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Abstract

This paper introduces a multi-project problem environment which involves

multiple projects with assigned due dates; activities that have alternative re-

source usage modes; a resource dedication policy that does not allow sharing

of resources among projects throughout the planning horizon; and a total

budget. Three issues arise when investigating this multi-project environ-

ment. First, the total budget should be distributed among different resource

types to determine the general resource capacities, which correspond to the

total amount for each renewable resource to be dedicated to the projects.

With the general resource capacities at hand, the next issue is to determine

the amounts of resources to be dedicated to the individual projects. The

dedication of resources reduces the scheduling of the projects’ activities to

a multi-mode resource constrained project scheduling problem (MRCPSP)

∗Corresponding Author. Tel: ++(90) 216 483-9503 Fax: ++(90) 216 483-9550
1NOTICE: This is the authors’ version of a work that was accepted for publication

in European Journal of Operational Research. Changes resulting from the publishing
process, such as peer review, editing, corrections, structural formatting, and other quality
control mechanisms may not be reflected in this document. Changes may have been made
to this work since it was submitted for publication. A definitive version will be published
in European Journal of Operational Research, 2014. DOI 10.1016/j.ejor.2014.06.025.



for each individual project. Finally, the last issue is the efficient solution

of the resulting MRCPSPs. In this paper, this multi-project environment is

modeled in an integrated fashion and designated as the Resource Portfolio

Problem. A two-phase and a monolithic genetic algorithm are proposed as

two solution approaches, each of which employs a new improvement move

designated as the combinatorial auction for resource portfolio and the com-

binatorial auction for resource dedication. A computational study using test

problems demonstrated the effectiveness of the solution approach proposed.

Keywords: Project scheduling, resource portfolio problem, multi-project

scheduling, resource dedication, resource preference.

1. Introduction

Multi-project problem environments define the nature of business in most

manufacturing and service companies. Different studies also point out this

fact.Lova et al. (2000)states that 84% of the companies work with multi-

ple, simultaneous projects and Payne (1995) notices that 90%, by value, of

all projects occur in the multi-project context. Large construction compa-

nies (Liberatore et al. , 2001), for example, regularly execute multi-project

scheduling procedures. Resource related decisions are one of the prominent

aspects of multi-project environments, since the resource based relations

define the environment as a multi-project problem by coupling individual

projects. The characterization of resource use by the individual projects in

a multi-project environment is called the resource management policy (Be-

sikci et al., 2013). Resource management policy can differ with respect to

the environment characteristics (e.g., geographical distribution of projects,

specific resource characteristics, etc.). A common approach for solving the

multi-project scheduling problems in the literature assumes a resource shar-

ing (RS) policy among the different projects forming a shared pool for each

renewable resource. This policy cannot be applied in certain multi-project

environments where resource sharing is not applicable because of various
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reasons. The most common ones are listed as follows:

• The project characteristics may not allow RS. This scenario can be

seen in various Research and Development (R&D) projects where the

development process is highly technology intensive. Another example

can be geographical limitations, where projects are so distributed across

the world that resource sharing becomes impractical.

• The resource characteristics may not allow RS. For example, in soft-

ware development projects, it is not desired to allocate developers to

different projects because of the learning curve concept. An additional

example can be offered in situations in which the sharing of heavy

machinery equipment amongst projects is not possible due to the pro-

hibitive installation costs.

These cases require a different resource management policy, which iden-

tifies the unique characteristics of a particular environment. To define a

problem environment with the aforementioned characteristics, Besikci et al.

(2013) propose the resource dedication (RD) policy. Under the RD policy, re-

sources are not shared from a common pool but dedicated in certain amounts

to individual projects throughout their durations.

In RS policy, the general resource capacity corresponds to the size of

the shared pool for each renewable resource. Under RD policy, on the other

hand, general resource capacity corresponds to the amount of each renewable

resource to be distributed among the projects. In multi-project scheduling

problems, the general resource capacity is taken as a given. But here, deter-

mining the set of general resource capacities becomes a decision in itself to

be made according to a given total budget for a given set of projects. The

determination of the general resource capacities subject to a total budget

and the solution of the multi-project scheduling problem subject to these

capacities under the RD policy is referred to as the Resource Portfolio Prob-
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lem (RPP) in this study. Both the mathematical model and the proposed

solution approach for RPP are the original contributions of this study.

The remainder of the paper continues with a brief literature review of

resource considerations in project scheduling literature. In section 3, RPP is

defined and its mathematical formulation is presented. In section 4, both the

proposed two-phase genetic algorithm (GA) and a so-called monolithic GA

approach are explained in detail. The computational study and its results

are given in section 5. The conclusions and further research directions are

presented in section 6.

2. Literature Review

Recall that RPP deals with the determination of resource levels (capac-

ities) to provide for the resource requirements of the activities under RD

policy subject to a given total budget. Hence, the literature review is re-

stricted to studies addressing the determination of resource requirements of

projects and different resource management policies. Interested readers can

refer to Hartmann and Briskorn (2010) and Weglarz et al. (2011) for a

survey of RCPSP and its extensions.

Herroelen (2005) introduces a hierarchical framework for project schedul-

ing and control that identifies three different hierarchical levels (strategic,

tactical and operational) and three functional planing areas (technological,

capacity and material coordination). With respect to this categorization, our

paper deals with problems related to resource capacity planning. Herroelen

(2005) distinguishes four resource capacity functions: strategic resource plan-

ning, rough-cut capacity planning, resource constrained project scheduling,

and detailed scheduling.

Möhring (1984) investigates the resource requirement problem for project

scheduling with a graph theoretical approach. The author defines two im-

portant problem classes for project scheduling. The first problem, problem

A, is defined as a problem of scarce resources where the objective is finding
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the shortest project duration with a given amount of resources. The sec-

ond problem, problem B, aims to find the least cost resource requirements

within a given project duration, which is defined as problem of scarce time.

