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Abstract 

The configuration spaces of modern software systems are too large to test exhaustively. 

Combinatorial interaction testing (CIT) approaches, such as covering arrays, 

systematically sample the configuration space and test only the selected configurations. 

The basic justification for CIT approaches is that they can cost-effectively exercise all 

system behaviors caused by the settings of t or fewer options. We conjecture, however, 

that in practice many such behaviors are not actually tested because of masking effects 

– failures that perturb execution so as to prevent some behaviors from being exercised. 

In this work we present a feedback-driven, adaptive, combinatorial testing approach 

aimed at detecting and working around masking effects. At each iteration we detect 

potential masking effects, isolate their likely causes, and then generate new covering 

arrays that allow previously masked combinations to be tested in the subsequent 

iteration. We empirically assess the effectiveness of the proposed approach on two large 

widely-used open source software systems. Our results suggest that masking effects do 

exist and that our approach provides a promising and effcient way to work around them. 
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Özet 

 Modern yazılım sistemlerinin yapılandırma uzayı ayrıntılı bir şekilde test 

edilemeyecek kadar geniştir. Örtme dizileri gibi birleşimsel etkileşim test etme 

yaklaşımları, sistematik olarak yapılandırma uzayını örnek olarak dener ve sadece 

seçilmiş yapılandırmaları test eder. Birleşimsel etkileşim test etme yaklaşımındaki temel 

gerekçe, t ya da daha az seçenek ayarlarından kaynaklanan tüm sistem davranışını 

maliyet-etkin bir şekilde uygulayabilmeleridir. Ancak pratikte çoğu böyle davranışların 

maskeleme etkilerinden dolayı gerçekten test edilmediğini tahmin etmekteyiz. Bu 

çalışmada maskeleme etkilerini belirlemek ve bu konu etrafında çalışmaya yönelik bir 

geribesleme-güdümlü, uyarlamalı, birleşimsel test etme yaklaşımı sunmaktayız. Her 

iterasyonda, olası maskeleme etkilerini belirleyip, sezgisel olarak onların olası 

sebeplerini izole etmekteyiz ve daha sonra bir sonraki iterasyonda test edilecek olan 

önceden maskelenen birleşimlere izin veren yeni örtme dizileri üretmekteyiz. Önerilen 

yaklaşımın etkinliğini ölçmek için, yaygın bir şekilde kullanılan açık kaynaklı iki tane 

yazılım sistemi üzerinde yaklaşımımızı değerlendirdik. Sonuçlarımız, maskeleme 

etkilerinin var olduğunu ve yaklaşımımızın maskeleme etkisi üzerinde çalışmak için 

umut verici ve etkili bir yol sağladığını öne sürmektedir. 
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Chapter 1 
 

Introduction 

 

  Software customization, through the modification of run-time or compile-time 

preferences, allows users to make controlled variations to how their software behaves. 

Customizable systems such as web servers (e.g. Apache), databases (e.g. MySQL), 

application servers (e.g. Tomcat) or office applications (e.g. MS Word) which have 

dozens or even hundreds of customizable options can have an enormous number of 

configurations.  

 While validating the correctness of the system across its entire configuration 

space is desirable, since configuration spaces are combinatorial spaces that grow 

exponentially in the number of configurtion options, exhaustive testing of all 

configurations is generally infeasible. One solution approach, called combinatorial 

interaction testing (CIT), systematically samples the configuration space and tests only 

the selected configurations [2] [3][4][18][26].  

 CIT approaches generally work by first defining a model of the system’s 

configuration space – the set of valid ways it can be configured. Typically, this model 

includes a set of configuration options, each of which can take on a small number of 

option settings. Given this model, CIT methods next compute a small set of concrete 

configurations, a t-way covering array, in which each possible combination of option 

settings for every combination of t options appears at least once [2]. Finally, the system 

is tested by running its test suite on each configuration in the covering array. 
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 Covering array approaches generally assume that there are no unknown control 

dependencies among the configuration options, option setting combinations that 

effectively cancel other options setting combinations. Known control dependencies are 

worked around by specifying constraints [2][31] or by defining a set of default test 

cases in addition to the covering array [2]. Given these assumptions, and assuming the 

existence of a well constructed test suite, the basic justification for covering arrays is 

that they can cost-effectively exercise all system behaviors caused by the settings of t or 

fewer options. 

 In this thesis we hypothesize however that in practice many such behaviors are 

not actually tested due to masking effects. That is, we believe that some test failures can 

perturb program execution in ways that prevent other option-related behaviors from 

being tested. Moreover, we believe that masking effects are not accounted for with 

current test processes. As a result, developers may develop a false confidence in their 

test processes, believing them to have tested certain option setting combinations, when 

they in fact have not. One simple example of a masking effect would be an error that 

crashes a program early in the program's execution. The crash then prevents some 

configuration dependent behaviors, that would normally occur later in the program's 

execution, from being exercised. Unless the combinations controlling those behaviors 

are tested in a different configuration, or unless the error is fixed and the faulty 

configuration is re-tested, we cannot conclude that those configuration dependent 

behaviors have been tested. 

 In this work we present a feedback driven adaptive combinatorial testing 

approach to prevent the harmful consequences of masking effects. At each iteration, we 

detect potential masking effects, isolate their likely causes, and then schedule the set of 

t-way option combinations that are being masked for testing in the subsequent iteration. 

The process iterates until for all tests each and every t-way option setting combination is 

present in at least one configuration in which the test passed or failed with a non-option-

related cause, or the combination is marked as failure inducing. Our empirical 

evaluation, conducted on two large and widely-used open source software systems 

(namely MySQL and gcc), suggests that the proposed approach is better than other 

approaches in preventing masking effects. 

 



3 
 

1.1 Contributions 

 

The contributions of this thesis can be summarized as follows: 

1. Defined masking effects 

2. Introduced test case-aware covering arrays 

3. Defined a novel interaction coverage criterion to reduce harmful consequences 

of masking effects 

4. Developed a feedback driven adaptive combinatorial testing approach to realize 

the new coverage criterion in practice 

5. Empirically evaluate the proposed approach by using two open source widely-

used software applications as our subject applications 

 

1.2 Organization of the Thesis 

 

 The remainder of this thesis is organized as follows: Chapter 2 briefly presents 

some background information and discusses the related work; Chapter 3 defines 

masking effects; Chapter 4 introduces test case-aware covering arrays; Chapter 5 

describes a feedback driven adaptive combinatorial testing approach; Chapter 6 

describes the empirical studies; Chapter 7 presents concluding remarks, and finally 

Chapter 7 concludes with some future work ideas. 
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Chapter 2 

 
Related Work and Background Information 

 

In this chapter, we discuss the related work on covering arrays. We furthermore 

provide some background information about classification trees which we use to 

automatically identify likely causes of masking effects. 

 

2.1     Covering Arrays 

 

Covering array based sampling for software testing is a specification-based 

technique that was originally proposed as a way to ensure even coverage of 

combinations of input parameters to programs [2][11][16][43]. In more recent work 

covering arrays have been used to model configurations that should be selected for 

testing [9][10][3], where the covering array defines a test schedule and each 

configuration is tested with an entire suite of test cases. Some other domains for which 

covering arrays have been used in testing is to test graphical user interfaces [20] and in 

model based testing [15].  

A t-way covering array [2] is an array of size N � k where N defines the number 

of configurations to be tested and k is the number of configuration options that can be 

manipulated. Each of the configuration options will have some number of settings 

(often denoted as � or �� when different configuration options have differing numbers 
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of settings). Each configuration (or row of the array) is a set of valid settings, one for 

each configuration option, of the software under test.  Within the set of N 

configurations, each t-way combination of option settings will be found at least once, 

where t, the test strength, is usually much smaller than k, with t = 2 as the most common 

strength [28]. Empirical research has shown that t < 6 can potentially find a large 

proportion of interaction faults [4]. An interaction fault is one that can only be 

manifested when a specific set of t-settings is used in the same configuration.  Further 

empirical results show that covering arrays are effective in practice 

[9][10][14][3][17][38]. 

Table 1 presents a 3-way covering array created for a hypothetical software 

system with 10 binary options (i.e., each option has two levels of settings: 0 and 1). 

Since this is a 3-way covering array, it contains each possible combination of option 

settings for every combination of 3 options appears at least once. In options A, B, and C 

for example, one can find all posible combinations of their settings (i.e., 000, 

001,010,011, 100, 101, 110, and 111) in the rectangle drawn on the table. This also 

holds for all the remaining combinations of 3 options (e.g., ABD, ABE, etc.) 

