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Abstract

This thesis introduces techniques to utilize information theory, particularly entropy

for enhancing data visualization and exploration. The ultimate goal with this work is

to enable users to perceive as much as information available for recognizing objects,

detecting regular or non-regular patterns and reducing user effort while executing

the required tasks.

We believe that the metrics to be set for enhancing computer generated visualiza-

tions should be quantifiable and that quantification should measure the information

perception of the user. The proper way to solve this problem is utilizing informa-

tion theory, particularly entropy. Entropy offers quantification of the information

amount in a general communication system. In the communication model, informa-

tion sender and information receiver are connected with a channel. We are inspired

from this model and exploited it in a different way, namely we set the information

sender as the data to be visualized, the information receiver as the viewer and the

communication channel as the screen where the visualized image is displayed. In

this thesis we explore the usage of entropy in three different visualization problems,

• Enhancing the visualization of large scale social networks for better perception,

• Finding the best representational images of a 3D object to visually inspect

with minimal loss of information,

• Automatic navigation over a 3D terrain with minimal loss of information.

Visualization of large scale social networks is still a major challenge for informa-

tion visualization researchers. When a thousand nodes are displayed on the screen

with the lack of coloring, sizing and filtering mechanisms, the users generally do not

perceive much on the first look. They usually use pointing devices or keyboard for

zooming and panning to find the information that they are looking for. With this

thesis we tried to present a visualization approach that uses coloring, sizing and

filtering to help the users recognize the presented information.
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The second problem that we tried to tackle is finding the best representational

images of 3D models. This problem is highly subjective in cognitive manner. The

best or good definitions do not depend on any metric or any quantification, further-

more, when the same image is presented to two different users it can be identified

differently. However in this thesis we tried to map some metrics to best or good def-

initions for representational images, such as showing the maximum faces, maximum

saliency or combination of both in an image.

The third problem that we tried to find a solution is automatic terrain navigation

with minimal loss of information. The information to be quantified on this problem is

taken as the surface visibility of a terrain. However the visibility problem is changed

with the heuristic that users generally focus on city centers, buildings and interesting

points during terrain exploration. In order to improve the information amount at

the time of navigation, we should focus on those areas. Hence we employed the road

network data, and set the heuristic that intersections of road network segments

are the residential places. In this problem, region extraction using road network

data, viewpoint entropy for camera positions, and automatic camera path generation

methods are investigated.
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Özet
Bu tez bilgi kuramı, özellikle entropiden yararlanarak veri görselleştirmesi ve

araştırmasını geliştirecek teknikleri tanıtmaktadır. Tez ile nesneleri tanımada, olag̃an

veya olag̃an dışı örüntülerin tespit edilmesinde ve gerekli görevlerin yerine getiril-

mesinde kullanıcıların mevcut olan en fazla bilgiyi algılamalarını sag̃lamak amaç-

lanmıştır.

Bilgisayar tarafından üretilmiş görselleştirmelerin iyileştirilmesinde konulmaya

çalışılan metriklerin sayısallaştırılabilir olması ve sayısallaştırmanın algılanan bilgi

miktarını ölçmesi gerektig̃ine inanmaktayız. Bu problemi çözmenin uygun yolu,

bilgi kuramı, özellikle entropiden yararlanmaktır. Çünkü entropi genel iletişim siste-

mindeki bilgi miktarını ölçmeyi önermektedir. İletişim modelinde, bilgi göndericisi,

bilgi alıcısı ile bir kanal vasıtasıyla bag̃lantı halindedir. Bu modelden esinlenerek,

farklı bir yaklaşım ile bilgi göndericisi görselleştirilmeye çalışılan bilgi, bilgi alıcısı

izleyici, kanal ise görselleştirmenin sunuldug̃u ekran olarak deg̃erlendirilmiştir. Bu

tezde, entropinin üç farklı görselleştirme probleminde kullanılabilirlig̃i araştırılmıştır,

• Büyük çaplı sosyal ag̃ların algılanmasını iyileştirebilmek maksadıyla görsellenmesi,

• 3B’lu nesneleri görsel olarak en az bilgi kayıbı ile incelemek maksadıyla en iyi

temsili resimlerin bulunması,

• Arazi üzerinde en az bilgi kayıbı ile otomatik gezinme.

Büyük çaplı sosyal ag̃ların görselleştirilmesi bilgi görselleştirmesi araştırmacıları

için halen önemli bir sorundur. Bin düg̃ümün renk, boyutlandırma, ve filtreleme

mekanizmalarından yoksun olarak sergilenmesi durumunda, kullanıcılar ilk bakışta

pek birşey algılayamazlar. Genellikle aradıkları bilgiye ulaşabilmek maksadıyla

işaret cihazları veya klavyeyi yakınlaştırma ve kaydırma maksadıyla kullanırlar.

Bu tez ile kullanıcılara sunulan bilginin algılanabilmesini sag̃layabilmek maksadıyla

filtreleme, renklendirme ve boyutlandırmayı kullanan bir görselleştirme yaklaşımı

sunulmaya çalışılmıştır.

İkinci olarak 3B’lu modellerin en iyi temsili resimlerinin bulunması problemi

çözülmeye çalışılmıştır. Bu problem bilişsel anlamda özneldir. İyi ve en iyi tanım-

lamaları herhangi bir metrik ve sayısallaştırmaya dayanmamaktadır, ayrıca aynı
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resmin iki farklı kullanıcıya sergilenmesi durumunda farklı olarak deg̃erlendirilmesi

olasıdır. Bu çalışmada, iyi ve en iyi tanımlamaları temsili resimler için en fazla

nesne yüzü, en fazla belirgenlik veya bunların kombinasyonu şeklinde eşlemlemeye

çalışılmıştır.

Çözüm bulmaya çalışılan üçüncü problem ise en az bilgi kayıbı ile otomatik arazi

gezinmesidir. Burada arazinin yüzey görünürlüg̃ü sayısallaştırılmaya çalışılmıştır.

Ancak görünürlük problemi, kullanıcıların genellikle şehir merkezlerine, binalara

ve ilginç noktalara odaklandıkları buluşsalı ile farklı hale getirilmiştir. Gezinme

esnasındaki bilgi miktarını artırabilmek amacıyla, anılan alanlara yog̃unlaşılması

hedeflenmiştir. Bu maksatla, yol bilgisinden yararlanılmış ve yol kesişimlerinin iskan

bölgeleri olabileceg̃i buluşsalı ortaya konulmuştur. Bu problemde, yol bilgilerinden

alan çıkarımı, kamera noktaları için bakış noktası entropisi ve otomatik rota üretimi

metodları araştırılmıştır.
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1 INTRODUCTION

Information Visualization is a wide research area and there will always be a need for

visualizing information as the information continued to be produced. The purpose

of information visualization is to convey useful and helpful information to the user

where it can ease the tasks that users do on daily basis, which is considered as one

of the aims of computers in general.

In this research we tried to exercise and find metrics to enhance the computer

generated visualizations where the established metrics are used to form the basis

for color, and size of objects visualized on the screen as well as to find good camera

positions for improving the percept ion of the displayed image.

We believe that the metrics to be set for enhancing computer generated visualiza-

tions should be quantifiable and that quantification should measure the information

perception of the user. The proper way to solve this problem is to utilize informa-

tion theory, particularly entropy for enhancing data visualization and exploration.

Shannon’s entropy model offers the quantification of the information amount for a

general communication system [8]. In that model there are information sender and

information receiver connected with a communication channel. We are inspired from

this model and exploited it in a different way; we set the information sender as the

data to be visualized, the information receiver as the viewer and the communication

channel as the screen where the visualized image is displayed.

We studied the usage of entropy for improving visualizations in three different

problem domains,

• Enhancing the visualization of large scale social networks for better perception,

• Finding the best representational images of a 3D object to visually inspect

with minimal loss of information,

1



• Automatic navigation over a 3D terrain with minimal loss of information.

The first problem that we tried to present a solution is analysis and visualization

of large scale social networks, which is still a major challenge for researchers. When

a thousand nodes are displayed on the screen with the lack of coloring, sizing and

filtering mechanisms, the users generally do not perceive much on the first look.

They usually use pointing devices or keyboard for zooming and panning to find

the information that they are looking for. With this thesis we tried to present

a visualization approach that uses coloring, sizing and filtering to help the users

recognize the presented information.

In our approach social network is considered as a communication system and the

entropy change of the system by actor removal using centrality measures such as

degree, betweenness and closeness is employed. We provided a visualization system

where a conventional node-link diagram is used. However the node-link diagram is

enhanced by the means of size, and colors of actor representations where they are

mapped from conducted analyses.

The social network used in this work is a scientific collaboration network ex-

tracted from DBLP [9] database including submissions for IEEE Transactions on

Visualization and Computer Graphics(TVCG) between 2005-2009. We conducted

sensitivity analysis for the collaboration network using degree, betweenness and

closeness entropies. In order to present the aggregate or combined entropy change,

each centrality measure entropy vector is normalized before combination process.

Key actor discovery [10] is also integrated into the application. The visualization

system provided with this work exploits the centrality, the centrality entropy and

aggregate entropy change measures to differentiate the actors using the sizing tech-

nique. Furthermore, the color information is utilized to convey the groups and

subnetworks information using graph clustering analysis.

The second problem that we tried to tackle is to find the best representational

images of 3D models, where the images are generated by the help of camera control

in 3D object exploration context. These concepts have been actively studied in
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recent years [11, 12, 13, 14] and have applications in many areas including medical

analysis and training, robotics, image based rendering, virtual reality and scientific

visualizations. Finding the best representational images of 3D objects is a highly

subjective problem in cognitive manner and the “best” or “good” definitions do not

depend on any metric. However in this thesis we tried to map some metrics to those

definitions for representational images.

Representational images of 3D objects are created by projecting their surfaces

onto the screen or any artificial plane. The projection process depends on parameters

such as camera position, camera vector, up vector, and clipping plane positions. We

tried to find such camera positions that the 3D object is projected in “good” or

“best” way where those subjective definitions are mapped to Information Theoretical

measure. Information Theory helped us to quantify two displayed information of

a model, the faces of the model and its salient features. In this work Viewpoint

Entropy introduced by Vazquez et al. [6] is employed and Mesh Saliency Entropy is

presented as novel view descriptor. Viewpoint Entropy is an information theoretical

measure which is used to determine the amount of information from a viewpoint

using the projected faces of the model. The newly introduced view descriptor,

Mesh Saliency Entropy depends on the idea by Lee et al. [15], is an information of

regional importance which is considered as the salient feature of the model or the

graphics meshes. We map the good or best definition as a camera position where the

perception of two defined information is maximized. The maximization approach is

done by our Greedy N-Best View Selection algorithm which creates a viewing sphere

around the object explored and tries to find a camera point where the viewer can

receive the maximum information amount. The details about the techniques and

algorithms introduced with this work will be presented in subsequent chapters.

The third problem that we tried to come upon with a solution is the automatic

terrain navigation with minimal loss of information. Automatic navigation requires

camera control methods which is still a challenging task that includes viewpoint

calculation, path planning and editing necessities. An excellent survey by Christie
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et al. [16] explains the motivation and methods of camera control in virtual space.

Although the methods are developed to solve the requirements of different domains,

they share common problems and difficulties such as degrees of freedom, computa-

tion complexity and lack of generic measures. Camera control techniques vary from

user input reaction based ones to fully automated controls. The approaches and the

techniques presented do not provide a solution for a camera control in large terrain

dataset.

In this work we propose a novel technique to control the camera for large terrain

dataset visualization where the calculated viewpoints can be used as initial starting

points for navigation. The proposed camera point set contains the best views in the

extracted subregions and the framework can be integrated into 3D game engines or

urban visualization systems to give quick glimpse or tour of the environment for the

users.

Our proposed navigation in virtual space depends on information and a mea-

sure to quantify it. The information on navigation problem is taken as the surface

visibility of the terrain. However the surface visibility problem is changed with the

heuristic that users generally focus on cities, buildings and interesting points during

terrain exploration. In order to improve the perceived information amount, we em-

ployed road network data, where we set a heuristic that intersection of road network

segments are the residential places and we should focus on those areas at the time of

navigation. Here we borrow the concept of Viewpoint Entropy and use our Greedy

N-Best View Selection technique for descriptive and informative view determination

in sub-regions of the terrain surface. In order to connect the calculated viewpoints

an evolutionary programming approach is used where a single objective function,

i.e. distance, is minimized.

1.1 Problem Statement

The aim of a visualization is conveying some helpful information to one that looks

at it. We tried to develop presentation systems to show useful and meaningful infor-
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mation to the user with this work. Here we exploited Shannon’s entropy model as

information amount inferred from a system, and tried to improve the user percep-

tion by conducting visibility, saliency and sensitivity analyses. We believe Shannon’s

entropy model is a promising way to solve view related problems by providing a mea-

sure to quantify the information on the communication channel between the user

and the visual world.

1.2 Contribution

Our contributions in this thesis are,

• A novel approach for the sensitivity analysis of a social network and a visual-

ization system that conveys the quantified information,

• An efficient greedy choice algorithm that selects high coverage of 3D object

faces (N-Best View Selection),

• Introduction of a novel view descriptor called Mesh Saliency Entropy, and

combining viewpoint and mesh saliency entropies in view selection for minimal

loss of information,

• Conducting visibility analysis of large scale terrain using road network data

and employment of evolutionary programming approach for camera path gen-

eration.

1.3 Thesis Structure

The remainder of this thesis is structured as follows :

• Chapter 2: Gives a quick overview about the techniques and metaphors

used in Information Visualization. It presents the history, and the state of

art approaches and discusses the issues and problems that we are facing in

visualization systems.
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• Chapter 3: Presents a review about social network analysis and visualization,

view descriptors used for object exploration, and methods for camera control

in virtual environments.