The author uses graph theory to represent and solve these project schedul-

ing problems where a special “dual” relation is employed between the scarce

resource and scarce time problems.

Another study relating to the problem under consideration here and of the

form of the problem of scarce time is presented by Demeulemeester (1995),

which is defined as the resource availability cost problem (RACP). The gen-

eral idea is to determine the least cost resource requirements for a single

project scheduling problem. The proposed formulation for RACP is similar

to the formulations for the resource constrained project scheduling problem

(RCPSP) with the basic differences in the areas of objective function and

the constraint for project duration. The solution methodology proposed for

RACP is based on decision problems defined with resource limits.

An approach addressing the determination of resource requirements of

projects is the rough-cut capacity planning (RCCP) for a multi-project en-

vironment. A recent example is provided by the Gademann and Schutten

(2004). Two variants of the RCCP problem are defined in line with prob-

lem of scarce resources and problem of scarce time as presented by Möhring

(1984), namely resource driven and time driven. The authors propose a linear

program for the former, the time driven RCCP problem.

Speranza and Vercellis (1993) propose a two stage decomposition ap-

proach for multi-project scheduling where the projects can have precedence

relations among themselves. The first stage of the approach aims to define

the projects as “macro-activities” with multiple modes, where each mode is

determined by solving a mathematical model for the project within a given

budget that yields a finish time for the project. The authors assume that a set

of possible budget limitations for a project can be estimated; such limitations

are identified as “macro-modes”, constituting different modes for a project.
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The single project network formed using the macro-activities with multiple

modes is expressed as a multi-mode resource constrained project schedul-

ing problem (MRCPSP) where the objective is the maximization of the net

present value. The solution to this problem provides the required start and

finish times of the projects, as well as the total nonrenewable and renewable

resource capacities that a project can use within a given period. In the sec-

ond stage of the approach, this information is used for detailed scheduling of

individual projects for makespan minimization, within the given amount of

renewable and nonrenewable resources.

An example of a different resource management policy in a multi-project

environment is presented in Besikci et al. (2013), namely the Resource Dedi-

cation Problem (RDP). RDP is defined as the optimal dedication of resource

capacities to different projects within the overall limits of the resources and

with the objective of minimizing a predetermined objective function. Besikci

et al. (2013) present a mathematical formulation for RDP and two different

solution methodologies. The first solution approach is a genetic algorithm

(GA) employing a new improvement move called the combinatorial auction

for resource dedication (CA for RD), which is based on project preferences

for resources. The second solution approach is a Lagrangian relaxation based

heuristic employing subgradient optimization.

Krüger and Scholl (2009) investigate another resource management pol-

icy in their study, namely resource sharing with sequence dependent transfer

times. The multi-project environment consists of multiple projects with sin-

gle modes and a resource transfer time requirement when a resource is shared

between different projects or when a resource flow occurs among the activi-

ties of the same project. The problem is referred to as the modified resource

constrained multi-project scheduling problem with transfer times (RCMP-

SPTT). The authors propose different heuristic rules for the parallel and

serial scheduling schemes modified for the resource transfer concept. The

RD policy studied int this paper corresponds to the transfer reducing ap-
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proach of Krüger and Scholl (2009), where transfer of resources are strictly

prohibited.

3. A Mathematical Programming Formulation for the Resource

Portfolio Problem

The RPP in a multi-project environment determinates the general re-

source capacities for a given total resource budget and the dedication of a

set of resources to a set of projects with assigned due dates according to the

determined general resource capacities in such a way that individual project

schedules would result in an optimal solution for a predetermined objective.

All projects are assumed to be ready to start. Uncertainties are thus not con-

sidered. The projects involve finish to start zero time lag and non-preemptive

activities. There are both renewable and nonrenewable resources with lim-

ited capacities. Finally, each activity in each project has a set of execution

modes with different time-resource alternatives. The projects in the prob-

lem environment are coupled with the general resource capacity decisions

and not subject to precedence relations among themselves. The objective for

the problem environment is taken as the minimization of the total weighted

tardiness of the projects. The general problem studied in this paper can be

thought of as an integrated capacity planning and multi-project scheduling

problem under RD policy.

The multi-project environment of RPP has a high internal dependency

among the projects in the sense expressed by Hans et al. (2007) because of

the general resource budget. On the other hand, for a given RD within RDP,

in the resulting MRCPSPs, a low internal dependency among the projects

exists. The proposed mathematical formulation is given below.

Sets and Indices:
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V Set of projects, v ∈ V

Jv Set of activities of project v, j ∈ Jv

vN Last activity (indexed with N ) of project v

Pv Set of all precedence relationships of project v

Mvj Set of modes for activity j of project v, m ∈Mvj

K Set of renewable resources, k ∈ K

I Set of nonrenewable resources, i ∈ I

Tv Set of time periods of project v, t ∈ Tv

Parameters:

Evj Earliest finish time of activity j of project v

Lvj Latest finish time of activity j of project v

dvjm Duration of activity j of project v, operating on mode m

rvjkm Renewable resource k usage of activity j of project v,

operating on mode m

wvjim Nonrenewable resource i usage of activity j of project v,

operating on mode m

ddv Assigned due date for project v

cv Relative weight of project v

crk Unit cost of renewable resource k

cwi Unit cost of nonrenewable resource i

tb Total resource budget

Decision Variables:
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xvjmt =


1 if activity j of project v, operating on mode m, is finished

at period t

0 otherwise

BRvk = Amount of renewable resource k dedicated to project v

BWvi = Amount of nonrenewable resource i dedicated to project v

TCv = Weighted tardiness cost of project v

Rk = Total amount of required renewable resource k

Wi = Total amount of required nonrenewable resource i
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Mathematical Model RPP-RD

min. z =
∑
v∈V

TCv (1)