Covering arrays aim to cover all t-way option setting combinations by using the 

minimum number of configurations. The goal here is to reduce the amount of resources 

required for testing. For instance, although there are ��� � 	
�� configurations in the 

configuration space of our hypothetical system, our 3-way covering array has only 13 

configurations.  

We refer to the type of covering arrays discussed in this section as traditional 

covering arrays in the remainder of the document. In this thesis we compute a novel 

type of a covering array, called test-case aware covering arrays. One way test case-

aware covering arrays differ from traditional covering arrays is that they are not just a 

set of configurations as is the case in traditional covering arrays, but a set of 

configurations each of which is associated with a set of test cases.  
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2.2    Configuration Model 

 

 The fundamental construct used to compute covering arrays is a model, called a 

configuration model. The configuration model typically includes a set of configuration 

options, their discrete settings, and system-wide inter-option constraints (if any). The 

number of settings for each configuration option can be varied. In a nutshell, the 

configuration model defines a valid configuration space for testing. A valid 

configuration is a combination of option settings that does not violate any constraints. 

The collection of all valid configurations constitutes a valid configuration space for the 

system under test. To test a configuration, a given test suite is executed in the 

configuration.  

 Configuration models are typically extracted by domain experts or test teams. 

On the other hand, in this thesis we start with an initial configuration model and through 

experimentation refine the model as we determine new option setting combinations that 

cause masking effects.   

 In the previous studies that use covering arrays for testing configurations 

[3][10], the system under test has one configuration model and each configuration runs 

the same set of test cases.  The work in this thesis differs in that it maintains a 

configuration model for each test case and schedules potentially different sets of test 

Table 1: An example 3-way covering array 

A B C D E F G H I J 
0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 
1 1 1 0 1 0 0 0 0 1 
1 0 1 1 0 1 0 1 0 0 
1 0 0 0 1 1 1 0 0 0 
0 1 1 0 0 1 0 0 1 0 
0 0 1 0 1 0 1 1 1 0 
1 1 0 1 0 0 1 0 1 0 
0 0 0 1 1 1 0 0 1 1 
0 0 1 1 0 0 1 0 0 1 
0 1 0 1 1 0 0 1 0 0 
1 0 0 0 0 0 0 1 0 1 
0 1 0 0 0 1 1 1 0 1 
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cases to be executed in each configuration.  We do not know of other work that uses this 

notion of a per-test case configuration model. 

 

2.3    Seeding 

 

 A configuration model can contain a seed. The seed is basically a set of 

configurations. From the perspective of a covering array generator, all the t-way option 

setting combinations present in the seed are considered to be already covered by the 

respective configurations. The generator simply computes a covering array around the 

seed by adding additional configurations to cover the rest of the required combinations. 

 From the perspective of developers, the seeding mechanism are typically used to 

guarantee the testing of certain configurations [2][9][24].  

 In this thesis, on the other hand, we use the seeding mechanism to force test runs 

to share configurations as much as possible, which potentially reduces the number of 

configurations required.  

 The seeding mechanism in one form or another is supported by many covering 

array generation tools, such as ACTS [6], AETG [2], PICT [24], SST [25]. We in 

particular use ACTS to generate test configurations in this thesis. 

 

2.4    Constraints 

 

In a highly configurable system, not all system configurations may be valid 

[29][30][31][32]. To implicitly express invalid configurations, configuration models 

contain inter-option constraints. Improper handling of constraints can lead to the 

generation of invalid test configurations, which in turn can lead to wasted testing. 
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 To illustrate the necessity of constraints, Table 3 depicts a configuration model 

for a software system with 3 binary options [1].  In this example, we have an inter-

option constraint: If the operating system is Linux, then IE (Microsoft Internet Explorer) 

can not used as a browser. This is because IE does not support any Linux platforms. In 

other words, any configurations that has Linux and IE at the same time simply do not 

exist for the system under test. This constraint, for example, can be expressed as an 

inter-option constraint in a configuration model as: OS != XP  → Browser =  Firefox. 

Many approaches have been proposed in the literature to handle inter-option 

constraints. Cohen et al. study the nature of such constraints in real systems [34] . Mats 

et al. propose various techniques for efficient handling of constraints [35]. Bryce et al. 

introduce “soft constraints” to mark option setting combinations that are permitted, but 

undesirable to be included in a covering array [29].  

These approaches are mainly concerned with inter-option constraints, that are 

enforced globally across the entire configuration space for all the test cases. In the 

remainder of this document such constraints are referred to as system-wide inter-option 

constraints. In this thesis, we, on the other hand, express options setting combinations 

that cause masking effects as test case-specific inter-option constraints and enforced 

them on a per test case basis. 

 

2.5    Methods for Constructing Covering Arrays 

 

The problem of generating covering arrays is NP-hard[44][27]. In the literature, 

four main types methods have been proposed to generate covering arrays[36][39][40]: 

greedy methods [2][24], heuristic search-based methods [45][41], mathematical 

Table 2: Simple example configuration options 

Option Settings 
OS {XP, Linux} 
Browser {IE, Firefox} 
DBMS {MySQL, Oracle} 
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o1 

methods [33], and random search-based methods [37][23]. Nie et al. provide a 

comprehensive survey of these methods [44].  

In this work, we use a tool, called ACTS [6][19], that implements a greedy 

algorithm, called IPOG [42], as a computational primitive to generate test case-aware 

covering arrays.  

                    

 

       

        

 

�	 � 	  � 

Figure 1 An example classification tree 

 

2.6    Classification Trees 

  

In this thesis, we use classification tree analysis (CTA) to characterize failing 

configuration sub-spaces [4][21]. CTA is a recursive partitioning approach to build 

models that predict a configuration’s class (e.g., passing or failing) based on the settings 

of the options that define the configuration. This model is tree-structured (see Figure 1). 

Each node denotes an option, each edge represents a possible option setting, and each 

leaf represents a class or set of classes (if there are more than two classes).  

Classification trees are constructed using data called the training sets. A training 

set consists of configurations, each with the same set of options, but with potentially 

different option settings together with known class information.  

1. For each option, partition the training set based on the settings of that option.  

2. Evaluate the option based on how well it partitions configurations of different 

classes. 

3. Select the best option and make it the root of the tree. 

4. Add one edge to the root for every option setting. 

1 0 

P F 
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5. Repeat the process for each new edge. The process stops when no further split is 

possible (or desirable). 

For example, the overly simplified classification tree given in Figure 1 indicates 

that configurations are likely to fail when the configuration option o1 is 1. Otherwise, 

configurations are likely to be successful. 

To evaluate the classifications, we use it to predict the class of previously unseen 

configurations. For each configuration, we begin with the option at the root of the tree 

and follow the edge corresponding to the option setting found in the new configuration. 

We continue until a leaf is encountered. The leaf’s class label is then the predicted class 

for the new configuration. By comparing the predicted class to the actual class, we 

estimate the accuracy of the model.  

In this research, we analyze the classification trees to extract failure inducing 

option setting combinations, i.e., the set of options and their settings that are highly 

corraleted with the manifestation of failures. In particular, we use the Weka 

implementation of the J48 classification tree algorithm [22] to build classification tree 

models. 
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Chapter 3 
 

Masking Effects 
 

Definition. A masking effect is an effect that prevents a test case from testing all t-way  

option setting combinations present in a configuration, which the test case is normally 

expected to test. 

 

Table 3: A traditional 3-way covering array vs. a 3-way test-aware covering array 

 

 

 

 

 

 
 

 

Table 3 illustrates masking effects in a hypothetical covering array-based testing 

scenario. In this scenario, we have a 3-way covering array created for a configuration 

model with 4 configuration options (o1, o2, o3, and o4). Each option takes a boolean 

value (0 or 1) and there are no inter-option constraints. The configurations are tested 

using a test case, t1. Literals P and F indicate a test success or a test failure, 

respectively. Consider test case t1. This test case failed whenever o1 = 1. As a result, it 

is possible that the 3-way option setting combinations for options o2, o3, and o4 that 

appear with o1 = 1 in the 4 failing runs (clearly marked in the table) were not actually 

tested. In fact, as these 4 combinations appear nowhere else in the covering array, it’s 

o1 o2 o3 o4  t1 
1 1 1 1  F 
1 1 0 0  F 
1 0 1 0  F 
1 0 0 1  F 
0 1 1 0  P 
0 1 0 1  P 
0 0 1 1  P 
0 0 0 0  P 



12 
 

possible that they were never tested at all. In this case, a solution could be to set o1 = 0 

in each of the failing configurations and to rerun the test case. For more complex 

examples, where the failure is caused by more than one option setting combination and 

where there are multiple failures, a more complicated response may be necessary. 

