (4.14)

for some small enough ǫ > 0,and some finite M > 0. Then, the next trial step st+1
k

produced by the algorithm is also a sufficient descent step.

Proof. Recall that, as a safeguard operation, the algorithm sets st+1
k = γstk with

γ ∈ (0, 1) if sN in (4.6) does not satisfy the first condition in (4.14) with gTk s
N ≤ −ǫgTk gk

for any given ǫ (see Algorithm 7, line 11). Moreover, γstk is a descent step for mt+1 at

79



d = 0, since

∇mt+1(0)TγsTk = γgTk s
t
k < 0,

and it always lies in the feasible region defined by (4.7). Let ǫ > 0 be small enough

so that stk satisfies the first condition in (4.14) for ǫ > (1/γ)c with c > 0. Then, γstk

satisfies it for ǫ > c.

The second condition in (4.14) is enforced by relation (4.7). If ‖stk‖ ≤ M‖gk‖,
then ‖st+1

k ‖ ≤ νM‖gk‖ ≤ M‖gk‖ since ‖st+1
k ‖ ≤ ν‖stk‖ by Lemma 4.1.2, and ‖gk‖ > 0.

This shows the desired result. �

Corollary 4.1.1 The steps produced by Algorithm 7 satisfies the following.

I. All inner iterations of the algorithm produce sufficient descent steps in the sense

of (4.14).

II. The step computed at inner iteration t of iteration k satisfies ‖stk‖ ≥ ǫ‖gk‖, for
some small ǫ > 0.

Proof. Part (I) follows by Lemma 4.1.3 since the first inner iteration s0k pro-

duced by the standard memoryless BFGS method is a sufficient descent step. Part (II)

directly follows from (4.14). �

Lemma 4.1.4 At any iteration k, the algorithm finds an acceptable step in finite number

of inner iterations, unless ‖gk‖ = 0.

Proof. Consider any iteration k. By Corollary 4.1.1, the steps computed at

each inner iteration satisfy (4.14). Therefore, 0 ≤ ‖stk‖ < M‖gk‖, for all t. Moreover,

{‖stk‖} is a monotonically decreasing sequence by Lemma 4.1.2.

Suppose the acceptance criterion (4.1) is never satisfied as t→∞. Then, by using

(4.14) and Taylor’s theorem, we have

f t
k − fk > ρgTk s

t
k, for all t

=⇒ gTk s
t
k + o(‖stk‖) > ρgTk s

t
k,

=⇒ o(‖stk‖) > (1− ρ)(−gTk stk) ≥ (1− ρ)ǫ‖gk‖2.

80



As t → ∞, the left hand side of the last inequality approaches to zero since ‖stk‖ →
0, but the left hand side stays positive. This gives a contradiction, and hence, an

acceptable ‖stk‖ should be obtained in finite number of inner iterations. �

Theorem 4.1.1 Let {xk} be the sequence of iterates generated by Algorithm 7. Then,

any limit point of {xk} is a stationary point of the objective function f .

Proof. Consider any subsequence of {xk} with indices k ∈ K such that

lim
k∈K

xk = x̂.

By Lemma 4.1.4, there exists ‖sk‖ > ξ satisfying (4.1) for some ξ > 0 at any iteration

k. So, for any k, k′ ∈ K with k′ > k and by using (4.14), we have

fk − fk′ ≥ fk − f t
k ≥ −ρgTk sk ≥ ρǫ‖gk‖2. (4.15)

Since {xk}, k ∈ K, converges to x̂, the continuity of f implies that fk → f̂ , k ∈ K.
Therefore fk − fk′ → 0 as k, k′ → ∞, and we obtain ∇f(x̂) = 0 by (4.15) and the

continuity of ∇f .

�

4.1.4 Practical Performance

In this section, we shall provide some results on the performance on the proposed

algorithm by checking both its parallelization and solution success.

The algorithm is coded in C++ using Intel Threading Building Blocks (TBB) as

we have done for the CCS algorithm of the previous chapter. All tests are conducted on

a 64-bit computer with two Quad-Core Intel(R) Xeon(R) CPUs running at @ 2.66GHz.

We have selected 3 problems from the CUTEr collection[31], whose dimensions

can be varied to obtain small- to large-scale problems. This shall be essential for for

testing the scalability of the proposed algorithm. The selected problems are COSINE,

NONCVXUN and QUARTC. We used the tolerance value of 1.0e−5 in all tests, the step

81



acceptability is checked using condition (4.1) with ρ = 0.1. We set both the maximum

number of inner iterations and the maximum number of outer iterations equal to 100.

Let us start with some examples to show the contributions of the extra computa-

tions to the solution process. To test this, we solve all three problems with their default

dimensions using the new algorithm and also with the memoryless BFGS line-search

algorithm using quadratic interpolation. (Recall that the first inner iteration of the

new algorithm is computed by using the memoryless-BFGS formula.) In this test, both

algorithms are run sequentially. The results are given in Table 4.1. We note that the

column entitled “Iterations” indicates the number of outer iterations. As the figures in

Table 4.1 show, the use of extra information has a nice potential to contribute to the

solution performance. For NONCVXUN, the new algorithm in fact makes less inner

iteration computations but this may not be sufficient to close the gap caused by the

extra gradient evaluations.

Second, we test the scalability of the algorithm. We set the dimension of all three

problems to N = 10, 000, N = 100, 000, and N = 1, 000, 000, and solve each of the

resulting instances using the new algorithm and by creating p ∈ {1, 2, 4, 6, 8} threads.

In Table 4.2, we give the complete set of time values obtained. Figure 4.3 gives the

plots on the achieved speed-ups. As expected, better speed-up values are obtained as

the problem sizes increase. However, even the largest test problem instances we have

solved require less computational resources than the full capacity available with our

eight-core machine. This explains the decrease in the slopes of the speed-up lines in

Figure 4.3 as the number of threads increase.

We next focus on the resource usage ability of the new algorithm, which is an

indicator of its inherent parallelism. We give the efficiency values in Table 4.3. As

the numbers in this table indicate, the efficiency increases as the dimension of the

problems increase. However, the workload becomes relatively small to fully use the

entire resources as the number of threads approach to the number of physical cores.

Finally, we consider the load balance issue. To observe the usage of capacity and

the workload distribution of the resources during the solution process, we plot the CPU

usage during the solution of 1.000.000 dimensional instance of the problem COSINE

82



when 1,2 and 8 threads exist (see Figure 4.4). The plots are obtained by recording

the CPU usage information per second. Figure 4.4(a) reveals the idle resources when

the program runs sequentially. In fact, during the sequential run, the average resource

usage stays at a level of only %7.7 (the average usage of the eight cores). When eight

threads are used, this average raises up to %62. Figure 4.4(c) shows the usage of all

available resources, as well as the distribution of workload.

83



Table 4.1: Contribution of extra computations

New Algorithm Memoryless BFGS

Problem Dimension Iterations Time (sec.) Iterations Time (sec.)

COSINE 10,000 10 0.050318 13 0.060445
NONCVXUN 1,000 17 0.004366 17 0.004361
QUARTC 10,000 57 0.406762 101(fail) 0.928862

Table 4.2: Solution times (in seconds) for varying values of N and p

Problem Dimension p = 1 p = 2 p = 4 p = 6 p = 8

COSINE 10,000 0.050318 0.036539 0.030190 0.028396 0.025487
COSINE 100,000 0.520222 0.346923 0.242567 0.192243 0.159741
COSINE 1,000,000 7.10205 4.42888 2.61853 2.279 1.9695

NONCVXUN 10,000 0.051121 0.039229 0.035408 0.034462 0.031322
NONCVXUN 100,000 0.58058 0.415344 0.302796 0.23733 0.198083
NONCVXUN 1,000,000 7.76298 5.16787 3.03568 2.6724 2.36767

QUARTC 10,000 0.406762 0.258718 0.217847 0.200329 0.174812
QUARTC 100,000 1.91539 1.15041 0.735746 0.593911 0.472822
QUARTC 1,000,000 20.473 11.7138 7.04873 5.58571 4.66796

Table 4.3: Efficiency of the parallel program as the problem sizes increase(%)

Problem Dimension p = 2 p = 4 p = 6 p = 8

COSINE 10,000 68.86% 41.67% 29.53% 24.68%
COSINE 100,000 74.98% 53.62% 45.10% 40.71%
COSINE 1,000,000 80.18% 67.81% 51.94% 45.08%

NONCVXUN 10,000 65.16% 36.09% 24.72% 20.40%
NONCVXUN 100,000 69.89% 47.93% 40.77% 36.64%
NONCVXUN 1,000,000 75.11% 63.93% 48.41% 40.98%

QUARTC 10,000 78.61% 46.68% 33.84% 29.09%
QUARTC 100,000 83.25% 65.08% 53.75% 50.64%
QUARTC 1,000,000 87.39% 72.61% 61.09% 54.82%

84



(a) COSINE

(b) NONCVXUN

(c) QUARTC

Figure 4.3: Plots of speed-up values as the problem sizes increase

85



(a) p = 1

(b) p = 2

(c) p = 8

Figure 4.4: CPU usage (per second) during the solution processes with 1,2, and 8
threads 86



4.2 A Parallel Algorithm for Constrained Optimization

In this section, we propose a new (parallel) algorithm for solving the general nonlinear

constrained optimization problem given by

minimize f(x),

subject to ci(x) ≥ 0, i ∈ C, (P)

where f : Rn → R is the objective function and ci : Rn → R, i ∈ C are the con-

straint functions. To represent the constraints in a compact form, we also define the

vector-valued function c(x) = (c1(x), · · · , cm(x))⊺, where m is the cardinality of set C.
We assume that the objective function is bounded on the feasible domain. Moreover,

we allow our algorithm to work with (locally) infeasible problems. Consequently, an

acceptable output from our algorithm for problem (P) is either a feasible optimal solu-

tion or a proof that the problem may not have any feasible solutions. We measure the

overall violation at point x ∈ R
n as the l∞ norm of the individual constraint violations.