Subject to∑
m∈Mvj

Lvj∑
t=Evj

xvjmt = 1 ∀ j ∈ Jv and ∀ v ∈ V (2)

∑
m∈Mvb

Lvb∑
t=Evb

(t− dvbm)xvbmt ≥
∑

m∈Mva

Lva∑
t=Eva

txvamt ∀ (a, b) ∈ Pv and ∀ v ∈ V (3)

∑
j∈Jv

∑
m∈Mvj

min{t+dvjm−1,Lvj}∑
q=max{t,Evj}

rvjkmxvjmq ≤ BRvk ∀ k ∈ K, t ∈ T , v ∈ V (4)

∑
j∈Jv

∑
m∈Mvj

Lvj∑
t=Evj

wvjimxvjmt ≤ BWvi ∀ i ∈ I and ∀ v ∈ V (5)

∑
v∈V

BRvk ≤ Rk ∀ k ∈ K (6)∑
v∈V

BWvi ≤ Wi ∀ i ∈ I (7)∑
i∈I

cwiWi +
∑
k∈K

crkRk ≤ tb (8)

TCv ≥ cv(

LvN∑
t=EvN

∑
m∈MvN

xvNmt − ddv) ∀ v ∈ V (9)

xvjmt ∈ {0, 1} ∀ j ∈ Jv, ∀ t ∈ Tv, ∀ m ∈Mvj and ∀ v ∈ V (10)

BRvk, BWvi, Rk, Wi, TCv ∈ Z+ ∀ v ∈ V , ∀ k ∈ K and ∀ i ∈ I (11)

Objective function (1) minimizes the total weighted tardiness over all

projects. Constraint set (2) ensures that all activities are scheduled once

and only once for all projects. Constraint set (3) reflects the precedence re-

lationships among the activities of all projects. Constraint set (4) sets the

maximum level for the renewable resource usage over all projects and resource

types. Constraint set (5) imposes the maximum level for the nonrenewable

resource usage over all projects and resource types. Constraint sets (6) and

(7) calculate the required renewable and nonrenewable resource capacities

according to the dedicated renewable and nonrenewable resources, respec-
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tively. Constraint set (8) ensures that the total cost of the general renewable

and nonrenewable resources does not exceed the total available budget. Con-

straint set (9) calculates the weighted tardiness values for each project. Con-

straint sets (10)-(11) specify the feasible ranges for the decision variables.

Constraints (5) and (7) can be represented with Xvjmt decision variables,

but for accounting purposes and model clarity we have used nonrenewable

resource dedication decision variables (BWvi). Note that, this is not the case

for the renewable resource dedication decision variables (BRvk), since they

are calculated as the maximum renewable resource allocation throughout the

planning horizon.

When the problem formulation is interpreted according to the hierarchi-

cal framework of Herroelen (2005) it can be seen that RPP includes differ-

ent levels of resource capacity functions. The strategic part of the problem

definition includes the resource capacity planning for the projects under con-

sideration by determining the capacity levels of the resources. Here, the

important part of the problem is the determination of the general resource

capacities according to the requirements of the projects from a general bud-

get. The dedication of the resources to the individual projects forms the

rough-cut capacity planning part of the hierarchical framework. Finally op-

erational considerations are covered by solving resource constrained project

scheduling problems and generating detailed schedules for the projects. RPP

approaches the resource capacity planning problem of the multi-project en-

vironments holistically. Nevertheless, as the following sections describe in

detail, the solution procedure distinguishes various levels of the problem and

approaches these different levels by conceptually decomposing the problem.

4. The Proposed Solution Methodologies

In the paper by Besikci et al. (2013), efficient solution approaches for RDP

are developed including a GA application employing a new local improve-

ment heuristic called CA for RD. Basically, CA for RD uses the preferences
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of projects for resources and moves the current solution to a more “prefer-

able” RD state. The insights gained from the studies related with RDP

constitute the basis for the proposed solution approaches presented here for

RPP. During the development of GA, special emphasis is given to the local

improvement routines, since as indicated by several authors (e.g., Peteghem

and Vanhoucke (2014), Lova et al. (2006), and Hartmann (2001)) problem

specific improvement routines contribute extensively to the success of the

particular metaheuristic employed.

The RPP formulation includes capacity allocation dimension beyond RDP,

namely, determination of the general resource capacities to be dedicated to

the individual projects under a total budget constraint. In other words, in

addition to the RD space (RDS), the whole solution space of RPP possesses

another dimension: general resource capacities. Thus, a search algorithm for

RPP should explore resource capacities space (RCS) (different general re-

source capacity instances) and RDS (different RD instances, which are con-

strained by a general resource capacity instance), and further, for each gen-

eral resource capacity and corresponding dedication instance, an MRCPSP

should be formulated and solved for each project. A two-phase GA algorithm

is proposed for searching this complex solution space. A so-called monolithic

GA approach is also suggested in this paper, which simultaneously applies

different space search algorithms with the purpose of comparative evaluation

with the results of the two-phase GA.

4.1. A Two-Phase Genetic Algorithm for the Resource Portfolio Problem

Recognizing the hierarchical nature of RPP, a two-phase GA is proposed,

where the first phase in GA is the RD phase; the second, the resource portfolio

(RP) phase. In the first phase of the GA, the RDS is explored. The search

algorithms (GA operators and CA for RD) used in this phase operate only on

the RD part of the individuals as defined in 4.1.1. In the second phase of the

GA, individuals are subject to RP space search (RPS) in addition to the RDS

search. For RPS search new GA operators and an improvement heuristic,
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CA for RP, are used. The rationale behind this two-phase approach is to

facilitate RPS search with a widely explored RDS.