• Chapter 4: Techniques to analyze and visualize a social network using Shan-

non’s entropy model are discussed in this chapter. Degree, betweenness and

closeness entropy measures are introduced to conduct network sensitivity anal-

ysis. A visualization application where the social network is displayed using

sizing, filtering and colorization to improve the perception is presented.

• Chapter 5: This chapter introduces our novel view descriptor entitled Mesh

Saliency Entropy and a greedy choice algorithm for selecting high coverage of

faces, high coverage of mesh saliency and high coverage of combined informa-

tion.

• Chapter 6: Navigation in 3D terrain is discussed in this chapter. Camera

control techniques, region extraction from road network data, viewpoint gen-

eration, connecting the viewpoints using evolutionary programming approach,

and integrating the generated path to Google Earth framework are detailed.

• Chapter 7: Concluding remarks and future work are discussed in this chapter.
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2 OVERVIEW ON INFORMATION
VISUALIZATION

2.1 Introduction

Information visualization is the interdisciplinary study of “the visual representation

of large-scale collections of non-numerical information, such as files and lines of code

in software systems, library and bibliographic databases, networks of relations on

the internet, and so forth” [17]. Its interdisciplinary approach includes Computer

Graphics, Human-Computer Interaction, Visual Design, and Psychology. It has

many applications vary from scientific research, to data mining and crime search.

The question “why do we visualize data or information ?” may arise, we can

answer this question with Nathan Shedroff’s “continuum of understanding” [18]. He

analyzes the process of understanding and describes it as a continuum that produces

information from data, where information is transformed into knowledge and finally

into wisdom. According to Mazza, Information Visualization lays between data and

information when Nathan’s model is taken into account [1]. We visualize data to

produce information where that information is transformed into knowledge with the

help of user’s experience. Visual representations help us to ease that process.

Figure 2.1: The continuum of understanding, according to Nathan Shedroff [1].
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2.2 What Is Good Visual Representation ?

This is one of the hardest questions and many researchers are trying to find criteria

by setting this as a research challenge for themselves. Edward Tufte, one of the most

prominent researchers with two excellent milestone books points out some criteria

to describe that a visual representation is effective. According to Tufte, a good

picture is a well-built presentation of “interesting” data [19, 20]. It is something

that brings together substance, statistic, and design. It aims to clearly, precisely,

and efficiently present and communicate complex ideas. More generally, it aims to

provide the viewer with “the greatest number of ideas, in the shortest time, using

the least amount of ink, in the smallest space” [1].

Ben Shneiderman’s information visualization mantra is ”Overview, zoom and

filter, details on demand” [21]. This approach can show researchers a roadmap for

good visual representations.

2.3 History of Information Visualization

In this section we will briefly describe the work done in history to better state that

information visualization is not a research area after the invention of computers and

many methods were developed before the computer era.

In Figure 2.2 the French engineer, Charles Minard (1781-1870), illustrated the

disastrous result of Napoleon’s Russian campaign of 1812. The size of Napoleon’s

army is shown as the width of the band in the map, starting on the Russian-Polish

border with 422,000 men. By the time they reached Moscow in September, the

size of the army dropped to 100,000. Eventually, only a small fraction of Napoleon’s

original army survived [3]. It is considered as the best statistical graphic ever drawn.

In Figure 2.3 the Scottish engineer William Playfair’s (1759-1823) “The Com-

mercial and Political Atlas”, published in 1786, is shown. He is generally viewed

as the inventor of most of the common graphical methods of statistics and display.

Line plots, bar chart and pie chart are first introduced by Playfair. In this visualiza-
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Figure 2.2: Napoleon’s Russian Campaign of 1812

tion, the area between two time-series curves was emphasized to show the difference

between them, representing the balance of trade [20].

In Figure 2.4 Florance Nightingale’s polar area diagram is presented. Florance

Nightingale (1820-1910) is described as “a true pioneer in the graphical represen-

tation of statistics”, and is credited with developing a form of the pie chart now

known as the polar area diagram, or usually the Nightingale rose diagram, equiva-

lent to a modern circular histogram, in order to illustrate seasonal sources of patient

mortality in the military field hospital she managed [22].

In Figure 2.5 Dr.John Snow’s spot map is presented. Snow is considered to be one

of the fathers of epidemiology. He traced the source of a cholera outbreak in Soho,

England, in 1854. He used a spot map to illustrate how cases of cholera clustered

around the pumps. He also made use of statistics to illustrate the connection between

the quality of the source of water and cholera cases [20]. Snow plotted deaths by

dots and water pumps by crosses.

In Figure 2.6 both the tube map of 1908 and the modern tube map is pre-

sented [23]. The modern version of map is based on the topological design of Harry

Beck in 1933. Harry Beck’s classic schematic design of the London underground

map shows us that a good design is not necessarily built on geometric details even
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Figure 2.3: Playfair’s chart

Figure 2.4: Florence Nightingale’s rose diagram.
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Figure 2.5: The 1854 London Cholera Epidemic

those details come with the data [3].

2.4 Information Visualization Techniques

In this section we will demonstrate some techniques heavily used in information

visualization. The techniques and methods presented here do not cover all the state

of art visualization approaches; instead an overview is presented. In Figure 2.7

a periodic table is shown [2]. In this figure the state of art data or information

visualization methods are presented in visual form.

2.4.1 Graph Drawing

A drawing of a graph or network diagram is basically a pictorial representation of

the vertices and edges of a graph [24]. Graph drawing techniques have been used

in information visualization, as well as in VLSI design and software visualization.

An example of graph drawing is shown in Figure 2.8. In this figure a co-citation
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(a) (b)

Figure 2.6: (a)Tube map of 1908, (b)The modern tube map, based on the simplified
topological design invented by Beck.

Figure 2.7: A Periodic Table Of Visualization Methods [2]
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Figure 2.8: A Co-citation Map of Graph Drawing Articles(1990-2003) [3]

network is represented by a graph, where each node is a published article or book.

In Figure 2.9 a visualization that shows the dependencies among classes within

the Flare library is presented. The classes in package are positioned along the

circle and links that indicate the dependency between the classes are represented by

lines. Chen lists several challenges and some good heuristics with graph drawing [3].

The scalability of layout algorithms which can output readable and understandable

visualization is one of the most important challenges in graph drawing.

2.4.2 TreeMap

Treemapping is a visualization method for displaying hierarchical data by using

nested rectangles. It utilizes a space-filling algorithm that fills recursively divided

rectangle areas with components of a hierarchy. A tree map example which shows

drink preferences in a small group of people is presented in Figure 2.10.

2.4.3 HeatMap

A heatmap is a graphical representation of data where the values taken by variables

are represented as colors in two-dimensional table. The representation can be a 2D

matrix as well as a geospatial map. In Figure 2.11.a a 2D matrix representation of

a heatmap is shown, in Figure 2.11.b a geospatial heatmap is presented [25].
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Figure 2.9: The Flare Dependency Graph is a ring-based layout showing the de-
pendencies between classes in the Flare library [4]

Figure 2.10: Treemap of soft drink preference in a small group of people.
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(a)

(b)

Figure 2.11: Heatmap Visualization
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Figure 2.12: Parallel coordinates for 730 elements with 7 variant attributes [1].

2.4.4 Parallel Coordinates

Parallel coordinates is an intuitive way of visualizing high-dimensional or multivari-

ate data. In this technique the attributes are represented by the axis, where they

are parallel and equally spaced. Each record in dataset is depicted with a line seg-

ment where the values on axes are connected. In Figure 2.12 an example of parallel

coordinates with 7 variant attributes is shown. Although parallel coordinates is a

powerful technique, it lacks scalability. For large dataset the visualization can be

dense and non-distinguishable.

2.4.5 Flowmap

Flowmap is a displaying method of flow data. This type of data contains two

different locations and a connection item that represents trucks, people, items or

communications. The data item is specific about where the flow starts and a desti-

nation where the flow ends. In Figure 2.13 a flowmap is shown which visualizes the

outgoing migration from the Colorado state.

2.5 Information Visualization Problems

Although many visualization techniques for different problem domains exist today,

there are still major problems with information visualization methods. When a

visualization method is analyzed in depth, we see several problems with it. For

16



Figure 2.13: Flowmap: Outgoing Migration Map from Colorado for 1995-2000 [5]

instance in graph drawing many layout algorithms work nice with tens of node or

up to a hundred nodes, when the node size goes several hundreds or thousands layout

algorithms tend to break due to instability. In the case layout algorithm does not

loose its stability, then the issues such as aesthetics, readability, understandability

or perception usually come into play.

Chen lists the visualization problems in his article entitled “Top 10 Unsolved

Information Visualization Problems” in 2005 [26]. When we examined the problems

identified by Chen in detail, we realize that we still face those issues; however many

ongoing information visualization researches are trying to solve or tackle them. Some

problems can be stated as user centered, some problems are technical challenge or

“need tackling at the disciplinary level”. The problems identified by Chen vary from

usability to understanding elementary perceptual-cognitive tasks, from scalability

and quality measures to aesthetics.

Keim et al., in their notable paper entitled “Visual Analytics: Scope and Chal-

lenges” break down the information visualization challenges into two categories:

“Application Challenges” and “Technical Challenges” [27]. In application challenges

category they talk about the use of information visualization in diverse domains and

the challenges presented by these domains. In technical challenges they list 10 tech-

nical challenges varying from problem solving to user acceptability, from data quality

and uncertainty to scalability.
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We refer the reader to these two excellent articles for further and detailed ex-

planations about the information visualization domains, application areas, and the

scopes as well as the challenges that arise both from the nature of domain and the

techniques.
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3 LITERATURE SURVEY

This chapter will be discussed in three different subsections. The first one will discuss

about the techniques for social network analysis and visualization, the second one

will elaborate on the viewpoint generation, informativity and quality of views, and

the third one will present the camera control techniques used in virtual environments.

3.1 Social Network Analysis and Visualization

In recent years many methods have been developed for social network analysis to

rank nodes, to discover hidden links, to deduce meaningful information by the help

of statistical, dynamic or visual perspective analyses [28]. The context of social

network analysis varies from dark networks [29], to collaboration networks [30] or

to networks in biological sciences.

Statistical analysis of social networks uses statistical properties of graphs includ-

ing clustering, degree distributions or centrality measures to deduce useful informa-

tion. Centrality measures determine the relative importance of a node in a network

and the most common ones are degree, betweenness and closeness [31]. A more

complex measure i.e. Markov centrality [32] treats the social network as a Markov

chain and helps to discover significant facilitators in that network.

Choosing the right centrality for a specific problem is usually a hard task and

common approach is comparing different centralities for the same network and build-

ing hypothesis about the discovered central nodes [33].

One of the pioneers in exploring key actors for dark networks Sparrow [34] used

six centrality measures for their relevance in revealing the mechanics and vulnera-

bilities of criminal enterprises. Hussain et al. [10] used degree centrality measure

to set Bayesian Posterior Probabilities for entropy change calculations to locate key
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actors in social networks. Newman [30] defined a different set of statistical measures

such as number of authors, mean papers per author, mean authors per paper, num-

ber of collaborators, and average degrees of separation for scientific collaboration

networks. Crnovrsanin et al. [35] used Markov centrality metric to discover and

highlight meaningful links.

Another aspect of social network analysis is to discover the dynamic behaviors

of the network which usually takes domain of time into account. Dynamic analysis

can include network recovery by multiple representations from longitudinal data

to model the evolving network, network measurement of deterministic, probabilistic

and temporal aspects and statistical analysis such as continuous Markov model, and

Cox regression analysis for determining significant nodes.

Kaza et al. [29] used multivariate survival analysis of Cox regression for signif-

icant facilitator discovery. Falkowski et al. [36] proposed a technique to detect the

evolution of subgroups and analyzing subgroup dynamics in manner of stability,

density, cohesion and distance using temporal and statistical analyses.

3.2 Viewpoint Generation

In recent years many methods have been developed for measuring the quality of

the views and have tried to describe the optimum point to place a camera on a

scene where it can be viewed the best way. Unfortunately the translation of the

term “best” or “good” into measures or numbers is not an easy task. Kamada-

Kawai [37] were one of the pioneers in defining a good position to place a camera in

a 3D scene. They define a parallel projection of a scene to be good, if the number

of surface normals orthogonal to the view direction is minimal. The method has

several drawbacks, first it does not guarantee that user will see as much details as

possible and will fail when comparing equal number of degenerated faces.

Barral et al. [38] use a modification of the coefficients introduced by Kamada-

Kawai in order to cope with perspective projection. They introduce different ex-

ploration coefficients, that are combined to determine the quality of a perspective
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projection. However, they can not find a good weighting scheme for those factors.

The algorithm fails for objects of genus one and larger.

Vazquez et al. [6] propose a metric based on the entropy of the scene. They

define the best viewpoint as the one with the highest entropy, i.e. the one that sees

the maximum of information. They apply the ratio of the projected area of each

face to the area covered by the projection of all faces in the scene. Vazquez et al.

suggested the technique in 2001 and made improvements in following years.

Vazquez [39] proposes a new technique to select the views automatically by using

depth-based stability analysis. In this work he introduces a new view descriptor

which uses depth maps to have three-quarter oblique views for 3D objects. He

claims that psychophysical experiments have shown that users often prefer oblique

views between frontal and profile views as representative views for 3D objects.

Skolov and Plemenos [40] propose a high level technique and claim the techniques

presented above as low-level. They step in the direction of semantic description of

a 3D scene and use hierarchical decomposition of them. They define the viewpoint

quality as the sum of observation qualities of each decomposed object.