That is, we define

v(x) := ||max{−c(x), 0}||∞,

where the max operator is applied component-wise. Using this notation, we also define

the feasibility problem as

minimize v(x),

subject to x ∈ R
n. (F)

Our main objective in the subsequent parts of this section is to design an inherently

parallel algorithm, which shows a promising performance when compared against the

state-of-the-art solution methods.

87



4.2.1 Algorithm

Basic ideas. The basic idea of the proposed algorithm is based on the straightforward

decomposition of a constrained optimization problem: Problem (P) is defined by several

real-valued functions f and ci, i ∈ C. The desired solution point for this problem should

lie at the intersection of the level sets of a group of constraint functions, and it should

also be a (local) minimizer of an objective function among all points in (a part of) this

intersection set. Therefore, a solution of problem (P) can be obtained by solving a group

of interrelated unconstrained optimization problems; the minimization of the objective

function and the minimization of the violation of each constraint. Any solution process

needs to follow a way that somehow takes into account all these component optimization

problems.

Our approach to design such an algorithm is based on the basic idea above. In

other words, we try to combine a group of steps each of which is obtained by solving one

of the component problems. Clearly, the combination of these steps should take into

account the relationships among the components. This approach is illustrated in Fig-

ure 4.5, where a constrained optimization problem with two constraints is considered.

At an optimal solution x∗ of this problem, we have three functions minimized: the ob-

jective function f , the violation of the first constraint, denoted by v1, and the violation

of the second constraint, denoted by v2. The approach of the proposed algorithm is to

compute independent steps for each of these component problems denoted by df , dv1

and dv2 , respectively. After obtaining these steps, an aggregate step d is computed.

An iteration of the new algorithm consists of four parts. In the first part, at most

two linear programming problems are solved to determine an improvement direction

involving only the first order information coming from each component function. The

LPs in this part are close to the subproblems of a sequential linear programming (SLP)

algorithm [74]. Unlike an SLP approach, however, the second order information is

collected from all the component functions by solving a set of trust region subproblems,

in the a second part. This step yields a set of directions that we use to alter the

improvement direction of the first part by solving an additional linear program (LP)

in the third part. In the fourth stage, backtracking operations are carried out, if

88



0 x

v1(x)

v2(x)

f(x)x∗

dv2

dv1

dfminimize f(x)

minimize v1(x)

minimize v2(x)

subject to G(df , dv1, dv2) ≤ 0

minimize F (df , dv1, dv2)

Figure 4.5: Illustration of the basic idea on a single dimensional problem

the progress made by the algorithm is not sufficient. Overall the algorithm requires

solving only linear programming and trust region subproblems, which are in general

significantly easier than solving general quadratic programming subproblems.

Improvement directions. At a nonoptimal and possibly infeasible iterate xk, we

expect the best available step to follow a direction that improves the current solu-

tion with respect to all component problems. Therefore, we start each iteration by

checking whether such a direction exists. We define a mutual improvement direction

(M-direction) as a direction that decreases the value of both the objective function f

and the mostly violated constraints. Depending on the current iterate xk being feasible

or not, the procedure for computing a mutual improvement direction dM may require

solving two linear programs.

When is xk infeasible, we first check whether there exists a step that improves the

constraint violations by solving

minimize
uF ,dF

uF ,

subject to − ci(xk)−∇ci(xk)
⊺dF ≤ uF , i ∈ C, (F-direction-LP)

uF ≥ 0,

‖dF‖∞ ≤M,

89



where M is a large enough finite number. Its sole purpose is to ensure that ‖dF‖ is

bounded. Note that by setting uF = v(xk) and dF = 0, we obtain an initial feasible

solution for this LP.

Let (ūF , d̄F ) denote the optimal solution to problem (F-direction-LP). If d̄F = 0,

or equivalently, ūF = v(xk), we conclude that xk is an infeasible stationary point.

Otherwise, we solve another LP to search for a mutual improvement direction dM that

also improves the objective function, while providing the same level of decrease in the

violation as obtained by d̄F . That is, we solve

minimize
dM

∇f(xk)
⊺dM ,

subject to − ci(xk)−∇ci(xk)
⊺dM ≤ ūF , i ∈ C, (M-direction-LP)

‖dM‖∞ ≤M.

Note that the feasibility of problem (M-direction-LP) is ensured, since dM = 0 is a trivial

feasible solution Clearly, if the current iterate xk is feasible, that is v(xk) = 0, then there

is no need to solve (F-direction-LP). In that case we directly solve (M-direction-LP) by

setting ūF = 0.

Let d̄M denote the optimal solution to problem (M-direction-LP). If∇f(xk)
⊺d̄M <

0, then we have a mutual improvement direction. Once such a direction is obtained,

we continue with computing a step sA by solving problem (A-step-LP). On other hand,

when the optimal solution satisfies ∇f(xk)
⊺d̄M ≥ 0, we set d̄FI = d̄M and call d̄FI

as a feasibility improvement direction (F-direction). Then, we dedicate our efforts to

improving the feasibility and solve (F-step-LP). Both (A-step-LP) and (F-step-LP)

problems shall be explained later. If the optimal solution turns out to be d̄M = 0

when v(xk) = 0, then the algorithm terminates since there is no direction improving f

without violating some of the constraints. In other words, we obtain that the current

solution is a first order stationary point for problem (P).

To this end, we only use the first order information coming from the objective

function and the constraints. Therefore, if we revisit our basic idea of looking at the

overall problem as a composition of several interrelated problems, then the mutual im-

90



provement direction can be considered as an aggregate gradient for the overall problem.

Next, we collect the second order information for each component function hoping that

we can improve upon the progress that can be obtained by the mutual or feasibility

improvement directions.

Base steps. To provide some curvature related information to our potential steps,

we will use a set of guide vectors that we call the base steps (B-steps). Each B-step

is computed by solving a trust region subproblem including one of the component

function. That is, if we denote the objective function or one of the constraint functions

by h ∈ C ∪ {f}, then we solve

min

{

1

2
(sBh )

⊺Hk
hs

B
f +∇h(xk)

⊺sBh : ‖sBh ‖ ≤ ∆h

}

, (B-step-TR(h))

where Hk
h , h ∈ C ∪ {f} denotes the Hessian or an approximation to it. We denote the

optimal solution to this problem by s̄Bh .

It is important to note that every function h has its own trust region parameter,

which reflects its characteristics and scale around the current iterate. In a sense, this

provides a kind of preconditioning by defining new coordinates with a corresponding

multidimensional trust region. However, it is not hard to show that not every d̄M is

in the convex cone generated by the B-steps, and they may not necessarily span a

nonempty cone even when some M-directions exist. Thus, if we require all steps taken

by the algorithm to be in the cone spanned by B-steps, it may fail in some cases. Our

idea is to use them as guides and encourage our steps to follow them as closely as

possible. This shall be our main objective in the third stage below.

Before we continue with the remaining stages, let us define the index sets for

violated, active and satisfied constraints by

Vk = {i ∈ C : ci(xk) < 0},Ak = {i ∈ C : ci(xk) = 0} and Sk = {i ∈ C : ci(xk) > 0},

respectively.

91



Aggregate and feasibility steps. Once we obtain a mutual improvement direction,

d̄M , we may look for an aggregate step (A-step), sA that benefits from the second order

information coming the functions f , and ci, i ∈ V∪A. Likewise, if we obtain a feasibility

improvement direction, d̄FI then we focus on improving the overall violation. Thus, we

search for a feasibility step (F-step), sF using the second information only from ci,

i ∈ V ∪A. As it is common for some unconstrained optimization methods, we also try

to rotate our aggregate gradient according to the second-order information. Following

the same analogy, we shall require these guiding steps be gradient-related.

We start with finding an A-step. The set of gradient-related directions is given

by

GA
k = {i ∈ Vk ∪ Ak ∪ {f} : (d̄M)⊺s̄Bi ≥ 0}.

We then set up the following LP to find a mutual improvement direction that benefits

from the second order information:

maximize
πM ,π,sA

∑

i∈GA

k
∩{Vk∪{f}}

wiπi,

subject to sA = πM d̄M +
∑

i∈GA

k

πis̄
B
i ,

πM +
∑

i∈GA

k

πi ≤ 1, (A-step-LP)

∇f(xk)
⊺sA ≤ τ∇f(xk)

⊺d̄M ,

− ci(xk)−∇ci(xk)
⊺sA ≤ v(xk)− τ(v(xk)− ūF ), i ∈ C,

πM , πi ≥ 0, i ∈ GA
k ,

where wi, i ∈ GA
k ∩ {Vk ∪ {f}} are the weights assigned to each direction according to

their success in terms of the improvement they achieve with respect to the merit function

(see Section 4.2.2 for details) and τ ∈ (0, 1) is a parameter that indicates the reduction

we require sA to achieve in linear models of the component problems as a percentage of

the reduction provided by d̄M . The optimal solution is given by π̄M , π̄i, i ∈ i ∈ GA
k and

s̄A. Problem (A-step-LP) defines the step vector sA as a nonnegative combination of

92



d̄M and the gradient-related B-steps. Since the aim is to select s̄A as closely as possible

to the B-steps, the objective function tries to increase the corresponding coefficients.

Note that the right-hand-side values ūF and ∇f(xk)
⊺d̄M come from the solutions of the

previous LPs, (F-direction-LP) and (M-direction-LP).

Problem (A-step-LP) can be seen as a kind of multidimensional line search on our

B-steps. Clearly, a multiplier πi, i ∈ GA
k can be zero if the corresponding B-step causes

a deterioration in the other objectives. Note that the steps are bounded by proper

trust region limits in all B-step dimensions, as well as the linear models of the currently

satisfied constraints. Moreover, (A-step-LP) always has the trivial feasible solution

sA = d̄M , and its objective function is always bounded by the second constraint along

with the nonnegativity of variables πM and πi, i ∈ GA
k . However, it may be the case that

GA
k = ∅. In this case, there is no need to solve an LP; we need to follow the aggregate

gradient. Therefore, in such a case we simply set s̄A = d̄M .

