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ABSTRACT 

In this study a novel synthesis technique of MCM-41 has been successfully applied for 

the production of pure and metal incorporated MCM-41 type mesoporous molecular 

sieves under microwave radiation by using a household microwave oven operated at 

several different combinations of power and time. High quality MCM-41 hexagonal 

mesoporous materials of good thermal stability were obtained in 30 minutes at 120 Watt 

by microwave assisted hydrothermal autoclave heating with specific surface area value 

of 1438 m
2
/g and average pore diameter of 3.49 nm. 

The effect of metal incorporation into the MCM-41 mesoporous molecular sieves was 

studied in detail with transition metals such as copper, nickel, cobalt and iron. 

Impregnation and microwave assisted direct synthesis techniques were used in the 
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production of MCM-41 type catalytic materials and the physical and structural 

properties of these were investigated.  

The incorporation of metal into MCM-41 structure was investigated using different 

Si/Metal mol ratios as 25, 50, 75 and 100. Development of the hexagonal mesoporous 

structure was confirmed by X-ray diffraction (XRD) and N2 physisorption and Fourier 

transform infrared (FT-IR), while the metal dispersion were characterized by energy 

dispersion spectroscopy (EDS) and transmission electron microscopy (TEM). Thermal 

stabilities of the samples were characterized by thermal gravimetric analyzer (TGA).  

Diffusion of organic volatile chemicals in pure MCM-41, metal incorporated MCM-41 

(Si/Metal mol ratio: 25) and carbon nanotubes were investigated. Diffusion coefficients, 

mode of transport and activation energies of diffusion of alcohols (methanol, ethanol, n-

propanol, n-butanol) and aromatic solvents (benzene, toluene, ethylbenzene, 

propylbenzene, o-xylene, m-xylene, p-xylene) into the porous media were measured in 

26-32 °C temperature range with a macroscopic measurement technique.  

As the molecular weight of the alcohols and aromatics increased, diffusion coefficients 

into MCM-41 and CNTs decreased, activation energy for diffusion increased, and the 

time necessary to reach equilibrium increased. The diffusion of alcohols and aromatics 

into MCM-41 and CNTs obeyed the anomalous transport mechanism. Diffusion rate 

constants slightly increased with increasing temperature. The diffusion coefficients of 

volatile molecules into the CNTs were at least 10 times higher than that of diffusion 

coefficients into MCM-41.  
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MİKRODALGA YÖNTEMİYLE SENTEZİ  
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GÖZENEKLİ ORTAMLARDA ORGANİK BUHARLARIN DİFÜZYONU: 

MCM-41 VE KARBON NANOTÜP 
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ÖZET 

Bu çalışmada, yeni bir sentez tekniği kullanılarak saf ve metal eklentili MCM-41 tipi 

mezogözenekli moleküler eleklerin çeşitli güç ve zaman kombinasyonlarında  

çalıştırılan ev tipi mikrodalga içerisinde mikrodalga radyasyonu altında sentezlenmesi 

başarıyla gerçekleştirilmiştir. Yüksek kalite ve ısıl kararlılıktaki MCM-41 hekzagonal 

mezogözenekli elekler, mikrodalga destekli hidrotermal otoklav ısıtması yöntemiyle 

spesifik yüzey alanı 1438 m
2
/g ve gözenek çapı 3.49 nm olarak 30 dakika ve 120 

Watt‟ta elde edilmiştir.  
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MCM-41 mezogözenekli moleküler eleklerin yapısına metal yüklenmesinin etkisi geçiş 

metalleri olan bakır, nikel, kobalt ve demir kullanılarak detaylı olarak incelenmiştir. 

Emdirme ve mikrodalgayla direkt sentez yöntemleri kullanılarak MCM-41 tipi katalitik 

malzemeler üretilmiş ve bu malzemelerin fiziksel ve yapısal özellikleri incelenmiştir.  

Metallerin MCM-41 yapısına katılımı 25, 50, 75 ve 100 olarak belirlenen farklı 

Si/Metal oranları kullanılarak incelenmiştir. Hekzagonal mezogözenekli yapısının 

oluşması X-ışını difraksiyonu (XRD), N2 fiziksel yerleşmesi ve Fourier-transform  

kızılötesi spektroskopisi ile, metal dağılımlar energy dağılım spektroskopisi (EDS) ve 

geçirimli electron mikroskobu (TEM) ile tasdik edilmiştir. Malzemelerin ısıl kararlılık 

özellikleri ısıl gravimetrik analizör (TGA) ile karakterize edilmiştir. 

Uçucu organik kimyasalların saf MCM-41, metal eklentili MCM-41 ve karbon 

nanotüplerde (KNT) difüzyonu incelenmiştir. Alkollerin (metanol, etanol, n-propanol, 

n-butanol) ve aromatiklerin çözücülerin (benzen, tolüen, etilbenzen, propilbenzen, o-

ksilen, m-ksilen, p-ksilen) mezogözenekli ortamda difüzlenme katsayısı, difüzyon 

mekanizması ve aktivasyon enerjileri 26-32 °C sıcaklık aralığında makroskopik yöntem 

kullanılarak ölçülmüştür. 

Hem MCM-41‟de hem de KNT‟lerde alkollerin ve aromatiklerin molekül ağırlıkları 

arttıkça difüzyon katsayısının azaldığı, aktivasyon enerjisi ve dengeye ulaşmak için 

gerekli olan zamanın arttığı gözlenmiştir. Alkollerin ve aromatiklerin MCM-41 ve 

KNT‟lerdeki alkol ve aromatiklerin difüzyon mekanizması düzensiz difüzyondur. 

Difüzyon hız sabitleri sıcaklık arttıkça yükselmektedir. Uçucu moleküllerin 

KNT‟lerdeki difüzyon katsayıları MCM-41‟inkilere oranla en az 10 kat yüksektir.  
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CHAPTER 1.  INTRODUCTION 

 

 

Many applications in adsorption, separation and catalysis require nanostructures whose 

pore size can be controlled and architecture be adjusted upon requisites. Following the 

discovery of MCM-41, and multi wall carbon nanotubes (MWCT) in 1991, which 

possesses nanopores that are both regularly ordered and well defined, extensive 

scientific studies concentrated on miscellaneous aspects of chemical and physical 

processes in nanopores were set off. 

Since their discovery, MCM-41 mesoporous molecular sieves are synthesized with 

conventional hydrothermal synthesis. However production of these materials with 

environmentally friendly techniques is an important issue to meet the requirements of 

green chemistry. In recent years studies suggest that microwave energy may have a 

unique ability in materials syntheses. Specifically, syntheses of zeolites, mixed oxide 

and mesoporous molecular sieves by employing microwave energy have attracted great 

attention. Reduction of synthesis time, by over an order of magnitude make continuous 

production possible to replace batch synthesis as well as lowering the cost of the 

process. In addition to this, more uniform and defect-free products can be synthesized 

by microwave radiation than conventional hydrothermal synthesis. 

At present, microwave irradiation technique is widely applied to the synthesis of 

mesoporous molecular sieves but most investigations aimed at synthesizing pure silica 

MCM-41. The application of pure silica mesoporous molecular sieve to various kinds of 

catalytic reactions is limited due to electro-neutral surface structure with little acidic 

center. The catalytic performance of MCM-41 can be improved by incorporation of 

transition metals into the structure. Few articles considering the metal incorporation into 
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MCM-41 mesoporous molecular structure under microwave radiation have been 

reported recently. In this study, detailed investigations of microwave-assisted 

hydrothermal autoclave heating for the production of MCM-41 mesoporous materials 

were presented. Furthermore, incorporation of transition metals into the mesoporous 

structure was investigated by using two different techniques such as microwave assisted 

direct synthesis and impregnation method. 

Understandings of the fundamental diffusion properties of organic molecules in the 

nanopores are significantly important in heterogeneous catalysis, gas–solid reactions 

and adsorptive separations since the molecular transport processes in nanopores are the 

crucial steps. It is therefore important to investigate the diffusion of molecules in these 

materials and analyze the factors limiting their performance.  

MCM-41 molecular sieves and carbon nanotubes (CNT) with tubular shape and high 

surface/weight ratio make them attractive candidates for gas adsorption, and catalysis. 

In this study, diffusion of organic volatile solvents such as alcohols and aromatics were 

investigated in detail. 
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CHAPTER 2.  STATE OF THE ART  

 

 

2.1 MCM-41  

 

Due to the recent demands in technology and industrial applications, the discovery of 

new materials is an essential objective of material science research. There has been a 

growing interest to develop materials with greater pore sizes from the microporous scale 

to the mesoporous scale. 

The classification of materials in terms of their pore sizes according to International 

Union of Pure and Applied Chemistry (IUPAC) is, [1]: 

1. Microporous materials ( pore diameters    2 nm) 

2. Mesoporous materials (2 nm pore diameters  50 nm) 

3. Macroporous materials ( pore diameters   50 nm) 

One such microporous material is zeolite with pore sizes in the range of 0.3 to 1.5 nm. 

Their acidic form makes them the most important heterogeneous acid catalysts used in 

industry. Their natural form on the other hand, have many applications in wastewater 

cleaning, agriculture, fertilizers, aquaculture, animal health, animal nourishment, gas 

separation, solar refrigeration, gas cleaning, deodorization, solid electrolytes, 

construction materials, and cleaning of radioactive wastes [2]. However, the 

microporous structure of zeolites has drawback dealing with larger molecules. 