Mesh Saliency is also actively studied for viewpoint selection and mesh simplifi-

cation. Salient features such as luminance, pixel colors or geometry are used. Koch

and Ullman [41] suggest that salient locations in 2D images will be different from

its neighbors. Itti et al. [42] propose a method for the calculation of the saliency

map using 2D images. They combine information from center-surround mecha-

nisms applied to different feature maps and assign a saliency value to each pixel.

Lee et al. [15] propose a geometrical approach for calculation of mesh saliency in

3D models. Their method uses the curvature attribute of the object and Itti et al.’s

center-surround mechanism to highlight the regions that are different from their

surroundings. Takashi et al. [43] propose a method to locate optimal viewpoints for

volumetric objects by decomposing the entire volume into a set of feature compo-

nents. Bordoloi and Shen [44] use view goodness, view likelihood and view stability

concepts to locate viewpoints for volume rendering where viewpoint goodness mea-
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sure is based on entropy that uses the visibility of the voxels. Bulbul et al. [11] use

the concept of saliency and apply it to the animated meshes with material proper-

ties. They compute multiple feature maps including geometry, material and motion

where the calculated maps are combined into a cumulative feature map. Liu et

al. [45] uses mesh saliency to extract critical points by the help of Morse theory and

claims that their technique is more satisfactory and results with the lower number

of critical points.

3.3 Camera Control

The camera control can be classified into four different categories or schemes; direct

control, through the lens control, assisted control and automated control [16]. The

key issues for researchers include the management of the control in the high degrees

of freedom, handling of exponentially growing computation complexity and finding

effective and reactive measures to avoid the occlusions in the scene.

The direct control is a reactive control type that responses back for the user

inputs. Ware and Osborne present possible input mappings for direct camera control

metaphors in their review including eyeball in hand, world in hand, flying vehicle,

and walking metaphor [46]. In eyeball in hand metaphor the position and orientation

parameters of the camera is directly manipulated by the input device in the user.

In world in hand metaphor the rotational and positional parameters of the camera

is fixed or constrained but in this case the world parameters are manipulated by the

input device i.e. the arcball concept introduced by [47]. In flying vehicle metaphor

the camera is treated as a flying object and user inputs control the rotational and

translational velocities of the camera. This metaphor is widely exercised in 3D

games and considered to be the intuitive way of the exploration. However the major

concern for players is being lost in environment. Hanson and Wernert [48] present

a constrained based navigation system to avoid obstacles in the scene. Turner et

al. [49] present an exploration of physics based camera control where the user inputs

are treated as forces acting on a weight(in this case it is the virtual camera). Xiao
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and Hubbold [50] present the use of vector fields for avoiding the cluttered views

while directing the users into the object of interest.

In through the lens control metaphor the camera is controlled by the change

of the positions of objects in the environment. Gleicher and Witkin [51] present

this paradigm in their seminal paper where they recompute camera parameters to

match the user’s requested location. The difference between the screen and desired

location is considered as velocity. And the relationship between the velocity and

displacement of points is expressed through the Jacobian matrix which represents

the perspective transformation of the scene.

Assisted camera control technique exploits local or global knowledge about the

environment to assist the users through their navigation. It can be classified into two

metaphors such as object aware and environment aware assistances depending on

their knowledge type [16]. In object aware assistance the proximal object inspection

is used for collision avoidance such as ray casting, and in environment aware assisted

camera control metaphor the global knowledge about the scene is used to avoid

obstacles or direct the user to interesting parts. Elmqvist et al. [52] use scene

voxelization, connectivity graph and TSP-like algorithm to assist the user in their

guided navigation framework. Andjar et al. [53] exploit the concept of Viewpoint

Entropy for indoor navigation. They use cell and portal decomposition together with

the calculated viewpoints in each cell. This work resembles the most to our work

however, instead of indoor portals, our environment is large scale terrains, we use

our Greedy N-Best View Selection algorithm for calculations in the regions extracted

by the help of road network data. We also utilize the evolutionary programming

paradigm to find the path between the calculated viewpoints. The details of our

approach will be discussed in subsequent sections.

In automated camera control, the transformation and rotational attributes of the

camera is directly computed using either the generated image, or the fitness function

that needs to be optimized. Visual servoing or target tracking is one example of

automated camera control using the image analysis technique. Visual servoing uses
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the feedback information extracted from a vision sensor to control the motion of a

robot [54]. In optimization based automated camera control, the deterministic or

non-deterministic optimization methods are employed to find the camera configu-

ration. For instance Bares et al. [55] propose the use of a complete search space

as an optimization approach. In our technique we employ the divide and conquer

metaphor. We calculate camera positions for sub-regions of the terrain and utilize a

non-deterministic approach such as population-based genetic TSP to calculate the

final camera path.

24



4 SENSITIVITY ANALYSIS AND
VISUALIZATION OF SOCIAL

NETWORKS

This chapter introduces a technique to analyze and visualize a social network using

Shannon’s entropy model.

Social network analysis [35, 10, 29, 56] has applications in many areas includ-

ing organizational studies, social psychology and information science. The goal is

to distinguish and detect regular or non-regular patterns, tendencies, mutual inter-

ests and reveal hidden information to execute the required tasks by perceiving the

information presented.

In this work we presented a visualization approach that uses coloring, sizing

and filtering to help the users perceive the presented information. We used degree

entropy and presented novel measures such as betweenness and closeness entropies

to conduct network sensitivity analysis by means of evaluating the change of graph

entropy via those measures. We integrated the result of our analyses into a visualiza-

tion application where the social network is presented using conventional node-link

diagram.

The visualization provided in this work uses general mantra of information visu-

alization where the size of visual representation of an actor depends on the amount

of change in system entropy caused by the actor and the color information is mapped

from the graph clustering or conducted sensitivity analyses. Filtering of edges and

nodes is also provided to ease and improve the perception of complex graphs. The

main contribution of this study is a visualization where the information communi-

cated from a social network is enhanced by the help of clustering and sensitivity

analyses.
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The rest of the chapter is organized as follows: in Section 4.1 we describe the

system architecture, input and outputs of the processing components and the sys-

tem flow for visualization of the social network data. In Section 4.2 we review

the commonly used social network centralities, in Section 4.3 we present entropy

based sensitivity analysis of a social network, in Section 4.4 we discuss about the

visualization and analyze the outputs. Section 4.5 concludes our work.

4.1 System Overview

The visual display of social network data using entropy enhancement requires several

steps as shown in Figure 4.1. One of them is to create a social network data or a social

network graph. In order to accomplish this task we employed the DBLP [9] data and

filtered the papers published in ACM SIGGRAPH conference and journals in TVCG

(IEEE Transactions on Visualization and Computer Graphics (TVCG)) between

years 2005 and 2009. The filtered publications form the basis for the collaboration

network creation.

Figure 4.1: Social Network Visualization System Overview

The second step is achieved by creating a social network graph via the help

of filtered publications. This task includes creating a node for each author and

connecting the links between authors with the papers published together. This
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graph is defined as a collaboration graph. The collaboration graph is an XML file

which uses GraphML file format [57]. In the processing step the collaboration graph

is analyzed by means of sensitivity and social graph metrics where the produced

output is used to derive the visualization of the network. In the visualization step

we provided a 2D presentation that maps the calculated metrics to the color and

size of the actors displayed on the screen.

The metric creation and techniques for sensitivity analysis will be explained on

the next section.

4.2 Social Network Centralities

There are various measures of the centrality of a node within a graph that determine

the relative importance of a node. For example the centrality measure for a social

network can map to solve how important a person is within that social network or

the effect of a person in the connectivity of the social network. Many of the centrality

concepts were first developed in social network analysis, and used in terms to reflect

a sociological origin.

4.2.1 Degree Centrality

Degree centrality is defined as the number of links incident on a node. If the network

is directed, indegree and outdegree centralities are defined. Indegree is a count of

the number of links directed to the node, and outdegree is the number of links that

the node directs to others. For relations such as friendship, indegree is interpreted as

popularity, and outdegree as gregariousness. For the social network in our domain,

the graph is undirected and degree of a node is the number of all incident links.

In order to find the degree centralities of the nodes, the number of incident links

are counted and recorded. The recorded values are processed to normalize the values

to [0, 1]. The equation used for normalization is shown in (4.1). In this equation

Cd(v) denotes the the degree centrality of vertex v, min(Cd) is the minimum, and

max(Cd) is the maximum of the degree centrality of the network, and norm(Cd(v))
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is the normalized degree centrality of the vertex v.

norm(Cd(v)) =
Cd(v)−min(Cd)

max(Cd)−min(Cd)
(4.1)

4.2.2 Betweenness Centrality

Betweenness is a centrality measure of a node within a graph. It was introduced as

a measure for quantifying the control of a human on the communication between

other humans in a social network by Freeman [58]. In his conception, nodes that

have a high probability to occur on a randomly chosen shortest path between two

randomly chosen nodes, have a high betweenness.

For a graph G := (V,E) with n nodes, the betweenness Cb(v) for vertex v is

computed as follows:

1. For each pair of nodes (s,t), compute all shortest paths between them.

2. For each pair of nodes (s,t), determine the fraction of shortest paths that pass

through the vertex in question (here, vertex v).

3. Sum this fraction over all pairs of nodes (s,t).

The formula to calculate the betweenness centrality is shown in equation(4.2) [59].

Cb(v) =
∑

s 6=v 6=t∈V

σst(v)

σst
(4.2)

where σst is the number of shortest paths from s to t, and σst(v) is the number of

shortest paths from s to t that pass through a vertex v. This may be normalized by

dividing through the number of pairs of nodes not including v, which is (n− 1)(n−

2) for directed graphs and (n − 1)(n − 2)/2 for undirected graphs. This scaling

emphasizes the highest possible value where a node is crossed every shortest path.

In this work we used the normalization method shown in equation(4.3) where the

betweenness centrality values are mapped Cb(v) ∈ [0, 1].

norm(Cb(v)) =
Cb(v)−min(Cb)

max(Cb)−min(Cb)
(4.3)
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An example figure for graph betweenness is presented in 4.2 where Hue shows

the node betweenness.

Figure 4.2: Hue (from red=0 to blue=max) shows the node betweenness.

4.2.3 Closeness Centrality

Closeness centrality is a natural distance metric between all pairs of nodes defined by

the length of the shortest distance between them. It is the inverse of farness where

the farness for a node s is defined as the sum of distances to all other nodes [31].

Closeness can be regarded as a measure of how long it will take to spread infor-

mation from s to all other nodes sequentially. Thus when a node is the more central

the lower its total distance to all other nodes. The closeness Cc(v) for a vertex v is

the reciprocal of the sum of geodesic distances to all other vertices of V as shown

in equation(4.4):

Cc(v) =
|V | − 1∑

t∈V \v dG(v, t)
(4.4)

The closeness centrality values are mapped to [0, 1] using the normalization

equation(4.5).

norm(Cc(v)) =
Cc(v)−min(Cc)

max(Cc)−min(Cc)
(4.5)
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4.3 Sensitivity Analysis

The sensitivity of an actor in the social network reveals the importance of rela-

tion between the actor and all other participants. Here we present an analytical

approach using centrality entropy distributions which can be considered as good

indicators of network sensitivity. We define three centrality entropy distributions,

degree entropy, betweenness entropy and closeness entropy. Combined information

is presented by the normalization of centrality entropy distributions discussed in

this work. Subsections will describe the centrality entropies via the help of Shannon

Entropy.

4.3.1 Degree Entropy

The Shannon entropy [8] of a discrete random variable X with values in the set

{x1, x2, ...xn} is defined as

H(x) = −
n∑
i=1

p(xi) logb p(xi) (4.6)

In equation (4.6) p(xi) is the probability mass functions of state xi, for a system

with n different states. In our context the probability mass function set is the degree

distribution of the actors in the social network and n is the number of distinct actors.

Hence we defined the the probability mass function p(xi) of the node xi using the

degree centrality as shown in equation(4.7)

pd(xi) =
norm(Cd(xi))∑n
j=1 norm(Cd(xj))

(4.7)

Safar et al. [60] defines a similar probability equation in their evolutionary pro-

gramming inspired cyclic entropy maximization. They use Barabasi et al. [61]’s

generation algorithm for experimenting on scale-free networks, where the degree

based distribution is used to link nodes for finding an optimal distribution where

the total entropy of the network is maximized. However we use degree centrality
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distribution to calculate the entropy of the social network by interpreting the actors

as the states of a system.

In order to conduct sensitivity analysis using degree entropy, the initial infor-

mation amount, hence degree entropy is recorded including all the actors in the

network. An actor is removed from the network and the system entropy is recalcu-

lated for the remaining actors. To calculate the system entropy we use the largest

connected component of the subgraphs if the actor disconnects the network. The

calculated entropy value is recorded and actor is connected back to the network.

This sequence is applied to all actors in the social network.

The system entropy change analysis for each actor is performed by taking differ-

ence of initial system entropy and remaining system entropy. Hence the entropy is

defined as the quantification of information amount, the change between initial and

remaining system entropy is defined as the amount of change caused by the actor.

The recordings of sensitivity analysis are normalized during the output to be

processed by the visualization system provided in this work.

4.3.2 Betweenness Entropy

The betweenness entropy is defined as the information amount revealed by the graph

using betweenness centrality. We exploit the same concept mentioned before. We

specified the system with n different states as a social network with n different

actors.

The probability mass function set is interpreted as the betweenness distribu-

tion of the actors in that social network. The distribution is created by using the

normalized betweenness centralities shown in equation(4.8):

pb(xi) =
norm(Cb(xi))∑n
j=1 norm(Cb(xj))

(4.8)

The sensitivity analysis using betweenness entropy is done similar to the degree

entropy analysis. The initial system entropy using betweenness probability mass
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function is calculated and recorded, and each actor is removed from the network

where the betweenness entropy is calculated for the social network with remaining

actors. The change between the initial entropy and remaining is recorded as the

change caused by the actor and actor is connected back to the network. After the

recordings, the values are normalized.