4.1.1. Individual Representation and Fitness Calculation

The representation of an individual is shown in Table 1 for four projects

and two renewable (R1,R2) and two nonrenewable (W1,W2) resources. The

general resource capacities and RDs are combined into a single chromosome.

The RD part of the individual is represented with the values under the project

columns. These dedication values are feasible according to the general renew-

able and nonrenewable resource capacities presented in the resource capaci-

ties column. On the other hand, the general resource capacities constituting

the RP part are feasible for the total resource budget.

Table 1: Representation of an individual

Projects
Resources Project1 Project2 Project3 Project Resource Capacities

R1 30 40 25 60 155
R2 40 45 40 50 175
W1 50 60 30 50 190
W2 15 40 50 40 145

The fitness value for an individual is the total weighted tardiness value

for all projects. The weighted tardiness for each project is calculated by

solving an MRCPSP for each project when a new RD is selected. Although

an individual has general resource capacities feasible according to the total

budget and resource dedications feasible according to the general resource

capacities, the individual projects can have infeasible schedules because of the

RDs of the projects. This infeasibility is reflected in a penalty to the fitness

calculation, which is taken as 1.5 times the time horizon of the corresponding

project.
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4.1.2. Initial Population Generation

To generate an individual, first, general resource capacities are determined

and afterwards RD values are generated. To generate the general resource

capacities part of the individuals in the initial population according to the

total budget, three different methods are used. The first method generates

general resource capacities directly from the total budget proportional to

the no-delay resource requirement (the required amount of resources for the

no-delay schedule of the project) totals of the projects. One instance is gen-

erated in this manner. The second approach starts by satisfying the no-delay

resource requirement of a given resource from the total budget and generates

the general resource capacities for the remaining resources from the remain-

ing total budget, proportional to the no-delay resource requirement totals

of the projects. Instances as many as the number of resources (|R| + |W |)
are generated in this manner. Finally, the last approach randomly generates

as many general resource capacity instances to obtain a total number of Z

general resource capacity instances.

The RD parts of the individuals are obtained by three different methods.

The first method generates one individual by dedicating the available general

resource capacities proportional to the no-delay resource requirements of the

projects. For each project, as many individuals as the number of projects

(|V |) are generated using the second method. For each project the no-delay

resource requirement is satisfied, and the remaining general resource capac-

ities are dedicated to the remaining projects proportional to the no-delay

resource requirements of the corresponding projects. In the last approach,

RDs are randomly generated for each project so as to end up with H num-

ber of RD parts in total for each general resource capacity instance under

consideration. Thus, as a result, an initial population of ZxH individuals is

created.

Table 2 gives an example for the generation of an individual in the initial

solution, which is obtained using the first method introduced above. To

14



obtain the resource capacities, note that for renewable resources R1 and

R2, the no-delay requirements are 100 and 200 units, respectively and for

the nonrenewable resources W1 and W2, it is 600 units each. Hence, 1000

units are distributed among these resource types proportionally as 67, 133,

400 and 400 units resulting in the respective resource capacities. The RD

values are obtained as follows. In the R2 row of Table 2, for example, the

distribution of 133 units of R2 among the projects P1, P2, P3 and P4 follows

the ratios obtained from the no-delay requirements as 0.25, 0.40, 0.15 and

0.20, respectively.

Table 2: Sample individual generation one for the initial solution for four projects (P1, P2,
P3, P4), two renewable (R1, R2) and two nonrenewable (W1, W2) resources with 1,000
unit general budget using method 1.

No-delay Resource Resource Dedications
Resources Requirements Capacities P1 P2 P3 P4

R1 P1:20 P2:15 P3:30 P4:35 67 14 10 20 23

R2 P1:50 P2:80 P3:30 P4:40 133 33 53 20 27

W1 P1:150 P2:80 P3:130 P4:240 400 100 53 87 160

W2 P1:200 P2:80 P3:100 P4:220 400 133 53 67 147

4.1.3. Resource Dedication Space Search

RDS search is executed on the RD part of the individuals with different

crossover and mutation operators in addition to CA for RD. Here only a

summary of CA used for RD and the GA operators will be given. A detailed

explanation can be found in Besikci et al. (2013).

Genetic Algorithm Operators

There are three mutation operators defined for the RDS search. The first

mutation operator swaps RD values of two different projects of a randomly

selected resource in an individual. The second mutation operator swaps two

randomly selected RD values within a randomly selected project in an indi-
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vidual. Finally, in the last mutation operator, two RD values are randomly

swapped without any resource or project selection.

Three different crossover operators are defined for RDS search. The first

crossover operator creates two new individuals from two randomly selected

individuals by changing RDs of two randomly selected projects. The second

crossover operator swaps RD values of selected resources of two different

individuals. And finally, the last crossover operator swaps strings of RDs

without any project or resource selection between two individuals.

The individuals generated from GA operators can have resource infeasi-

bility caused by the corresponding RD values. These infeasibilities (if any

exist) are corrected by decreasing the RDs of the projects according to the

general resource capacities.

CA for RD is a local improvement heuristic which utilizes the preference

concept. The preference of a resource can be thought of as the value of the

resource for the project or a criterion for the amount of improvement that will

be seen in the objective, if an additional unit of that resource is employed.