A harmful consequence of masking effects is that they cause testers to develop 

false confidence in their testing processes, believing them to have tested certain option 

setting combinations, when they in fact have not. 

Masking effects can be caused by many factors. For example, a software error 

that crashes a program early in the program's execution could prevent some 

configuration dependent behaviors that would normally occur later in the execution 

from being tested. An unaccounted control dependency among configuration options 

could prevent option setting combinations that are effectively cancelled out due to the 

control dependency from being exercised. A missing system-wide constraint among 

configuration options could render a configuration useless; the configuration may not 

even get compiled. 

In this work, we however are primarily concerned with the masking effects 

caused by option related failures.  
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Chapter 4 
 
 

Test Case-Aware Covering Arrays 
 

In this thesis, to reduce the harmful consequences of masking effects we define a 

novel interaction coverage criterion and then develop a feedback driven adaptive 

combinatorial testing process to realize the new coverage criterion in practice. 

In our automated process we first identify failure inducing option setting 

combinations that cause masking effects on a per-test-case basis. We then express these 

combinations as test case-specific constraints in our configuration models so that no 

configurations with these faulty combinations are tested in the subsequent iterations, 

effectively removing the masking effects caused by them. 

To our suprise, existing covering array-based testing approaches do not provide a 

systematic way of handling test case-specific constraints. These approaches typically 

compute a single covering array and then execute all test cases in all of the 

configurations selected, implicitly assuming that all test cases can run in all 

configurations. On the other hand, in a feasibility study conducted with MySQL (a 

widely-used open source database management system) for instance, we observed that 

roughly 250 of about 1000 test cases do not run when the system is not configured in 

certain ways. In essence, for these test cases, large portions of the configuration space 

simply don't exist. Since existing approaches do not take test case-specific constraints 

into account, they greatly suffer from masking effects.  
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Table 4: A traditional 3-way covering array-based testing 

 
 
 

 

 
 

Table 4 depicts a hypothetical 3-way traditional covering array-based testing 

scenario. Suppose that due to some inter-option dependencies in the code base, t1 and t2 

refuse to run in configurations in which  o1 = 1 and o1 = 0, respectively. On the other 

hand, t3 runs successfully in all the configurations. Note that there are 20 valid 3-way 

option setting combinations to cover for t1 and t2 , and 32 combinations for t3 . Since 

existing covering array generators do not handle test case-specific constraints, a 

traditional 3-way covering array was created and all the test cases were executed in all 

the configurations included in the covering array. As a result, 8 out of 72 (11%) valid 3-

way option setting combination-test case pairs were masked due to improper handling 

of test case-specific inter-option constraints. 

Note that expressing test-specific constraints as system-wide constraints in 

configuration models does not solve the problem. One reason is that constraints for 

different test cases may conflict with each other. This is indeed the case in our running 

example; t1 does not run in configurations in which o1 has one setting and t2 does not 

run in configuration in which the same option has the other setting. Globally enforcing 

such conflicting constraints would not generate any configurations. Another reason is 

that even if the test case-specific constraints do not conflict, enforcing them across all 

the test cases may prevent test cases from exercising some valid combinations, which 

are invalidated by other test cases. For example, enforcing the test case-specific 

constraint of t1 on t3 would prevent t3 from testing any combinations in which o1 = 1. 

 

To handle test case-specific constraints in the creation of covering arrays, we 

define a novel covering array, called test case-aware covering array. 

o1 o2 o3 o4  t1 t2 t3 
1 1 1 1  F P P 
1 1 0 0  F P P 
1 0 1 0  F P P 
1 0 0 1  F P P 
0 1 1 0  P F P 
0 1 0 1  P F P 
0 0 1 1  P F P 
0 0 0 0  P F P 
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In this approach, we take as input a confguration model of the system under test. 

The configuration model includes 1) a set of configuration options and their discrete 

settings, 2) a set of system-wide inter-option constraints which are to be enforced 

globally across the entire configuration space, and 3) a set of test cases together with 

their test case-specific inter-option constraints which are to be enforced on a per-test- 

case basis. Given a configuration model and a value of t, a t-way test case-aware 

covering array is a set of configurations, each of which is associated with a set of test 

cases such that 

1. None of the configurations violate the system-wide constraints. 

2. No test case is scheduled to be executed in a configuration that violates the test-

specific constraints of the test case. 

3. For each test case, each valid combination of option settings for every 

combination of t options appears at least once in the set of configurations in 

which the test case is scheduled to be executed. 

 

Table 5: A 3-way test-aware covering array 

o1 o2 o3 o4 tests o1 o2 o3 o4 tests 
0 1 1 1 {t1} 0 1 1 1 {t2,t3} 
0 1 0 0 {t1} 0 1 0 0 {t2,t3} 
0 0 1 0 {t1} 0 0 1 0 {t2,t3} 
0 0 0 1 {t1} 0 0 0 1 {t2,t3} 
0 1 1 0 {t1,t3} 1 1 1 0 {t2} 
0 1 0 1 {t1,t3} 1 1 0 1 {t2} 
0 0 1 1 {t1,t3} 1 0 1 1 {t2} 
0 0 0 0 {t1,t3} 1 0 0 0 {t2} 

 

  

Table 5 presents as an example a 3-way test case-aware covering array created 

for our running example. None of the test-specific constraints are violated in this test 

suite. Therefore, no masking effects occur. Furthermore, all valid 3-way option setting 

combination-test case pairs get to be tested. 

As can be seen from Table 5, one way test case-aware covering arrays differ 

from traditional covering is that they are not just a set of configurations as is the case in 

traditional covering arrays, but a set of configurations each of which is associated with a 

set of test cases. Another characteristic of test case-aware covering arrays is that they 

aim to reduce the cost of testing by running a test case only in those configurations that 
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contribute to the coverage requirements of the test case. For example, in Table 5, each 

and every test case is scheduled to be executed in half of the configurations included in 

the covering array; the other half simply does not contribute to the coverage 

requirement of the test case. 

Next, we present an algorithm to compute test case-aware covering arrays. 

 

4.1  Computing Test Case-Aware Covering Arrays 

 

In this approach, we maintain a separate configuration submodel for each test 

case. The configuration submodel of a test case, in addition to inheriting all system-

wide constraints, includes the test-specific constraints. 

We first generate a separate covering array for each test case (i.e., for each 

configuration submodel) in an iterative fashion by using a traditional covering array 

generator as our computational primitive. We then merge the individual covering arrays 

created for the test cases to obtain a test case-aware covering array for the entire test 

suite. 

In this work we use a well-known tool, called ACTS [42], to generate traditional 

covering arrays. However, the proposed approach is readily available to be used with 

other generators that support seeding. 

ACTS takes as input a configuration model. The model includes configuration 

options, their settings, system-wide constraints, and a seed. The seed is a set of 

configurations fed to the tool. Given a strength of the array (i.e., t), ACTS generates a t-

way covering array around the seed. Conceptually, ACTS treats all the t-way option 

setting combinations included in the seed as already covered and generates new 

configurations to cover the rest of the combinations. 
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Agorithm 1 - ComputeTestAwareCA  

Input t: Covering array strenth 
Input configModel: System-wide configuration model 
 

1.  ca � empty 
2. for each test τ do 
3. ����� ��computeSeed(������������,ca) 
4. ���  ��computeCA(t,�������������,������) 
5. ��� � reduceCA (���) 
6. �� � ca  ��� 
7. end for 
8. return ca 

 

Algorithm 1 presents the proposed approach. For each test case τ, we first 

compute a seed (line 3). The seed, out of all the configurations that have been so far 

included in the covering array ca, contains those configurations that do not violate the 

constraint of the test case. We then feed ACTS with the seed and the configuration 

submodel of the test case, "����������� (line 4). The result is a traditional covering 

array created for the test case at hand. The test case is then scheduled to be executed in 

all of the configurations selected. 

Note that the seed is created to reduce the total number of configurations needed. 