4.3.3 Closeness Entropy

The closeness entropy is defined as the information amount revealed by the graph

using closeness centrality. In this sense the social network with n actors is interpreted

as a system with n different states. The information measure that needs to be

quantified is closeness in this case.

pc(xi) =
norm(Cc(xi))∑n
j=1 norm(Cc(xj))

(4.9)

We used the values calculated in equation(4.9) as the probability mass function for

the equation(4.6) to compute closeness entropy for the social network. The sensi-

tivity analysis is done using the sequence presented in previous sections; however in

this case closeness entropy is used as probability mass function.

4.3.4 Combined Approach

Degree, betweenness and closeness entropies are combined to measure the aggregate

sensitivity of each actor in the network. The combination approach can be either

product or summation of the values. Since we have normalized sensitivity (i.e.

change information); the summation operation would be a reasonable approach.

However to favor the actors that have high values jointly in degree, betweenness

and closeness entropy changes, we selected the product as the aggregation method.

With this scheme we can emphasize those actors in the final visualization.

Either summation or product operation is used, the aggregation helps to incor-

porate three centrality change information into a single, measurable and displayable
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value.

Combined(v) = Id(v).Ib(v).Ic(v) (4.10)

In equation(4.10), Id(v) denotes degree change information, Ib(v) denotes between-

ness change information and Ic(v) is closeness change information where we treat

information as the system entropy. The user can select any of them as well as the

combined one for further analysis using the visualization system provided in this

work.

4.4 Discussion and Visualization

There are many techniques found in literature [62] for social network visualization

varying from node-link diagrams, to tree-maps, from adjacency matrix represen-

tations [63] to sophisticated 3D visualizations, however we believe that node-link

diagrams are most suitable presentation of social networks for human perception.

In this work, we provide a visualization application that demonstrates the so-

cial network with conventional node-link diagram. Centrality measures, centrality

measure entropy changes i.e. sensitivities are conveyed to the user via drawn nodes.

For instance if an actor changes the system entropy more than the other actors,

that actor is represented with a greater ellipse. The layout and clustering analysis

is done using the energy-based minimization model presented by Noack [64].

The sensitivity analyses using centrality measure entropies show the changes

to the system entropy caused by the actors in the network. The cause of change

differs by the amount of information decreased from the initial information quantity

calculated for the system. The change is sensitive to two factors, the number of

disconnected nodes caused by the actor after removal, and the centrality measure

entropy amount of the disconnected actors, which actually complies with the aim of

sensitivity analysis that is revealing importance of relation between the actor and

all other participants in the system.

33



4.4.1 Discussion

Here we discuss about a hand generated social network example shown in Figure 4.3.

In this example 13 actors are collaborating in a tree shaped flow, where the actor–0

is on the center of this collaboration, hence the root node.

Figure 4.3: An example social network

Degree Betweenness Closeness
Actor Cent. Ent. Cent. Ent. Cent. Ent. Combined

0 0.667 1.0 1.0 1.0 1.0 1.0 1.0
1 1.0 0.265 0.625 0.188 0.555 0.395 0.0197
2 1.0 0.265 0.625 0.188 0.555 0.395 0.0197
3 1.0 0.265 0.625 0.188 0.555 0.395 0.0197

Table 4.1: Centrality and sensitivity entropy values for the example network. Cent.
denotes the centrality and Ent. denotes the entropy sensitivity analysis. Note that
difference between columns shows the change reflected by sensitivity analysis, and
the difference between rows highlight the ratio emphasized.

When we analyzed the degree centrality of each actor we observe that actors 1,2,

and 3 have four links, actor–0 has three links, and the rest has only one link. The

normalized degree centralities of the actors are shown in Table 4.1, actors that do

not have value, such as 0, are not presented. The degree centrality values are 1.0 for

actors 1,2, and 3 and 0.667 for the actor–0. If we solely analyze this centrality mea-

sure, the values indicate that the actor–0 does not have that significance compared
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(a) (b)

Figure 4.4: Node size mapping (a)Degree centrality, (b)Degree entropy sensitivity
analysis

to the actors 1,2, and 3, which does not reveal that the presented social network is

more sensitive to the root actor hence it disconnects the whole network. The result

of sensitivity analysis of degree entropy is also shown in Table 4.1. This analysis

reveals that the change caused by actor–0 is the greatest, hence it has normalized

value 1.0, furthermore the difference between the actor–0 and actors 1,2, and 3 is

emphasized as shown in table.

In Figure 4.4 the mapping of degree centrality measure and sensitivity analysis

are conveyed with the size of displayed actors. We can observe the differences about

the actor sizes and emphasized output in Figure 4.4.b.

The result of betweenness centrality and the sensitivity analysis using between-

ness entropy are shown in Table 4.1. Note that the normalized values of both

measures are 1.0 for actor–0, who has the highest betweenness centrality as being

the central node on each shortest path calculation. Although we do not observe any

difference between the values of betweenness centrality and its sensitivity analysis

using entropy, we can distinguish that the difference amount between actor–0 and

the other actors is emphasized in sensitivity analysis. This can also be observed

from the Figure 4.5.

The results for analysis of closeness centrality measure and its sensitivity using
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(a) (b)

Figure 4.5: Node size mapping (a)Betweenness centrality, (b)Betweenness entropy
sensitivity analysis

entropy are presented in Table 4.1 and Figure 4.6 respectively. The same argument

made in analysis using betweenness centrality applies here as well. Although the

normalized values for centrality measure and its entropy based sensitivity analysis

do not differ, the sensitivity analysis emphasizes the difference between the actor-0

and actors 1,2, and 3.

We present the result of combined information change caused by actors in Ta-

ble 4.1 and Figure 4.6 respectively. It can be observed from the values shown and

its mapping to the visualization that the difference between actor–0 and all other

actors is emphasized. This information reveals that the effect caused by the actor–0

is the highest and the displayed social network is highly sensitive to this actor.

4.4.2 2D Visualization of Social Network

TVCG collaboration network is visualized using different information and filtering

applied to nodes and edges. Figure 4.8 shows the default presentation of the network,

no information except the connectivity of the actors is conveyed to the user.

In the following subsections we will analyze the use cases and present the vi-

sualizations for them. In order to enhance the perception we filtered the nodes

associated with each visualization where their normalized value is less than 0.35 and
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(a) (b)

Figure 4.6: Node size mapping (a)Closeness centrality, (b)Closeness entropy sen-
sitivity analysis

Figure 4.7: Social network visualizing combined information
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Figure 4.8: Default presentation of collaboration network

colorized to convey the cluster analysis information.

Use Case: Popularity

The popularity of the actors can be found with two conducted analyses, hence

degree centrality measure and key actor discovery algorithm presented by Hussain

and Arroyo [10]. The results for these two algorithms are shown in Figure 4.9 and

Figure 4.10 respectively. Here we can deduce the importance or popularity of an

actor from size of the ellipse that denotes the actor.

Use Case: Which actor disconnects the most ?

This question can be answered by the result of sensitivity analysis of degree entropy.

It also associates with another important problem “finding the number of nodes that

must be removed from the network before it disconnects into separate networks”.

These problems are robustness indicators of the networks. In social network case,

it can be used to target the actor who will give the most damage to the network.

Figure 4.11 presents the result of sensitivity analysis of degree entropy applied to

the nodes sizes, the user can deduce each actor’s effect using degree entropy to

the whole system, hence the actors shown with a greater ellipse change the system
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Figure 4.9: Collaboration network visualized using degree centrality

entropy more than the other actors due to the degree centrality.

Use Case: Which actor affects the data flow most?

This question can be answered by the result of sensitivity analysis using betweenness

entropy. When a node has higher betweenness centrality it has higher probability

of being on many shortest paths of the network. We will exploit this knowledge to

legitimate our claim about disrupting the data flow. Data flow in a social network

can be affected in two ways : due to disconnection in the network, or removal

of an actor who has high betweenness centrality. Our analysis reveals these two

cases in a single visualization. In Figure 4.12 the result of sensitivity analysis using

betweenness entropy is presented. The actors shown with a greater ellipse change

the system entropy more than the other actors.

Use Case: Which actor affects the global connectivity most?

This question can be answered by the result of sensitivity analysis of closeness en-

tropy. The global connectivity in the network is revealed by the closeness of its

actors. This connectivity can be disrupted either by causing a disconnection in

the network or removing the nodes with high closeness centralities. Our sensitivity
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Figure 4.10: Collaboration network visualized using key actor discovery

analysis of closeness entropy reveals these cases. In Figure 4.13 the result of sensi-

tivity analysis using closeness entropy is presented. The actors shown with a greater

ellipse change the system entropy more than the other actors hence revealing the

information about the effect on global connectivity.

4.5 Conclusion

In this chapter a technique for analyzing and visualizing a social network using Shan-

non’s entropy definition is presented. We used the three most common centrality

measures such as degree, betweenness and closeness to define centrality measure en-

tropies. Centrality measure entropies are utilized to conduct the sensitivity analysis

of system employing entropy changes of the actors in the social network.

We tried to enhance the information communicated from a social network by the

help of analyses and visualization techniques provided in this work. Experiments

are preformed using different datasets varying from hand generated to collaboration

data extracted from various sources. A social network example TVCG collaboration

data is presented here to show the results of our work.

Our experiments have shown that Shannon’s entropy model is a promising tech-
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Figure 4.11: Collaboration network visualized using sensitivity analysis of degree
entropy

nique for social network analysis and visualization.
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Figure 4.12: Collaboration network visualized using sensitivity analysis of be-
tweenness entropy

Figure 4.13: Collaboration network visualized using sensitivity analysis of closeness
entropy
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5 OBJECT EXPLORATION

We introduce a technique to visually inspect a 3D object in a scene with minimal

loss of information. We exploit the concept of the viewpoint entropy and introduce

a novel view descriptor called mesh saliency entropy for virtual object exploration.

The viewpoint entropy is an information theoretical measure which is used to de-

termine the amount of information seen from a certain viewpoint. When the model

geometry is considered with no coloring and texturing, the object can only commu-

nicate its surface or volume to the viewer by the output of rendering stages. Hence it

is the solely information that can be perceived from the model. In this work present

a technique to perceive the maximum information from a 3D model by finding a

minimal set of camera points which can be defined as the best viewpoints.

In this chapter we also discuss about the evaluation of the entropy as a metric for

information coverage, and a usability study to measure the strength of the techniques

we provided.

The rest of the chapter is organized as follows: in Section 5.1 and Section 5.2

we give a theoretical background about Viewpoint Entropy, Mesh Saliency and

Mean Curvature, in Section 5.3 we present Greedy N-Best View Selection and Mesh

Saliency Entropy algorithms and discuss the differences with the methods presented

in [6, 65, 66, 7]. In Section 5.4 we examine the statistical results, in Section 5.5 we

present a usability study and its outcome, and Section 5.6 concludes this chapter

with our remarks.

5.1 Viewpoint Entropy

The entropy [8] of a discrete random variable X with values in the set {x1, x2, ...xn}

is defined as in equation(4.6). Even though the entropy is expressed as a function
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of the random variable X, it is actually a function of the probability distribution

p of the variable X over the number of distinct symbols N. Entropy function has

following two important properties [44];

1. For a given number of symbols N, the maximum entropy occurs for the

distribution peq, where {p0 = p1 = ... = pN−1 = 1/N}.

2. Entropy is a concave function, which implies that the local maximum at peq

is also the global maximum. It also implies that as we move away from the equal

distribution peq, along a straight line in any direction, the value of entropy decreases

(or remains the same, but does not increase).

The properties of the entropy function expressed above give us that the calculated

viewpoints in extracted regions will be the global maximum points where the object

surface is perceived equally.

Viewpoint entropy [6] using Shannon Entropy is defined as

I(S,p) = −
Nf∑
i=0

Ai
At

logb
Ai
At

(5.1)

where Ai is the projected area of face i over the sphere, At is the total area of the

sphere and b is the base of logarithm which is taken as b = 2 in this case the result is

bits/symbols. In other terms the formula shown above can be translated into where

At can denote the number of pixels in the image, and Ai can represent the number of

pixels that belongs to each face of the object. A0 is a special case for the projected

model or scene onto the screen. For the closed scenes A0 is taken as 0 and for

open scenes A0 is considered as the number of pixels that belong to the background

color. With the contribution of A0 for open scenes we can have a viewpoint entropy

definition that is consistent with Shannon’s entropy where
∑n

i=1 pi = 1.

The techniques to compute the viewpoint entropy using Graphics Processing

Unit can be found in Castello et al. [67]. In this work we used Frame Buffer Objects

for rendering and calculating optimal camera points. In Figure 5.1 an example

model with unique colors assigned to each face is presented for calculating viewpoint
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Figure 5.1: Hand model shown with unique colors for each face, used for viewpoint
entropy calculations. Four of initial camera points are also presented.

entropies.

5.2 Mesh Saliency and Mean Curvature

Mesh Saliency is the concept of regional importance, which can be specified as a

perception based metric for mesh processing and viewing. Center-surround operator

is used to find regions that are unique relative to their surroundings [15]. Mesh

saliency can be used to compute viewpoints for capturing representational images

of 3D models, and mesh simplification. It depends on the surface curvature, which

can be calculated by the surface normals. Our implementation uses Taubin’s mean

curvature calculation approach that depends on the triangulated surfaces [68].