Mesoporous materials have a clear advantage over zeolites in which larger molecules 

can be diffused and catalyzed. 
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2.1.1 Historical Background  

The developing needs both in industry and research have had inevitable impact on 

discovering new materials with greater pore sizes. In 1988, a crystalline microporous 

material, VPI-5, with regular pores larger than 1 nm was synthesized [3, 4]. Following 

that, larger-pore crystalline materials were developed, such as AlPO-4, Cloverite, JDF-

20, ULM-5, UDT-1, ULM-16, CIT-5, ND-1, FDU-4, NTHU-1… etc. [4].  

Concurrently, scientists from Mobil Oil Corporation had discovered even more larger-

pore (2-10 nm) mesoporous molecular sieves, designated as M41S and patented in 1991 

and 1992 [5-9]. M41S is the acronym of the family of mesoporous materials discovered 

by Mobil researchers. Most well-known members are MCM-41 with hexagonal phase, 

MCM-48 with cubic phase and MCM-50 with lamellar phase (Figure 2-1) [10-14]. The 

acronym of MCM refers to Mobil Composition of Matter; also it stands for Mobil 

Crystalline Material. The number refers to the experiment number.  

 

Figure 2-1 M41S family of materials [12] 

Before their declaration, a patent describing the procedure for the preparation of low-

density silica was already filed in 1969 [15]. However, due to the lack of analysis and 

characterization, the remarkable properties of these materials were not recognized until 

1997 when Di Renzo et al. [16] reproduced the synthesis reported in the patent and 

found that it leads to a material identical to mesoporous MCM-41. Nevertheless, the 

developed synthesis techniques and discoveries of Mobil researchers opened a new field 

of mesoporous materials. 
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Also in the early 1990s, the discovery of mesoporous silica nanoparticles by Kuroda's  

group in Japan [17, 18] led to the development of new alkylammonium-clay 

intercalation complexes which have been subjected to hydrothermal treatment followed 

by calcination. The resulting material produced a highly ordered mesoporous powder 

with a honeycomb structure referred to as FSM-n (folded-sheet mesoporous 

material) where n refers to the number of carbon atoms in the surfactant alkylchain used 

to synthesize the material which is identical to MCM-41. Even though the Japanese 

publication was a year earlier than was the Mobil patent, the pathway described in the 

publication by Yanagisawa et al. [17] was difficult to realize, however, the early 

publications of Mobil group described a more generalizable pathway.  

Pinnavaia et al. [19, 20] have developed two additional approaches for the synthesis of 

mesoporous materials based on neutral surfactants to prepare HMS (hexagonal ordered 

silica) and MSU (Michigan State University material) [21]. Also, silica nanoparticles 

with much larger pores (4.6 to 30 nm) were produced at the University of California 

aptly named the Santa Barbara Amorphous, or SBA-15 with a hexagonal array of pores 

[22]. 

The discovery of M41S family of materials arises from the effort to discover new 

porous materials which can selectively convert high molecular weight, bulky petroleum 

molecules into more valuable fuel and lubricant products by Mobil researchers. In the 

mid-1980s, researchers in Mobil Research and Development Corporation in Paulsboro, 

NJ laboratory were working on layered-type materials and converting them into stable 

porous catalysts by pillaring. In the mid-1980s to late-1980s, researchers in what was 

then called Paulsboro Laboratory approached synthesizing large pore frameworks by 

combining the concept of pillared layer materials and formation of zeolites and result 

was MCM-22 composed of crystalline layers linked together by weak chemical bonds 

that become stronger after thermal treatment [23]. A pillared layered material 

designated as MCM-36 was also identified after delimitating the crystalline layers of 

MCM-22 [24, 25].  

The layered zeolites precursors such as MCM-22 had higher activity and porosity 

compared to the other layered precursors. This approach, interrupting the synthesis to 

isolate the layered zeolites precursors, was investigated in detail. In order to optimize 

the synthesis conditions, the synthesis was interrupted each time in many experiments 
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for X-ray diffraction characterization to observe the crystallinity. The interruptions were 

either performed by adding alkyltrimethylammonium salt at high pH or a reactive silica 

i.e. tetramethyl ammonium salt, was added as a potential pillaring agent. These new 

synthesis mixtures were treated at around 100 ºC in an attempt to form zeolites-layered 

hybrid materials. In these experiments, researchers recognized some very unusual 

properties: one broad low angle peak at about 2º 2θ; high BET surface area values 

greater than 1000 m
2
/g; and high hydrocarbon sorption capacities, abnormally high 

when compared to zeolites.  Aside from its interruptive capacity, 

cetyltrimethylammonium hydroxide was directly added to develop high efficiency 

swelling and used as a structure-directing-agent in zeolite-like synthesis. The products 

again showed the unusual properties as described above. Thus, both techniques resulted 

in the new mesoporous products with each remarkable sorption properties that 

researchers at analytical laboratories initially believed that their test equipment was 

broken or miscalibrated [26]. 

The researchers used many characterization techniques before declaring their discovery. 

First, from the XRD pattern, they initially assumed that they synthesized some kind of 

layered silicate precursor with crystalline domain sizes below XRD detectability. After 

TEM analysis, they observed the uniform hexagonal channels. When 
29

Si NMR data 

showed that the walls were amorphous, reserachers determined that the materials lacked 

typical crystalline framework. After determining that XRD patterns were generated by 

ordering of the pores instead of crystalline walls, they were eventually convinced that a 

new class of materials had been discovered. After this discovery, many Exxon Mobil 

patents were filed on catalytic applications and other applications. A summary of 

selected patents is given in Table A.1 and Table A.2 in Appendix A [26]. 

The M41S family of materials differs from zeolites in many ways:  i.e., they contain 

amorphous walls and little or no Brønsted acidity. Even though the walls are 

amorphous, there are silanol groups with uniform density within the channels which 

provide sites for the functionalization of species within the channels. These 

functionalized products can be used in designing new catalyst/sorption materials for 

new applications in catalysis and other areas such as drug delivery, water cleaning, fiber 

optic, tissue engineering etc. 
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As far as catalysis is concerned, crystalline mesoporous materials have shown 

promising performances in a number of acid- and redox-based processes. The observed 

improvement compared to more conventional catalysts often stems from increased 

surface area and greater accessibility of active sites. 

A growing interest in the M41S mesoporous materials since their discovery in 1992 is 

evidenced in Figure 2.2. There is a tremendous increase in the number of publications 

per year from 1998 to 2010. Separate sessions at international symposia entirely 

dedicated to mesoporous materials as well as meetings dedicated entirely to this subject 

even organized.  

 

Figure 2-2 Number of publications citing Kresge et al., Nature, 1992 [5]  

from Scifinder 

 

Although MCM-41, MCM-48 and MCM-50 are synthesized from the same materials, 

they show very different structural properties. Undoubtedly, MCM-41 is the most 

popular mesoporous molecular sieve that is widely studied by researchers. Detailed 

descriptions, properties, and syntheses of MCM-41 mesoporous materials are given in 

the following titles. 

 



8 

 

2.1.2 Structural Properties 

MCM-41 is as described previously, a mesoporous silica walled material which has a 

regularly ordered two-dimensional hexagonal pore arrangement and narrow pore size 

distribution. The channels of MCM-41 are not connected and the walls are amorphous 

silica. In other words, MCM-41 mesoporous molecular sieves exhibit order on the 

mesoscopic-scale but disorder on the atomic scale. 

In general, pure silica MCM-41 mesoporous molecular sieve has little catalytic activity 

due to some defects, for example, its surface is almost electro-neutral with little acidic 

center. However, its catalytic performance can be further extended since the walls can 

be functionalized by incorporation of transition metals to enhance the electron-transfer 

efficiency to design new catalysts/sorption systems [27]. The pore diameters can be 

arranged from 1.5 to 10 nm by varying the alkyl chain length of the surfactants (Figure 

2.3).   

 

Figure 2-3 a) hexagonal pores and b) functionalized pores [28]  

 

 

 

1.5-10 nm 
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MCM-41 mesoporous molecular sieves have received increasing scientific interest with 

their: 

1. Highly ordered meso-structure, 

2. Uniformly distributed pore size  

3. High surface area (1500 m
2
/g),  

4. High pore volume (1 cm
3
/g), 

5. Designable chemical composition and functionalizable surface, and 

6. Controllable size and morphology, 

all which make them promising candidates for use as catalyst and support. 

Due to MCM-41‟s larger pores, it has advantages over zeolites, such as (Figure 2.3): 

 Separates larger molecules 

 Performs catalysis on larger molecules (i.e. hydrocracking large molecular 

weight molecules into gasoline) 

 

 

Figure 2-4 Zeolite versus MCM-41 [28] 
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2.1.3 Synthesis Methods 

The syntheses of MCM-41 materials occur under moderate temperatures, below 120 °C, 

in a basic solution of silicate source with cationic surfactants under conventional 

heating or microwave radiation. 

For the synthesis of MCM-41, four main reagents are required; (1) a solvent (water 

and/or ethanol), (2) a silica source (tetraethyl orthosilicate (TEOS), sodium silicate 

solution, tetramethyl orthosilicate (TMOS), tetrabutyl orthosilicate (TBOS)), (3) an 

ionic (anionic or cationic) or neutral surfactant, (4) base [29]. 

The formation of mesoporous materials has been considered to be highly dependent on 

the interaction between organic (surfactants) and inorganic (silica oligomers) species. 

The reaction can occur in basic medium in which the base is the catalyst and 

surfactant/silica mol ratio may vary as given below. In the synthesis, the inorganic 

species first hydrolyze and condense into an oligomeric silica sol, followed by a sol-gel 

transition due to the further condensation, then accompanied by the self-assembly of 

surfactants and inorganic species to finally form mesostructures. The mixture is stirred, 

aged at room temperature and placed in a static autoclave for several hours under 

conventional synthesis route or microwaved in shorter crystallization time. The 

surfactant template is removed by calcination under air atmosphere and the obtained 

product washed with distilled water, filtered, and dried.  