Since ACTS adds new configurations only to cover t-way combinations that are not 

already covered by the seed, having the seed forces the test cases to share 

configurations. 

As the next step, we perform a post-mortem analysis to further reduce the 

number of configurations by eliminating the configurations that do not contribute to the 

coverage of t-way combinations for the test case (line 5). This step is needed only for 

those covering array generators, such as ACTS, that do not automatically eliminate non-

contributing configurations in the seed. 

The reduction is performed as follows: We iterate over all the configurations 

included in the newly computed covering array. For each configuration, we compute all 

the t-way option setting combinations present in the configuration. If there is at least 

one combination which is not covered by any other configurations in the covering array, 

we keep the configuration. Otherwise, we filter out the configuration, thus reduce the 

number of configurations needed. 
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We then merge the covering array, ���, created for each test case with the 

system-wide covering array ca (line 6). Finally, after processing all the test cases, we 

output the computed t-way test case-aware covering array (line 8). 

In this thesis, we use test case-aware covering arrays are to generate a test suite 

for testing at each iteration of our iterative testing process. At each iteration, we first 

identify t-way option setting combination-test case pairs that are at the risk of being 

masked. We then compute a t-way test case-aware covering array containing all such 

combinations. Finally, the newly computed test case-aware covering array is scheduled 

to be tested in the subsequent iteration. 
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Chapter 5 

 

A Feedback Driven Adaptive Combinatorial 
Testing Approach 

 

In this thesis, we create and evaluate tools and techniques that attempt to ensure 

that each test case has a fair chance to test all required option combinations. In short, we 

want to prevent masking effects from fooling us into thinking that we have tested option 

setting combinations when we have in fact not. 

To do this, we first define a novel interaction coverage criterion, called tested t-way 

interaction coverage. Under tested t-way interaction coverage criterion, the 

configuration space is covered, iff, for all test cases, and for all valid � # $ % &�'� 

combinations of option settings, the option setting combination was present in at least 

one configuration in which 1) the test case passed, 2) the option setting combination is 

designated as a failure cause, or 3) the option setting combination was present in at least 

one configuration in which the test case failed with a non-option-related cause.  

The rationale for this criterion is as follows; When a test case runs successfully in a 

given configuration, then no masking effects caused by option-related failures have 

occured and all � # $ % &�'�  option setting combinations present in that configuration 

have been tested with that test case. When we determine that some specific option 

setting combination is causing a test case to fail, then we have tested that combination, 

but may not have tested any other combinations present in the configuration. When a 

test case fails, but we can not determine an option-related cause, then we have not 

detected an option-related masking effect and must assume that all option setting 

combinations present in the configuration have been tested with that test case. 
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Note that we, in this work, are concerned with masking effects that are caused by 

option related failures. As a matter a fact, the way we remove these masking effects is 

by testing additional configurations. If we have a non-option-related failure, testing 

more configurations may not make the failure to disappear. Consequently, at the current 

state of the this work, when we have a non-option-related failure in a configuration, we 

simply assume that all the combinations present in the configuration have been tested 

(although this may not be the case). 

In the rest of this thesis, we refer to each valid t-way option setting combination-

test case pair as a t-pair. Furthermore, we define a masked t-pair as a t-pair (i.e., a valid 

t-way option setting combination-test case pair) that is not considered to be covered by 

the tested t-way coverage criterion. 

To realize the tested t-way interaction coverage criterion in practice, we developed 

a feedback driven adaptive combinatorial testing process. This automated process takes 

as input a system, its configuration space model, and a set of test cases and iteratively 

attempts to achieve complete coverage under our criterion. 

 

5.1   Process Overview 

 

At a high level our Feedback Driven Adaptive Combinatorial Testing process 

operates as follows: 

1. Generate a covering set of configurations meeting the t-way interaction 

coverage criterion. 

2. Execute each test case on each of the required configuration in the covering set. 

3. Analyze the test case results to identify possible masking effects. 

4. Compute Coverage to determine if the tested t-way coverage has been 

achieved. If not, continue to the next step. Else, finish the process. 

5. Regenerate new covering sets to test previously masked t-pairs. Return to step 

2. 

We now discuss each step of the process in detail. Following this section we present 

an equivalent, but more detailed algorithmic view of the process. 
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5.2 Step 1: Generating covering sets 

 

At each iteration of our process, we compute a set of t-pairs to be covered in the 

current iteration. To reduce testing costs, we would like to cover these combinations 

using as few concrete configurations and test runs as possible.  

To do this we maintain a separate configuration sub-model for each test case. This 

sub-model, in addition to inheriting all inter-option constraints that must be enforced 

globally, includes the test case-specific constraints. Furthermore, all t-way combinations 

of option settings considered to be already covered by the test case are expressed as a 

seed in the model (i.e., all the currently covered interactions). 

We then feed the configuration sub-models to our test case-aware covering array 

generator discussed in Chapter 4. The result is a t-way test case-aware covering array to 

be tested. 

 

5.3 Step 2: Execute test cases 

 

Once we have t-way test case-aware covering array computed for the current 

iteration, we execute the test cases in the required configurations and record their 

pass/fail result.  

One optional step that we include in this thesis is that we treat the process of 

building the system as a special test, called a build test. This test must, of course, run 

before other traditional runtime tests unless a properly-configured, compiled system is 

available. For the build test, a passing result means that the system built without any 

build errors. Fail means that some build error occurred. As with any other regular test, 

we seek to achieve a complete coverage for the build tests. 

Figure 2a, as an example, depicts the test results obtained at the end of the first 

iteration of the process in a hypothetical scenario (the build test is omitted for clarity). 

In this scenario, t is 3 and the processes started for a configuration model that has 4 

configuration options (o1, o2, o3, and o4). Each option takes a boolean value (0 or 1). 
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The system is tested with 3 test cases (t1, t2, and t3). Furthermore, initially, there were 

no known system-wide inter-option constraints and no test case-specific constraints. 

Consequently, the process automatically created a traditional 3-way covering array and 

executed all the test cases in all the configurations selected. Literals P and F indicate a 

test success or a test failure, respectively. 

 

 

(a)         (b) 

 

5.4      Step 3: Analyze test case results 

 

 Next we analyze the test results to identify the option setting combinations that 

are causing failures and thus potentially creating masking effects. Since we cannot do 

this in a fully automated fashion, we instead use a machine learning approach, called 

classification trees, to automatically identify likely failure causes. 

To identify likely failure inducing option setting combinations, we feed the test 

results obtained to a classification tree algorithm. Classification trees use a recursive 

partitioning approach to build a model that predicts class membership (i.e., passing or 

failing a test case) in terms of a set of measurable features (i.e., configuration option 

settings) [12]. For example, feeding the test result data from Figure 2a to a classification 

tree algorithm could generate three classification models, one for each test case, such as 

those shown in Figure 2b. Non-leaf nodes represent options, edges represent option 

settings, and leaf nodes indicate expected test results. The simple classification model 

obtained for t1, for instance, tells us that when test case t1 runs on a configuration in 

o1 o2 o3 o4 t1 t2 t3 
1 1 1 1 F F P 
1 1 0 0 F F P 
1 0 1 0 F F P 
1 0 0 1 F F P 
0 1 1 0 P F F 
0 1 0 1 P P F        
0 0 1 1 P P F 
0 0 0 0 P P F 

Figure 2:  Classification model created for an example scenario 
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which o1 = 1 the test case can be expected to fail. Otherwise, the test case can be 

expected to pass. 

 

These simple classification models have only a single leaf node indicating test 

case failure, but there could be more such leaf nodes in general. In these cases, we can 

extract all likely failure inducing interactions, by examining each leaf node that 

indicates a failure. For each such leaf node, we identify the path from the tree root to the 

leaf and output a logical rule corresponding to the conjunction of option settings found 

on the path. This rule indicates a set of option setting combinations that are highly 

correlated with the manifestation of failures. Once we have processed all such paths, the 

set of likely failure inducing option combinations is simply the disjunction of the path 

rules. 

While producing the classification trees, we take several steps to prevent 

overfitting the data. That is, we try to make sure our classification models are not 

treating random errors or noise as failure causes. One standard technique we use is to 

create the classification models using n-fold stratified cross-validation [12]. This 

approach essentially builds multiple models from different subsets of the input data, and 

uses the results to identify candidate models that are not overly influenced by a few 

individual data points. 

Finally, for each likely failure inducing interaction we assign a score, called the 

F1-measure, indicating the success of the rule in predicting failures in the test data. The 

F1-measure is computed by combining two standard metrics: precision (P), recall (R). 