A triangulated surface is usually represented as a pair of lists S = {V ;F}, a list

of vertices V = {vi : 1 ≤ i ≤ nV }, and a list of faces F = {fk : 1 ≤ k ≤ nF}. Each

face fk = (i1k, i
2
k, i

3
k) is a term of non-repeated indices of vertices, that represents

itself a three dimensional triangle. The set of vertices that share a face with vi is

denoted as V i. If the vertex vj belongs to V i, then vj is a neighbor of vi. The

number of elements of the set V i is denoted with |V i|. The set of faces that contain

vertex vi is denoted with F i. If the face fk belongs to F i, then fk is incident to vi.
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Figure 5.2: Surface normal, tangent plane and principal curvatures of the surface.

The number of elements of the set F i will be denoted with |F i|.

Mesh saliency depends on the principal curvatures, which also depends on the

surface normals as shown in Figure 5.2. Principal curvatures and principal directions

are obtained by computing in closed form the eigenvalues and eigenvectors of certain

3 × 3 symmetric matrices defined by integral formulas, and closely related to the

matrix representation of the tensor of curvature using Taubin’s formulations for the

triangulated surfaces [68].

In order to calculate the principal curvatures, the first task is to calculate the

normal vectors at the vertices of the surface. The faces of the surface are planar, and

each face fk has a well defined unit length normal vector Nf k and normal vectors

point to the same side of the surface. The normal vector at a vertex vi is defined

as the normalized weighted sum of the normals of the incident faces, with weights

proportional to the surface areas of the faces as shown in equation(5.2).

Nvi =

∑
fk∈F i |fk|Nfk

||
∑

fk∈F i |fk|Nfk ||
(5.2)

The calculation of eigenvalues and eigenvectors is done with the approximation

matrix shown in 5.3.

M̃vi =
∑
vj∈V i

wijκijTijT
t
ij (5.3)
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For each neighbor vj of vi, Tij is defined as the unit length normalized vector of

vj-vi onto the tangent plane <Nvi>
⊥

Tij =
(I −NviN

t
vi

)(vi − vj)
||I −NviN

t
vi

)(vi − vj)||
(5.4)

The approximate directional curvature κij(Tij) is defined in equation(5.5).

κij =
2N t

vi
(vj − vi)

||vj − vi||2
(5.5)

The weight wij is chosen to be proportional to the sum of surface areas of all the

triangles that are incident to both vertices vi and vj. The proportionality constant

is set to make the sum of all weights in the neighborhood of vertex vi equal to one.

∑
vj∈V i

wij = 1 (5.6)

The normal vector Nvi is eigenvector of matrix M̃vi associated with eigenvalue

0. To compute two remaining eigenpairs the matrix M̃vi is restricted to the tangent

plane <Nvi>
⊥ using Householder transformation [69] denoted with the Householder

matrix in equation(5.7)

Qvi = I − 2WviW
t
vi

(5.7)

In the equation(5.7) theWvi is the unit vector used to define reflection hyperplane

that is orthogonal to that plane. Let E1 = (1, 0, 0)t be the first coordinate vector

then Wvi is defined as in equation(5.8).

Wvi =
E1 ±Nvi

||E1 ±Nvi ||
(5.8)

The calculation of the eigenpairs using Householder projection is done as shown

in equation(5.9).
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vi
M̃viQvi =

0 0 0
0 m̃11

vi
m̃12
vi

0 m̃21
vi

m̃22
vi

 (5.9)

The principal curvatures are obtained using the nonzero eigenvalues of Mp as

shown in equation(5.10).

κ1p = 3m̃11
p − m̃22

p

κ2p = 3m̃22
p − m̃11

p

(5.10)

The mean curvature is defined as the average of principal curvatures and shown

in equation(5.11).

Sp =
κ1p + κ2p

2
(5.11)

5.3 Information Coverage

There are measures other than the ones mentioned, such as visibility ratio [70],

curvature entropy [71], view-dependent measures as silhouette length, silhouette

entropy or topological complexity [70]. We selected viewpoint entropy to cover the

polygons of the 3D object and introduced Mesh Saliency Entropy to have salient

points along with the face coverage. Viewpoint entropy and mesh saliency entropy

expose the surface area as information to the viewer, which is suitable for many

visualization tools. Here we provide only a comparative analysis of our approach

to the work of Vazquez to solve the best view selection problem. For more details

about Vazquez’s work we refer the reader to [6, 65, 66, 7]. In their approaches they

predict the middle point entropy, add only the highest predicted entropy to the

view set, and use spherical triangles for middle point calculations. In our approach

we compute each entropy instead of estimating it, we use binary combination of

points in view set for sampling, and we employ entropy-weighted midpoints. We

also exploit the Earth Centered, Earth Fixed (ECEF) coordinate system for camera
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sampling points over the bounding sphere. The points on (0, 0), (π/2, 0), (-π/2, 0),

(0, π/2), (0, -π/2), (0, π) define the initial coverage set.

In order to project the calculated latitudes and longitudes to the local xyz co-

ordinate system of the object we used the well known spherical formula shown in

equation(5.12). This formula assumes the usage of OpenGL coordinate system.

x = r.cos(λ).sin(θ)
y = r.sin(λ
z = r.cos(λ).cos(θ)

(5.12)

The differences stated above provided us with more view point samples on

viewing-sphere, which outputs a viewpoint with higher polygon coverage.

5.3.1 Greedy N-Best View Selection

Best View Selection algorithm is modified for N-Best View Selection to take the

previously covered faces as input and to return the currently covered faces as output.

The viewpoint entropy computation is also changed not to include the pixels from

already visited faces. It works as continuously calling the Best View Selection with

supplying the face coverage set in each call. The output of the algorithm is the faces

that are covered along with a selected viewpoint and entropy value for that iteration.

In each call of the Best View Selection the returned faces are added to face coverage

set. The algorithm terminates when it can not return any newly covered faces or

predefined number of camera points are found. The algorithm steps are visualized

in Figure 5.3.

Algorithm starts from initial sample points and navigates around the object

on each best view selection call to find the best viewpoint, whereas Vazquez et

al. [66] performs entropy re-computation only for already computed viewpoints.

Our method resembles to finding the best viewpoint of non-visited faces for each

iteration and therefore can be called Greedy N-Best View Selection.

Since in our greedy approach we do not include the visited faces with already

computed viewpoints into entropy computation, we changed the contribution of the
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Figure 5.3: Greedy approach for best view selection. CF stands for covered faces,
E for entropy and Lat-Lon for latitude and longitudes over the sphere. Three dots
show the continuous call of the algorithm till the termination. In the initial step
algorithm is called with empty set, hence 0. In the following steps CF includes all
faces covered so far.

background pixels. For each viewpoint entropy computation, we set the background

as the total number screen pixels hence A0 = At, and remove the number of pixels for

the faces that are involved in entropy calculation. The contribution of background

into the entropy computation is included after all pixels are processed from the

frame buffer object. This mechanism can provide us a greedy technique along with

consistent entropy definition.

We compared the results of our method with the technique provided by Vazquez

et al. in [6] and [7]. The method introduced by Vazquez is used to have maximal

face or object coverage in a scene with the help of Viewpoint Entropy. It uses reg-

ularly placed viewpoints on the viewing sphere to calculate the viewpoint entropies

and faces covered along with that viewpoint. The computed viewpoint entropies

are sorted in decreasing order to select the viewpoints from the best to the worst.

Algorithm proceeds with adding the viewpoints into a set and calculating the faces

covered so far to have a terminal state. During the implementation of the technique

stated in [6] and [7] we have used total 420 sampling viewpoints which regularly

sampled viewing sphere with equal ∆λ and ∆θ.

In Figure 5.4 we compare the output of viewpoints for the teapot model. The

computed five viewpoints on top row are from the approach presented in [6] and [7],

and the bottom row presents the images from our greedy technique. The displayed
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.4: Teapot is displayed with five viewpoints using the approach from [6]
and [7] compared to our greedy method. Images (a)-(e) cover 813 faces of total 2256
faces. However our method shown in (f)-(j) covers 2200 faces with provided views.

teapot is a fairly small 3D model with 2256 faces. However when we analyze the

results we observe that face coverage on top row of Figure 5.4 is not that good,

because what we can see is only the back of teapot with the provided images. Hence

813 faces are covered with that method, however with the greedy approach 2200

faces are covered by the provided viewpoints. In Figure 5.5 the outputs for Stanford

Bunny model are compared. This model has total 69743 faces. Figure 5.5.(a)-(e)

cover the 63748 faces of the model, however Figure 5.5.(f)-(j) can cover 68674 faces.

We can say that the face or object coverage technique from [6] and [7] does fairly

better than the teapot model. In Figure 5.6 and Figure 5.7 we compare the output

of viewpoints for armadillo and dragon models. Armadillo model has total of 50000

and dragon model has total of 49755 faces. The top row from Figure 5.6 can cover

only 20103 faces, the images displayed on the bottom row of Figure 5.6 cover 42009

faces. The results for dragon model are 36965 faces for the Figure 5.7 top row and

41911 faces for the bottom row.

In Figure 5.8 the outputs of the hand model are compared. We can observe from

the images presented that our greedy technique performs better.

The results from both displayed images and face coverage analyses show that

the brute force technique presented in [6] and [7] do not react stable to the input

models. For instance in teapot or armadillo model it can only cover half of the faces

51



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.5: Stanford Bunny is displayed with five viewpoints using the approach
from [6] and [7] compared to our greedy method. Images (a)-(e) cover 63748 faces
of total 69743 faces. However our method shown in (f)-(j) covers 68674 faces with
provided views.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.6: Armadillo is displayed with five viewpoints using the approach from [6]
and [7] compared to our greedy method. Images (a)-(e) cover 20103 faces of total
50000 faces. However our method shown in (f)-(j) covers 42009 faces with provided
views.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.7: Dragon model is displayed with five viewpoints using the approach
from [6] and [7] compared to our greedy method. Images (a)-(e) cover 36965 faces
of total 49755 faces. However our method shown in (f)-(j) covers 41911 faces with
provided views.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.8: Hand model is displayed with five viewpoints using the approach from
[6] and [7] compared to our greedy method. Images (a)-(e) cover 8976 faces of total
18905 faces. However our method shown in (f)-(j) covers 18406 faces with provided
views.
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with the provided five viewpoints, however for Stanford Bunny and dragon models,

the viewpoints can cover fairly larger amount of faces. Furthermore the number of

entropy calculations are fixed and depend on the sampling of the viewing sphere. It

treats the teapot model with 2200 faces and Stanford Bunny model with 69743 faces

equally. However our greedy technique uses 112 viewpoint entropy calculations for

the teapot, and 272 viewpoint entropy calculations for the Stanford Bunny models.

5.3.2 Viewpoint Mesh Saliency Entropy

Mesh Saliency is the concept of regional importance, which can be specified as dis-

tinction in pixel colors, or luminance or geometric attributes. In our approach we

borrow the techniques [42], and [15] to calculate curvature based mesh saliency.

Curvature is one of the important features of a vertex which can point-out its dis-

tinctiveness among the other vertices. We use the Gaussian filtered mean curva-

tures of vertices proposed by [15] using Taubin’s procedure to calculate mean cur-

vatures [68]. Meyer et al. [72] also provide a technique to calculate surface mean

curvatures. Let N(v, σ) be the set of points within a distance σ for vertex v there-

fore N(v, σ) = {x|||x − v|| < σ, x is a meshpoint}, and let S(v) denote the surface

mean curvature, hence Gaussian-weighted average of the surface mean curvature

G(S(v), σ) can be defined as;

G(S(v), σ) =

∑
x∈N(v,2σ) S(x)exp(− ||x−v||

2

2σ2 )∑
x∈N(v,2σ) exp(−

||x−v||2
2σ2 )

(5.13)

In equation(5.13), a cut-off distance for the Gaussian filter is assumed to be 2σ. The

saliency for vertex v is the absolute difference between coarse and fine scales, where

the coarse scale standard deviation is twice of the fine scale. Then the saliency for

vertex v for multiple scales is,

Mi(v) = |G(S(v), σi)−G(S(v), 2σi)| (5.14)

where σi is the standard deviation of the Gaussian filter at scale i. We used five scales

that are mentioned in [15] with this work. After the calculation of curvature saliency
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for five different scales we linearly added those feature maps after the normalization

method proposed by Itti et al. [42] hence denote M(v). The calculated feature map

for a hand model is shown in Figure 5.9(a), where the hot colors show the high

salient points.

(a) (b)

Figure 5.9: Mesh saliency for a hand model shown in (a). HSV color model shown
in (b) is used to mark the saliency of the vertices. Hot colors(red) Hue=0 shows the
highest saliency, and Hue=240 for the lowest. Saturation and Value are kept fixed
in distribution.

Viewpoint Mesh Saliency entropy is defined as the entropy of the scene from a

selected viewpoint using the saliency distribution as the probability mass function.

Hence our calculations use the faces displayed to the viewer, we need to distribute

saliency information M(v) calculated for each vertex to the faces of the model. For

this operation we use the vertex-face adjacency information. Let us denote the face

(triangle in our case) saliency with S(F ), number of adjacent faces to vertex v as

||Adj(v)||, and vertices of a face as F v, hence saliency of a face can be defined as,

S(F ) =
F vi∑
i=1

M(vi)

||Adj(vi)||
(5.15)

In Figure 5.10 an example triangulation of a surface is presented. This surface

is constructed from four faces and five vertices. We demonstrate the distribution of

vertex saliency quantity to the faces as,

55



Figure 5.10: An example of triangulated surface for vertex to face saliency distri-
bution.

S(Fr) =
M(ve)

4
+
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2
+
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2
(5.16)
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The saliency entropy for viewpoint p is calculated from the visible faces of the

model. The total saliency quantity from the viewpoint p is presented in equation(5.20)

and saliency entropy for that viewpoint from the surface S is shown in equation(5.21).