In the M41S family, MCM-41 is formed with the highest concentration of silica, i.e., 

lowest surfactant/silica molar ratio. As the surfactant/silica molar ratio is varied, the 

resulting products can be grouped into four main categories [15]: 

1. Surfactant/silica < 1 : Hexagonal (MCM-41) 

2. Surfactant/Silica = 1-1.5 : Cubic (MCM-48) 

3. Surfactant/Silica = 1.2-2 : Lamellar (MCM-50) 

4. Surfactant/Silica > 2 : Cubic octamer 

Detailed information about formation mechanism, templating techniques in terms of 

type of surfactants, and type of heating mode is given in the following sections.  
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2.1.3.1 Formation Mechanisms 

After their discovery, researchers focused on the formation mechanism of M41S family 

of materials. The mesostructure of M41S materials depends greatly on the surfactant 

concentration and hydrophobic chain length and on the presence of organic swelling 

agents dissolved in the hydrophobic spaces. Mobil scientists proposed two possible 

pathways for the formation of mesoporous molecular sieves as can be seen in Figure 2.5 

[5, 6, 14, 15]: 

1. The liquid-crystal phase is intact before the silicate species are added 

2. The addition of silicate results in the ordering of the subsequent silicate encased 

surfactant micelles 

 

Figure 2-5 Formation mechanisms proposed by Beck et al.  

For either pathway, the resultant composition would produce an inorganic material that 

mimics known liquid-crystal phases. For pathway 1, which is called liquid crystal 

templating mechanism, to be operative, the surfactant molecules must exist in sufficient 

concentration for a liquid-crystal structure to form. This liquid-crystal structure serves 

as the templating agent and the inorganic silicate anions solely serve to counterbalance 

the charge of these fully ordered surfactant aggregates. The liquid crystal templating 

mechanism has been a matter of debate, since no preformed surfactant liquid crystalline 

phase exists in the synthesis precursor of mesoporous materials in the hydrothermal 

synthesis. The concentration of surfactant required for the formation of liquid crystal is 

very high, which could not be obtained in the dilute precursor solutions. 
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For pathway 2, which is as called the cooperative formation mechanism, surfactant is 

only part of the template. The presence of a silicate anion species not only serves to 

balance the surfactant cations but also participates in the formation and ordering of the 

liquid-crystal phase.   

The cooperative formation mechanism of mesoporous silica was further advanced by 

Davis et al [30, 31] and Stucky et al, [13, 32]. Davis and co-workers proposed a 

“silicate rod assembly” mechanism. Two or three monolayers of silicate species first 

deposit on isolated surfactant micellar rods. The long surfactant-silicate rods 

spontaneously aggregate and eventually pack into a long-range ordered hexagonal 

arrangement. This mechanism is, however, unconvincing due to the difficulty of 

assembling long rods. It is also not as popular as the cooperative formation mechanism, 

first proposed by Stucky and co-workers and accepted by most researchers. 

Stucky‟s theory was inspired by the lamellar-to-hexagonal phase transformation [33]. 

Figure 2.6 presents the process of formation of MCM-41 mesoporous silica from 

aqueous solution of surfactant (cethyltrimethylammonium bromide, CTABr) and silica 

source. In an early stage, an ion-exchange occurs preferentially between silicate 

oligomers and CTABr in the precursor solution and a CTA-silica complex is thus 

formed. The self-assembly of CTA-silica then naturally enables the formation of a 

silicatropic liquid crystal (SLC) phase. A low-curvature lamellar phase is first formed 

because of the highly charged silica species and the matching charge density. When the 

condensation of silicate proceeds, the negative charge density of oligosilicate is 

dramatically reduced. This causes a rearrangement of surfactant and consequently a 

mesophase transformation to a high-curvature hexagonal one. The final phase is 

determined by the reaction coordinate when the solidification of the SLC is achieved. 

In other words the ion pairs then self-organize into a mesophase, having most often a 

liquid-crystal structure, i.e., hexagonal, lamellar, or cubic. The structure of the 

mesophase depends on the composition of the mixture, the pH, and the temperature. 
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Figure 2-6 Representation of the cooperative formation mechanism [32]  

The formation mechanisms, i.e. liquid crystal templating and cooperative formation, are 

valid when using different synthesis methods. It is known that the free energy of 

mesostructure formation (ΔGmeso) is mainly composed of four terms given in equation 

(2.1); including the contributions of the organic-inorganic interactions (ΔGinter), the 

condensation of inorganic framework (ΔGinorg), the micellization of surfactant (ΔGorg) 

and the free energy change of the solution (ΔGsol) [34].  

ΔGmeso = ΔGinter + ΔGinorg + ΔGorg + ΔGsol    (2.1) 

In the process of hydrothermal mesostructure formation, ΔGinter dominates the overall 

free energy change, and in this case cooperative formation mechanism is valid. The 

controlling factor of the mesophase determination is the organic/inorganic interaction.  
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2.1.3.2 Effect of Surfactants 

The formation occurs through a liquid-crystal templating (LCT) mechanism which was 

discussed earlier where an organic species functions as a central structure, surrounded 

by inorganic oxides forming a framework. Long-chain surfactant molecules arrange 

themselves assisted by a micelle self-assembly to form liquid-crystalline phases. Silicate 

species deposit between surfactant 'rods' and then condense to form an inorganic 

network, with a hexagonal ordering dictated by the interaction between the surfactant 

and silicate species. After removal of the surfactant templates, a mesoporosity is 

obtained with pore size of 2-10 nm. In general, the overall LCT mechanism is governed 

by two factors: (i) the dynamics of surfactant molecules to form assemblies, micelles, 

and ultimately crystalline structure, functioning as template; and (ii) the ability of the 

inorganic oxide to undergo hydrolysis and polycondensation reactions leading to a 

network surrounding the organic template. 

A wide variety of ionic surfactant molecules with different sizes, shapes, functionalities 

and charges has been shown to be able to effectively function as pore structure directing 

agents. These surfactant molecules can be classified based on their head group 

chemistry and charge as follows: 

Cationic surfactants: the hydrophilic group carries a positive charge, e.g., 

tetraalkylammonium salts (CnH2n+1)(CH3)3NX, n = 6, 8, 9, 10, 12, 14, 16, 18, 20, 22; X 

= OH, Cl, Br, HSO4; and (CnH2n+1)(C2H5)3N, n = 12, 14, 16, 18. 

Molecular formula of frequently used cationic quaternary ammonium surfactants are 

shown in Figure 2.7. 
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Figure 2-7 Molecular formula of frequently used cationic surfactants [35] 

Quaternary cationic surfactants, CnH2n+1N(CH3)3Br (n = 8-22), are generally efficient 

for the synthesis of ordered mesoporous silicate materials. Commercially available 

cethyltrimethylammonium bromide is often used. Gemini surfactants, bolaform 

surfactants, multiheadgroup surfactants, and recently reported cationic fluorinated 

surfactants can also be used as templates to prepare various mesostructures [12, 36-38]. 

In the first reports of mesoporous silicates from Mobil Company, structure directing 

agents were the cationic surfactants. These have excellent solubility, high critical 

micelle temperature values, and can be widely used in acidic and basic media.  
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Stucky and co-workers proposed four general synthetic routes, which are S
+
I
-
, S

-
I
+
, S

+
X

-

I
+
, and S

-
X

+
I
-
 (S

+
 = surfactant cations, S

-
 = surfactant anions, I

+
 = inorganic precursor 

cations, I
-
 = inorganic precursor anions, X

+
 = cationic counterions, and X

-
 = anionic 

counterions) [12,13]. To yield mesoporous materials, it is important to adjust the 

chemistry of the surfactant headgroups, which can fit the requirement of the inorganic 

components. Under basic conditions, silicate anions (I
-
) match with surfactant cations 

(S
+
) through Coulomb forces (S

+
I
-
), the result is M41S family of materials. 

Anionic salt surfactants include carboxylates, sulfates, sulfonates, phosphates, etc. given 

in Figure 2.8. 

Anionic surfactants: the hydrophilic group carries a negative charge, e.g., sulfates 

(CnH2n+1OSO3 with n = 12, 14, 16, 18), sulfonates (C16H33SO3H and 

C12H25C6H4SO3Na), and phosphates (C12H25OPO3H2, C14H29OPO3K). 

 

Figure 2-8 Anionic surfactants [39] 

In previous research, anionic surfactants as the template always gave rise to disordered 

mesophases or no mesostructure could be obtained. A possible reason is that under 

acidic condition anionic surfactant could be largely protonated, while under basic 

conditions, the interactions of counter-cations with surfactant and silicate ions are very 

weak. 

To solve this problem, Che et al first introduced co-structure-directing agent (Amino 

silane or quarternary ammonium silane) into the anionic surfactant templating system, 

and a family of highly ordered mesoporous silicas AMS (anionic-surfactant-

templated mesoporous silica)  has been achieved [39, 40].  
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Depending on the synthesis conditions, and the silica source or the type of surfactant 

used, many other mesoporous materials (HMS, MSU, SBA,...) can be synthesized with 

properties different than those of MCM-41. A short summary of other MCM-41-like 

silica based mesoporous structures are represented in Table 2.1. 