For a given rule R, F1-measure is defined as follows: 

 

()ca** �
+�,-�c,(()ct*.�/()01ct)0�-a1*2()3�4.�5

t,ta*�+�,-�-a1*2()3
 

 

/()c131,6 �
+�,-�c,(()ct*.�/()01ct)0�-a1*2()3�4.�5
t,ta*�+�,-�/()01ct)0�-a1*2()3�4.�5

 

 

7	 % 8)a32() �
�95
9 : 5
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The F1-measure ranges between 0 and 1, inclusive. The higher the value, the 

better the rule is in predicting failures. Figure 2 shows the F1-measures for the rules 

obtained in our running example. For this thesis, an interaction is considered likely to be 

failure inducing, iff, the corresponding rule score is greater than a predetermined value, 

called cutoff. Any failures that are not explained by a significant failure cause are 

considered to be non-option-related. 

As an example, consider the test t2 in Figure 2a. The first four failures for this 

test case occurred when o1 = 1. Assuming, that 0.89 is above the F1-measure cutoff, 

then those failures are considered to be option-related (i.e., o1 = 1 is a likely failure 

inducing cause). The fifth failure, however, cannot be attributed to a significant rule, so 

that failure is considered to be a non-option-related failure. 

 

5.5      Step 4: Compute Coverage 

 

In this step, we compute the coverage to determine if we should invoke another 

iteration of our process. We remove from further consideration all test cases that have 

covered all their interactions. If complete coverage has been achieved for each and 

every test under our coverage criterion, the process exits. Otherwise, we now generate a 

new covering set and return to step 2.  

 

5.6     Step 5: Regenerating Covering Sets 

 

The output from the previous step gives us several pieces of information for each 

test case. First, we know each interaction that was covered because the test case passed. 

These are the interactions present in at least one configuration on which the test case 

passed. Second we know each interaction that was covered even though the test case 

failed. These comprise the interactions present in at least one configuration on which 

the test case failed and the failure was non-option-related, and those interactions that are 

likely to be failure inducing. Third, we know each interaction that was potentially 

masked and therefore remains uncovered. 
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Using this information, our goal is to generate a test case-aware covering array 

containing new configurations that cover any currently uncovered interactions. Before 

doing this we take several preparatory steps. First we identify all newly covered 

interactions for each test case and add them as seeds to the test case-specific 

configuration models. Next, we take the complement of each newly identified failure-

inducing interaction and add them as constraints to each test-specific configuration 

model. In addition, the test case-specific models for runtime tests incorporate any 

failure inducing interactions stemming from build test failures. Both these last two steps 

help the process avoid known failure causes in subsequent test iterations. 

 

#test-specific                                   #test-specific  
#constraint                                      #constraint 
 �	; � 	                                          �	; � 
 
 
#seed                                               #seed 

 

 

 

 

(a)                                              (b)                                                     (c) 

. 

As an example, Figure 3a-b depict the configuration models created for the test 

cases in our running example after the analysis step. We are only showing the test 

constraints and seeds (the base model can be inferred from Figure 2a). The constraints 

were obtained by complementing the automatically identified failure inducing option 

setting combinations given in Figure 2b. The seeds were created by combining all the 

configurations in which the test cases ran successfully. Furthermore, Figure 3c 

illustrates the 3-way test case-aware covering array automatically scheduled for testing 

in the subsequent iteration given the configuration models presented in Figure 3a-b. 

Note that all the masking effects caused by a particular setting of o1 are removed in the 

newly computed covering array. 

o1 o2 o3 o4 tests 
0 1 1 1 {t1,t2} 
0 1 0 0 {t1,t2} 
0 0 1 0 {t1,t2} 
0 0 0 1 {t1,t2} 
1 1 1 0 {t3} 
1 1 0 1 {t3} 
1 0 1 1 {t3} 
1 0 0 0 {t3} 

o1 o2 o3 o4 
0 1 1 0 
0 1 0 1 
0 0 1 1 
0 0 0 0 

o1 o2 o3 o4 
1 1 1 1 
1 1 0 0 
1 0 1 0 
1 0 0 1 

Figure 3: (a) Configuration model for t1 and t2 (happen to share the same model) 

(b) Configuration model for t3. (c) Covering array computed. 
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We furthermore examine each test case-specific configuration model to 

determine whether they contain unsatisfiable constraints. Such situations can arise when 

a test case fails in multiple ways. For example, suppose a given test case fails one way 

when a particular binary option is true, and fails differently when the same option is 

false. In this case, our process generates contradictory constraints that no configuration 

can satisfy. We attempt to accommodate the conflicts in an iterative way by handling 

only a non-conflicting subset of the constraints at each iteration. We defer the remaining 

constraints to be handled in the subsequent iteration. 

 

As a further heuristic we also developed and experimented with a heuristic rule 

prioritization strategy. In preliminary work we had observed from manual analysis that 

longer rules were much more likely to give incorrect labeling than shorter rules. 

Consequently, when using this heuristic we look at all rules produced in the current 

iteration and compute the length of the shortest rule. We then take all rules of this length 

and proceed with only the rules whose length is the same as the shortest rule. The rest of 

the rules are deferred to subsequent iterations.  

Finally, we remove from further consideration, all test cases for which complete 

coverage has been achieved. If complete coverage has been achieved for each and every 

test (i.e., test case-aware covering array to be executed in the next iteration is empty), 

the process exits. Otherwise, we now generate the new covering set and return to step 2. 

 

5.7  Algorithm 

 

Given the previous discussion our basic algorithm should now be easy to follow. 

Algorithm 2 describes the main adaptiveCA routine. This routine defines and uses three 

main data structures: -Mat(1x, k6,w6Ca23)3, and c-gM0*. fMatrix is a fault matrix that 

keeps track of all configurations tested, the test cases executed on them, and the test 

results obtained. knownCauses keeps track of all currently known likely failure inducing 

interactions. c-gM0* is a set of configuration models one for each test case, storing 

options, their settings, constraints among them, and a seed. When these variables are 

subscripted with a test case τ, they refer to the test case-specific information in the 
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respective data structures. All changes made on the subscripted variables are assumed to 

be reflected on the original variables. 

 

Agorithm 2- adaptiveCA 

Input t: Covering array strength 
Input cfgMdl: Configuration Model 

1.    -Mat(1x � empty 
2. k6,w6Ca23)3 � empty 
3. while true 
4.    c2(()6tCA ��computeTestAwareCA(t, c-gM0*) 
5.    break if c2(()6tCA is empty  
6.    fMatrix � executeCA(c2(()6tCA,  -Mat(1x ) 
7.    foreach test τ do 
8.       B��&�"�C���� ��identifyCauses(���$D�E�,�B��&�"�C����) 
9.       ������� � updateCfgMdlF���$D�E�,�B��&�"�C����) 
10.    end foreach 
11. end while 

 

 

The adaptiveCA routine loops until no test case is scheduled for testing. It takes 

an initial configuration model c-gM0*, and a strength t, as input. It first initializes the 

-Mat(1x and k6,w6Ca23)3 data structures. At line 4, it creates an initial t-way test case-

aware covering array for the configuration model provided. At line 6, all selected 

configuration-test case pairs are tested and the results are returned. These results are 

then analyzed at lines 7-10.  

For each test case, we first identify the likely failure inducing interactions by 

using a classification tree algorithm (line 8). To compute the classification model, we 

create appropriate data files containing all the configurations tested so far, in which the 

test either passed or failed with non-option-related cause. The training data is fed to the 

classification algorithm. Likely failure inducing options are extracted from the resulting 

classification model and then scored (Section 5.1). Among the likely failure inducing 

combinations, only the ones that have a score greater than a given cutoff value are 

selected. The rest are ignored. As mentioned previously, strategies to reduce overfitting 

and to handle conflicting constraints (Section 5.1) are also implemented at this step. 

Next, we update the test case-specific configuration model (line 9). To do this 

we first, populate the list of the constraints for the test case with the newly identified 

test case-specific constraints. Note that the list of constraints included in the 
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configuration model of a test case grows monotonically. That is, once a constraint is 

included in a configuration model, it stays there during the life time of the process. This 

prevents the process from examining previously identified failing sub-spaces. We then 

compute a seed for the configuration model of the test case, indicating the t-way 

combinations that are considered to be already covered. The seed contains all the 

configurations tested so far, in which the test case passed or failed with non-option-

related cause.  