St =

Nf∑
i=1

S(Fi) (5.20)

I(S,p) = −
Nf∑
i=1

S(Fi)

St
logb
S(Fi)

St
(5.21)

In equation (5.21), Nf stands for the number of faces, S(Fi) is the saliency of the

face Fi, St is total saliency of the visible faces from viewpoint p and b is the base of

logarithm which is b = 2 in our case. Our definition of the mesh saliency entropy is

consistent with Shannon’s entropy where
∑n

i=1 pi = 1
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We modified Greedy N-Best View Selection to use either projected face area

(Viewpoint Entropy), or saliency information (Viewpoint Mesh Saliency Entropy)

or combination of both for viewpoint calculation and presentations. We will discuss

about the combined approach in next subsection.

5.3.3 Combined Approach

Viewpoint Mesh Saliency Entropy is combined with Viewpoint Entropy in Greedy

N-Best View Selection to cover both surface area and surface curvature information.

The combined entropy for a given viewpoint p on the surface S can be specified as

the product or summation of the two quantities. However, due to the differences

in the magnitudes of the calculated information quantities we selected the prod-

uct as the aggregation method. This aggregation approach favors the viewpoints

that let viewers to perceive both projected surface area and saliency information

provided by the model. The aggregation method for combined entropy is shown in

equation(5.22).

Combined(S,p) = If (S, p).Is(S, p) (5.22)

In equation(5.22), If (S, p) denotes the face coverage information hence Viewpoint

Entropy, and Is(S, p) denotes the saliency coverage information hence Mesh Saliency

Entropy. Greedy N-Best View Selection can use either one of If (S, p), or Is(S, p),

or Combined(S, p) quantities during the traversal on bounding sphere for optimal

viewpoint search. These approaches are exercised and the outputs are presented in

Section 5.4.

5.4 Results and Statistical Output

We have tried three different setups using our Greedy N-Best View Selection. The

first one takes only projected surface area information i.e. viewpoint entropy into

account, the second experiment uses the mesh saliency entropy and the final one

employs the combination of both for view selection. We observed that the outcome
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of the combined approach was tend to maximize the face coverage as well as salient

points. The method we presented here for mesh saliency entropy uses the surface

curvature, but it can be any other feature such as texture or luminance that belongs

to an object.

The snapshots from the comparison of the three approaches are shown in Fig-

ure 5.11, in Figure 5.12, in Figure 5.13 and in Figure 5.14 respectively. In the

displayed figures, the first row, hence (a)-(e) provides face area coverage maximiza-

tion, the second row (f)-(j) provides saliency coverage maximization and the third

row (k)-(o) displays the maximization of both face area and saliency. When we

compare the figures row by row we can observe the differences of the calculated

viewpoints. However the hand model emphasize the distinction less when compared

to the other models.

The numerical results for face and saliency coverages are presented in Table 5.1,

in Table 5.2 and in Table 5.3 respectively. Table 5.1 presents the results for the

cumulative face coverage ratio using viewpoint entropy with our Greedy N-Best

View Selection method, Table 5.2 also shows the cumulative face coverage ratio

but in this case combined entropy is used in the greedy technique. We present

the cumulative saliency coverage ratio in Table 5.3. The computation of saliency

coverage is conducted with the viewpoints calculated in combined approach.

In the displayed figures we presented two highly self–occluded models on purpose,

i.e. heart and brain. The reason for presenting those models is to give a legitimate

explanation that we can not find a set of camera points that covers all the faces for

all models. The face or saliency coverage depends on the visibility of the surfaces,

where some parts of that surface can not be visible in some cases.

Here we discuss about the face coverage ratio contribution of the viewpoints.

In Figure 5.15 a Stanford Bunny with 69743 faces is displayed using five selected

viewpoints. As seen from Table 5.2 these views cover 98.85% of faces of the object.

Figure 5.15.a covers 43.39% of the total faces. The contribution of Figure 5.15.b is

43.04%, Figure 5.15.c is 6.49%, Figure 5.15.d is 4.78% and Figure 5.15.e is 1.15%.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 5.11: Hand shown from five viewpoints using face area maximization max-
imization (a)-(e), saliency coverage maximization (f)-(j) and combined approach
(k)-(o). For each approach the figures are ordered from the most contribution to
the least.

As we can notice the contribution of the first viewpoint starts with around 40% for

non–self–occluded models and cumulative contribution speed decreases as each new

view is added. Cumulative mesh saliency ratio for the models is also provided in

Table 5.3. We can see that 99.09% of Stanford Bunny model saliency information

is covered with the combined approach. In order to analyze how the face coverage

is perturbed with the combined approach we can compare the results shown in

Table 5.1 and Table 5.2 respectively. For instance the cumulative face coverage of

Stanford Bunny model using surface area only entropy is 98.46% that is 98.85% in

the combined method, which shows the area coverage is not perturbed.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 5.12: Heart shown from five viewpoints using face coverage maximization
(a)-(e), saliency coverage maximization (f)-(j) and combined approach (k)-(o). For
each approach the figures are ordered from the most contribution to the least.

Table 5.1: Cumulative face coverage contribution ratio of the viewpoints for dif-
ferent models using Greedy N-Best View Selection and taking surface area entropy
into account.

Camera Bunny Hand Dragon Heart Brain
1 43.37% 40.69% 33.47% 14.26% 8.80%
2 85.42% 80.23% 69.90% 25.77% 22.39%
3 93.81% 87.82% 76.40% 32.32% 31.78%
4 97.73% 95.09% 82.13% 35.09% 35.85%
5 98.46% 97.36% 84.23% 38.20% 39.92%
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 5.13: Brain shown from five viewpoints using face coverage maximization
(a)-(e), saliency coverage maximization (f)-(j) and combined approach (k)-(o). For
each approach the figures are ordered from the most contribution to the least.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 5.14: Dragon shown from five viewpoints using face coverage maximization
(a)-(e), saliency coverage maximization (f)-(j) and combined approach (k)-(o). For
each approach the figures are ordered from the most contribution to the least.
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(a) (b) (c)

(d) (e)

Figure 5.15: Stanford Bunny shown from five viewpoints using the combined ap-
proach i.e face and salient point coverage are maximized. The figures are ordered
from the most (a) contribution to the least (e).

Table 5.2: Cumulative face coverage contribution ratio of the viewpoints for differ-
ent models using Greedy N-Best View Selection and taking combined entropy into
account.

Camera Bunny Hand Dragon Heart Brain
1 43.39% 40.69% 33.52% 14.26% 8.80%
2 86.43% 80.23% 69.93% 25.88% 22.57%
3 92.92% 87.82% 76.20% 32.58% 32.11%
4 97.70% 95.35% 81.42% 35.40% 36.19%
5 98.85% 97.46% 84.62% 38.27% 40.28%

Table 5.3: Cumulative saliency coverage contribution ratio of the viewpoints for
different models using Greedy N-Best View Selection.

Camera Bunny Hand Dragon Heart Brain
1 42.31% 40.51% 33.71% 13.63% 8.84%
2 84.00% 80.23% 80.28% 24.82% 22.25%
3 91.72% 87.89% 76.53% 31.28% 31.67%
4 97.83% 95.49% 81.67% 33.92% 35.78%
5 99.09% 97.56% 84.81% 36.79% 39.89%
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Figure 5.16: Hand model shown with red spheres used for visually queueing user
selected points.

5.5 Usability Study

A simple usability study is conducted to measure the effectiveness of our technique

and evaluate user tendencies for salient points interests. A group of 15 university

students has participated to the study who has daily computer usage skills. The

task to be completed by users was to place 20 points on the model where they were

interested in most. The users were able to freely rotate/orient and zoom in/out

the model shown to them. Hand model shown in Figure 5.16 is displayed with

gray color, and users were visually queued by the small red spheres on the surface

where they double-clicked. Each selected point is recorded, and analyzed at the

end of task completion. We conducted two analyses on the user selected points.

The first analysis was to find the coverage ratio of the user selected points by the

viewpoints provided by our algorithm. When the results were analyzed, we observed

that the face coverage of the user selected points was 100% for all participants using

viewpoints from our technique. The second analysis was to find the average of

the saliency for the selected points. The saliency mean of the points selected by

each is user is shown in Figure 5.17. The surface saliency mean is denoted by the

red circle and user values with blue. Those analysis provided us with preliminary

feedback about the user interested points coverage by the viewpoints calculated
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Figure 5.17: Mean saliency of the user selected points and surface saliency mean
are shown. The surface saliency mean is denoted by the red circle and user values
with blue. Note that the user selected points are higher than the surface mean
which does not contradict with the knowledge in literature about user tendencies
for salient points.

by our algorithm, and a primitive answer for the question that users are mostly

interested in salient points on the model presented to them. We can present a

reasoning that it does not contradict with the knowledge in literature because the

mean saliency of the user selected points are greater than the surface mean saliency

except one user. It can be summarized as user tendencies are somewhat towards the

salient points.

5.6 Conclusion

In this thesis we presented a technique to inspect a 3D object in a scene with

minimal loss of information where the information is modeled as faces and mesh

saliency. We used the concept of the viewpoint entropy and introduced a greedy

approach to solve N-Best View Problem. We also presented a novel view descriptor

named Mesh Saliency Entropy to select the viewpoints in such manner to cover

salient points along with the face coverage maximization.

We combined the viewpoint entropy and mesh saliency entropy in our Greedy

N-Best View Selection algorithm to explore the object in 3D scene via minimal set of

camera positions. We also conducted a usability study to evaluate the effectiveness

of our approach and to measure user tendencies for salient points on a model. The

results collected from the usability study showed us that the face coverage of the

user selected points was 100% for all participants using the viewpoints calculated by

our technique. For the knowledge about user tendencies towards salient points, we

presented a reasoning that it did not contradict with the literature. Hence the mean

saliency of the user selected points were greater than the surface mean saliency.
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Our experiments and studies have shown that Shannon’s entropy is a promising

tool to solve viewpoint related problems by providing a measure to quantify the

information on the communication channel between the user and the visual world

in computer.
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6 AUTOMATED TERRAIN
NAVIGATION

Navigation in 3D terrain is considered to be a challenging task and requires virtual

camera control skills such as zooming, panning and tilting. Novice users can easily

get distracted and disoriented which may result with lost in space. Methods to

overcome the virtual environment exploration problems are still being researched

to assist users during their journey inside virtual environments. Assisted camera

control techniques require viewpoint computation and path planning. This chapter

introduces a novel approach to navigate over a 3D terrain with minimal loss of

information.

We exploit the concept of the Viewpoint Entropy for the best view determination

and use our Greedy N-Best View Selection for visibility calculations. We integrate

road network data to extract regions for detailed visibility analysis in subsections of

the terrain. In order to connect the calculated viewpoints an evolutionary program-

ming approach for Traveling Salesman Problem(TSP) is used where the distance

objective is minimized. The generated tour is presented using Google Earth frame-

work for terrain exploration where we can get real data streams.

The computed and planned viewpoints reduces human effort when used as start-

ing points for scene exploration or generating the representative images of the terrain

dataset. The proposed framework can be integrated into 3D game engines or urban

visualization systems to give quick glimpse or tour of the environment for the novice

users without the help of prior planning.

The rest of the chapter is organized as follows: in Section 6.1 and in Section 6.2

we present the details of computations, in Section 6.3 we elaborate on how the

calculated tour is exported to Google Earth for presentation and in Section 6.4 we

discuss about the results and present the images generated, and finally we conclude
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Figure 6.1: An automatically generated path by our algorithm for San Francisco
shown in Google Earth framework.

our work with our remarks at the end.

6.1 Scene Analysis and Path Generation

Our method employs the divide and conquer metaphor for the scene analysis. It

utilizes the help of the road network data to extract sub-regions, and calculates

sub-optimal viewpoints for the regions and exploits the genetic TSP algorithm for

connecting the calculated viewpoints.

6.1.1 Region Extraction

The purpose of region extraction is to provide meaningful information to the user

by the help of analyzing the road intersection data. We believe that the intersec-

tion points give us a heuristic about residential areas which can be considered as

significant salient features of a terrain. Although the details of our camera point

generation and path construction algorithm will be discussed in subsequent sections,

the salient points establishes the base of the analysis for sub-optimal viewpoint gen-

eration. Intersection points that form the bounding spheres are used as an enclosed

space to decompose the surface to be investigated in detail.
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The steps of our region extraction algorithm include the intersection point deter-

mination from road segments, intersection points grouping, creating a convex hull

from the points in groups and bounding sphere generation. The generated bound-

ing spheres are analyzed for mutual-inclusion, and the spheres that are enclosed

by other spheres are removed programmatically. The road network data used for

region extraction is shown in Figure 6.2 and region extraction steps are visualized in

Figure 6.3. We used the line segment intersection algorithm for intersection points

extraction that are considered as salient points, and Graham-Andrew Scan algorithm

for convex hull determination [73].

Figure 6.2: Road network and terrain data

6.1.2 Terrain Rendering

In our application DTED Level-1 data is used for the terrain elevation. The data is

preprocessed and converted to 2048 x 2048 grid Binary Terrain (BT) format where it

is loaded into VTP [74] for rendering and viewpoint generation. The generated im-

age depends on CLOD(Continuous Level of Detail) algorithm presented by Röttger

et al. [75] which uses the dynamic triangulation of hierarchical quadtrees. When

the viewpoint moves the triangulation changes continuously and results in a phe-

nomenon called vertex popping. This dynamic behavior of the algorithm conflicts

with Viewpoint Entropy when setting a metric to calculate. Projected face area is
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(a) (b)

(c) (d)

Figure 6.3: The region extraction algorithm steps are visualized. In (a) An example
road network is shown, (b) Intersection points are marked with red square. In (c) the
result of convex hull determination algorithm is presented. The extracted bounding
circle is shown in (d)

used as probability mass function(pmf ) in regular Viewpoint Entropy computation.