We next discuss obtaining a F-step. When it is not possible to take an aggregate

step, but there is a nonzero feasibility improvement direction given by d̄FI , we concen-

trate on the feasibility components of our problem and look for a step that improves the

overall violation. Following similar motivations as for the aggregate step, we attempt

to improve the feasibility improvement direction by using the second order information.

The set of gradient-related directions in this case becomes

GF
k = {i ∈ Vk ∪ Ak : (d̄

FI)⊺s̄Bi ≥ 0}.

93



The optimal feasibility step, s̄F is then obtained by solving

maximize
πFI ,π,sF

∑

i∈GF

k
∩Vk

wiπi,

subject to sF = πFI d̄
FI +

∑

i∈GF

k

πis̄
B
i ,

πFI +
∑

i∈Ḡ

πi ≤ 1, (F-step-LP)

∇f(xk)
⊺sF ≤ ηµ−1k τ(v(xk)− ūF ),

− ci(xk)−∇ci(xk)
⊺sF ≤ v(xk)− τ(v(xk)− ūF ), i ∈ C,

πFI , πi ≥ 0, i ∈ GF
k ,

where π̄FI , π̄, i ∈ GF
k and s̄F form the optimal solution. The values ūF and ∇f(xk)

⊺d̄FI

are obtained from problems (F-direction-LP) and (M-direction-LP) solved for comput-

ing d̄FI . The parameters wi, i ∈ GF
k ∩ Vk and τ are defined the same way as before,

and we set s̄F = d̄FI whenever GF
k = ∅. The third constraint is obtained using 4.25,

since ∇f(xk)
⊺d̄FI > 0 and (v(xk) − ūF ) > 0. The nonnegative values µk and η will

be explained in the subsequent parts. Note that problem (F-step-LP), like problem

(A-step-LP), is bounded due to the second constraint as well as the nonnegativity of

variables πFI and πi, i ∈ GF
k . Again, setting sF = d̄FI gives us a feasible solution.

The first three stages of the algorithm is summarized in Figure 4.6. As we men-

tioned in the beginning of this section, this figure also shows that the main computa-

tional effort of the proposed algorithm comes from solving at most 4 linear programs

and m+ 1 trust region subproblems.

We remark that since we did not specify the value ofM in problems (F-direction-LP)

or (M-direction-LP), the scale of d̄M or d̄FI may pose numerical difficulties in solving

problems (A-step-LP) and (F-step-LP). We shall elaborate on this issue in Section

4.2.2.

Multi-component backtrack. At this point, we have a trial iterate x̃k+1 = xk + sk,

where sk is either equal to s̄A or s̄F . Next, we have to decide whether to accept or reject

94



exit

Evaluation and Updates

M−direction−LP

F−step−LP

(P)

B−steps

(F)

start
iteration

A−step−LP

F−direction−LP

exit

Vk 6= ∅

Vk = ∅

ūF < vk

Vk = ∅

∇fT

k d̄
M < 0

Vk 6= ∅
(d̄M)

∇fT

k
d̄M ≥ 0

(d̄FI)

(d̄M)

Vk 6= ∅

(s̄Bh )

(s̄F )

(s̄A)

(d̄F )

∇fT

k
d̄M ≥ 0

ūF ≥ vk

Figure 4.6: Flow of the step computation procedure

the new iterate. Naturally, the difficult part of designing a step acceptance procedure

is to decide what to do when the current step is not acceptable.

We label a trial step as acceptable, if it provides an overall improvement for the

component problems. Otherwise, we implement a backtracking procedure, where the

overall improvement is measured via the merit function

φ(x) := µf(x) + v(x) = µf(x) + ‖max{0,−c(x)}‖∞. (4.16)

The sufficient decrease at iteration k is then tested using a linear approximation of φ

given by

lφk (d) := µkl
f
k(d) + lvk(d), (4.17)

where

lfk(d) := f(xk) +∇f(xk)
⊺d,

lvk(d) := maxi∈C{−ci(xk)−∇ci(xk)
⊺d, 0}.

(4.18)

95



x̃k+1 is accepted, if for a given ξ > 0, it satisfies

φ(xk)− φ(x̃k+1) ≥ ξ(lφk (0)− lφk (sk)). (4.19)

This acceptance procedure follows the ideas of existing procedures. In particular, the

selection of the penalty parameter µk is done following the approach in [9] (see (4.25)).

When step sk is not acceptable, we propose a multi-component backtracking pro-

cedure that is based on reducing some of the multipliers, πito obtain a new trial step.

Let stk denote the trial step obtained at the tth backtrack iteration. To obtain

convergence, there are two critical requirements on this backtracking operation:

1. The norm of the consecutive trial steps should decrease. That is,

γ‖st+1
k ‖ ≤ ‖stk‖, for some γ > 1. (4.20)

2. The trial steps should satisfy the linear decrease conditions enforced in problems

(A-step-LP) or (F-step-LP). To recall, for some τ > 0 we should check either

∇f(xk)
⊺stk ≤ τ∇f(xk)

⊺d̄M ,

−ci(xk)−∇ci(xk)
⊺stk ≤ v(xk)− τ(v(xk)− ūF ), i ∈ C,

(4.21)

or

∇f(xk)
⊺stk ≤ ηµ−1k τ(v(xk)− ūF ),

−ci(xk)−∇ci(xk)
⊺stk ≤ v(xk)− τ(v(xk)− ūF ), i ∈ C,

(4.22)

respectively.

Under these two requirements, different backtracking procedures can be designed. A

straightforward choice is to re-solve all the subproblems with the updated values of

the subproblem parameters M and ∆h. A faster approach that we also use in our

convergence proof is to construct a decreasing sequence of parameter values, {τ t}t≥1.
The above requirements are always satisfied for some stk 6= 0 when we set τ = τ t. Then,

the step stk can be obtained by setting d̃M = τ td̄M and resolving problem (A-step-LP)

or problem (F-step-LP) only once. We elaborate on this backtracking approach in

96



Section 4.2.3.

4.2.2 Implementation

In this section, we first give the steps of the proposed algorithm. Then, we explain

how one can apply scaling and determine the direction weights. Our discussion on the

implementation details concludes with an approach to update the trust-region radii

used in the B-step subproblems.

Step 1 Algorithm 8 gives the details of the first step of the algorithm. We first check the

existence of an F-direction. If the optimal solution of this subproblem indicates

stationarity for the violation measure, we terminate the algorithm. Otherwise, the

M-direction subproblem is solved. If a mutual improvement direction is available,

an A-step is computed; otherwise, we move on to computing an F-step.

Algorithm 8: Aggregate Gradient

if v(x) = 0 then1

Solve M-direction-LP2

if ∇f(xk)
⊺d̄M ≥ 0 then3

exit:optimal4

else5

Solve F-direction-LP6

if ūF ≥ v(xk) then7

exit:infeasible8

Solve M-direction-LP9

if ∇f(xk)
⊺d̄M < 0 then10

step = A11

else12

d̄FI = d̄M13

step = F14

Step 2 A summarized in Algorithm 9, in the second step, we first collect the second order

information from each component function. Then, we compute an A-step or an

F-step.

97



Algorithm 9: Step Computation

for i ∈ Ak ∪ Vk do1

Solve B-step-TR(ci(xk))2

if step = A then3

Solve B-step-TR(f(xk))4

Solve A-step-LP5

sk = s̄A6

if step = F then7

Solve F-step-LP8

sk = s̄F9

x̃k+1 = xk + sk10

Step 3 In this step, the trial point x̃k+1 computed in Step 2 is accepted, if it provides

a sufficient improvement in the merit function φ. The parameter µk, which has

the role of ensuring that the steps computed by the algorithm decrease lφk (0), is

updated only when an F-step is computed. The details of this step is summarized

in Algorithm 10.

Algorithm 10: Evaluation

if step = F & ∇f(xk)
⊺d̄FI > 0 then1

µk+1 = min{µk, η
v(xk)−ū

F

∇f(xk)⊺d̄FI }2

else3

µk+1 = µk4

if φ(xk)− φ(x̃k+1) < ξ1(l
φ(0)− lφ(x̃k+1 − xk)) then5

M-Backtrack6

else7

xk+1 = x̃k+1.8

Step 4 In the last step, we do the parameter updates as given in Algorithm 11. The

update procedure is adapted from the usual trust region approach: We compute

the success ratio for each model function, by dividing the actual reduction (ared)

to the predicted reduction by the model function (pred), and update the trust

region radii accordingly. Since the linear models of all constraints affect the length

of the first order step, we evaluate their success according to their linear models

98



(predi is computed with respect to the linear approximation). Moreover, predi,

i ∈ Vk ∪ Ak ∪ f , is computed with respect to the quadratic approximation if the

B-step corresponding to this constraint have contributed to the current step.

Algorithm 11: Updates

if step = A then1

ρf =
aredf (x̃k+1 − xk)

predf (x̃k+1 − xk)2

for i ∈ C do3

ρi =
aredi(x̃k+1 − xk)

predi(x̃k+1 − xk)4

for i ∈ C ∪ f do5

if ρi > ξ2 & ||x̃− xk|| ≥ ∆i then6

Increase ∆i;7

if ρi < ξ3 then8

Decrease ∆i;9

Scaling and weighting. Recall that the objective functions of problems (A-step-LP)

and (F-step-LP) involve weights for the gradient-related B-steps. A possible way to

set these weights is to take into consideration the merit function and the measure of

constraint violation. Then, we can set

wf = µk,

wi = −ci(xk)/v(xk), for i ∈ Vk.