The newly updated configuration model is then used to generate the test case-

aware covering array to be executed in the next iteration. The iterations end when a 

complete coverage under our tested t-way coverage criterion is obtained for each and 

every test case, indicated by the current covering array to be tested being empty (line 5). 
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Chapter 6 
 

Experiments 
 

 

To evaluate our approach we conducted a set of empirical studies. The subject 

systems for these studies are MySQL (v5.1) and GCC (v4.5.2). MySQL is a database 

management system; GCC is the GNU compiler collection. Both systems are publicly-

available. 

 

6.1    Experimental Setup 

 

For these experiments, we used the ACTS tool [6] to construct covering arrays. 

We used Weka's J48 algorithm to build our classification trees, setting the confidence 

factor to 0.25 and the minimum allowable number of objects in each class to 2 [7]. The 

classification models were trained and evaluated with 5-fold cross validation and 

pruning. The cutoff value used for identifying likely failure-inducing interactions was 

set to 0.8. We used the prioritization heuristic that favors shorter rules over longer rules 

and we resolved conflicting constraints iteratively (see Chapter 5).  

All the experiments were performed on a dual Intel Xeon processor machine with 

2GB of RAM, running the CentOS 5.2 operating system. We describe specific metrics 

and our subjects in their respective study sections. 
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6.2    Study 1: MySQL Experiments 
 

MySQL is an open-source, multi-threaded, SQL database management system 

(DBMS)  [8]. Initially released 12 years ago, its various components contain 2+ million 

lines of code. It has been downloaded 10+ million times and is available for use on over 

20 platforms. MySQL has a significant number of test cases (including both installation 

tests and generic SQL tests). Furthermore, MySQL enjoys a large developer community 

that actively updates and tests the system. 

 

6.2.1 Study Setup 

 

We created an initial configuration model for MySQL containing 23 options (15 

compile-time and 8 runtime). The number of settings varied among configuration 

options. We had 18 options with 2 levels of settings, 3 options with 3, 1 option with 4, 

and another option with 5 levels of settings (Table 6). The configuration model initially 

had no constraints. For our test suite, we used a set of 738 test cases that came with the 

MySQL source distribution. Each test has its own oracle. The oracles categorize each 

test run into three classes: passed, failed, or skipped. Successful test cases simply emit 

pass. Failed test cases emit fail and additionally include an error code. A test case 

returns “skipped" when it determines that it cannot run on a given configuration. For 

example, a number of test cases were designed to run only if MySQL is configured with 

an NDB cluster support, an in-memory clustered storage engine (i.e., ndbcluster = with-

ndbcluster). If the current configuration does not support NDB, these test cases will exit 

immediately returning the “skipped” result. Classification models built for these test 

cases, therefore, involve ternary rather than binary classification. 
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Table 6: The configuration model of MySQL used in the study. ct and rt stand for 
compile-time and runtime, respectively 

option settings type 
asm {NULL, enable-assembler} ct 
linfile {NULL, enable-local-infile} ct 
tsc {NULL, disable-thread-safe-client} ct 
bt {NULL, with-big-tables} ct 
ec {NULL, with-extra-charsets = 

complex,with-extra-charsets = all} 
 

ct 
innodb {with-innodb, without-innodb} ct 
libedit {with-libedit, without-libedit} ct 
ndbcluster {NULL, with-ndbcluster} ct 
pic {NULL, with-pic} ct 
readline {with-readline, without-readline} ct 
ssl {NULL, with-yassl} ct 
zdir {NULL, with-zlib-dir=bundled} ct 
ase {NULL, with-archive-storage-engine} ct 

   ct bse {NULL, with-blackhole-storage-
engine} 

fse {NULL, with-federated-storage-
engine} 

 
ct 

trans.-iso. {NULL, uncommitted, serializable, 
committed, repeatable} 

 
rt 

innodb_flush {NULL, 0, 1, 2} rt 
sql_mode {strict all tables, traditional, ansi} rt 
lp {NULL, large-pages} rt 
eng-pdown {on, off} rt 
rbt {NULL, big-tables} rt 
binlog-format {row, statement, mixed} rt 
lb {skip-log-bin,log-bin} rt 

 

 

6.2.2  Evaluation Framework 

 

To precisely evaluate the proposed approach, we would need to know the 

number of valid interaction that never had a chance to get tested with the test cases (i.e., 

the ones that are masked). We would then need to analyze how much the proposed 

approach improved on that. However, this would require us to manually identify all the 

failure inducing interactions and to quantify their masking effects for tens of thousands 

of failures occurring on hundreds of configurations tested in the experiments. Since this 

was not feasible, we opted to evaluate the approach only on those failures for which we 

have a definitive cause, and for which we know what the masking effects induced by 
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the cause were. We, therefore, evaluate the approach on the basis of masking effects 

caused by build failures and test skips.  

We have defined a metric, called t-masked. This metric counts the number of 

unique t-way option setting combination-test pairs that, we know for certain, never get 

tested with the test cases because of build failures or test skips. If a configuration fails to 

build, then we know none of the test cases gets to test the valid t-way interactions 

present in the configuration. Similarly, if a test case skips a configuration, then none of 

the valid t-way combinations present in the configuration will be tested. The lower the 

value of t-masked, the better the approach is at removing masking effects. While build 

failures are real failures, we do not consider test skips to be. To the degree that 

developers precisely know all the reasons for which each test can skip, they can deal 

with the issue by introducing test constraints into the covering array construction. 

Therefore, t-masked may overstate the practical value of our approach. Nevertheless, 

the effect of not accounting for such test skips is that interactions do not get tested, 

which is exactly the problem our technique aims to address, and, therefore, the 

experiment is a useful test of our approach. In addition to measuring t-masked, we also 

count the number of source lines and branches covered, as well as the number of unique 

errors and unique test-error pairs observed. To identify the unique errors and test-error 

pairs, we analyze the error codes emitted when test cases fail. These metrics give us 

another way to measure the impact of masking on our testing process. 

 

6.2.3  Data and Analysis 

 

We first ran the process with t = 2. Table 7 presents the results. In this table, 

columns 1-3 indicate the iteration number, number of configurations tested, and number 

of test runs performed, respectively. The next three columns present the number of 

unique errors, the unique test-errors and the value of t-masked. The last three columns 

depict the testing time (i.e., the time spent to build the program and run the tests), 

analysis time (i.e., the time spent to identify likely failure inducing options and compute 
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test schedules), and the total time, respectively. All the time measurements are given in 

minutes. Furthermore, all the numbers reported for an iteration reflect the measurements 

obtained over all the iterations up to and including the current one. 

In this experiment it took 10 iterations to achieve full coverage. The first two 

iterations addressed two build failures. The test skips were addressed in the remaining 

iterations. After the first iteration, i.e., after performing a traditional 2-way testing, we 

observed that 55% (525149 out of 961795) of all valid 2-way combination-test pairs 

were actually masked because of build failures or test skips. Among these failures, the 

process correctly identified a deprecated option setting, ssl = with-yassl that caused 11 

out of 20 configurations to fail to build. The logical negation of the combination (i.e., 

ssl != with-yassl) was then automatically added to the configuration model and a set of 

11 new configurations with ssl = NULL were computed. Testing these configurations in 

the second iterations greatly reduced the number of pairs masked by 47%. 

After the second iteration, a failure inducing dependency between libedit = with-

libedit and readline = with-readline was correctly identified. An interesting observation 

is that although this error was observed in the first iteration, the classification models 

created then were not able to reveal any statistical pattern. The reason was that all but 

one of the configurations in the first iteration that had this dependency had already 

failed because of the ssl error. That is, the first failure masked the second failure. 

However, avoiding the first failure in the current iteration helped us correctly identify 

the cause of the second failure by making it possible to observe the second failure in 

more configurations. A total of 3 configurations failed to build because of the error. A 

set of 3 new configurations with (i.e., libedit != with-libedit G readline != with-readline) 

were scheduled to be tested in the next iteration. Testing them in the third iteration 

further reduced the number of pairs masked by 13% compared to the previous iteration. 

From the third iteration to the last one, since there were no more build failures, 

the process addressed the test skips. In total, the genuine test constraints for the 225 

(76%) of 298 tests with known constraints were correctly identified. This further 

reduced the number of pairs masked by an additional 26%. 