The basic rationale behind CA for the RD procedure is moving the resource

state of the project to a more preferable state, which will result in a solution

at least as good as the solution of the previous one. Preferences of project

for the resources are represented with pvk and pvi values for renewable and

non-renewable resources, respectively. There are two different methods pro-

posed by Besikci et al. (2013) to obtain the preferences: the first one is based

on linear relaxation of the MRCPSP model; the other one, on a Lagrangian

relaxation of the model. In this paper, the Lagrangian relaxation based

preference calculation is used, since it is shown to lead to overall better pref-

erences of projects for the resources (Besikci et al., 2013). The Lagrangian

relaxation based preference calculation employs a modified Lagrangian re-

laxation formulation of MRCPSP, where the renewable and nonrenewable

resource constraints are relaxed. The values of the Lagrangian coefficients,

after a one step sub-gradient optimization, are taken as the preferences of
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the projects for the resources.

Solving MRCPSP for Each Project

CPLEX 11.2 is used to solve the MRCPSP for each project. Since CA for

RD is applied repeatedly through the execution of GA, some modifications

are needed to reduce the run time of MRCPSP for each project. There are

two basic tasks when solving an MRCPSP with CPLEX : model generation

and executing the solution procedure.

When solving MRCPSP repeatedly for different RD instances for a given

project, the basic difference is the renewable and nonrenewable resource ca-

pacity values. Thus, a generic model can be used to represent a project

and when a solution is needed for a given RD instance for the correspond-

ing project, then the only required task is changing the right hand side of

the renewable and nonrenewable resource constraints. This modification can

easily be achieved by defining a decision variable for each renewable and non-

renewable resource and updating them before solving the model. Note that

to use generic models, a long time horizon (Tv for each project), which can

cover all the possible renewable and nonrenewable resource capacity values,

is needed. This time period is calculated at initialization phase by deter-

mining the minimum renewable and nonrenewable resource requirements for

each resource and applying the Simulated Annealing approach proposed by

Bouleimen and Lecocq (1998). The minimum renewable resource require-

ment is calculated by finding the minimum renewable resource requirement

for each project over all modes and then taking the maximum of these val-

ues over all projects. Then the minimum nonrenewable resource requirement

can be calculated from the selected modes in the aforementioned procedure.

However, this long time horizon results in a very large set of activity finish

decision variables. To compensate for the solution time inefficiency caused by

this large decision variable set, some modifications are made. First of all, all

solved cases for each project are stored, and whenever the same RD instance
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is encountered for a project, then the stored solution is used for that case.

In addition, the number of the activity finish decision variables are reduced

by giving upper bounds to the corresponding generic model employing re-

source dominance cases. When an RD instance for a given project has higher

resource capacity values for all renewable and nonrenewable resources than

one of the stored solved problems, which we call a resource dominance case,

then the makespan of the corresponding solution is given as an upper bound

to the generic model. This bounding is achieved by limiting the makespan

of the project with this upper bound, and CPLEX eliminates the redundant

decision variables in the pre-processing phase.

4.1.4. General Resource Capacities Space Search

The RPS search is implemented on the general resource capacities part

of the individual by employing GA operators defined for RPP and a new

improvement heuristic, CA for the RP, which are explained below in detail.

Genetic Algorithm Operators

To search through the general resource capacities space a mutation and a

crossover operator are defined. The mutation operation randomly swaps two

general resource capacity values for a given individual. In crossover operation

two different individuals are selected and between these individuals, two ran-

dom general resource capacity values are swapped. After the application of

GA operators, an individual can become infeasible according to the general

resource budget and the RD totals. The general resource budget infeasibil-

ity is corrected by changing the general resource capacities of the resource

that are not swapped in the first place. If the infeasibility of the general

resource capacities cannot be corrected by only decreasing the general re-

source capacities of the unchanged resources, then the resources affected by

the GA operators are accordingly decreased. Similarly, when there is an RD

infeasibility, the RD values are adjusted in proportion to the general resource

capacities. The probabilities for each crossover and mutation type operators
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as well as CA for RD are set to 0.1.

Combinatorial Auction for Resource Portfolio Problem

CA for RP is based on preferences for the general resources. The appli-

cation of CA for RP is similar to CA for RD. With the preferences and slack

budget (difference between given general budget and budget value of the

general resource capacity instance) at hand, the slack budget is distributed

among the general resource capacities according to the preferences. The

amount of budget that will be used for different resources is determined us-

ing a bounded knapsack model similar to the one used in CA for RD where

preferences are profits and slack budget is the knapsack capacity. The key

point of the algorithm is the calculation of preferences for the general resource

capacities.

To determine the preferences for the general resources, the preferences

obtained from the CA for RD are utilized. The preference for a general

resource is calculated as the sum of the preferences of the individual projects

for that resource as follows.

gk =

V∑
v=1

pvk Preference for general renewable resource k (12)

gi =

V∑
v=1

pvi Preference for general nonrenewable resource i (13)

where pvk and pvi are preferences of project v for renewable resource k and

nonrenewable resource i, respectively.

The slack for general resource capacities can easily be calculated from

the solution of individual MRCPSP for each project. The difference between

the general budget and the total amount of resource used by all the projects

(corrected with resource prices) will give the slack budget. Combining all

this information provides the following knapsack model.
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max z =

I∑
i=1

yigi +

K∑
k=1

ykgk (14)

Subject to
I∑

i=1

cwiyi +

K∑
k=1

crkyk ≤ b (15)

yi ≤ ai (16)

yk ≤ ak (17)

yi and yk ∈ Z+ (18)

where yi (yk) is the positive decision variable for the amount of resource ca-

pacity allocated to nonrenewable resource i (renewable resource k); ai and

ak are the upper limits for the transferred nonrenewable and renewable re-

sources, respectively, calculated from the current general resource capacities

and no-delay general resource requirements and b is the slack budget. The

knapsack model is solved using CPLEX, which has a small variable set (total

number of renewable and nonrenewable resources) and easy to solve.