Another issue that has a potential effect on the efficiency of the A-step compu-

tation is the length of the aggregate-gradient d̄M (or d̄FI ). One possible approach for

scaling of d̄M is to use the lengths of the so-called Cauchy steps for the component

problems. We denote these lengths by α̃i, i ∈ Ak ∪ Vk and they are given by

α̃i = min{αi,
∆i

||∇ci(xk)||
}, i ∈ Ak ∪ Vk,

99



where

αi =















∇ci(xk)
⊺∇ci(xk)

∇ci(xk)⊺∇2ci(xk)∇ci(xk)
, if ∇ci(xk)

⊺∇2ci(xk)∇ci(xk) > 0;

1, otherwise.

The steplength αf corresponding to the objective function is computed in a similar

manner. Then, we scale d̄M by setting the value M in problems (F-direction-LP)and

(M-direction-LP) as a weighted average of the sizes of the scaled component gradients

(the Cauchy steps). We select the weights proportional to the closeness to d̄M and mea-

sure that closeness using the cosine of the angles, between each component function’s

gradient. That is, we evaluate

θf =
∇f(xk)

⊺d̄M

‖d̄M‖‖∇f(xk)‖
, θi =

∇ci(xk)
⊺d̄M

‖d̄M‖‖∇ci(xk)‖
, i ∈ Ak ∪ Vk.

Then, we normalize these weights whenever the total value of the cosines is greater

than 1. Thus, the scale of the aggregate gradient is computed by

M =
1

max{1, θf +
∑

i∈A∪V θi}
(θf α̃f‖∇f(xk)‖+

∑

i∈Ak∪Vk

θiα̃i‖∇ci(xk)‖).

Clearly, another measure of the closeness could also be used in a similar way.

Recall that in the proposed algorithm, it is possible to define a different trust

region radius for each component problem. If these radii are updated according to their

contributions to the progress, then we somehow obtain a scaling effect implicitly. This

leads us to the following discussion.

Multi-component trust region. The multi-component trust region consists of the

collection of those component problem trust-regions. When a trial iterate is computed,

the trust region radii of component problems are all updated, with respect to either

their linear or quadratic models, depending on their role in the step computation.

An important observation about the multi-component trust region approach is

that it provides an implicit quadratic constraint for the length of sk. That is, since s
k is

100



a convex combination of a group of base steps, problems (A-step-LP) and (F-step-LP)

provide a trust region constraint on its norm

‖sk‖ = ‖πf s̄
B
f +

∑

i∈Ak∪Vk

πis̄
B
i ‖ ≤ πf∆f +

∑

i∈Ak∪Vk

πi∆i.

4.2.3 Convergence

We start our convergence analysis by stating the KKT conditions for problems (F) and

(P). Note that if problem (F) is written in the form of a constrained optimization

problem

minimize u,

subject to c(x) + u ≥ 0,

u ≥ 0,

then its constraints always satisfy MFCQ. Then, x∗ ∈ R
n is a stationary point for

problem (F), if there exists λc ∈ R
n
+, λ

u ∈ R+ satisfying

∑

i∈C λ
c
i∇ci(x∗) = 0,

∑

i∈C λ
c
i + λu = 1,

(ci(x∗) + uF )λc
i = 0, i ∈ C,

uFλu = 0,

uF ≥ 0,

ci(x∗) + uF ≥ 0, i ∈ C.

(4.23)

Suppose that the constraints of (P) satisfy MFCQ at x∗ ∈ R
n. Then x∗ is a stationary

for problem (P), if there exists λc ∈ R
n
+ satisfying

−∇f(x∗) +
∑

i∈C λ
c
i∇ci(x∗) = 0,

ci(x∗)λ
c
i = 0, i ∈ C,

ci(x∗) ≥ 0, i ∈ C.
(4.24)

In our subsequent discussion, we call xk ∈ R
n as a termination point if one of the

following statements hold:

101



I. The stationarity conditions (4.23) for problem (F) are satisfied at xk and v(xk) >

0.

II. v(xk) = 0 and xk satisfies the stationarity conditions (4.24) for problem (P).

III. v(xk) = 0 and MFCQ are violated at xk

The assumptions that we shall use in our analysis are as follows:

A1. The functions f , ci, and their gradients ∇f , ∇ci are Lipschitz continuous, for all

i ∈ C.

A2. f is bounded below on the feasible domain.

Our first result below shows that all linear programming problems used in the

proposed algorithm are well-defined.

Lemma 4.2.1 At each iteration k, the linear programming problems (F-direction-LP),

(M-direction-LP), (A-step-LP), and (F-step-LP) are feasible and bounded.

Proof. As already indicated when describing these subproblems, the solutions

dF = 0, uF = v(xk), d
M = 0, sA = d̄M , and sF = d̄FI are always feasible solutions for

the corresponding subproblems; also, the objective functions of these problems have the

lower bounds ūF ≥ 0, ∇f (xk)
⊺d̄M ≥ −‖∇f(xk)‖M

√
2,

∑

i∈GA wiπi ≥ 0,
∑

i∈GF wiπi ≥
0, respectively. Therefore, all linear programming subproblems are always feasible and

bounded, and finite optimal solutions to these problems always exist. �

Lemma 4.2.2 Consider any x∗ ∈ R
n.

I. Conditions (4.23) are satisfied at x∗ if and only if d̄F = 0 is an optimal solution

to (F-direction-LP) defined at x∗.

II. Conditions (4.24) are satisfied at a feasible point x∗ where MFCQ qualifications

are satisfied if and only if d̄M = 0 is an optimal solution to (M-direction-LP) at

x∗.

Proof.

102



I. Consider the optimality conditions for (F-direction-LP) at x∗. ∃λc, λM , λ̄M ∈
R

n
+, λ

u ∈ R+such that:

∑

i∈C λ
c
i∇ci(x∗) + λM − λ̄M = 0,
∑

i∈C λ
c
i + λu = 1,

(ci(x∗) +∇ci(x∗)
⊺d̄F + uF )λc

i = 0, i ∈ C,
uFλu = 0,

(d̄F +Me)⊺λM = 0,

(−d̄F +Me)⊺λ̄M = 0,

ci(x∗) +∇ci(x∗)
⊺d̄F + uF ≥ 0, i ∈ C,

uF ≥ 0,

d̄F ≤Me,

−d̄F ≤Me.

Here, e denotes the vector (1, . . . , 1)⊺. These conditions are equivalent to the

conditions given by (4.23) for d̄F = 0; therefore the stationarity of d̄F = 0 for

(F-direction-LP) and the stationarity of x∗ for the feasibility problem (F) imply

eachother.

II. Consider the optimality conditions for (M-direction-LP) at x∗.

∃λc, λM , λ̄M ∈ R
n
+, λ

u ∈ R+ such that:

−∇f(x∗) +
∑

i∈C λ
c
i∇ci(x∗) + λM − λ̄M = 0,

(ci(x∗) +∇ci(x∗)
⊺d̄M + v(x∗))λ

c
i = 0, i ∈ C,

(d̄M +Me)⊺λM = 0,

(−d̄M +Me)⊺λ̄M = 0,

ci(x∗) +∇ci(x∗)
⊺d̄M + v(x∗) ≥ 0, i ∈ C,

d̄M ≤Me,

−d̄M ≤Me.

When v(x∗) = 0 and d̄M = 0, the above conditions are equivalent to the conditions

given in (4.24); this proves the desired result.

103



�

Corollary 4.2.1 Suppose xk ∈ R
n is not a termination point. Then, one of the

subproblems (F-direction-LP) or (M-direction-LP) has a nonzero optimal solution at

xk.

The result shown by the next corollary is based on observing that the subproblem

(F-direction-LP) defined at x∗ in fact solves

minimize
‖dF ‖∞<M

lv∗(d
F ).

Likewise, in case of (M-direction-LP) we have

minimize
‖dM‖∞<M

lf∗ (d
M),

subject to lv∗(d
M) ≤ lv∗(d̄

F ).

Corollary 4.2.2 Let lf∗ (d) and lv∗(d) correspond to the linear models (4.18) at x∗.

I. Conditions (4.23) are satisfied at x∗ if and only if lv∗(d̄
F )− lv∗(0) = 0.

II. Suppose that MFCQ qualifications are satisfied at x∗. Conditions (4.24) are sat-

isfied at x∗ if and only if lf∗ (d̄
M)− lf∗ (0) = 0 and lv∗(d̄

M)− lv∗(0) = 0.

In this sense, the subproblems (M-direction-LP) and (F-direction-LP) evaluate

stationarity of the current iterate xk. The quantities l
v
k(0)− lvk(d̄

FI), lvk(0)− lvk(d̄
M) with

lfk(0)− lfk(d̄
M) provide stationarity measures for problems (F) and (P).

Remark 4.2.1 Suppose that xk is not a termination point. Then, the improvement

directions d̄M and d̄FI computed at xk are descent directions for the linear model lφk of

the penalty function φ in the following sense:

I. if v(xk) = 0,

lφk (0)− lφk (d̄
M) ≥ µk(l

f
k(0)− lfk(d̄

M)) > 0,

for any µk > 0,

104



II. if v(xk) > 0 and k is an A-step iteration,

lφk (0)− lφk (d̄
M) ≥ µk(l

f
k(0)− lfk(d̄

M)) + (lvk(0)− lvk(d̄
M)) > 0,

for any µk > 0,

III. if v(xk) > 0 and k is an F-step iteration,

lφk (0)− lφk (d̄
M) ≥ (1− η)(lvk(0)− lvk(d̄

FI)) > 0,

provided that µk is set to the largest value satisfying

µk∇f(xk)
⊺d̄FI ≤ η

(

v(xk)− ūF
)

for some small η ∈ (0, 1). (4.25)

Given that the steps sk computed by the algorithm satisfies conditions (4.21) or

(4.22), this remark implies

lφk (0)− lφk (sk) > 0.

Next, we prove the existence of sk satisfying (4.21) or (4.22).

Lemma 4.2.3 At inner iteration t of iteration k, there exists nonzero trial steps stk ∈ R
n

satisfying conditions (4.20) as well as (4.21) or (4.22) for τ = βt, β ∈ (0, 1), and for

fixed values of improvement directions d̄M or d̄FI .