To understand why we were unable to identify all of the test constraints we 

conducted a manual analysis. We determined that cause was that some of the test skips 

were not deterministic. Here, some test cases skipped for reasons not related to the 
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configuration. We believe the real cause was a timeout because the startup took too 

long. 

We observed that the classification models identified the patterns in most of 

these intermittent skips, but they did so with a lower confidence. One approach to 

address this issue in the proposed approach is to use a smaller value for the cutoff 

parameter. For example, had we used 0.6 as the cutoff value in the experiments (instead 

of 0.8), 94% of the genuine test constraints would have been correctly identified at the 

end of the fourth iteration. 

At the end of the process, the number of 2-way combination-test pairs being 

masked was reduced by 66% compared to the first iteration. Furthermore, avoiding the 

masking effects greatly improved the source line coverage by 39%, branch coverage by 

32%, the number of unique errors by 23%, and the number of unique test-error pairs by 

32%. 

These improvements were obtained at the cost of increased number of 

configurations and test runs. This is as expected, because, at the end of the first 

iteration, for example, if one would like to remove the masking effects caused by the 

build failures, the only choice he/she has is to select new configurations and run all the 

test cases in them. An important observation, though, is that much of the improvements 

were obtained at early stages of the process. For example, at the end of the fourth 

iteration, the improvements were within less than 4% of those obtained at the end. Had 

we stopped after this iteration, compared to the last iteration, the number of 

configurations tested, the number of test runs performed, and the total time would have 

been reduced by 60%, 11%, and 45%, respectively. This is important when the testing 

resources are scarce and prioritization is needed. Another observation is that after the 

fourth iteration, although the process removed new masking effects at each subsequent 

iteration (except for the last one), the structural code coverage measurements and the 

number of unique errors and test-error pairs appear to stabilize. We attribute this to the 

software under test, its test suite, and the configuration model chosen for the study; the 

tests were given a fair chance to exercise new combinations, but this was not reflected 

on the metrics observed.  
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Table 8: Traditional t-way covering array-based testing 

 
t 

 
cfgs  

test  
runs 

lines  
covered 

branches  
covered 

 
errs 

test-errs  
pairs 

total 
time 

2 20 5896 161556 82316 96 1052 267 
3 72 18425 216612 106506 119 1377 1775 
4 248 67804 218170 107187 122 1428 4681 

 

Comparison with Higher Strength Traditional Covering Arrays. Next, we 

compared using our approach with t = 2 to using traditional 3- and 4-way covering 

array-based testing. Using a higher strength traditional covering array is the best 

candidate that we know of to compare our results. For instance, if we use a 3-way 

covering array to avoid masking effects caused by 1- or 2-way combinations of option 

settings we expect that each 1- and 2-way combination will appear multiple times in 

different 3-way combinations and may avoid the masking. Table 8 summarizes the 

performance on the traditional testing approaches. 

We wanted to know how much higher strength covering arrays help in removing 

masking effects. Table 9 presents the numbers of 2-way combination-test pairs masked 

in the traditional covering array-based testing approaches and in the proposed approach. 

We observed that, although, using higher strength covering-arrays reduces the unwanted 

consequences of masking effects, it certainly does not solve the problem entirely. 

The last column in Table 9 shows 1 minus the proportion of masked pairs 

obtained by our approach to masked pairs with the traditional approaches. For instance, 

our approach have 26% fewer masked pairs than did the traditional 3-way approach. 

Compared to the traditional 4-way approach, ours had 34% more masked pairs. At the 

same time, however, our approach covered more total lines and branches and took about 

35% less time. 

 

Table 9: Comparing the proposed approach with t = 2 to traditional t-way testing 

 

 

 

 

approach  2-masked reduction 
proposed approach 178794 n/a 

2-way traditional 525149 66% 
3-way traditional 240489 26% 
4-way traditional 133977 -34% 
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To investigate further we tried running our approach with higher values of t = 3, 

but still monitored the 2-way combination-test pairs. This time we observed that both 

approaches performed essentially the same (133636 masked pairs for our approach vs. 

133977 for the 4-way traditional approach). These results suggest that it will be 

important to further study the various cost/benefit tradeoffs afforded by our approach. If 

we allow our approach to run more iteration it may take longer, but reduce masking 

effects. Instead, using a higher strength covering array to start with might provide 

smaller reduction in masking, but might run in a shorter amount of time. 

Evaluating the approach with t = 3. Finally, to evaluate the approach on a 

larger value of t, we reran the study with t = 3 and monitored the 3-way combination-

test pairs. Table 10 depicts our results. It turned out that 44% of 15, 144, 193 valid 3-

way combination-test pairs were masked in traditional 3-way testing (i.e., the first round 

of the process). 

Our approach took four iterations. This was less than the 10 iterations we had 

with t = 2. The reason for this was that the larger data sets we ran at each iteration, 

allowed us to discover constraints more quickly. We observed that at each iteration, the 

process reduced the number of 3-way combination-test pairs masked. All of the option 

combinations causing build failures and 61% of the combinations causing test skips 

were correctly identified. Had we used 0.6 as the cutoff value, 96% of the constraints 

would have been correctly identified. 

 By the 4th iteration our approach reduced the number of 3-way combination-test 

pairs by 58% relative to the 1st iteration. Source line coverage and branch coverage 

improved by only 3% and 2%, respectively. We, furthermore, identified 5% more 

unique errors and 7% more unique test-error pairs. Compared to the 4-way traditional 

testing, the proposed approach reduced the number of 3-way combination-test pairs 

masked by 6% (Table 11). 

In summary, for the subject application, its test suite, and the configuration 

model chosen, we observed that our approach was able to accurately identify masking 

effects and to generate new configurations that improved overall coverage. In particular, 

our approach always significantly increased coverage as it progressed. In particular, had 

we simply stopped after the first iteration as most current approaches do, significant 

numbers of interactions would have remained silently untested.
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Table 10:  Proposed approach with t = 3 

 

At the same time our approach incurs costs and must be compared against 

alternative approaches. For instance, using sufficiently higher strength traditional 

covering arrays reduces masking to some degree, but at greater fixed costs. 

 

Table 11: Comparing the proposed approach with t = 3 to traditional t-way testing 

 

 
 
 
 
 

6.3     Study 2: GCC experiments 
 

An important observation we made in the previous study is that much of the 

improvements came from the tests in which multiple different interactions caused 

different failures. In this study we explore this scenario with a some-what artificial test 

scenario. For this study we use gcc as our subject application. 

 

 

 

 

 

 

 

 

 

 

 
iteration 

cfgs 
tested 

test 
runs 

lines 
covered 

branches 
covered 

 
 errs 

test-
err 

3-
masked 

testing 
time 

analysis 
time 

total 
time 

1 72 18425 216612 106506 119 1377 6670639 1774 1 1775 
2 108 44957 223500 127900 125 1438 3365540 3909 6 3915 
3 230 51626 223719 128001 125 1440 2915475 6183 128 6311 
4 315 52171 223725 128010 125 1440 2797589 6869 152 7017 

approach  3-masked reduction 
proposed approach 2797589 n/a 

3-way traditional 6670639 58% 
4-way traditional 2970152 6% 
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Table 12: Selected command line options of gcc 

 

 

 

 

 

 

 

 

6.3.1 Study setup 

 

We first studied the command line options of gcc and identified a small, but 

quite problematic configuration subspace. Table 12 depicts the 14 binary options used 

in the study. The NULL setting indicates the absence of the respective command line 

option. The first three options (help, version, and targetversion) are quite interesting, 

since the presence of any one of these options makes gcc quit the compilation right after 

printing either a help message or some version information. In effect, no compilation at 

all is performed. Similarly, the next three options (syntax, preprocess, and assemble) 

make gcc compile the code up to a certain stage and then gcc exits. Syntax checks the 

code for syntax errors, but does not do anything beyond that. The preprocess option 

stops the compilation right after the preprocessing step; no compilation proper is 

performed. The assemble option stops the compilation right after the stage of 

compilation proper; no assembling is performed. The remaining options (mips*), on the 

other hand, are all platform-dependent options. When they are not supported on a 

platform (as is the case in our experiments), gcc quits right away with an error message. 