In order to handle this problem we used texturing instead of colorization of triangles.

Each texel is colored uniquely as shown in Figure 6.4 and mapped to the terrain grid.

The projected texel colors are considered as the pmf during entropy computation

and viewpoint generation. The sketch for vertex popping phenomenon is presented

in Figure 6.5. Note that triangulation is sensitive to the current viewpoint position,

when the camera shown with turquoise circle changes its position the algorithm re-

generates the triangles used for rendering. In Figure 6.6.a the triangulated terrain

data is shown using wireframe mode, and uniquely colored texturing to the terrain

data is shown in Figure 6.6.b.
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Figure 6.4: Sketch of uniquely colored texture mapping to a grid

Figure 6.5: Sketch of CLOD algorithm on a grid. Camera is shown with a turquoise
circle. Note that camera move changes the triangulation.

6.1.3 Best Viewpoints

The term “best” or “good” is highly subjective and difficult to quantify, and mostly

depends on the application or context. Despite its subjectiveness, researchers may

agree that some images created by the tessellation are more informative compared

to the others using different criteria. The term informative is chosen on purpose.

Because, the information amount is quantified by the term entropy. Although there

are other measures such as visibility ratio quantified as the ratio of the visible

3D surface area to the total 3D surface area, curvature entropy quantified as the

entropy of the Gaussian curvature distribution over the entire surface of the object,

or view-dependent measures as silhouette length, silhouette entropy or topological

complexity, we selected viewpoint entropy as our candidate to cover polygons of the

3D object by using a minimal set of camera points because it exposes surface area

as information to the viewer.

We modified the Viewpoint Entropy calculation technique presented in [6] to

utilize the usage of latitude and longitudes on spherical space. We calculated binary

combination of each point in view set for midpoint calculation where they are entropy
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(a) (b)

Figure 6.6: Wireframe mode for a region of terrain is shown in (a). When the
camera gets closer vertex popping phenomenon occurs. In (b) the uniquely colored
texturing is applied to the elevation data

weighted. Differences provided us with higher sample view points on sphere, which

resulted in a viewpoint that covers as much polygon as possible. The algorithm

shown below tries to find the best view of a extracted region from a single viewpoint.

(a) Cover the region by a viewing sphere, where each point on that sphere is

defined by λ and θ.

(b) Place 5 sampling points on (0, 0), (π/2, 0), (0, π/2), (0, -π/2), (0, π) λ and

θ. This defines the initial coverage set.

(c) Compute the viewpoint entropy of the each initial point and store the maxi-

mum.

(d) Take binary combination of the coverage set, and find the weighted mid-

points of them (using arc length) where weight is defined as e1 / (e1 + e2), and e is

the viewpoint entropy.

(e) For each midpoint calculate its viewpoint entropy, if calculated entropy is

higher than the current maximum add that point to the coverage set.

(f) Update the maximum entropy from the coverage set

(g) Go to (d) until no points can be added to the coverage set.

Although finding N-best view selection is known to be NP-hard, in this work we

use our a greedy choice algorithm which tries to detect a sub-optimal N-best views
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to perceive the information communicated by the object. The algorithm is modified

to take the previously covered faces as input and to return the currently covered

faces as output. The viewpoint entropy computation is also changed not to include

the pixels from already visited faces.

(a) Best view selection algorithm is called with empty polygon coverage set

(b) Accumulate the visited faces into the set from previous best view selection

algorithm

(c) Call the best view selection algorithm with the new set

(d) Go to (b) until all faces covered or best view selection algorithm can not

output newly covered faces

The algorithm shown above starts from initial points and navigates around the

object on each best view selection call. This method resembles to finding the best

view of non-visited faces for each call.

6.2 Camera Path Planning

We treat the planning of a path from the calculated best viewpoints as a tour

generation problem over the urban area to be visualized. The tour concept is tightly

coupled with a well known NP-hard problem called Traveling Salesman Problem.

Given a list of cities and their pairwise distances the task is to find a shortest possible

tour that visits each city exactly once. In our urban visualization problem the cities

are the calculated viewpoints for the extracted sub-regions of the terrain and the

tour is a problem stated quick urban exploration. In this work we tried to present

a plausible solution by optimizing the the total distance traveled.

6.2.1 Traveling Salesman Problem

The traveling salesman problem(TSP) is an NP-hard problem of combinatorial opti-

mization studied in operations research and computer science. Given a list of cities

and their pairwise distances the task is to find a shortest possible tour that visits

each city exactly once [76].
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Euclidian and Spherical TSP

In our framework we use two versions of TSP problem, hence Euclidian space TSP,

and spherical TSP. Euclidian space TSP is used to enumerate the sequence of the

extracted regions to be traveled on the texture surface. The calculated tour will

have N extracted regions with M computed best viewpoints for that region. We

can formulate the concept of a tour,

T = {R1, R2, ...Rn : n ∈ Z} (6.1)

Ri = {c1, c2, ...cm : m ∈ Z}such thatRi ∈ T (6.2)

where T denotes a tour of N different regions and Ri denotes the region i on the

surface of terrain.

The spherical TSP is used to enumerate the sequence of the calculated camera

points in region Ri shown in equation(6.2). The difference between Euclidian space

TSP and spherical TSP is the distance function used to determine length between

two points. In Euclidian space the geodesic distance between two 3D points is a

straight line and calculated as in equation(6.3);

dij =
√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2) (6.3)

However the shortest distance between two points (p0, p1) on a spherical surface

is the arc length of the points along the Great Circle. So it is the angle of alpha(α)

between two vectors ~v0 and ~v1 from the origin of sphere to p0(λ, θ) and p1(λ, θ) on

the surface respectively with and can be calculate directly using Haversine formula

[77]. The shortest distance on a sphere between two points is shown in equation(6.4)

where R is the radius of the sphere.

∆λ = λ0 − λ1
∆θ = θ0 − θ1
a = sin(∆λ/2)2 + cos(λ0). cos(λ1). sin(∆θ/2)2

c = 2. arctan 2(
√
a),
√

1− a)
d = R.c

(6.4)
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The provided distance functions are used during the execution of genetic TSP

for the purposes stated above.

Genetic Approach for TSP

Genetic algorithms are one of the computational intelligence methods which are

used to find approximate or sub-optimal solutions to the NP-hard combinatorial op-

timization problems. It is generally inspired from the biological facts and evolution.

Genetic algorithms employ the concept of population, gene, crossover and mutation.

Population is a set of genes in the current iteration of the algorithm, and a gene is an

enumeration of a valid solution to the problem being solved. The crossover concept

is inspired from inheritance of two parents, where a child carry the combination of

two parent genes. The mutation can be expressed as the effect of the environmental

factors over a gene. Evolution concept is applied by terminating the genes that are

progressing poorly and creating new genes from a random group of successful genes

where the newly created genes will do better eventually.

6.2.2 Path Planning for Intra-Regions

Best viewpoints for the extracted sub-regions are calculated by the help of our

Greedy N-Best View Selection algorithm which uses modified Viewpoint Entropy

technique. In this algorithm the model or the region to be explored is bounded with

a sphere where the region and bounding sphere centers are aligned. Our objective is

to find best viewpoints on this bounding sphere where the camera position is denoted

by (λ, θ) and the up-vector is perpendicular to the viewing direction along North-

pole(+Y). Due to the shortest distance between two points (p0, p1) on a spherical

surface is the arc length of the points along the Great Circle, we exploited the

spherical genetic approach for Traveling Salesman Problem to enumerate the tour

in this region.

A gene is encoded with a valid tour that contains all the id’s of the calculated

camera positions. A random population of 10,000 genes are created and simulation
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is run 100,000 generations where the mutation ratio is set to be 3%. Evolution

concept is applied by terminating the worst two genes and creating two new genes

from a random group of successful genes. An example output of the spherical genetic

algorithm is shown below where two valid genes A and B are presented which show

a tour over a sphere with five points.

p0 = (0, 0)
p1 = (π

4
, π
4
)

p2 = (−π
4
, −π

4
)

p3 = (−π
4
, π
4
)

p4 = (π
4
, −π

4
)

A = (p0, p1, p2, p3, p4, p0) = 7.33
B = (p0, p3, p2, p4, p1, p0) = 5.75

(6.5)

The the cost of the tour A is 7.33 on unit sphere where the the cost of tour B is 5.75.

The tour B is the output of the spherical genetic TSP algorithm. In the case of not

using unit sphere, the difference in the cost will increase proportionally with respect

to the radius of sphere to be calculated, which complies with the need of finding a

sub-optimal solution for camera enumeration. This sub-optimal enumeration of the

viewpoints presents that the total traveled distance is minimized in our framework.

In order to project the calculated latitudes and longitudes to the local xyz co-

ordinate system of the calculated region we used the well known spherical formula

shown in equation(5.12).

After the calculation of enumeration and positional values of the camera points,

the next task to handle for path planning is to choose a technique to travel along

the curves. The spherical linear interpolation(Slerp) [78] is used which refers to

constant speed of motion along a unit radius of great circle. Since our computations

are done on spherical space this technique suits well for our problem design. Its

constant speed of motion is natural and produces smooth animation curves which

does not distract the users perception.
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6.2.3 Path Planning for Inter-Regions

The path between the extracted regions are arranged using Euclidian TSP algorithm

with evolutinary programming approach. The algorithm enumerates the sequence

of the regions to be traveled by using region centers as points to be visited in a tour.

Similar to genetic approach used for intra-region, a valid gene set called population

is constructed. Each gene encodes all the regions to be traveled via a sequence

number or region id.

The created population is run for 100,000 generations where the mutation ratio

is set to be 3%. Evolution concept is also applied by terminating the worst two genes

and creating two new genes from a random group of successful genes. When the

simulation is done, the enumerated region centers are used to construct the Bezier

curve for the camera trajectory in inter-region movement.

6.2.4 Final Camera Trajectory

The final camera path is constructed by combining the paths generated for intra

and inter regions. The tour can be started from a region selected to be initial or

any region that the user is interested in. The camera follows the constructed intra-

region path and continues onto the next region. When the camera trajectory enters

the next region it starts to follow the intra-path constructed for that region. The

camera visits all the enumerated region in the same approach.

With the techniques provided with this work, we tried to present a plausible

solution for an automatic camera trajectory. Best views calculated from the ex-

tracted salient points optimized the user’s surface perception, and the genetic TSP

algorithm enabled us to construct a path that creates an optimal tour for the terrain

exploration.
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6.3 Tour Presentation in Google Earth

We present automatically generated tours using Google Earth [79] framework. Even

though it is possible to create tours with VTP API, Google Earth provides a better

way to demonstrate a tour in a realistic and detailed 3D environment. Google Earth

also enables us to define tours through geo–spatial data with the ability of smooth

flight pass locations and specific flight durations between those points. The tour is

mainly defined using KML file format, Google Earth’s XML notation for expressing

geographic annotation and visualization. With the aid of the tour generated by our

algorithm, we automatically export our best viewpoints and their fly-over order into

the KML document for touring actions in Google Earth. Later on, Google Earth’s

plugin can be used to play tours authored in a KML file.

6.3.1 Camera in KML

In order to provide a smooth fly-through over terrain dataset, camera parameters

should be set properly in KML file. The format of a camera object and its parameters

are stated in [80]. Camera and LookAt XML elements specify the viewpoint of

observer and associated view parameters. Since both elements define the placement

and orientation of a virtual camera viewing the Earth, either of them can be chosen

for a path visualization. The difference is that LookAt specifies the view in terms of

the point of interest that is being viewed. Camera, in contrast, specifies the view in

terms of the viewer’s position and orientation. We used LookAt object in our KML

documents which is more suitable for extracted region exploration.

The necessary camera parameters are exported to KML elements as we do in

OpenGL. These are; viewpoint, altitude, heading, tilt, range and altitude type. We

avoid dealing with the altitude value of any point and altitude type since our camera

location is not on the ground. The range defines the distance of viewpoint from the

point of interest which is in our case will be the radius of an extracted region. Centers

of the intra-regions will be the points of interests that is being viewed. These values
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are global latitude and longitude points that are calculated by our region extraction

algorithm. On the other hand, all camera viewpoints are local coordinates which

means they are calculated by taking region centers as the origin of local spheres.

Important part with the camera operations in KML lies in setting heading and tilt

values of the virtual camera. Using coordinates of camera locations with respect to

intra region spheres, heading and tilt can be calculated by the formula shown in 6.6.

In this formula θ states the local longitude and λ states for the local latitude of the

viewpoint calculated for a region.

Heading = 90− λ
Tilt = 90− θ (6.6)

6.3.2 Tour Generation in KML

After camera parameters are exported for each camera location, they are combined

to form a tour. Tours in KML can contain any number of FlyTo elements in which

information about each local best viewpoint that tour flies to is stored. Other

touring-related elements in KML are the timing and behavior of the tour. Timing

and velocity between points is controlled by the inclusion of a Duration element,

which defines the time that the browser takes to travel from the current point to the

next defined point. In other words, once that time has elapsed tour starts flying to

the next point. Since our goal is to explore the terrain efficiently, speed of the tour

is an important factor for user’s perception of the environment. In order to fly at a

constant speed, durations between each viewpoints are calculated using the distance

between two coordinates. Additionally, behavior of the flying mode is specified by

FlyToMode which tells how to approach the point while tour is playing. We selected

smooth mode which is suitable for this kind of controlled flight in a 3D space. An

unbroken flight is made up of a series of FlyTo’s with smooth FlyToModes. The

Google Earth browser interpolates the velocity and the curved path between points

so that each placemark is reached exactly at the time specified in the KML.