Proof. Suppose t = 2 and k is an A-step. Consider the trial step s2k = βd̄M .

Since the piecewise linear model lvk is convex,

lvk(βd̄
M) ≤ (1− β)lvk(0)− βlvk(d̄

M),

yielding

lvk(0)− lvk(βd̄
M) ≥ β(lvk(0)− lvk(d̄

M)).

105



Also, as for the linear model lfk , βd̄
M satisfies

lfk(0)− lfk(βd̄
M) = −β∇f(xk)

⊺d̄M = β(lfk(0)− lfk(d̄
M)).

Now, replacing βd̄M above with βt−1d̄M , and repeating the same arguments prove

that the conditions (4.21),

lvk(0)− lvk(s
t
k) ≥ βt−1(lvk(0)− lvk(d̄

M)),

lfk(0)− lfk(s
t
k) ≥ βt−1(lfk(0)− lfk(d̄

M)),

are satisfied for stk = βt−1d̄M . Also, since β ∈ (0, 1), this choice of stk satisfies condition

(4.20), i.e., ‖stk‖ ≤ β‖st−1k ‖.
Similarly, stk = βt−1d̄FI satisfies (4.20) and (4.22) for τ = βt when k is an F-step

iteration. �

Now, we need to show that the trial step computation procedure will end in finite

number of iterations so that ‖stk‖ stays bounded away from zero at a nonstationary

point xk.

Remark 4.2.2 Note that the condition (4.20) allows only a linear decrease in ‖stk‖.
Therefore, we have

lim
t→∞

βt−1

‖stk‖
= c > 0.

This relationship is trivially satisfied by the choice of stk = βt−1d̄M above. In fact,

it is not hard to show that a faster decrease in ‖stk‖ would not allow the second set

of conditions in (4.21) or (4.22) hold since both lfk(0) − lfk(s
t
k) and lvk(0) − lvk(s

t
k) are

O(‖stk‖).

Lemma 4.2.4 At each iteration k, unless xk is a termination point, there exist nonzero

steps sk (A-step or F-step) satisfying the acceptance criterion

φ(xk + sk)− φ(xk) ≤ ξ(lφk (sk)− lφk (0)) for some ξ > 0.

Proof. If xk is not a termination point, then there exist nonzero directions

106



d̄M or d̄FI by Lemma 4.2.2. Therefore at least one nonzero step sk is available since

sA = d̄M and sF = d̄FI are always feasible solutions to subproblems (A-step-LP) and

(F-step-LP), respectively.

Consider a series of trial steps s0k, s
1
k, . . . , s

t
k at iteration k, satisfying conditions

(4.20) and (4.21). As we proved in Lemma 4.2.3, such a series of nonzero steps exists.

Suppose that the desired criterion is never satisfied as t→∞. This indicates

φ(xk + stk)− φ(xk) > ξ(lφk (s
t
k)− lφk (0)), for all t.

Equivalently,

φ(xk + stk)− φ(xk)− (lφk (s
t
k)− lφk (0)) > (ξ − 1)(lφk (s

t
k)− lφk (0)),

⇒ φ(xk + stk)− lφk (s
t
k) > (ξ − 1)(lφk (s

t
k)− lφk (0)).

This yields for the left-hand-side

φ(xk + stk)− lφk (s
t
k) = µkf(xk + stk) + maxi∈C{−ci(xk + stk), 0}

−(µkf(xk) + µk∇f(xk)
⊺stk +maxi∈C{−ci(xk)−∇ci(xk)

⊺stk, 0})

≤ µk
1
2
Lf‖stk‖2 +maxi∈C{−ci(xk + stk) + ci(xk) +∇ci(xk)

⊺stk, 0}
≤ µk

1
2
Lf‖stk‖2 + 1

2
Lc‖stk‖2

for some constants Lf > 0 and Lc > 0, since f and ci are twice Lipschitz continuous so

that

f(xk + stk) ≤ f(xk) +∇f(xk)
⊺stk +

1
2
Lf‖stk‖2,

ci(xk + stk) ≤ ci(xk) +∇ci(xk)
⊺stk +

1
2
Lc‖stk‖2, i ∈ C

holds. Therefore, we have

µk

1

2
Lf‖stk‖2 +

1

2
Lc‖stk‖2 ≥ φ(xk + stk)− lφk (s

t
k) > (1− ξ)(lφk (0)− lφk (s

t
k)).

107



On the other hand, condition (4.22) implies when τ is set to βt+1 as in Lemma 4.2.3

lφk (0)− lφk (s
t
k) ≥ βt−1(1− η)(lvk(0)− lvk(d̄

FI))

for F-steps, and

lφk (0)− lφk (s
t
k) ≥ βt−1(µk(l

f
k(0)− lfk(d̄

M)) + lvk(0)− lvk(d̄
M))

for A-steps. Since the values (1− η)(lvk(0)− lvk(d̄
FI)) and (µk(l

f
k(0)− lfk(d̄

M)) + lvk(0)−
lvk(d̄

M)) stay constant and are always positive, we can write

µk

1

2
Lf‖stk‖2 +

1

2
Lc‖stk‖2 > (1− ξ)(lφk (0)− lφk (s

t
k)) ≥ (1− ξ)βt−1∆l,

where ∆l > 0 is a constant value. Then, dividing both sides with ‖stk‖ and taking the

limit as k →∞ gives

lim
k→∞

µk
1
2
Lf‖stk‖2 + 1

2
Lc‖stk‖2

‖stk‖
> lim

k→∞
(1− ξ)∆l

βt−1

‖stk‖

holds for all t. However, this is not possible since ‖stk‖ → 0 as t → ∞ but the right

hand side of the above expression approaches to a positive value (see Remark 4.2.2)

whereas the left hand side gives zero. This shows the desired result. �

Global convergence. We will now give the global convergence result using the above

shown properties of the algorithm.

Theorem 4.2.1 Suppose {xk} is the sequence of the iterates computed and accepted by

the algorithm. Suppose that {xk}, k ∈ S, is a subsequence of {xk} such that limk∈S xk =

x∗. Then, x∗ is a stationary point of problem (F). If x∗ is feasible and MFCQ holds,

then stationarity conditions for problem (P) are satisfied at this point.

108



Proof. Since the function φ(x) = µf(x)+v(x) is continuous, we have limk∈S φ(xk) =

φ(x∗). As a consequence,

lim
k∈S

(φ(xk)− φ(xk + sk)) = 0 =⇒ lim
k∈S

(lφk (sk)− lφk (0)) = 0, (4.26)

by our acceptance rule.

We first show that x∗ is a stationary point for problem (F). Let us consider the

case where {xk}, k ∈ S is obtained by infinitely many F-steps. In this case, (4.26)

implies

lim
k∈S

(lvk(0)− lvk(sk)) = 0 =⇒ lim
k∈S

(lvk(0)− lvk(d̄
FI)) = 0,

since lvk(0) − lvk(sk) is always positive and the condition (4.25) is satisfied by F-steps.

So, x∗ is stationary for (F) (see Corollary 4.2.2).

Moreover, since

µk(l
f
k(d̄

FI)− lfk(0)) ≤ η(lvk(0)− lvk(d̄
FI)) ≤ η

τ
(lvk(0)− lvk(sk)),

we have

lim
k∈S

µk(l
f
k(d̄

FI)− lfk(0)) = 0.

Then, in this case, at least one of µk → 0, or lfk(d̄
FI)− lfk(0)→ 0 holds, k ∈ S. In the

latter case, if v(x∗) = 0 and MFCQ holds, then the limit point x∗ is stationary for (P)

by Corollary 4.2.2. On the other hand, since µk is set to the largest value satisfying

condition (4.25), it should stay bounded away from zero when limk∈S(l
f
k(d̄

FI)− lfk(0)) =

0. So, if µk → 0, then

lim
k∈S

(lfk(d̄
FI)− lfk(0)) = c1 > 0

should hold for some c1 ∈ R+. This indicates ‖d̄FI‖ ≥ c2 > 0 always satisfied for a

small enough positive value c2, while limk∈S(l
v
k(d̄

FI) − lvk(0)) = 0. But this is possible

only if the linear models of ci, i ∈ C are linearly dependent, i.e., MFCQ cannot hold at

x∗.

109



Similarly, if {xk}, k ∈ S is produced by infinitely many A-steps, (4.26) directly

implies

lim
k∈S

(lfk(sk)− lfk(0)) = 0 and lim
k∈S

(lvk(sk)− lvk(0)) = 0.

Therefore, x∗ is a stationary point for (F) by the same argument as above.

Moreover, since µk cannot decrease during A-steps,

lim
x∈S

(lfk(0)− lfk(sk)) = 0 =⇒ lim
x∈S

(lfk(0)− lfk(d̄
M)) = 0,

implies ∇f(xk)
⊺dM → 0, k ∈ S. So, dM = 0 becomes an optimal solution to the mutual

improvement subproblems as k →∞. If the limit point x∗ is feasible and MFCQ holds,

it satisfies stationarity conditions (4.24) of problem (P) by Lemma 4.2.2. �

Relationship to SQP steps. Since our algorithm tries to take curvature related

steps, a relevant question would be its relationship with the well-known sequential

quadratic programming (SQP) algorithm of nonlinear programming [53]. Since SQP

can be seen as a realization of the Newton’s method, this would also be relevant in terms

of evaluating its convergence rate. However, the rapid convergence of the SQP algo-

rithm is related to the iterations after it identifies the correct active set of the problem.

Therefore, the important question then becomes: Can we show any relationship be-

tween sA of our algorithm and a step sx computed by solving a quadratic programming

subproblem? Let us give a remark before we continue.

Remark 4.2.3 Let S = span{∇ci : i = 0, . . . , p}, where c0 denotes the objective

function. Also define the matrix Rp×n whose (i+ 1)st column is given by s⊺i
∑

j

(∇2cj),

i, j = 0, . . . , p, j 6= i, where si are the Newton steps for the individual problems. That

is, ∇2cisi = −∇ci. Let the vector (sx, sλ) denote the EQP step. Then, we can write

sx =
∑

πisi, provided that the multipliers π satisfy π⊺R⊺u = 0, for all u ∈ S⊥ := R
n−S.