We then created a single test and its oracle. The test makes gcc build itself. For 

the sake of the study, the test oracle regarded a test run in which gcc builds itself in full 

as a successful run. Any other outcome is considered to be a failure. The oracle was 

able to categorize the failures into 14 classes (one class for each failure inducing option 

setting). Note that the correctness of each option present in the configuration model 

Option settings 
Help {NULL, -help} 
Version {NULL,-version} 
targethelp {NULL,-target-help} 
assemble {NULL,-S} 
preprocess {NULL,-E} 
Syntax {NULL, -fsyntax-only} 
mips1 {NULL, -mips1} 
mips2 {NULL, -mips2} 
mips3 {NULL, -mips3} 
mips4 {NULL, -mips4} 
mips32 {NULL, -mips32} 
mips32r {NULL, -mips32r} 
mips64 {NULL, -mips64} 
Mips64r {NULL, -mips64r2} 
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should be validated via testing and can be handled in some cases by using single 

configuration test cases [13]. However, the presence of any one of them creates a 

masking effect, since it prevents the test from exercising the remaining option settings, 

thus the remainder of the system. Consequently, out of 214 configurations, there is only 

one configuration that actually builds gcc in full; the one in which all the options take 

the setting of NULL. We refer to this configuration as the golden configuration. 

  

6.3.2 Data and Analysis 

 

We ran our process with t = 2. Table 13 presents the results we obtained. Our 

approach achieved complete coverage in 13 iterations. Our analysis revealed that, for 

each iteration but one, one failure inducing option-setting pair was correctly identified. 

In the last iteration though, no such pair was revealed because the coverage criterion 

had been reached. Note that although, one failure inducing option setting was identified 

at each iteration and it was successfully avoided in the subsequent iteration, the 

improvement was not reflected on the structural code coverage measurements up until 

the 10th iteration. The reason was, since all the configurations except for the golden one 

were destined to fail, even though a failure inducing setting was avoided by computing 

and testing a new set of configurations, the newly generated configurations failed. This 

prevented the test from exercising the code to the extent possible.  
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Table 13: Approach with t = 2 on GCC 

 

 

 

 

 

 

 

 

 

 

 

The process, however, happened to hit the golden configuration at iteration 11, 

after correctly identifying and fixing 10 failure inducing option-setting pairs. At this 

iteration, the source line and branch coverage were improved by 31 and 42 times, 

respectively. Had we carried out a traditional 2-way covering array-based testing (i.e., 

had we stopped after the first iteration), the chance of improvements would have been 

lost. The code coverage measurements stayed the same in the rest of the iterations, since 

the maximum coverage that the test could have achieved was already obtained at 

iteration 11. 

One further observation is that the process stopped after identifying 12 out of 14 

failure inducing option settings. An in-depth analysis revealed that the classification 

algorithm was not able to expose the remaining faulty option settings, because of the 

limited amount of data present for analysis. After iteration 12, the entire configuration 

space was reduced to only four configurations, i.e., the exhaustive combinations of the 

remaining two options. At the end of the last iteration, all of these configurations 

happened to be tested already. One of them was the golden configuration. The 

remaining three configurations were marked as failures by using two different labels. 

However, the classification algorithm was not able to reveal any pattern; a common 

issue with data mining approaches caused by insufficient amount of data for analysis. In 

such situations where the configuration space is reduced to the point so that exhaustive 

testing is feasible, the entire space can be scheduled for testing in the next iteration to 

exploit the chance of potential improvements. We also repeated the experiments with t 

 
iteration 

cfgs 
tested 

lines 
covered 

branches 
covered 

1 7 4652 2546 
2 11 4693 2567 
3 15 4693 2567 
4 19 4693 2567 
5 22 4693 2567 
6 25 4693 2567 
7 29 4693 2567 
8 32 4693 2567 
9 35 4693 2567 

10 38 14636 7931 
11 41 143939 106554 
12 44 143939 106554 
13 45 143939 106554 
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= 3 and obtained similar results. The initial 3-way covering array had 18 configurations. 

The process stopped after 12 iterations, throughout which a total of 101 configurations 

were tested. The golden configuration happened to be tested at the last iteration, in 

which similar code coverage improvements were observed.  

Finally, we compared our results to those of tradition t-way covering array-based 

approaches. Table 14 presents the results. Our approach with t = 2 and t = 3 revealed all 

14 failures as well as the golden configuration, whereas the traditional testing revealed 

at most 6 (including the 5-way covering array). None of the traditional arrays created 

for the study revealed the golden configuration.  

We then computed the number or 1-, 2-, and 3-way option combinations masked. 

There were a total of 28 1-way, 238 2-way, and 1232 3-way valid combinations that 

could be exercised. As the table indicates, the proposed approach with t removed all the 

masking effects and exercised all the t-way combinations that could be exercised. The 

5-way covering array, for example, was not able to exercise even the settings of each 

and every option. The reason was that all the statically chosen configurations failed due 

to one option setting or another. On the other hand, the proposed approach, in a 

feedback driven manner, identified the cause of masking effects and removed them 

iteratively. 

 

Table 14: Comparing the proposed approach to traditional t-way testing in gcc 
experiment 

approach cfgs tested errs 1-masked 2-masked 3-masked 
2-way 7 3 15 182 n/a 
3-way 18 5 6 108 790 
4-way 40 6 6 81 611 
5-way 133 6 6 72 440 

ours t = 2 45 14 0 0 n/a 
ours t = 3 101 14 0 0 0 
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6.4    Threads to Validity 

 

We have identified several threads to validity for these experiments. First, we 

have only studied two software systems. This may impact the generality of our results. 

However, both GCC and MySQL are widely-used non-trivial applications with large 

configuration spaces and both have been used in other related works in the literature. 

For our experiments we selected a cutoff value of 0.8. As discussed, if we chose 

a lower value (e.g. 0.6) , we may have found more constraints, but we did not 

experiment exhaustively with this parameter tuning and leave this as future work. 

Finally, we do not remove constraints during experimentation; as we find new failure 

inducing option combinations we continue to add them to our configuration model. In a 

real testing environment it is possible that at some point the defect causing a masking 

effect is fixed, but in this thesis we do not examine that scenario. However, we believe 

that the scenarios studied in this thesis are realistic, since long times to defect fixes is 

common. 
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Chapter 7 
 

Concluding Remarks 
 

The basic justification for combinatorial interaction testing approaches, such as 

covering arrays, is that they can cost-effectively exercise all system behaviors caused by 

the settings of t or fewer options. We conjecture however that in actuality many such 

behaviors may not be tested because of masking effects caused by failures. 

To address masking effects, we developed feedback driven combinatorial testing 

approach. Instead of statistically computing the covering arrays, we compute them in an 

iterative manner aimed at identifying masking effects and removing them from the 

covering array construction process in order to better meet our interaction coverage 

goals. At each iteration of the process, we execute test cases, analyze the results, detect 

potential masking effects by identifying likely option-related causes, and then generate 

new covering arrays that avoid the likely failure causes while covering previously 

masked interactions. The process iterates until for all tests until each and every t-way 

option setting combination is present in at least one configuration in which the test 

passed or failed with a non-option-related cause, or the combination is marked as failure 

inducing.  

We then evaluated this new process by conducting two empirical studies. These 

studies used two open source software system, MYSQL and GCC as subject 

applications. We observed that the proposed approach always significantly reduced the 

number of t-way combination-test pairs masked compared to traditional t-way covering 

arrays. The number of pairs was reduced by 66% when t = 2, and by 58% when t = 3. In 
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both cases, only 19% of all valid intended combination-test pairs were remained 

masked. 

We, furthermore, observed that, for a given t, the proposed approach generally 

performed better in reducing the number of t-way combination-test pairs masked 

compared with higher strength traditional covering arrays. The proposed approach with 

t = 2 reduced the number of 2-way combination-test pairs by 26% compared to using 

traditional 3-way testing. When t = 3 the approach reduced the 3-way combination-test 

pairs masked by only 6% compared to using larger 4-way testing, but had greater line 

and branch coverage and ran less number of test cases. Overall, we see a variety of 

cost/benefit tradeoffs that will need further study. 

 As a summary, the results of our experiments strongly suggest that masking 

effects do exist and that our approach provides a promising and effcient way to work 

around them. 
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Chapter 8 

 

Future Work 
 

We think that this research is promising. One obvious open issue we intend to 

pursue is to quantify the prevalence of masking effects in more practical settings. We 

will also examine alternative machine learning approaches and optimizations for 

identifying likely configuration-related failure causes. Another interesting goal is to 

work on further improving the approach by automatically identifying control 

dependencies among configuration options. This would require us to use successful test 

runs, in addition to failing runs, for inference. 
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