Table 2-1 Overview of MCM-41-like materials [35] 

Route  Interactions Symbols Medium Products Pore 

range 

References 

S+I- electrostatic 

Coulomb 

force 

S+, cationic surfactants 

I-, anionic silicate species 

basic 

 

MCM-41, 

MCM-48, 

MCM-50  

 

2-10 6 

SBA-6, 

SBA-2, 

SBA-8 

5-30 36, 43, 44 

S-I+ electrostatic 

Coulomb 

force 

S-, anionic surfactants, 

I+, transition metal ions, i.e. Al3+ 

aqueous mesoporous 

alumina, etc. 

 12 

S+X-I+ electrostatic 

Coulomb 

force, double 

layer H bond 

S+, cationic surfactants ; 

I+, silicate species; 

X-, Cl-, Br-, I-, SO4
2-, NO3

- 

acidic SBA-1, 

SBA-2, 

SBA-3 

5-30 12,  43, 45 

S-N+-I- electrostatic 

Coulomb 

force 

S-, anionic surfactants (lab-made) ; 

N+, cationic amino group of 

TMAPS or APS; 

I-, anionic silicate species 

basic AMS-n  39, 40, 46-

49 

S-X+I- electrostatic 

Coulomb 

force, double 

layer H bond 

S-, anionic phosphate surfactants 

I-, transition metal ions, WO4 
2-, Mo2O7

-;X+, Na+, K+, Cr3+, Ni2+, 

etc. 

basic W, Mo 

oxides 

 12, 50 

S0I0 

(N0I0) 

H bond S0, nonionic surfactants,oligomeric 

alkyl PEO surfactants,and triblock 

copolymers; 

N0, organic amines, 

CnH2n+1NH2,  

H2NCnH2n+1NH2;  

I0,silicate and aluminate species 

neutral HMS, MSU, 

disordered 

worm-like 

mesoporous 

silicates 

2-10 21, 51 

S0H+X-

I+ 

electrostatic 

Coulomb 

force, double 

layer H bond 

S0, nonionic surfactants ; 

I+, silicate species; 

X-, Cl-, Br-, I-, SO4
2-, NO3

- 

Acidic 

pH < _2 

SBA-n (n= 

11, 12, 15, 

16), 

FDU-n (n 

=1, 5, 12), 

KIT-n (n =5, 

6) 

 22, 52-57 

N0…I+ coordination 

bond 

N0, organic amines; 

I+, transition metal (Nb, Ta) 

acidic Nb, Ta 

oxides 

 12 

S+-I- covalent 

bond 

S+, cationic surfactants containing 

silicate, 

e.g.,C16H33N(CH3)2OSi(OC2H5)3Br; 

I-, silicate species 

basic mesoporous 

silica 

 58, 59 
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2.1.3.3 Structure Control, Surface Modification and Functionalization 

The pore sizes of M41S materials are easily adjustable from ca. 2 to about 10 nm in 

three different ways: (1) by changing the length of the alkyl chain of the surfactant 

molecule,[5, 6]; (2) by adding expander molecules such as 1,3,5-trimethylbenzene [5-

7,13], which dissolve in the hydrophobic region of the micelles, thus increasing their 

size; or (3) by aging a sample prepared at low temperature (e.g., 70 °C) in its mother 

liquor at higher temperature (e.g., 150 °C) for different periods of time [41]. Moreover, 

the pore size of MCM-41 silicates may be adjusted by post-synthesis silylation [42]. 

The pH plays a crucial role in the synthesis of M41S materials. By controlling the pH of 

the initial synthesis mixture, MCM-41 with increased wall thicknesses of 1.6 and 2.7 

nm was prepared [60–62]. Apart from this technique of controlling the synthesis 

conditions, a postsynthesis treatment of the as-synthesized sample can further improve 

the quality of the MCM-41 [63, 64]. Furthermore, pH adjustments during synthesis 

using some acids have been shown to significantly increase the long-range order of 

MCM-41 and hence improve the stability. Furthermore, high quality MCM-41 was 

prepared by changing the initial mother liquor with water. As a consequence of this 

treatment, the lowered pH of the synthesis mixture results in a restructuring of the local 

atomic arrangement of the silicate wall creating a high quality MCM-41 [65]. 

MCM-41 has little acidity compared to zeolites to be used directly in many industrial 

applications. However, their catalytic activity can be improved by employing several 

different techniques of surface modification. The most applied technique is metal 

incorporation into the structure by adding metal solution into the synthesis solution. It is 

a one-pot synthesis, identified as direct synthesis. Another method is modifying the 

surface after desired structure is synthesized. The hydroxyl groups may be employed as 

anchor sites for the attachment of elemental precursors, resulting in a monolayer of 

active sites. A third method is incorporation of metals into the structure by the wetness 

impregnation technique.  

When trivalent cations such as Al
3+

, B
3+

 Ga
3+

, Fe
3+

 substitute for silicon in the walls of 

the mesoporous silica, the framework possesses negative charges that can be 

compensated by protons and solids can be used in acidic reactions. When other cations 

such as Ti
4+

, V
4+

, Sn
4+

, Zr
4+

 are introduced, the electroneutrality is maintained and the 
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corresponding mesoporous materials are used rather in specific reactions like in redox 

catalysis. 

Aluminum is the studied element for the modification of MCM-41 materials due to its 

acidic behavior, and the acid sites of Al-MCM-41 have been characterized [66-68]. 

Tetrahedral aluminum is assumed to be incorporated into the wall structure, while 

octahedral aluminum is regarded as extra framework species. Generally, cationic 

surfactants have been applied in the syntheses of mesoporous aluminosilicate materials 

[69-75]. The significance of different aluminum sources has also been investigated [69, 

76, 77], but the conclusions are not accurate which is probably due to different synthesis 

conditions. 

Titanium [78-89] and vanadium-modified [90, 91] mesoporous materials are interesting 

redox catalysts, and several synthesis reports are available. Other transition metals that 

have been incorporated into mesoporous structures are, e.g. copper [92], nickel [93], 

cobalt [94], chromium [95], iron [96], gallium [97, 98] and manganese [99, 100], boron 

[101, 102], palladium [103]. 

Encapsulation of organic polymers such as polyaniline, methyl methacrylate within the 

channels of MCM-41 is reported [104-106]. Polymerization of semiconducting 

polymers within the channels of MCM-41 is a promising method for the preparation of 

electronic and optoelectronic devices. 

In general, the internal surface of MCM-41 mesoporous molecular sieves is 

hydrophobic. This hydrophobic nature of these materials makes them attractive 

candidates for selective adsorbents for the removal of volatile organic compounds and 

other organic compounds in gas streams or wastewater [107].  

The adsorption characteristics of MCM-41 for polar molecules strongly depend on the 

surface silanol groups (SiOH) [108]. There are several different types of SiOH groups 

on the MCM-41 surfaces [109] which allow various modifications of MCM-41 for 

catalysis, adsorption, and novel composites [110].  

The sorption capacity of polar molecules can be further reduced by silylation, 

substitution of the surface hydroxyl groups with trimethylchlorosilane groups to create 

even more hydrophobic environment which results in selective removal of organic 

compounds from streams or wastewater [110]. 
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2.1.3.4 Microwave Assisted Synthesis 

Microwaves (0.3GHz–300GHz) lie in the electromagnetic radiation region between 

radiowave and infrared frequencies with relatively large wavelengths (1 mm-1 m). For 

the last 50 years, microwave energy has been used for heating food materials [111] and 

now it has been realized that this technique may find potential useful applications in the 

synthesis of nanoporous materials.  

In 1967, microwaves were used to heat polymers [112]. However, their first usage in 

chemical transformations dates back to 1981 [113]. At that same time, zeolites and 

microwaves together attracted the attentions of researchers, not in the synthesis but 

dehydration of zeolites [114-117]. In 1988, Mobil researches published the first data on 

zeolite synthesis by microwave radiation in a patent briefly describing the synthesis 

conditions of zeolites Na-A and ZSM-5 [118].  Mobil Oil researchers firstly claimed 

that microwave energy was successfully applied in the crystallization for several 

zeolites. According to their patent, crystalline zeolites could be synthesized by 

employing microwave energy with the help of a heat transfer agent, which is 

sympathetic to microwave energy. To date, several types of zeolites such as NaA 

(LTA), CoAPO-44, CoAPO-5, AlPO4-5, zeolite A, zeolite Y and ZSM-5 have been 

prepared by microwave heating of the precursor gels. In 1998, Cundy reviewed a 

detailed article on the syntheses and modification of zeolites by microwave radiation 

which covered different aspects of microwave synthesis that differ from conventional 

hydrothermal methods [119]. 

Recently, Yürüm and coworker studied the microwave assisted synthesis of AlPO4-5 

and achieved to obtain high quality crystals in relatively shorter crystallization times 

[120]. 

Microwave assisted synthesis of zeolites have been investigated and the success of 

obtaining these materials opened a new route for the synthesis of MCM-41 type 

mesoporous materials. Before detailing microwave assisted synthesis of MCM-41, 

description and working principle of microwave radiation will be discussed. 
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The principles and working mechanism of microwaves are based on simple laws. The 

heating effect of microwave results through a mechanism called dielectric heating [121-

127]. According to this mechanism, the mobility of dipoles plays an important role in 

that orientation ability becomes critical due to the direction of the electric field. 

Molecules with permanent dipole moment partly or completely align themselves 

through rotation with the direction of electric field. Since the molecules can rotate in 

time with field frequencies of 10
6
 Hz in gases or liquids, their inability to follow the 

inversion of the electric field at an indefinite time results in phase shifts and dielectric 

losses. Apart from the dielectric coefficient, the size of the excited molecule becomes 

crucial. Due to the fast changing electric field of the microwave radiation, electric field 

energy is transferred to the medium and converted into kinetic or thermal energy 

because the change in polarity of the electric field is much faster than the rotation of the 

medium molecules around their dipole center causing a phase lag. Highly conductive 

solids or, polar liquids exhibit large dielectric losses; hydrocarbons and low polarity 

solvents show little heating effect. 