Now, we can state the question formally: Suppose all the necessary assumptions

for the local convergence of Newton steps are satisfied. Then, does the optimal solution

vector πA
k of (A-step-LP) satisfy the condition given in Remark 4.2.3 for all iterations

110



k > kM when the active set at iterations k > kM is the correct active set at x∗?

This question can be partly answered for certain special cases. Take for instance

the case when the Hessian matrices ∇2ci are all diagonal. However, we conjecture that

it may not hold for the general case. Our first numerical results with the proposed

method support this view.

4.2.4 Practical Performance

An implementation of fully parallel version of the described algorithm can be quite

involved. This is true especially when one aims at implementing parallel algorithms

for solving trust region and linear programming subproblems. One can also consider

warm-up strategies, since the algorithm may solve similar linear programming problems

from one iteration to the next. In the same vein, it is not necessary to solve the trust

region subproblems to optimality, where an approximate solution may be sufficient for

fast convergence. In this section, however, we do not dwell on these implementation

details but devote our efforts to give some examples for showing the performance of the

proposed algorithm.

Parallel implementation properties. The proposed algorithm involves a large

number of inherently parallel tasks. The assignment of tasks to processors can be

done dynamically and at the level of basic operations. However, for ease of exposition,

we shall explain the algorithm’s parallel structure by assigning a group of constraints

to each processing unit. Then, all evaluations and computations related to those con-

straints shall be carrried out by that processing unit. Moreover, we shall also discuss

the workload distribution among the parallel processors at a higher level as depicted

in Figure 4.7. In this figure, we describe the high-level parallelization profile of the

new constrained algorithm. In this figure, the expressions O(LP (n,m)) and O(TR(n))

stand for the complexity of solving an LP with n variables and m constraints and the

cost of solving an n dimensional unconstrained trust-region problem, respectively. To

keep the figure simple, the cases where the algorithm starts from a feasible point (there-

fore skips F-direction-LP), and the case where (F-step-LP) problem is solved instead

111



2) Solve (B−step−TR) problems

3) Solve (M−direction−LP)

operations
B: Complexity of

A: Task no
A

1 3

2

4 5

4) Solve (A−step−LP)

5) Evaluation and Updates

1) Solve (F−direction−LP) 

B

O(LP (n+ 1,m)) O(LP (n,m))

(for each i ∈ f ∪ V ∪ A)

(for each i ∈ G)

O(LP (nG ,m+ 1))

O(nGTR(n))/p

O((nf∪A∪V)n)/p

Figure 4.7: Parallelization of the algorithm at the level of its tasks

of (A-step-LP) is not included, since these two cases have almost equivalent computa-

tional requirements. Tasks 1, 3 and 4 require solution of linear programs. Tasks 2 and

5 consist of independent operations about the component problems as we call them.

Therefore, they can be distributed according to the constraint-processor assignment

mentioned above.

A relevant question here is the parallel implementation of each high-level task

given in Figure 4.7; in particular, parallel solution of the linear programs included in

Tasks 1, 3, and 4. Since we are able to provide a good initial feasible solution for

each linear program, it is reasonable to consider implementation of a parallel Simplex

method. However, as we have mentioned in Chapter 2, parallel Simplex implementa-

tions are known to be efficient only for problems with some special structures, e.g.,

when the coefficient matrix is dense. This suggests that the parallel implementation of

112



the proposed algorithm can be expected to perform better in certain cases, e.g., when

the Jacobian of the problem is dense. Even so, we should also note at this point that

it would be possible to design procedures for finding approximate solutions to (A-step-

LP) and (F-step-LP) subproblems, i.e. Task 4, with better parallelization properties

because the convergence of the algorithm does not require these two linear programs

to be solved exactly.

Use of quadratic information. To see how the quadratic information provided

by (B-step-TR) and (A-step-LP) subproblems help, we illustrate all the components

computed by the algorithm on a sample two-dimensional problem.

The sample problem has four constraints. In Figure 4.8(a), the starting point is

marked with a black circle on the contour plot of the problem. The directions d̄F , d̄M ,

and the base steps s̄Bf , s̄
B
1 , s̄

B
2 , s̄

B
3 , and s̄B4 are marked in Figure 4.8(a). In Figure 4.8(b),

the resulting A-step, s̄A is marked again with a black circle, the rotation from d̄M can

be clearly seen in this figure. The algorithm is able to converge to the optimal solution

point for this problem after 5 additional iterations.

Observations. In this part, we provide some results on the practical behavior of the

new algorithm to give a further insight about its potential. The algorithm is coded in

MATLAB. As the LP solver, the active-set algorithm available as an option in linprog

is used. Feasible starting points are provided to the LP solver. For computing B-

steps, the Conjugate Gradients algorithm with Steihaug’s strategy is used(CHECK

THIS!). Therefore, exact solutions to these subproblems are not necessarily computed.

We have compiled a few small-scale inequality constrained problems from the CUTEr

collection[31] for our initial tests. In Table 4.2.4, the properties of the test problems

are given in the second and third columns.

We compare our results to that of the SQP-solver available in fmincon of MAT-

LAB, i.e., by setting its Algorithm option to active-set. We have two main observa-

tions on the numerical performance of this implementation of our new algorithm:

1. The new algorithm can rapidly approach to a local solution before the SQP algo-

113



rithm starts taking full steps,

2. The new algorithm may unfortunately slow down in the close proximity of a local

solution point, particularly, in a region where the SQP algorithm takes full steps.

We illustrate those observations on the example of problem HS100 by starting the

algorithms from the default initial point for this problem. In Figures 4.9(a)-4.10(b), the

progress of the steps of the new algorithm is compared to that of the SQP algorithm

implemented in fmincon. The iterations are divided into two groups with respect to

the steplengths of the SQP algorithm. The SQP algorithm converges in a total of

13 iterations for HS100, and it always takes full steps in the last five iterations. In

Figures 4.9(a)-4.9(b), we plot the progress in approaching to the solution point in the

first 9 iterations of both algorithms. Figure 4.9(a) shows the drastic difference between

the current objective function value and the objective function value at the final solution

point. Likewise, Figure 4.9(b) illustrates decrease in the value of constraint violation

for both algorithms.

Figures 4.10(a)-4.10(b) show similar plots for the remaining iterations until con-

vergence. These figures illustrate the behavior of the algorithm as we mentioned above:

The algorithm is generally successful in getting close to the solution point but its

progress may be slower than another algorithm that switches to full steps.

In Table 4.2.4, we give the initial test results using both algorithms for the rest of

the problems. The default starting points of these problems generally enable the SQP

algorithm to take full steps, as can be seen in the 8th column of Table 4.2.4 (the figures

in parentheses), and the new algorithm cannot reveal its strenght in approaching to a

local area around a solution point.

114



Table 4.4: Number of iterations and function evaluations from the original starting points

ConCCS SQP (fmincon)
Problem n m f v Itr. Eval. f v Itr.∗ Eval.
HS100 7 4 680.63 9.77E-07 21 35 680.63 3.16E-06 12(5) 45

HAIFAS 13 9 -0.45 2.46E-05 27 40 -0.45 2.92E-05 6(4) 17
CB2 2 2 1.9522 1.98E-06 25 41 1.9522 4.62E-06 6(6) 13

MISTAKE 9 13 -1 2.69E-06 25 40 -1 2.05E-06 16(13) 36
MAKELA1 3 2 -1.414 2.91E-06 10 15 -1.414 5.45E-06 8(8) 17
∗ The numbers in parentheses are the number of full steps taken by the SQP algorithm.

115



(a) mutual improvement and base steps

(b) the aggregate step

Figure 4.8: Illustration of the step computation for the new constrained algorithm

116



(a) |f(xk)− f(x∗)|

(b) v(xk)

Figure 4.9: Progress provided by the two algorithms – iterations 1-9

117



(a) |f(xk)− f(x∗)|

(b) v(xk)

Figure 4.10: Progress provided by the two algorithms after iteration 9

118



Chapter 5

CONCLUSION

In this chapter, we first give some remarks on the findings of this thesis study. Then,

we discuss future research directions.

5.1 Concluding Remarks

In this thesis, we presented an approach as a first attempt to investigate the benefits

of parallel processing for solving nonlinear programming problems. We tried to reveal

the potential of the idea by designing distinct algorithms, which apply the proposed

approach at different levels to solve various classes of nonlinear programming problems.

The focus of the algorithms in Chapter 3 was improving the solution performance

by using the extra problem information produced in parallel . In our numerical tests,

we observed that nice reductions can be achieved in the number of iterations until

convergence. Moreover, more robust algorithms could be obtained. For the global

optimization extensions, we observed that improvements can be provided in search

performance; that is, better solutions can be discovered more quickly thanks to the in-

formation exchange. However, we also observed especially in our local applications that

the success of a high level application of the idea may fail to provide a real advantage in

terms of solution time. In fact, for local optimization problems, the only way to provide

scalability of the algorithms of this chapter seems to include further decompositions of

their high-level tasks.

In Chapter 4, we considered task parallelism in a lower level and proposed two new

119



algorithms. The algorithm we designed for unconstrained optimization in Section 3.1

demonstrated that an algorithm following our approach can achieve nice speed-up num-

bers and an efficient usage of the available parallel resources. We also observed that

the extra computations included in this algorithm contributed to the solution perfor-

mance as expected. The scalability of the algorithm is obtained by decomposing its

operations executed in smaller dimensional spaces. The constrained optimization al-

gorithm of the next section (Section 4.2), on the other hand, attempted to decompose

the problem into a set of unconstrained optimization problems. The idea there was to

use the curvature-related steps by solving (in parallel) a set of unconstrained and linear

programing problems. After some preliminary numerical results, we observed that the

resulting algorithm is successful in approaching a local solution, but once it becomes

close to the solution point it converges slowly as compared to a standard sequential

quadratic programming method.