With the results of the above knapsack model the general resource capac-

ities are updated so that the unused general resource budget is transferred to

the resources with high preference values. The RD values for each project are

also updated according to the new general resource capacities with respect

to the preferences of projects for resources. A new solution is obtained by

solving the MRCPSP for each project with the new RD values.

4.1.5. Execution of the Two-Phase GA

The GA initially starts with ZxH individuals generated as described in

Section 4.1.2. RD sub-populations generated from a general resource capacity

instance are subject to only RDS search until convergence. In other words,

only RD parts of individuals in the sub-populations are evolved. A specific

RD sub-population is said to have converged if no improvement is observed

for a specific number of generations for an RD sub-population. Whenever an

RD sub-population converges, the distinct individuals within it are migrated
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into the RP population for phase two. The rationale behind applying RPS

search after the convergence of an RD population is the possibility to obtain

better individuals with RPS search operators applied on a evolved RD part.

For CA for RP heuristic, it is very important to have “good” preferences of

projects for resources since those values are used to calculate general resource

preferences. With a converged RD part, the preferences of general resource

capacities will be able to valuate the value of a general resource with respect

to the needs of the projects. Thus, especially for CA for RP, it is important to

have a converged RD part, which would have useful and evolved information

that the heuristic can use. Note that until all RD sub-populations converge,

RD sub-populations and RP population run parallel.

The evolution in the RP population involves RPS search as well as RDS

search. In the second phase, along with GA operators for both RD and RP,

CA for RP is employed every time CA for RD is employed.

For the selection strategy, the best individuals among the current popu-

lation and the newly generated individuals according to their fitness values

are included in the next generation. To compensate for the intensifying ef-

fect of this selection strategy, the individuals for crossover, mutation and CA

operators are randomly selected as a diversification strategy.

The GA parameters in the test runs are as follows. As defined above, the

size of the population is ZxH. In the preliminary runs, it is observed that

when Z is lower than 8 and H is lower than 10, GA does not give good

overall results and when corresponding parameters are greater than 8 and

10, respectively, the algorithm does not improve. Thus the population size is

determined as 80. Based on preliminary test runs, the probabilities for each

crossover and mutation operator and as well as CA operators are taken as

0.1. GA approaches are terminated when the best solution in the population

does not change for 10 iterations or within 180 minutes, whichever is reached

first.

The execution of the two-phase GA is summarized below and the general
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structure of the two-phase GA is depicted in Figure 1.

Initialization of the Sub-populations: Initialize the general resource capacity

instances according to the general resource budget and RD instances accord-

ing to the general resource capacity instances. This procedure is shown as

the Initialization in Figure 1.

Step 1: Apply steps 1.1-1.3 to generate general resource capacity in-

stances.

Step 1.1: Set general resource capacities proportional to no-delay re-

source requirement totals of the projects.

Step 1.2: For each resource, determine the capacity equal to the

no-delay requirement totals of all projects, set capacities for remain-

ing resources proportional to no-delay resource requirements of the

projects.

Step 1.3: Generate random general resource capacity instances such

that the budget is not exceeded.

Step 2: Apply steps 2.1-2.3 for each general resource capacity instance

created to obtain individuals for RD sub-populations.

Step 2.1: Set RDs proportional to no-delay resource requirements

of the projects.

Step 2.2: For each project set the project as the selected project,

dedicate no-delay resource requirements to the selected project. For

the remaining projects generate RDs proportional to no-delay resource

requirements of the projects.

Step 2.3: Generate random RDs.

Search: Run until allowed execution time of 180 minutes is reached or the

best solution in the population does not change for 10 iterations

Phase-I RD Space Search: Apply the RDS search operators in RD popu-

lations and RP population.

Step 1: Apply crossover operations for RD

Step 2: Apply mutation operations for RD
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Step 3: Apply CA for RD

RD Space Convergence Check: For each RD population check conver-

gence. If an RD population has converged, move distinct instances to

RP population after applying CA for RP to each individual.

Phase-II General Research Capacity Space Search: For each individual in

the RP population, execute the following steps.

Step 1: Apply crossover operation for general resource capacities

Step 2: Apply mutation operation for general resource capacities

Step 3: Apply CA for RP, if CA for RD has been applied to the

individual

Report: Report the resulting schedules when the algorithm terminates.

Figure 1: General structure of the two-phase GA

4.2. A Monolithic GA with Simultaneous RD and RP Space Search

In adopting a monolithic view to RPP, a simultaneous execution mode

for the proposed GA operators and the CA for RP is introduced. In this

execution mode, the individuals in the population are evolved applying gen-

eral resource capacities space search (mutation, crossover and CA for RPP)
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simultaneously with RDS search. In this approach, CA for RP is applied to

individuals, which have completed a CA for RD iteration.

5. Experimental Results

The solution approaches for RPP are tested using a series of test problems.

Two different measures characterize and group test problems: network com-

plexity (NC) and maximum utilization factor (MUF) (Kurtuluş and Narula

, 1985).

When an activity-on-node representation is used, NC is defined as the

number of arcs divided by the total number of nodes. MUF is calculated as

the ratio of the no-delay schedule resource requirement and the available re-

source. If MUF value is less than or equal to one, then the resource capacity

is sufficient to obtain a no-delay schedule. To have a meaningful MUF mea-

sure for the RD policy, the calculation of no-delay resource requirement of the

multi-project problem is calculated as the sum of no-delay resource require-

ments of the individual projects. In addition, in the proposed multi-project

scheduling environment, the resource capacities are not readily present but

determined from a given resource budget. Thus, MUF calculation is modified

by calculating the budget value of no-delay resource requirement divided by

the general resource budget. If MUF value is equal to 1, then the general

resource budget is sufficient to construct a general resource capacity instance

that will allow a no-delay schedule for all projects. Similarly when MUF

value is increased, then the general resource budget becomes tight.