The dielectric coefficient (permittivity) εr, a constant that shows the ability of a medium 

to interact and absorb microwave energy, is characteristic for each material and its state. 

It is related to the ability to save electric energy (capacity, C) with the following 

equation: 

0C

C
r 

      

(2.2) 

At high frequencies, εr is extended by the imaginary part as a complex number 

according to equation (2.3) where i
2
 = -1. 
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The dielectric loss factor ''

r  (dynamic dielectric coefficient) is obtained by comparing 

the irradiated microwave energy to the energy that has coupled with the sample. ''

r   

depends on the dielectric conductivity ζ and on the frequency according to equation 

(2.4). 
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The coupling of microwave energy in the medium depends on the dielectric properties 

of the substance to be heated, i.e. it depends on the quantity of microwave radiation that 

fails to penetrate the substance. The degree of energy coupling in the reaction system is 

related on both '

r  and ''

r  and is called dissipation factor D. 

'

''

tan
r

rD



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(2.5) 

tan ~ 
x

1

      
(2.6) 

The dissipation factor defines the ability of a medium at a given frequency and 

temperature to convert electromagnetic energy into heat. It can also be regarded as a 

measure of the penetration depth (x) of microwave radiation into a material and is 

inversely proportional with x given in equation (2.6). 

Dissipation factor depends on many factors [125]: 

1. Temperature 

2. Ion concentration 

3. Ion size 

4. Dielectric constant 

5. Microwave frequency 

6. Viscosity of reaction medium 

 

The penetration depth and dissipation factor are strongly dependent on temperature 

however penetration depths were only measured for a few materials in a very small 

range of temperatures [127-128]. As a result, special attention must be given for 

designing chemical reactors for industrial applications. 

The interaction of microwave radiation with matter can be classified as [129]: 

1. Absorption 

2. Transmission 

3. Reflection 
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Microwaves are a nonionizing form of radiation energy that cannot break chemical 

bonds but transfer energy selectively to various substances. Materials with high 

dielectric coefficients (dipole moment), polar substances and salts, absorb the 

microwaves and result in a rapid heating of the medium. In such materials, the dielectric 

loss factor increases and the penetration depth of microwaves in medium decreases. 

Microwaves couple directly with molecules in the reaction mixture with rapid rise in 

temperature; dipole rotation and ionic conduction being two most important 

fundamental mechanisms for transfer of energy from microwaves to the molecules 

being heated. Essentially, polar molecules try to align themselves with the rapidly 

changing electric field of the microwave, and coupling ability, among others, is 

determined by the polarity of the molecules. If microwave radiation if reflected by the 

material surface, there is no or only a small coupling energy in the system i.e. metals 

with high conductivity.  This type of materials can be used for shielding microwave 

ovens. Some materials (such as hydrocarbons, glass, and ceramics) are nearly 

transparent to microwave, and therefore behave as good insulators in a microwave oven 

since they are heated only to a very limited extent. 

The energy input (Qmv) and the energy necessary to reach desired temperature (Qth) are 

determined from the following equations: 

tPQ mvmv        
(2.7) 

TmcQ pth 
      

(2.8) 

The efficiency factor (η) is the ratio of required heat over used energy input that 

describes the effectiveness of the conversion of microwave energy into thermal energy 

is given in equation (2.9). 

mw

th

Q

Q


      

(2.9) 

Using these equations and thermodynamic data of the medium, it is possible to calculate 

the required energy input to reach the necessary temperature for the reaction to occur. 
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There are two types of microwave oven used for chemical synthesis: domestic and 

laboratory-scale. In domestic microwave ovens, it is not so easy to reach the desired 

synthesis conditions since the only controllable parameters are power and time. The 

temperature remains undetermined and it is manipulated with on and off switching of 

the microwave oven. In a laboratory-type microwave oven, it is possible to control the 

temperature with the temperature feedback which keeps the temperature constant by 

manipulating microwave power. In this system, temperature and pressure are kept 

constant with a precision of ±1K and ±0.5 bar, respectively, states not easily reached by 

conventional heating. The former has the advantage of economy but lacks flexibility in 

control and reaction monitoring. The latter is more expensive but is purpose-built, has 

extensive facilities for programming and allows stirring of the reaction mixture and the 

continuous monitoring and control of temperature and pressure. These oven types are 

usually multimode oven with non-uniform electric field distribution. There are also 

microwave ovens that operate with a monomode device in which microwave energy is 

piped into a reactor through waveguides. However, the amount of monomode radiation 

depends on several parameters such as reactor size and material, insertion position in 

the waveguide, constitution and amount of reaction mixture [130, 131]. So in theory 

there are no great differences between multimode and monomode radiation. In 2004, 

Gum et al. suggest that microwave ovens should be classified according to their 

radiation intensity and power density. They summarize the properties of currently 

available microwave ovens that are used for synthetic applications (Table 2-2). 

Household microwave ovens mostly operate by pulsed microwave radiation while there 

are some advanced systems that operate by continuous (unpulsed) irradiation. In the 

pulsed systems, pulses with maximum available power are applied according to the 

preset irradiation and time. In the pulsed systems actual preset power is applied [131]. 

Microwaves are widely used in telecommunication so the usage of microwaves for 

other applications is strictly restricted due to international standards [132, 133]. The 

frequency used in most devices is 2.45 GHz, including most household microwave 

ovens. 
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Table 2-2 Comparison of the currently available microwave systems for synthetic 

applications 

Manufacturer Type Irradiation 

modus 

Max. 

power 

Cavity 

volume 

Max. 

power 

density 

in empty 

cavity 

Reaction 

scale 

Sharp domestic 

MW oven   

R-220A 

Multimode 800 W, 

pulsed 

15.7 L around 

50 W L
-1

 

max. 100 g 

in dry 

reactions 

Personal 

Chemistry 

Emrys™ 

Creator 

Monomode 300 W, 

unpulsed 

< 1 L > 300 W 

L
-1

 

< 20 g 

CEM Discovery™ Monomode 300 W, 

unpulsed 

< 1 L > 300 W 

L
-1

 

< 50 g 

MLS/Milestone ETHOS™ 

MR 

Multimode 1000 W, 

pulsed or 

unpulsed 

42.8 L around 

23 W L
-1

 

up to 3000 

g 

depending 

on reactor 

There are three types of methods for the measurement of temperature in a microwave 

oven: 

1) Shielded thermocouples 

2) IR-sensors 

3) Fiber optics 

 

Even though shielded thermocouples are the least expensive tools, they have some 

limitations. First of all, they are unsuitable for high temperature synthesis (300 ºC); and 

reaction volumes should be at least 30 ml since they have significant amount of volume 

due to shielding. By using IR-sensors, temperature can be measured indirectly from the 

reactor wall with a temperature range of -40 to 1000 ºC. However, they awk errors 

because temperature can only be measured from the outside wall of the container that is 

the coldest point of the reaction mixture. The third and most expensive method is 

temperature measurement by fiber optics with high precision. The disadvantage 

compared to IR sensors is the narrow operating temperature range of 0 to 330 ºC [131].  



26 

 

Tompsett and coworkers published a review article [134] based on microwave synthesis 

of nanoporous materials and proposed the advantages of microwave assisted synthesis: 

1) Reduced synthesis time (more rapid nucleation) [135-142] 

2) More uniform dimension and composition of product [143-146] 

3) More variable compositions can be produced[147,148] 

 

Microwave assisted synthesis have achieved some enhancements in the synthesis of 

nanoporous materials when compared to the efficiency of conventional synthesis, but 

many important factors must be taken into account during synthesis. Important 

differences between the conventional chemical reactions in the liquid phase and the 

same reactions conducted under microwave irradiation can be summarized as [131, 

134]: 

1) Dielectric properties and concentration of the medium  

2) Reactor geometry: batch volume, shape, etc… 

3) Process: stirring, ramp rate, heat dissipating agents, etc… 

4) Microwave frequency 

5) Activation energy (energy efficiency) 

6) Template interactions 

7) Temperature control 

 

Synthesis of nanoporous materials with microwave radiation provides efficient and 

selective production of many materials. Microwave radiation also achieves the goal of 

green energy requirements recommended by American Chemical Society [149]:  “use 

methods that minimize the energy required for a reaction to take place. For example, 

…catalysts or microwave radiation…”. However further research is required in order to 

understand the mechanism and achieve reproducibility which can be established by 

interdisciplinary research of chemists, physicians and engineers.  
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During the last years, syntheses of MCM-41 mesoporous molecular sieves with 

microwave energy have been investigated. In 1996, Bein and Wu [150] shortly reported 

that molecular sieve MCM-41 was synthesized in a microwave heating environment in 

which they employed only water solvent as a reaction medium of microwave 

preparation. According to their study, the variation of crystallinity with various reaction 

conditions suggests that the formation mechanism of MCM-41 under microwave 

heating is similar to that observed with conventional oven heating. They performed the 

experiments in a Teflon autoclave operated in Questron microwave oven at 160 ºC for 1 

minute, followed by heating at 150 ºC for 80 minutes. They concluded that for that 

specific gel composition, the best temperature to synthesize ordered mesoporous 

materials was between 140 ºC and 160 ºC. They claimed that condensation rate was not 

sufficient at lower temperatures while continued heating resulted in decomposition of 

already formed structure at higher temperatures.  