As we have conjectured at the very beginning of this work, we experienced that

the freedom provided by the availability of parallel computing resources enabled us to

end up with new algorithms, that would not be normally considered in a sequential

settings. Two particular examples in this sense are the concurrent search algorithms of

Section 3.1 and the constrained algorithm of Section 4.2.

In all our implementations, we primarily considered a multicore programming

environment. Multicore architectures have recently become the standard processor

technology and expected to be even more progressive in the future. So, we believe that

we have provided a perspective and some distinct examples on using this technology in

solving optimization problems. Our efforts, therefore, may constitute a basis for further

contributions to this flourishing and fruitful research area.

5.2 Future Research Directions

Our experience with several different algorithms gave us a very good idea about the

opportunities and the limitations of the approach we proposed in this thesis. As a

consequence, we have a long list of future research directions.

One important lesson we have learned was the limitations of a high-level paral-

120



lelization for solving local optimization problems. Thus, we plan to design new algo-

rithms in the concurrent search framework of the first chapter with a further granularity.

We believe that a proper selection of included algorithms and a well-written parallel

code would provide much better speed-up values than we observed here.

For global optimization problems, on the other hand, there are less concerns in

this sense. The MANGO environment described in Section 3.2 is very suitable for

developing more sophisticated algorithms than the ones described in this section. In

particular, we are very curious about its performance in solving real-life large scale

global optimization problems.

A comprehensive future work is certainly the parallel implementation of the con-

strained algorithm proposed in Section 4.2. This would require to solve a number of

implementation issues. As we have already mentioned in that section, it would be pos-

sible to apply modifications and improve the local performance of this algorithm. An

interesting question we have in mind is to see whether this algorithm becomes really

advantageous for problems where the number of constraints are small as compared to

the number of variables.

We already observed the success of the parallel program in Section 4.1. We believe

that it can be further improved by conducting more tests, and learning more about its

behavior. It would be interesting to observe the performance of this algorithm (or

its variants) on a distributed architecture in solving a very large-scale optimization

problem.

It is possible, and hopefully encouraged with this thesis, to design completely

different algorithms following our general approach. This is a challenging but also a

very rewarding endeavor.

Our experience provided us a number of side ideas as well as different algorithms.

For example, the framework we proposed in Chapter 3 also gave us a perspective for

constructing an alternative practical objective in solving a (nonconvex) nonlinear pro-

gramming problem. A nonlinear programming solver would normally terminate when

it finds the first available solution of a given problem. However, another objective for

an nonlinear programming solver would be to find the best solution it can find within

121



a given time limit. We believe it would be interesting to see whether this perspective

has a practical value.

122



Appendix A

Review on Performance Profiles

Dolan and More [23] propose the performance profiles to evaluate and compare the

performances of a set of solvers on a set of test instances.

Suppose that we have a set of algorithms denoted by S and a set of instances

denoted by I whose cardinalities are ns and ni, respectively. Let the performance

measure be the total number of iterations. For each instance i ∈ I and algorithm

s ∈ S, ti,s is defined as the total number of iterations found for instance i by algorithm

s. The performance on instance i by algorithm s is compared to the best performance

among all algorithms applied on the same problem. To plot the performance profile

figures, we follow these steps: First, the performance ratio, given by

ri,s =
ti,s

min(ti,s : s ∈ S)
,

is computed. Then, to assess the overall performance of an algorithm we compute

ρs(τ) =
1

ni

|{i ∈ I : ri,s ≤ τ}|,

where τ ∈ R and | · | denotes the cardinality of a set. The value ρs(τ) shows the

probability for algorithm s ∈ S such that a performance ratio ri,s is within a factor τ of

the best possible ratio. The function ρs is the (cumulative) distribution function for the

performance ratio. Therefore, the value of ρs(1) is the probability that the algorithm s

dominates the rest of the algorithms.

123



Bibliography

[1] E. D. Andersen and K. D. Andersen. A parallel interior-point algorithm for linear

programming on a shared memory machine. Core discussion papers, Université

catholique de Louvain, Center for Operations Research and Econometrics (CORE),

1998.

[2] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz,

N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick. The

landscape of parallel computing research: A view from Berkeley. Technical Report

UCB/EECS-2006-183, Electrical Engineering and Computer Sciences, University

of California at Berkeley, 2006.

[3] B. M. Averick and J. J. More. Parallel gradient distribution in unconstrained

optimization. SIAM Journal on Optimization, 4:708–721, 1994.

[4] J. M. Bahi, S. Contassot-Vivier, and R. Couturier. Parallel Iterative Algorithms.

Chapman & Hall / CRC, 2007.

[5] S. Benson, M. Krishnan, L. Mcinnes, J. Nieplocha, and J. Sarich. Using the GA and

TAO toolkits for solving large-scale optimization problems on parallel computers.

ACM Trans. Math. Softw., 33, 2007.

[6] M. Bertocchi. A parallel algorithm for global optimization. Optimization,

21(3):379–386, 1990.

[7] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

[8] A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek, and S. Tomov. The

impact of multicore on math software. In Applied Parallel Computing: State of

124



the Art in Scientific Computing, volume 4699/2009, pages 1–10. Springer Berlin /

Heidelberg, 2009.

[9] R. H. Byrd, N. I. M. Gould, J. Nocedal, and R. A. Waltz. On the convergence of

successive linear-quadratic programming algorithms. SIAM Journal on Optimiza-

tion, 16:471–489, 2005.

[10] R. H. Byrd, J. Nocedal, and C. Zhu. Towards a discrete Newton method with

memory for large scale optimization. In G. Di Pillo and F. Giannessi, editors,

Nonlinear Optimization and Applications. Plenum, 1996.

[11] Y. Censor and S. A. Zenios. Parallel Optimization: Theory, Algorithms, and Ap-

plications. Oxford University Press, 1997.

[12] K. L. Chow. Parallel unconstrained optimization. Depth paper, University of

Toronto, Department of Computer Science, 1993.

[13] D. Conforti and R. Musmanno. A parallel asynchronous Newton algorithm for

unconstrained optimization. Journal of Optimization Theory and Applications,

77(2):305–322, 1993.

[14] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust-Region Methods. SIAM,

Philadelphia, PA, USA, 2000.

[15] T. G. Crainic, M. Gendreau, P. Hansen, and N. Miladenovic. Cooperative parallel

variable neighborhood search for the p-median. Journal of Heuristics, 10:293–314,

2004.

[16] V.-D. Cung, S. L. Martins, C. C. Ribeiro, and C. Roucairol. Strategies for the

parallel implementation of metaheuristics. Essays and Surveys in Metaheuristics,

2002.

[17] M. D’Apuzzo and M. Marino. Parallel computational issues of an interior point

method for solving large bound-constrained quadratic programming problems.

Parallel Computing, 29(4):467–483, 2003.

125



[18] M. D’Apuzzo, M. Marino, A. Migdalas, P. M. Pardalos, and G. Toraldo. Parallel

computing in global optimization. In E. J. Kontoghiorghes, editor, Handbook of

Parallel Computing and Statistics. CRC Press, 2005.

[19] M. D’Apuzzo, M. Marino, A. Migdalas, P.M. Pardalos, and G. Toraldo. Nonlinear

optimization: A parallel linear algebra standpoint. pages 259–282. Chapman &

Hall/CRC, 2006.

[20] J. E. Dennis and V. Torczon. Direct search methods on parallel machines. SIAM

Journal on Optimization, 1:123–145, 1991.

[21] J. E. Dennis and Z. Wu. Parallel continuous optimization. In J. Dongarra, editor,

Sourcebook of parallel computing, pages 649–670. Morgan Kauffman, 2003.

[22] L. C. W. Dixon and M. Jha. Parallel algorithms for global optimization. Journal

of Optimization Theory and Applications, 79(2):385–395, 1993.

[23] E. D. Dolan and J. J. More. Benchmarking optimization software with performance

profiles. Mathematical Programming, 91:201–213, 2002.

[24] M. C. Ferris and O. L. Mangasarian. Parallel constraint distribution. SIAM Journal

on Optimization, 1:487–500, 1991.

[25] M. C. Ferris and O. L. Mangasarian. Parallel variable distribution. SIAM Journal

on Optimization, 4:102–126, 1994.

[26] T. L. Freeman. A parallel unconstrained quasi-newton algorithm and its perfor-

mance on a local memory parallel computer. Applied Numerical Mathematics,

7:369–378, 1991.

[27] L. Frimannslund and T. Steihaug. A class of methods combining L-BFGS and

truncated Newton. Reports in Informatics 319, University of Bergen, Norway,

2006.

126



[28] A. Frommer and R. A. Renault. A unified approach to parallel space decomposition

methods. Journal of Computational and Applied Mathematics, 110(1):205–223,

1999.

[29] M. Fukushima. Parallel variable transformation in unconstrained optimization.

SIAM Journal on Optimization, 8(4):658–672, 1998.

[30] M. Gendreau and T. G. Crainic. Cooperative parallel tabu search for capacitated

network design. Journal of Heuristics, 8:601–627, 2002.

[31] N. I. M. Gould, D. Orban, and Toint P. L. CUTEr (and SifDec), a constrained and

unconstrained testing environment, revisited. Technical Report TR/PA/01/04,

CERFACS, 2004.

[32] N.I.M. Gould, S. Lucidi, M. Roma, and P. L. Toint. A line-search algorithm

with memory for unconstrained optimization. Technical Report RAL-TR-98-003,

Rutherford Appleton Laboratory, 1998.

[33] A. Griewank and G. Corliss. Issues in parallel automatic differentiation. In C. H.

Bischof, editor, Automatic Differentiation of Algorithms, pages 100–113. SIAM,

1991.