Multi-project problems are generated by combining 6 projects either from

j20 or j30 sets of PSPLIB (http://129 .187.106.231/psplib/) (Kolish and

Sprecher , 1996). The modes of the activities of the projects are modified to

obtain a mode set that does not have dominated modes, such that a mode

with higher total resource cost has always a lower duration, but the general

network structure is kept as it is. The problem sets have four resources, two

being renewable and two nonrenewable. From this resource set, one of each
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resource type is selected as more costly and leading to a faster processing

time but their prices are higher than those of the other resources of the same

type.

Four different modes are generated with different durations and resource

usages as follows. The fastest mode has the highest cost and it has re-

source consumption from all of the resources. The second fastest mode has

a major amount of resource consumption of only costly resources. The third

fastest mode uses only a moderate amount of the costly resources. Lastly,

the slowest mode employs only the cheap resources. The mode generation is

depicted in Table 3. The values of a, b, c, and d are selected as the mini-

mum resource requirements and f is the minimum duration over all modes of

the corresponding activity of the original data set taken from PSPLIB. The

durations and resource usages are corrected according to the total resource

costs of modes but have random components e and f with a relatively small

magnitude, where e is uniformly distributed between 0 and corresponding

component (for example while calculating the resource requirement of R2

for M2 e is U[0-a]) and f is uniformly distributed between U[0-x/2]. The

modifications in the resource usage and durations of the modes are made to

obtain a nondominated mode set with respect to the total resource costs.

Bold letters indicate the relatively costly resources.

Table 3: General resource usage and duration characteristics of the modes

Resource Usages
R1 R2 W1 W2

Modes Duration

M1 2a b 2c d x

M2 2a±e 0 2c±e 0 x+f

M3 a±e 0 c±e 0 2x-f

M4 0 b±e 0 c±e 3x

The test problems are grouped according to different levels of number of

activities, NC and MUF values. Two levels of NC (1.4 and 1.8) and four
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different levels of MUF (1.4, 1.5, 1.6 and 1.7) are defined and a full fac-

torial design with 10 problems in each combination generated for projects

with 22 and 32 activities. Test runs demonstrate that when MUF values

are lower than 1.4 the problem approaches the unconstrained case, a con-

sequence which is of no interest here. MUF values higher than 1.7 lead to

infeasibility for most of the cases for exact solution approaches. So as to

compare different solution approaches for different problem characteristics, a

base problem group with 10 problems is generated with NC value of 1.8 and

MUF value of 1 for multi-project problems with 22 and 32 activities. From

this base set, problems with different NC values are generated by randomly

deleting precedence relations between different activities. Similarly prob-

lems with different MUF values are generated accordingly by adjusting the

general resource budget. For example, the problem sets with activity count

22-NC 1.4-MUF 1.5 and activity count 22-NC 1.8-MUF 1.5 have the same

mode structure and general resource budget but the previous combination

has some of its precedence relations deleted to achieve an NC value of 1.4.

The due dates for projects are calculated to achieve a positive weighted

tardiness value. The project with the highest weight has its due date as the

calculated makespan of the unconstrained case using critical path method-

ology, which is named as the no-delay due date. The due dates become less

than the no-delay due date as the weight of the projects decreases. The to-

tal weighted tardiness value calculated with no-delay due dates and assigned

due dates gives a lower bound for the problem. Table 4 reports due date and

weight assignments of projects (Besikci et al., 2013).

The data set used for this study can be downloaded from the following

link: ”http://www.bufaim.boun.edu.tr/rpp-rd-dataset.zip”

Results are presented in Tables 5 and 6 and Figures 2 and 3 for projects

with 22 and 32 activities, respectively. The Two-Phase GA column refers to

the GA that employs a two-phase search for RD and RP spaces. The Mono-

lithic GA column refers to the monolithic approach. The Exact column is for
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Table 4: Possible minimum weighted tardiness values for individual projects

Project Due date Weight Possible Min. WT

Project1 No-delay due date 6 0

Project2 No-delay due date - 1 5 5

Project3 No-delay due date - 2 4 8

Project4 No-delay due date - 3 3 9

Project5 No-delay due date - 4 2 8

Project6 No-delay due date - 5 1 5

Possible Min. Total WT 35

the exact solution approach for the given mathematical formulation employ-

ing CPLEX 11.2. Every row in the tables represents a problem group and is

identified with the corresponding entry in the NC-MUF column, which shows

the corresponding network complexity and maximum utilization factors used.

There are 10 problem instances in a problem group. The following notation is

employed in Tables 3 and 4. AWT stands for the average weighted tardiness

for a problem group. NS indicates the case where no feasible solution can

be reached when employing the exact solution approach. Values under the

ART column report the average execution time of the solution approaches in

minutes for a problem group. All of the solution approaches have a run time

limit of 180 minutes. Furthermore, the GA approaches terminate, if the best

solution is not improved for 10 iterations. The OS column shows the number

of instances in a problem group for which the optimal solution is found. For

the exact solution approach, if OS + NS 6= 10, then the difference is the

number of incumbent solutions (a feasible solution that is not proven to be

optimal). Note that when a solution approach cannot find any solutions for

a problem group, then AWT is labeled as not available (NA).

The results can be examined according to the solution quality and time

and then compared using the paired t-test. It is intuitive and obvious that

MUF is the most significant factor for the difficulty of the problem instances.