Two years later Kim and co-workers [151] published the synthesis data of mesoporous 

material MCM-41 under microwave heating conditions depending on synthetic 

parameters. In particular, they focused on investigating the effect of ethylene glycol as 

another dielectric medium on the crystallinity and the morphology of materials prepared 

by microwave-induced heating operating in CEM MDS-2000 at 2.45 GHz at 0-100% of 

microwave full power (630±50) and was controlled by pressure change up to 200 psi 

with a fiber optic probe of phosphor sensor. They performed the experiments in a 

Teflon autoclave and heated the solution in two steps. The first was nucleation applied 

at 100-150 ºC for 1-30 min; the second, at 100 ºC for 30 min under 60 W of microwave 

power for crystallization.  

Kim et al. [152] also published another article with more specific microwave conditions 

as first heating at 120 ºC for 10 min under 480 W of microwave power for nucleation 

and 100 C for 30 minutes under 60 W of microwave power for crystallization.  
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Papp et. al compared four different syntheses techniques of MCM-41 mesoporous 

molecular sieves [153] as thermal treatment in polypropylene bottles, in static 

autoclaves, in a stirred autoclave in ovens, and in microwave reactors heated with 

microwave radiation at 95 ºC for different times. Microwave assisted syntheses were 

performed at 70% CEM MDS 2000 in 4 hours. They were able to synthesize highly-

ordered MCM-41 and assumed that stimulation of water molecules around the silicon 

atoms by microwave radiation (vibration and rotation) was the reason of accelerated 

condensation process of the framework in contrast to propylene bottles or autoclaves. 

Park et al. reported the monitoring of the rapid silicate condensation onto the surfactant 

micelles during microwave assisted MCM-41 formation by fluorescence and electron 

spin resonance spectroscopy [154-156]. In this spectroscopic technique, pyrene as a 

fluorescence probe and 4-(N,N-dimethyl-N-hexadecyl)ammonium-2,2,6,6-tetramethyl 

piperidinyloxcy iodide (CAT16) as a spin probe were dissolved into the micelle 

solutions. These probes allowed to monitor the supramolecular interaction between the 

anionic silicate and and cationic surfactant molecules. During microwave radiation it 

was observed that the fast increase in hydrophobicity and microviscocity of the probes 

resulted from the accelerated condensation of silicates onto the micelle surfaces. They 

proposed that the fast dissolution of the precursor gel aside with microwave-susceptible 

head groups of surfactant molecules resulted in rapid formation of MCM-41. 

Many of the articles on microwave assisted synthesis mainly focused on the decrease in 

reaction time. However, another advantage of microwave radiation implies that control 

on particle size distribution and macroscopic morphology could also be achieved in the 

synthesis of nanostructured materials [157, 158].  

Recently Jhung et. al [159] published a book chapter on microwave-induced synthesis 

and fabrication of nanoporous materials and Cao Yuan et.al.[160] published an article 

on the advances in microwave assisted synthesis of ordered mesoporous materials 

covering pure and metal incorporated MCM-41 and SBA-15 mesoporous molecular 

sieves. 
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Microwave irradiation technique was widely applied to the synthesis of mesoporous 

molecular sieves but most investigation aimed at the synthesis of pure MCM-41. 

Nowadays, there has been a growing interest in the microwave preparation of metal 

incorporated MCM-41 mesoporous materials. In 1999, Wha-Seung Ahn and co-workers 

synthesized the titanium substituted MCM-41 mesoporous materials by microwave and 

compared the results with conventionally synthesized Ti-MCM-41 materials [161]. In 

their study CEM MDS-2100 microwave was used with heating periods of 10 minutes to 

5 hours at 373-393 K. They achieved synthesis of titanium containing mesoporous 

materials with an average pore diameter of 3 nm and specific surface area of around 900 

m
2
/g by microwave radiation within 2 hr instead of producing the same material with 

conventional heating within 24 hours. The number of articles corresponding to metal 

incorporation by using microwave radiation steadily increased from 2007 to 2010. 

Gläser and coworker studied the synthesis and catalytic performance of Cr substituted 

MCM-41 and MCM-48 which has been reported for the first time and compared the 

results with conventional heating [162]. The microwave assisted syntheses of Cr-MCM-

41 and Cr-MCM-48 were completed within 1-2 hr with CEM MDS-2000 at 100 ºC and 

150 ºC respectively, whereas the conventional hydrothermal method took at least 12-24 

hours for completion. Gläser et al. claimed that the Cr content within the samples were 

up of 2.0 wt% and the long-range order was somewhat enhanced for the samples 

prepared using microwave. 

Hengbo Yin and coworkers investigated the effect of copper, nickel and cobalt doping 

on the pore structure of pure MCM-41 mesoporous molecular sieve under 220 W 

microwave radiation for 2.5 hr. They achieved synthesis of long-range and well-ordered 

Ni-MCM-41 mesoporous molecular sieves with different amount of Ni content. As in 

the conventional synthesis method, the specific surface area and pore volume of the 

samples obtained by microwave heating decreased with increasing the amount of nickel 

and mesoporous ordering of the samples became poor [163,164]. They investigated the 

synthesis of Cu-MCM-41 mesoporous molecular sieves with different metal content 

with microwave irradiation method and same results as in the Ni-MCM-41 samples 

were observed such as decrease in specific surface area, pore volume and regularity 

with the increase of metal content [164] For the case of cobalt incorporated samples, 

they also investigated the calcination temperature for both microwave assisted and 

conventionally synthesized samples and concluded that the thermal stability of Co-
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MCM-41 mesoporous molecular sieve obtained by microwave heating was enhanced 

compared to that of Co-MCM-41 obtained by hydrothermal method. Among all the 

samples, Co-MCM-41 mesoporous molecular sieves had the highest specific surface 

area values [164,165]. Recently, Yin et al. studied the microwave synthesis of Ce-

incorporated mesoporous molecular sieves by microwave radiation at 220 W for 2.5 

hours [166]. In all experiments Yin and coworkers used National NN-S570MFS type 

microwave oven. 

Besides using microwave energy for the synthesis of pure and metal incorporated 

MCM-41, it has been proposed by Duan et al. that microwave energy can also be used 

for removing the surfactant from zeolites-β porous materials [167]. They also 

investigated the calcination step of MCM-41. Traditionally, the calcination step of 

MCM-41 is carried out around 500 ºC for 10 hours or longer. In their two-step 

calcination procedure, Duan and coworkers first calcined the materials for 2 hours at a 

lower temperature determined by decomposition of the template and then heated 

linearly to 550 C at a rate of 1 C/min and maintained at 500 C for 6 hours. The obtained 

MCM-41 mesoporous materials resulted in a better long-range structure and more acid 

sites. 

The use of microwave energy as an energy source for synthesizing MCM-41 

mesoporous molecular sieves is an important issue, but there are some points that 

should be considered seriously. Gum et al. claim that the information in publications 

covering the use of microwave energy are incomplete: scientists dealing with 

microwaves have experienced measurement and physical problems which lack the 

reproducibility of the products. Many articles do not give basic description of the 

equipment used, i.e. the type of microwave or it is country of manufacture is often not 

mentioned. Also the power used during synthesis is defined in terms of full power or as 

preset power, a categorization makes conclusions about achieved temperatures 

impossible. It is also worth mentioning that in microwave-assisted reaction, the medium 

plays an important role: the polarity and the amount of the components in reaction 

mixture determines the absorption and the quality of the output product. When all of 

these issues are considered, it is crucial to describe the reaction parameters in detail 

since these data will be used in future for large-scale productions with microwave 

energy [168]. 
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2.1.4 Characterization Methods 

MCM-41 is honeycomb structure results in hexagonal packing of unidimensional 

cylindrical pores. Reliable characterization of the porous hexagonal structure requires 

the use of three independent techniques [4]: X-ray diffraction (XRD), transmission 

electron microscopy (TEM) and adsorption analysis. 

2.1.4.1 N2 Sorption Analysis 

Adsorption techniques are used to determine the porosity and specific surface area of 

materials. The most common adsorbate is N2 (at 77K).  

For MCM-41, typical sorption measurements follow the type IV isotherm, as illustrated 

in Figure 2-9, with a high porosity (1 cm
3
/g) and a large surface area of about 1400 m

2
/g 

[169]. At low relative pressures (P/P0 < 0.2), the formation of a monolayer of adsorbed 

molecules is the prevailing process. At higher pressures (P/P0 > 0.2), the adsorption in 

mesopores leads to multilayer formation until condensation occurs, enabling a sharp 

increase for the adsorption volume. As the mesopores are filled, the adsorption 

continues on the external surface. The isotherms are usually reversible for pores smaller 

than a critical size and exhibit a sharp inflection at P/P0 = 0.25-0.45, depending on the 

pore size of the material. This process corresponds to capillary condensation of N2 in 

the mesopores. The sharpness of the inflection reflects the uniformity of the pore sizes 

and the height indicates the pore volume. A hysteresis effect is often observed for N2 

adsorption-desorption isotherms when the pore diameter is larger than approximately 40 

A [170]. 