[34] A. Gupta and V. Kumar. Performance and scalability of preconditioned conju-

gate gradient methods on parallel computers. IEEE Transactions on Parallel and

Distributed Systems, 6(5):455–469, 1995.

[35] J. A. J. Hall. Towards a practical parallelisation of the simplex method. Compu-

tational Management Science, 7(2):139–170, 2010.

[36] M. T. Heath, E. Ng, and B. W. Peyton. Parallel algorithms for sparse linear

systems. SIAM Review, 33(3):420–460, 1991.

[37] P. D. Hough, T. G. Kolda, and V. J. Torczon. Asynchronous parallel pattern search

for nonlinear optimization. SIAM Journal on Scientific Computing, 23:134–156,

2001.

127



[38] G. Karypis, A. Gupta, and V. Kumar. A parallel formulation of interior point algo-

rithms. In Proceedings of the 1994 conference on Supercomputing, Supercomputing

’94, pages 204–213. IEEE Computer Society Press, 1994.

[39] E. Kaszkurewicz, A. Bhaya, and B. Baran. Parallel asynchronous team algorithms:

Convergence and performance analysis. IEEE Transactions on Parallel and Dis-

tributed Systems, 7(7):677–688, 1996.

[40] K. C. Kiwiel and P. O. Lindberg. Parallel subgradient methods for convex op-

timization. In D. Butnariu, Y.Censor, and S.Reich, editors, Inherently parallel

algorithms in feasibility and optimization and their applications, pages 335–344.

Elsevier, 2001.

[41] D. Klabjan, E. L. Johnson, and G. L. Nemhauser. A parallel primal–dual simplex

algorithm. Operations Research Letters, 27:47–55, 2000.

[42] T. G. Kolda. Revisiting asynchronous parallel pattern search for nonlinear opti-

mization. SIAM Journal on Optimization, 16(2):563–586, 2005.

[43] T. G. Kolda and V. J. Torczon. On the convergence of asynchronous parallel

pattern search. SIAM Journal on Optimization, 14:939–964, 2004.

[44] O. L. Mangasarian. Parallel gradient distribution in unconstrained optimization.

SIAM Journal on Control and Optimization, 33:1993–1145, 1995.

[45] M. Manguoglu, A. H. Sameh, and O. Schenk. PSPIKE: A parallel hybrid sparse

linear system solver. In Euro-Par 2009 Parallel Processing, volume 5704, pages

797–808. Springer Berlin / Heidelberg, 2009.

[46] Intel Math Kernel Library. http://www.intel.com/software/products/mkl.

[47] N. Melab, E.-G. Talbi, and S. Cahon. Paradiseo: A framework for the reusable

design of parallel and distributed metaheuristics. Journal of Heuristics, 10:357–

380, 2004.

128



[48] A. Migdalas, G. Toraldo, and V. Kumar. Nonlinear optimization and parallel

computing. Parallel Computing, 29:375–391, 2003.

[49] J. L. Morales and J. Nocedal. Enriched methods for large-scale unconstraines

optimization. Computational Optimization and Applications, 21:143–154, 2002.

[50] J. J. Moré, B. S. Garbow, and K. E. Hillstrom. Testing unconstrained optimization

software. ACM Transactions on Mathematical Software, 7(1):17–41, 1981.

[51] A. Neumaier. Complete search in continuous global optimization and constraint

satisfaction. Acta Numerica, (13):271–369, 2004.

[52] J. Nocedal. Updating quasi-Newton matrices with limited storage. Mathematics

of Computation, 35:773–782, 1980.

[53] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2006.

[54] F. Öztoprak and Ş. İ. Birbil. Implementation of a fixing strategy and parallelization

in a recent global optimization method. In Euro Mini Conference on Continuous

Optimization and Knowledge-Based Technologies (EurOPT-2008), 2008.

[55] ScaLAPACK Home Page. http://www.netlib.org/scalapack.

[56] P. M. Pardalos, H. E. Romeijn, and H. Tuy. Recent developments and trends in

global optimization. Journal of Computational and Applied Mathematics, 124(1-

2):209–228, 2000.

[57] P.K.-H. Pkua, W. Fan, and Y. Zeng. Parallel algorithms for large-scale nonlinear

optimization. International Transactions in Operations Research, 5(1):67–77, 1998.

[58] J. Reinders. Intel Threading Building Blocks. O’Reilly, 2007.

[59] G. Rudolph. Parallel approaches to stochastic global optimization. In W. Joosen

and E. Milgrom, editors, Parallel Computing: From Theory to Sound Practice,

Proceedings of the European Workshop on Parallel Computing, pages 256–267. IOS

Press, 1992.

129



[60] R. B. Schnabel. Concurrent function evaluations in local and global optimization.

Computer Methods in Applied Mechanics and Engineering, 64:537–552, 1987.

[61] R. B. Schnabel. A view of the limitations, opportunities, and challenges in parallel

nonlinear optimization. Parallel Computing, 21:875–905, 1995.

[62] F. Schoen. Stochastic techniques for global optimization: A survey of recent ad-

vances. Journal of Global Optimization, 1(3):207–228, 1991.

[63] D. S. Siirola, S.Hauan, and A. W. Westerberg. Toward agent-based process systems

engineering: Proposed framework and appllication to non-convex optimization.

Computers and Chemical Engineering, 27:1801–1811, 2003.

[64] T. Steihaug. The conjugate gradient method and trust regions in large scale opti-

mization. SIAM Journal on Numerical Analysis, 20:626–637, 1983.

[65] T. A. Straeter. A parallel variable metric optimization algorithm. Technical Report

NASA TN D-7329, NASA Technical Note, Langley Research Center, Hampton,

VA, USA, 1973.

[66] E.-G. Talbi. A taxonomy of hybrid metaheuristics. Journal of Heuristics, 8:541–

564, 2002.

[67] S. Talukdar, L. Baerentzen, A. Gove, and P. De Souza. Asynchronous teams:

Cooperation schemes for autonomous agents. Journal of Heuristics, 4(4):295–321,

1998.

[68] Intel Threading Building Blocks. http://www.intel.com/software/products/tbb.

[69] J. N. Tsitsiklis and D. P. Bertsekas. Parallel and Distributed Computation: Nu-

merical Methods. Athena Scientific, 1997.

[70] K. Tyner and A. Westerberg. Multiperiod design of azetropic seperation systems

i: An agent based approach. Computers and Chemical Engineering, 25:1267–1284,

2001.

130



[71] P. J. M. van Laarhoven. Parallel variable metric algortihms for unconstrained

optimization. Mathematical Programming, 33:68–81, 1985.

[72] D. J. Wales and J. P. K. Doye. Global optimization by basin-hopping and the

lowest energy structures of Lennard-Jones clusters containing up to 110 atoms.

The Journal of Physical Chemistry A, 101(28):5111–5116, 1997.

[73] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Optimization

of sparse matrix-vector multiplication on emerging multicore platforms. Parallel

Computing, 35(3):178–194, 2009.

[74] J. Zhang, N.-H. Kim, and L. Lasdon. An improved succesive linear programming

algorihm. Management Science, 31(10):1312–1331, 1985.

131



Curriculum Vitae

Education

• 2006− 2011, Ph.D., Industrial Engineering, Sabancı University

Dissertation: Parallel Algorithms for Nonlinear Optimization

• 2003− 2005, M.S., Industrial Engineering, İstanbul Technical University

Thesis: Multiagent Decision Support: The Application of Street Management

• 1999− 2003, B.S., Industrial Engineering, İstanbul Technical University

Graduation Project: Analysing the Performance of Logistics Activities Using Ar-

tificial Neural Networks

Experience

• Jan 2010−Jan 2011, Predoctoral Fellow, Northwestern University

• Feb 2006−Jan 2010, Teaching Assistant, Sabancı University

• Jul 2004−Feb 2006, Engineer, Istanbul Metropolitan Municipality

• Feb−Jul 2004, Analyst, AnkaFergana Consulting

Papers

• F.B. Aydemir, A. Günay, F. Öztoprak, Ş.İ. Birbil, P. Yolum, An Agent-Based

Environment for Solving Global Optimization Problems Cooperatively, submitted.

132



• F. Öztoprak, Ş.İ. Birbil, Concurrent Search Algorithms for Unconstrained Opti-

mization, under revision.

• F. Öztoprak, Ş.İ. Birbil, A Symmetric Rank-One Quasi-Newton Method Using

Negative Curvature Directions, to appear in Optimization Methods and Software.

• S. Çiftlikli, F. Öztoprak, Ö. Erçetin, K. Bülbül, Distributed Algorithms for De-

lay Bounded Minimum Energy Wireless Broadcasting, International Journal of

Interdisciplinary Telecommunications and Networking, Vol.1, No.2, 2009.

Proceedings

• A.Günay, F.Öztoprak, Ş.İ. Birbil, P. Yolum, Solving Global Optimization Prob-

lems using MANGO, Agent-Based Optimization(ABO 2009), in 3rd International

KES Symposium on Agents and Multi-Agent Systems, Technologies and Appli-

cations (KES AMSTA 2009), Uppsala, Sweden, 2009.

• F.Öztoprak, Ş.İ. Birbil, Implementation of a Fixing Strategy and Parallelization in

a Recent Global Optimization Method, Euro Mini Conference on Continuous Op-

timization and Knowledge-Based Technologies (EurOPT-2008), Neringa, Lithua-

nia, 2008.

• L. Kerçelli, A. Sezer, F. Öztoprak, P. Yolum, Ş.İ. Birbil, MANGO: A MultiAgent

ENvironment for Global Optimization, 1st International Workshop on Optimiza-

tion in Multiagent Systems(OPTMAS), in 7th International Joint Conference on

Autonomous Agents and Multi-Agent Systems(AAMAS’08), Estoril, Portugal,

2008.

• Ş.Ö. Şahin, F. Ülengin, F. Öztoprak, Analysing Performance of Supply Chain

Management Activities Using Artificial Neural Networks, 10th World Conference

on Transport Research, İstanbul, Turkey, 2004.

133