For the relatively easy problems (with MUF values 1.4), all solution ap-

proaches can find the optimal solution in a reasonable time. With moderate

27



Table 5: Results for problem groups containing 6 projects with 22 activities

Monolithic GA Two-Phase GA Exact

NC-MUF AWT ART OS NS AWT ART OS NS AWT ART OS NS

1.4-1.4 42.60 49.18 7 0 36.00 36.11 8 0 36 3.31 8 0

1.4-1.5 61.60 96.14 2 0 47.70 84.58 8 0 48.81 108.48 8 1

1.4-1.6 98.8 157.3 0 0 67.00 127.7 1 0 88.75 180 2 6

1.4-1.7 138.5 162.4 0 0 104 135.5 1 0 109 180 2 8

1.8-1.4 44.50 38.51 7 0 39.40 32.31 9 0 39.40 21.12 9 1

1.8-1.5 71.40 91.39 0 0 51.80 76.96 7 0 51.80 105.55 7 3

1.8-1.6 105.50 171.4 0 0 72.90 144.90 1 0 92.20 180 2 7

1.8-1.7 130.80 167.60 0 0 99.70 144.40 1 0 119.70 180 1 9

Table 6: Results for problem groups containing 6 projects with 32 activities

Monolithic GA Two-Phase GA Exact

NC-MUF AWT ART OS NS AWT ART OS NS AWT ART OS NS

1.4-1.4 35.00 19.55 10 0 35.00 18.56 10 0 35 14.8 10 0

1.4-1.5 53.30 111.8 0 0 35.60 98.42 7 0 41.35 114.73 6 4

1.4-1.6 93.00 170.6 0 0 62.40 144.80 0 0 NA 180 0 10

1.4-1.7 106.2 163.8 0 0 73.80 133.80 0 0 NA 180 0 10

1.8-1.4 51.55 47.33 8 0 35.00 49.65 10 0 35 62.13 10 0

1.8-1.5 82.17 85.69 4 0 39.20 73.17 7 0 43.03 118.09 6 4

1.8-1.6 100.30 173.3 0 0 63.30 135.70 0 0 NA 180 0 10

1.8-1.7 114.70 166 0 0 82.60 146.90 0 0 NA 180 0 10

MUF values (1.5), the monolithic GA with simultaneous RD and RP search

and the exact solution approach start to fall back, when compared to the

two-phase GA. For the hardest problems of the set (with MUF values 1.6

and 1.7), the gap widens between the two-phase GA and the other solution

approaches. Note that the exact solution approach cannot find results in the

given time limit for a significant number of problems for projects with 22

activities and for all of the problem instances for projects with 32 activities.

To summarize the results for solution quality, one can say that two-phase

GA gives significantly better results than does the monolithic GA, a finding

which shows the benefit of exploring the problem space in different phases.
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Figure 2: Results in graphical format for problem groups containing 6 projects with 22
activities (AWT for each problem group)

Furthermore, for relatively easy problems, the two-phase GA gives compet-

itive results when compared with the exact solution approach. For problem

instances with higher MUF values, the two-phase GA has a clear solution

quality advantage over the exact solution approach, which even fails to find

feasible solutions for most of the cases.

When the results are compared according to the solution times for the

relatively easy problems (with MUF values 1.4), it can be seen that the exact

solution approach is significantly better than the GA approaches. This can

be explained by the heavy initialization cost for the GA approaches, which

does not pay off for the easy cases. For MUF values 1.5, 1.6 and 1.7, the two-

phase GA is significantly better than the remaining approaches with respect

to solution times. This finding indicates that the two-phase GA approach

explores the solution spaces more effectively than the monolithic GA with

simultaneous space search. In other words, searching RP space after the RDS

search has converged improves the execution time of GA. Additionally, note

that problems with 32 activities have a higher solution time in general as
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Figure 3: Results in graphical format for problem groups containing 6 projects with 32
activities (AWT for each problem group)

expected, because of the problem size.

6. Summary and Conclusions

This paper presents a new approach for multi-project scheduling envi-

ronments where general resource capacities are determined from a general

resource budget and the resources in the multi-project environment cannot

be shared among projects and must be dedicated. The general mathematical

formulation of RPP is proposed and a new improvement heuristic is defined

and employed in two different GA approaches for the solution of RPP. The

difference between the proposed GA approaches is related with the way of

exploring the RD and RP spaces. As the name implies, the simultaneous

GA approach searches RD and RP spaces simultaneously. The two-phase

GA approach first searches the RDS for different general resource capacity

instances until the RD part of the individuals converge. After convergence,

the individuals are also subject to RP space search. The rationale behind

this two-phase approach for GA is to obtain better preferences for general

resources from converged RD values of the individual projects. The experi-
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mental results show that, the two-phase GA approach gives overall the best

results among the proposed solution approaches with respect to solution time

and quality.

An important aspect of the proposed solution procedure lies in its useful-

ness to the decision maker at various managerial levels. The procedure yields

different types of information related with the resource capacity decisions in a

multi-project problem environment. First of all, the general resource capacity

values correspond to the strategic resource planning decisions. Additionally,

other implicit information related with these general resource capacities is

produced in the solution procedure. For instance, the preference values of

general resource capacities show the relative importance of resources with

respect to the projects at hand, and hence, indicate the criticality of the

resources in case of a disruption in availability of these resources. Another

important result is that the RD values correspond to rough-cut capacity

planning for our problem environment. Finally, the solution also gives the

detailed scheduling for each project, which can be used as a baseline schedule.

With Besikci et al. (2013) and this paper, the RD concept is extensively

studied. RD is a resource management policy, which needs further attention.

Obviously, the RD concept does not cover all the possible ways of using

resources thus, different resource management approaches such as a combi-

nation of RD and RS approaches can be the first extension. Another future

research would be using different objective functions such as the net present

value. Additionally, although the due dates are assumed to be given in RPP,

the procedure presented here can be adopted to support the process of due

date determination. This can be achieved by solving RPP under different

due date scenarios. In the RPP considered here, the projects are given. A

further decision component can be added to the RPP by introducing project

portfolio selection to the problem environment.
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