 

Figure 2-9 Adsorption desorption isotherm of MCM-41 [169] 
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The steps in the isotherm (Figure 2-9) qualitatively reflect a narrow and uniform 

distribution of the pore size, while its height indicates the pore volume. Desorption 

occurs via evaporation of the adsorbate from mesopores and usually takes place at a 

pressure lower than that of capillary condensation, resulting in hysteresis. For 

disordered samples, the step of the isotherm becomes less sharp for the samples with the 

largest pores, suggesting a widening of the pore size distribution. The hysteresis is, in 

general, attributed to the different sizes of the pore mouths and pore bodies or to the 

different adsorption and desorption behaviors in near-cylindrical pores. Materials with 

uniform pore sizes and shapes exhibit type H1 hysteresis (i.e., parallel adsorption and 

desorption branches), whereas those with non-uniform pore sizes and shapes give type 

H2 hysteresis (e.g., pore blocking, percolation effects, tensile strength, i.e. cavitation 

effects). In the latter case, condensation takes place in each section at the relative 

pressure provided by the Kelvin equation, but evaporation from the pore body cannot 

occur while the pore mouth remains filled. On the other hand, in the former case, the 

meniscus is cylindrical during condensation and hemispherical during evaporation. 

2.1.4.2 X-ray Diffraction Measurements 

XRD provides direct information of the pore architecture of the materials. For MCM-41 

mesoporous materials, the diffraction patterns only have reflection peaks in the low-

angle range, meaning 2 less than 10°. No reflections are seen at higher angles which 

indicate that the pore walls are mainly amorphous. The ordering lies in the pore 

structure, and the low-angle diffraction peaks can be indexed according to different 

lattices [170]. 

MCM-41 exhibits an XRD pattern containing typically 3-5 peaks which can be indexed 

to a hexagonal lattice as (100), (110), (200), (210), and (300) (Figure 2-10). Since the 

materials are not crystalline at the atomic level, no reflections at higher angles are 

observed. By X-ray diffraction it is not possible to quantify the purity of the material 

[171]. 
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Figure 2-10  X-ray diffraction pattern of high-quality calcined MCM-41 [172] 

The schematic representation of the structure of hexagonal MCM-41 and the unit cell of 

the solid phase is given in Figure 2-11 [173].  

 

Figure 2-11 a) The structure of hexagonal MCM-41 and b) The unit cell of the solid 

phase 

The internal structure of MCM-41, constructed from an ordered array of cylindrical 

walls is characterized by XRD values of d100 and the following formula: 

100
3

2
da 

      (2.10)

 

δ 
Dpore 
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where a is the characteristic lattice parameter which is defined as the repeating distance 

between two pore centers. 

It can also be expressed as the distance between the nearest centers of cylindrical pores 

with a pore size of Dpore where Dpore is calculated from the desorption branch of N2 

isotherm and derived by BJH method. 

 poreDa       (2.11) 

where δ is the wall thickness. 

So, the value of δ is defined as : 

poreDa        (2.12) 

 

2.1.4.3 Scanning Electron Microscopy  

Scanning Electron Microscopy (SEM) has advantages over Transmission Electron 

Microscopy (TEM) for the determination of crystal morphology and fine surface 

structures with large depth of focus. The surface topology of the sample can be 

observed by SEM at different contrast in the image. In addition to this, when compared 

to TEM, SEM is an easy-to-handle tool, especially in sample preparation [174]. In order 

to observe morphology of mesoporous materials by SEM, carbon coating can be applied 

to overcome charging problems.  

 

Figure 2-12 SEM image of MCM-41 [169] 
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2.1.4.4 Transmission Electron Microscopy 

 TEM is the pre-eminent method for determining dislocations‟ and other 

crystallographic character defect and for performing chemical and crystallographic 

analysis of micrometer and smaller precipitates as well as other microstructures [175]. 

To elucidate the pore structure of MCM-41 analysis, transmission electron microscopy 

is frequently used (Figure 2-13) [171].  Beside N2 sorption, TEM is an alternative way 

of estimating pore size and pore wall thickness and it gives detailed information about 

the homogeneity of the sample. 

 

Figure 2-13 Transmission electron micrograph of MCM-41 featuring 4.0 nm sized 

pores, hexagonally arranged [171] 

Due to focus problem, TEM analysis should be done carefully to investigate the exact 

pore sizes and pore wall thicknesses. Chen and coworkers proved that the exact pore 

size and wall thickness values are strongly depended on the focus conditions [176]. In 

addition to this, many MCM-41 samples contain disordered regions such as lamellar 

and fingerprint structures [177] so during TEM analysis micrographs should be taken 

from various parts of the samples.  
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2.2 Carbon Nanotubes  

2.2.1 Historical Background 

In 1985, Rick Smalley et al. [178] discovered fullerenes. The first discovered fullerene 

was C60 with a bucky ball shape consisting of 60 sp
2
 hybridized C atoms bonded 

together in pentagons and hexagons. 5 years later Smalley proposed the existence of 

tubular fullerene which could be made by elongating a C60 molecule [179]. In 1991, 

Dresselhaus announced the existence of carbon nanotubes capped with fullerene 

hemispheres at either end [180]. In the same year Iijima reported the TEM image of 

multi-walled carbon nanotubes (MWCNs) for the first time [181]. Two years later 

Iijima and coworkers [182] and Bethune and coworkers [183] proposed the existence of 

single-walled carbon nanotubes (SWNTs) simultaneously and independently. 

Actually in 1960, Bacon published an article investigating the structure of carbon 

nanowhiskers with SEM and he proposed a scroll-like structure [184]. In 1970s 

nanotubes were directly produced and imaged by Endo by HRTEM during his 

investigation of producing carbon fibers at 1000 °C [185]. He observed the carbon 

fibers with a hollow core and a catalyst particle at the end which he discovered later that 

the catalyst particle was iron oxide that is today a well-known catalyst in carbon 

nanotubes production. The carbon nanotubes were observed many years ago. However 

not until the discovery of C60 and other fullerene structures did researchers realized their 

importance. 

The formation mechanism was first observed by Bacon [184]. He proposed that a 

graphene sheet rolled up like a scroll and form carbon nanotubes. Iijima was first to 

recognize the potential helicities and chiralities of carbon nanotubes.  

The first mass production of MWCTs was achieved by Ebbesen and Ajayan [186] by 

using arc discharge method to produce several grams of MWCTs with purity %75. 

Nowadays most research focuses on large scale production of SWCTs with high purity 

and low cost since they can be produced with much higher crystalline quality than 

MWCTs. 
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2.2.2 Structural Properties  

Two types of nanotubes have been distinguished so far, namely the single-walled 

carbon nanotube and the multi-walled carbon nanotube.  A SWCT is generated by 

folding back a graphene sheet on itself and forming a seamless cylinder with constant 

radius. In SWCTs there are no dangling bonds so ends are closed off by hemispherical 

caps. These caps can be opened by experimental techniques. 

A single-wall carbon nanotube is conveniently characterized in terms of its diameter dt, 

its chiral angle θ and its one-dimensional unit cell, as shown in Figure 2-14a. 

 

Figure 2-14  a) Unit cell of SWCT and b) chirality of SWCT [187] 
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The chiral vector 


OA  or 


hC  = na1 + ma2 is defined on the honeycomb lattice of carbon 

atoms by unit vectors a1 and a2 of a graphene layer and the chiral angle θ with respect to 

the zigzag axis (θ = 0°). Also shown are the lattice vector 


OB  of the one-

dimensional nanotube unit cell, the rotation angle Ψ and the translation η [187].  

Possible chiral vectors 


hC  specified by the pairs of integers (n, m) angle is used to 

separate carbon nanotubes into three classes according to their electronic properties as 

armchair (n = m = 30°), zigzag ( m = 0, n > 0, θ = 0°) and chiral (0 < |m| < n, 0 < θ < 

30°) as given in Figure 2-14b and Figure 2-15.  

 

Figure 2-15  a) armchair nanotube b) zigzag nanotube and c) chiral nanotube 

According to theoretical calculations, the encircled dots denote metallic nanotubes, 

while the small dots are for semiconducting nanotubes (Figure 2-14b) [187]. Therefore, 

armchair carbon nanotubes are metallic (a degenerate semimetal with zero band gap), 

zigzag and chiral nanotubes can be semimetals with a finite band gap if n-m/3 = I (I 

being an integer and m ≠ n) or semiconductors in other cases [188]. 

The nanotube diameter is inversely proportional with the band gap for the semimetallic 

and semiconductor nanotubes resulting in a unique electronic behavior for each 
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nanotube [189, 190]. Combining different diameters and chiralities bring about many 

nanotubes with different mechanical, electrical, piezoelectric and optical properties. 

Measurements of the nanotube diameter dt and chiral angle θ are conveniently made by 

scanning tunneling microscopy and high resolution TEM [187]. 

2.2.3 Synthesis Methods  

There are different methods of carbon nanotube production, i.e. electric arc-discharge, 

laser ablation and chemical vapor deposition (CVD). Among others, the CVD route 

seems to be the most promising for large-scale industrial applications, due to its 

opportunity to upscale both the preparation and the purification methods. 

2.2.3.1 Arc discharge synthesis 

The first recognized method of producing carbon nanotubes was arc discharge method. 

In this method, low voltage (~12-25 V) and high-current (50-120 amps) power supplies 

are used in which an arc is produced across a 1-mm gap between two graphite 

electrodes with 5 to 20 mm diameter under inert atmosphere specially formed by He or 

Ar at a pressure of 100 to 1000 torr [188]. Iijima used this method to produce MCNTs 

for the first time [181] that the nanotubes were formed on the cathode. Later Iijima 

produced the SWCTs by this method by adding metal catalyst (Fe/C) to the anode in 

methane/argon environment while Bethune produced SWCTs by Co/C anode under He 

environment [182, 183]. It has been found that Ar/He gas ratio had an effect on the 

diameter of SWCTs [191] while the total gas pressure had an effect on the yield of 

SWCTs [192]. Arc discharge synthesis is an inexpensive production technique but the 

products need further purification before use. 