The velocity of the first FlyTo contained within a playlist needs to be selected
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appropriately depending on the position of the viewer in Google Earth when the

tour is started. Initial position is outside of the extracted regions. A duration of

five seconds is added into this FlyTo element with mode bounce for giving a feedback

to the user about the start of the tour.

6.3.3 Importing the Tour Using Google Earth API

The created tours can be run in two ways using the exported KML file. The first

one is to start KML manually on the local computer. The other and automated way

is to fetch KML document by Google Earth API and pass it to an GETourPlayer

object in Google Earth plugin. After the tour object is loaded into the plugin, we

can set it as a currently active tour and tour control appears on the screen. Tour

can be started, paused or reset with the method calls supported by Google Earth

API.

6.4 Results

In this framework San Francisco Bay Area DTED data and major highways road

network data is used for automatic path computation(Figure 6.2). The DTED data

is a 2048x2048 grid and road network data is a set of 12084 linestrings which can

be considered as real world data.

We extracted 35 regions using the extraction algorithm presented in this work

and generated a complete tour with the methods presented in previous sections. In

Figure 6.7 we present the extracted regions and generated path. Our technique is

completely automatic and needs no user intervention.

Sketch for the generated path is shown in Figure 6.8. In this figure the circles

demonstrate the path followed for intra-region viewpoints and lines show the path

followed by the camera on the way from one region to the other. The radius of the

sphere depends on the intersection point locations extracted from the road network

data. The generated intra-region camera path resembles a circle on the sphere that

bounds the region, which is consistent with the expectation from our best viewpoint
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computation and the spherical TSP. The complete set of the extracted regions using

Google Earth framework are shown in Figure 6.9.

Inter-region tour is shown with connecting lines in Figure 6.10. Region centers

are represented with the placemarks. The length of the generated path is sub-

optimal due to the usage of TSP algorithm. The complete tour starts from the first

region and follows the camera points generated for that region and moves to the

next region. The tour is terminated when all the viewpoints for the final region are

visited.

Elevations of viewpoints vary due to the radii of the extracted regions from the

network data where it can be observed from Figure 6.11.

The timing for our non-optimized application is shown in Table 6.1 for the ma-

chine with Intel Core 2 Duo T9600 2.80 GHz cpu, 4GB memory and nVidia GT

240M gpu. Viewpoint calculation denotes the total timing of camera point calcula-

tions for the 35 regions where per region average is about 30.230 secs. The value for

inner region tsp shows the total duration for all regions, where the average per re-

gion is about 0.809 sec. The total duration is the elapsed time starting from loading

terrain and road network data to the final KML output.

Step Duration(sec.)
Region Extraction 1.803

Viewpoint Calculation 1058.051
Inner Region Tsp 28.333
Inter Region Tsp 2.850

KML Export 0.450
Total Duration 1091.446

Table 6.1: Timing for non-optimized application. Note that all the values are total
duration of the corresponding steps.

6.5 Conclusion

We present an entropy assisted solution to explore the terrain dataset effectively.

Our technique can provide a quick glimpse or tour of the environment for the novice
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users and can improve user perception. The computed and planned viewpoints

reduces human effort when used as starting points for scene tour or generating

the representative images of the terrain dataset. The proposed framework can be

integrated into 3D game engines or urban visualization systems to introduce the

virtual environment for the novice users without the help of prior path planning.

We tested our method using real terrain and road network dataset and exported

the generated tour to visualize it with Google Earth framework.

The generated tour visualization has shown that Shannon’s entropy model is a

promising tool to solve viewpoint related problems.
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(a)

(b)

Figure 6.7: In (a), extracted regions in San Francisco are shown by circles using
Google Maps. With the aid of these regions, path is generated on the terrain(b)
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Figure 6.8: Sketch for the generated path. Note that intra-region camera path
resembles circles however not exact, they are on sphere and the connection between
them is an arc. Straight lines show the path for inter-regions, however the start and
finish points may not be on the same plane.

Figure 6.9: Extracted regions are presented by the spheres using Google Earth
framework.
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Figure 6.10: Inter-region tour shown with connecting lines using Google Maps
framework. Placemarks represent the region centers.

Figure 6.11: Heights(m) of viewpoints in first 3 regions for the path generated on
San Francisco.
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7 CONCLUSION

Information Visualization is a wide research area with the purpose to convey useful

and helpful information to the users where it can ease the tasks that users try to

accomplish.

In this research we developed metrics and techniques to improve the computer

generated visualizations where the established metrics are used to form the basis

for color, size of objects visualized on the screen and as well as finding good camera

positions to enhance the user perception.

We experimented the usage of Shannon’s entropy to improve the visualization of a

social network with the help of network centralities such as degree, betweenness and

closeness. We constructed centrality entropies, and conducted sensitivity analysis

to display large scale social networks in a useful manner. We exploited coloring,

sizing and filtering mechanisms. These techniques helped us to enable users to

quickly understand actors and and their importance in large scale networks. The

importance is varied from the degree centrality, to the sensitivity analysis of the

total system change. Experiments are preformed using different datasets varying

from hand generated to collaboration data extracted from various sources.

We also exercised the usage of entropy to find optimum camera positions for ob-

ject exploration. We employed Viewpoint Entropy and introduced Viewpoint Mesh

Saliency Entropy as a novel view descriptor. We introduced a greedy approach to

solve N-Best View Problem and combined the viewpoint entropy and mesh saliency

entropy into an aggregate quantity to explore the object in 3D scene via minimal

set of camera positions.

We conducted a usability study to evaluate the effectiveness of our approach and

to measure user tendencies for salient points on a model. The results collected from

the usability study showed us that the face coverage of the user selected points was
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100% for all participants using the viewpoints calculated by our technique. For the

knowledge about user tendencies towards salient points, we presented a reasoning

that it did not contradict with the literature. Hence the mean saliency of the user

selected points were greater than the surface mean saliency.

The usage of entropy in automatic path generation for large scale terrains is

also studied. Viewpoint Entropy is used to find optimal camera positions in regions

extracted from road network data. Evolutionary programming approach to connect

the camera points to establish a tour over 3D terrain is exercised. Our technique

provides a quick glimpse or tour of the environment for the novice users and can

improve user perception. In this work we presented,

• Region extraction from real road network data,

• Conducting visibility analysis in regions and finding optimal camera points,

• Employment of evolutionary programming approach for camera path genera-

tion, and large terrain exploration.

We tested our method using real terrain and road network dataset. We pre-

sented a technique to export the generated tour into Google Earth framework for

visualization.

Our work and studies during this research have shown that Shannon’s entropy is

a promising concept to solve visualization related problems by providing a measure

to quantify the information on the communication channel between the user and

visual world in computer.

7.1 Future Work

Although Information Visualization domain is not a new research area, it is still

being widely investigated to find proper and better techniques to visualize the data

or information. We believe that Information Theory is one of the right places to
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investigate such metrics or techniques to enhance the current visualization systems.

In future we would like to further investigate,

• The mutual information (transinformation) which is quantity that measures

the mutual dependence of the two random variables,

• The Kullback-Leibler divergence which is a non-symmetric measure of the

difference between two probability distributions.

and their usability and application to visualization systems.
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[33] T. Dwyer, S.-H. Hong, D. Koschützki, F. Schreiber, and K. Xu, “Visual analysis

of network centralities,” in APVIS, ser. CRPIT, K. Misue, K. Sugiyama, and

J. Tanaka, Eds., vol. 60. Australian Computer Society, 2006, pp. 189–197.

[34] M. K. Sparrow, “The application of network analysis to

criminal intelligence: An assessment of the prospects,” So-

cial Networks, vol. 13, no. 3, pp. 251–274, 1991. [Online].

Available: http://www.sciencedirect.com/science/article/B6VD1-466DRKY-

14/2/4785fa0af47facaa260a47d231af3f98

[35] T. Crnovrsanin, C. D. Correa, and K.-L. Ma, “Social network discovery based

on sensitivity analysis,” in ASONAM, N. Memon and R. Alhajj, Eds. IEEE

Computer Society, 2009, pp. 107–112.

[36] T. Falkowski, J. Bartelheimer, and M. Spiliopoulou, “Mining and visualizing

the evolution of subgroups in social networks,” in Web Intelligence. IEEE

Computer Society, 2006, pp. 52–58.

[37] T. Kamada and S. Kawai, “A simple method for computing general position in

displaying three-dimensional objects,” Computer Vision, Graphics, and Image

Processing, vol. 41, no. 1, pp. 43–56, 1988.

91



[38] P. Barral, G. Dorme, and D. Plemenos, “Scene understanding techniques using

a virtual camera,” in Proceedings of Eurographics 2000, Computer Graphics

Forum, 2000.

[39] P.-P. Vázquez, “Automatic view selection through depth-based view stability

analysis,” The Visual Computer, vol. 25, no. 5-7, pp. 441–449, 2009.

[40] D. Sokolov and D. Plemenos, “High level methods for scene exploration,” Jour-

nal of Virtual Reality and Broadcasting, vol. 3, no. 12, 2006.

[41] C. Koch and S. Ullman, “Shifts in selective visual attention: towards the un-

derlying neural circuitry,” Human Neurobiology, vol. 4, no. 4, 1985.

[42] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for

rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 11,

pp. 1254–1259, 1998.

[43] S. Takahashi, I. Fujishiro, Y. Takeshima, and T. Nishita, “A feature-driven ap-

proach to locating optimal viewpoints for volume visualization,” in Proceedings

of IEEE Visualization Conference (VIS 2005), 23-28 October 2005, Minneapo-

lis, MN, USA. IEEE Computer Society, 2005, p. 63.

[44] U. Bordoloi and H.-W. Shen, “View selection for volume rendering,” in Pro-

ceedings of IEEE Visualization Conference(VIS 2005), 23-28 October 2005,

Minneapolis, MN, USA, 2005, p. 62.

[45] Y.-S. Liu, M. Liu, D. Kihara, and K. Ramani, “Salient critical points for

meshes,” in Proceedings of ACM Solid and Physical Modeling Symposium (ACM

SPM 2007), 04-06 June 2007, Beijing, China, 2007, pp. 277–282.

[46] C. Ware and S. Osborne, “Exploration and virtual camera con-

trol in virtual three dimensional environments,” SIGGRAPH Com-

put. Graph., vol. 24, pp. 175–183, February 1990. [Online]. Available:

http://doi.acm.org/10.1145/91394.91442

92



[47] K. Shoemake, “Arcball: a user interface for specifying three-

dimensional orientation using a mouse,” in Proceedings of the con-

ference on Graphics interface ’92. San Francisco, CA, USA: Mor-

gan Kaufmann Publishers Inc., 1992, pp. 151–156. [Online]. Available:

http://portal.acm.org/citation.cfm?id=155294.155312

[48] A. J. Hanson and E. A. Wernert, “Constrained 3d navigation with 2d con-

trollers,” in IEEE Visualization, 1997, pp. 175–182.

[49] R. Turner, F. Balaguer, E. Gobbetti, and D. Thalmann, “Scientific

visualization of physical phenomena,” N. M. Patrikalakis, Ed. New York, NY,

USA: Springer-Verlag New York, Inc., 1991, ch. Physically-based interactive

camera motion control using 3D input devices, pp. 135–145. [Online].

Available: http://portal.acm.org/citation.cfm?id=139834.139852

[50] D. Xiao and R. J. Hubbold, “Navigation guided by artificial force fields,” in

CHI, 1998, pp. 179–186.

[51] M. Gleicher and A. P. Witkin, “Through-the-lens camera control,” in SIG-

GRAPH, 1992, pp. 331–340.

[52] N. Elmqvist, M. E. Tudoreanu, and P. Tsigas, “Tour generation for exploration

of 3d virtual environments,” VRST, vol. 27, pp. 207–210, 2007.

[53] C. Andjar, P. Vázquez, and M. Fairn, “Way-finder: guided tours through

complex walkthrough models,” Computer Graphics Forum, vol. 23, no. 3,

pp. 499–508, 2004. [Online]. Available: http://dx.doi.org/10.1111/j.1467-

8659.2004.00781.x

[54] B. Espiau, F. Chaumette, and P. Rives, “A new approach to visual servoing in

robotics,” in Geometric Reasoning for Perception and Action, 1991, pp. 106–

136.

93



[55] W. H. Bares, S. McDermott, C. Boudreaux, and S. Thainimit, “Virtual 3d

camera composition from frame constraints,” in ACM Multimedia, 2000, pp.

177–186.

[56] J. Shetty and J. Adibi, “Discovering important nodes through graph entropy the

case of enron email database,” in Proceedings of the 3rd international workshop

on Link discovery, ser. LinkKDD ’05. New York, NY, USA: ACM, 2005, pp.

74–81. [Online]. Available: http://doi.acm.org/10.1145/1134271.1134282

[57] “The GraphML File Format,” ”http://graphml.graphdrawing.org Decem-

ber 2011”.

[58] L. C. Freeman, “A Set of Measures of Centrality Based on Betweenness,” So-

ciometry, vol. 40, no. 1, pp. 35–41, 1977.

[59] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of Math-

ematical Sociology, vol. 25, pp. 163–177, 2001.

[60] M. Safar, N. El-Sayed, K. Mahdi, and D. Taniar, “Entropy optimization of

social networks using an evolutionary algorithm,” J. UCS, vol. 16, no. 6, pp.

983–1003, 2010.

[61] R. Albert, H. Jeong, and A.-L. Barabasi, “Error and attack tolerance of

complex networks,” NATURE, vol. 406, p. 378, 2000. [Online]. Available:

doi:10.1038/35019019
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