2.2.3.2 Laser Ablation Synthesis 

In 1996, Smalley et al. [193] achieved first large-scale production of SWCTs by laser 

ablation technique at 1200 °C. In this technique a pulsed or continuous-wave laser can 

be used over a metal impregnated graphite source in a tube furnace with an inert 

atmosphere. The SWNTs are formed on the nano-sized metal catalysts in the plasma 

plume with many side products, mostly graphitic and amorphous carbon. 

In both arc-discharge and laser ablation technique, SWCTs are formed when a metal-

impregnated graphite is used and MWCTs are formed when pure graphite is used.  



40 

 

2.2.3.3 Chemical Vapor Deposition Synthesis 

In 1993, Endo et al. [194] first achieved to synthesize MWCTs by chemical vapor 

deposition technique while in 1996, SWCT production was achieved using CO as 

carbon feedstock [195]. In this method, carbon source is flow over catalyst nano-

particles in a temperature range of 500-1200 °C to produce single-walled carbon 

nanotubes (Figure 2-16). Depending on the synthesis conditions and catalyst particle 

size, the yield can exceed % 99 and the final product can be free of amorphous carbon 

[188]. 

 

 

 

 

Figure 2-16 CVD experimental set-up 

The first used carbon feedstock used in CVD technique was carbon monoxide [195]. 

Later further investigations show that methane [196], ethylene [197], acetylene [198], 

ethanol, methanol [199], benzene [200] ...etc can also be used as carbon feedstock. 

The catalysts used in CVD method are Fe, Co, and Ni regardless of the feedstock. 

Bimetallic and trimetallic mixtures of Fe, Co, and Ni with elements such as Y, Mo, Ru, 

and Pt increase the efficiency of reaction leading to high yields under certain conditions 

[201, 202].   

The growth of CNTs by the CVD method divided into two types depending on the 

location of catalysts as gas phase growth and substrate growth. In gas phase growth the 

catalyst formation and nanotube growth occur in air while in substrate growth catalyst 

nanoparticles are deposited on a substrate [188]. In substrate growth, CNT will undergo 

either base growth or tip growth in which the catalyst particle remains attached to the 

surface of the substrate for the first case and the catalyst particle shoots into the air 

while the nanotube is extruding in the latter case (Figure 2-17). 
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Figure 2-17 Growth mechanism of CNTs 

These two mechanisms are observed for the growth of carbon fibers, SWCTs, and 

MWCTs depending on the synthesis conditions, and catalysts sizes.  

The smallest single-walled CNT (0.4 nm) was synthesized in the channel of zeolite 

AlPO4-5 single crystal [203]. Hence the microporous molecular sieves are the 

frequently used as catalyst supports in the synthesis of CNTs with CVD method 

mesoporous molecular sieves such as M41S materials are a kind of new catalyst 

supports with many interesting properties. Recently, metal-substituted MCM-41 

materials have utilized for the synthesis of SWNTs by Haller and co-workers [204, 205] 

and Ramesh et al. [206], but still they have reported the CNTs with low yield. 

Pandurangan and coworker synthesized of SWNTs with high yield using Fe, Co and 

Fe–Co incorporated over mesoporous MCM-41 molecular sieves as a catalytic template 

[207]. 

2.2.4 Characterization Methods  

2.2.4.1 Electron microscopy 

Scanning electron microscopy (SEM) and transmission electron (TEM) microscopy are 

really effective equipments for morphologic analysis of carbon nanotubes. Due to its 

higher resolution TEM is favorable over SEM which enables imaging of single-walled 

or multi-walled carbon nanotubes, as well as number of walls, bundles etc. For more 

detailed information, high resolution transmission electron microscope is needed 

(HRTEM). For qualitative analysis TEM is generally used, especially to have 

information about the purity and quality of CNT samples [208]. For quantitative 

analysis, differential scanning calorimetry or near-infrared spectroscopy techniques are 

/////////////////////////// Substrate  ///////////////////////// 
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used [209-212]. TEM measurements are utilized to study the interplay between 

structures, electronic properties, and local perturbations. 

 

Figure 2-18 TEM image of SWNTs grown at 750 °C using Fe-Co-MCM-41 catalyst 

[213] 

SEM on the other hand, a powerful tool for pre-analysis of the overall structure due to 

its wider availability, ease of use, and simpler sample preparation [208]. The nanotube 

powder as well as individual tubes on the substrate can be observed by SEM. 

 

Figure 2-19 SEM images of CNTs synthesized using Fe-Co-MCM-41 catalyst [213] 
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2.2.4.2 Raman Spectroscopy 

Raman spectroscopy is one the most sensitive characterization tool for carbon nanotube 

structure [214, 215] which depends on the excitation laser energy. Nanotubes in 

resonance with that energy give high Raman signal. In addition to this, Raman intensity 

depends on light polarization which is characteristic of nanotubes and gives information 

about nanotube orientation. 

There are two dominant Raman features, radial breathing mode (RBM) at low 

frequencies and tangential mode (G band) at high frequencies. There are also weak 

features, such as disorder-induced D band.  

 

Figure 2-20 Raman spectrum [216] 

RBM is unique to carbon nanotubes and is not observed for other carbon structures. It is 

used to observe nanotube diameter with higher accuracy as the diameter gets smaller. 

Analysis of RBM intensity as a function of laser energy can be used to analyze the 

optical transition energy of specific (n, m) tubes on bundles isolated in aqueous solution 

[217, 218] or on Si substrates [214, 215]. 

The G band in graphite has a single sharp peak at 1582 cm
-1

 so the G band in SWCTs is 

composed of two stronger peaks (G
+
 and G

-
) related to the circumferential (TO) and 

axial (LO) atomic vibrations [219]. There is a relation between the splitting of these two 

peaks and tube-wall curvature. But the most important data is observed from the G
- 
peak 

D 
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that correlates to the tube type and doping. For semiconducting tubes, the TO mode has 

lower frequency than LO mode, and for metallic tubes, it is vice versa.  

The D band is observed when there is symmetry breaking on the sp
2
 bonding lattices for 

nanotubes. Its observation is related to either the presence of defects or to the presence 

of amorphous-carbon material in the structure. According to the ID/IG intensity ratio, the 

amount of defects can be predicted since the D band intensity gets larger which results 

in larger ID/IG ratio. D band data is also used for more detailed analysis, such as the 

dependence of atomic edge structure observed at graphene edges [220].  

2.2.4.3 Scanning Probe Microscopy 

The most general scanning probe microscopes that are used to characterize CNTs are 

atomic force microscopy (AFM) and scanning tunneling microscopy (STM). After their 

discovery, many researchers used AFM and STM to observe the structure of CNTS 

[221-225]. However, it was not until 1998 that these data can be correlated between the 

structure and electronic properties of CNTs [226-228]. After that thee techniques are 

directly used to analyze either metallic or semiconducting feature of nanotubes. STM 

can also be used to analyze the effect of structural defects on electronic properties [229, 

230].  

Many other characterization techniques such as near-infrared spectroscopy, 

thermogravimetric analysis, differential scanning calorimetry, small-angle X-ray 

dispersion are important for bulk sample characterization. 
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2.3 Diffusion in Porous Media 

There are a variety of usages for porous solids, including but not limited to adsorbents, 

membranes and catalysts. Therefore, the comprehension of fundamental diffusion 

properties of organic molecules within nanopores is essential for industrial purposes. 

Moreover, molecular transport processes within nanopores have been an important 

problem of interest for adsorptive separations, gas–solid reactions and heterogeneous 

catalysis for a long time.  

Diffusion of molecules in porous materials is essential for analyzing the factors limiting 

their performance. Realizing such an understanding requires knowledge of the 

adsorptive properties of the materials and the extent to which transport of molecules 

within the pores involves surface diffusion as well as gas-phase diffusion [231-236]. 

Furthermore, the dimensions of the pores and of the diffusing molecules, and the 

interactions of the latter with the pore surfaces, are clearly important issues. The 

experimental determination of diffusion coefficients is also an important issue. 

Traditionally, diffusion coefficients have been determined by macroscopic methods in 

which concentration gradients are present within a sample, under either steadystate or 

unsteady-state conditions [237, 238]. A microscopic method, nuclear magnetic 

resonance, has the feature that diffusional information can be obtained in the absence of 

concentration gradients, i.e., under equilibrium conditions [229, 240]. The differences 

frequently observed in diffusion parameters obtained by different methods are not 

clearly understood. The main features of macroscopic and microscopic methods as well 

as the discrepancies in diffusivity parameters have been discussed extensively by 

leading investigators in the field [241-243]. 

A number of different techniques are available for studying the diffusion in porous 

structures. The techniques can be summarized as follows: 

[1] Macroscopic techniques 

1.1 Membrane permeation 

1.2 Uptake methods 

1.3 Chromatographic methods 

1.4 Positron emission profiling  

1.5 Tapered element oscillating microbalance technique 
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[2] Microscopic techniques 

2.1 Pulsed Field Gradient NMR 

2.2 Quasi-Elastic Neutron Scattering 

2.3 Interference microscopy 

 

The most common technique is to follow the time response of an adsorbate-adsorbent 

system after changing the pressure or composition of the surrounding atmosphere. By 

analyzing the response curves the contributing diffusion coefficients can then be 

calculated [244]. A number of different sorption techniques are nowadays available, 

which all have their advantages and disadvantages. A special class of techniques form 

the ones in which labelled molecules are used, as these techniques are capable of 

measuring the diffusion under equilibrium conditions and can thus probe the tracer- or 

self-diffusivity. More recently, two new techniques have been introduced to directly 

probe the self-diffusivity in these materials called pulse-field gradient NMR (PFG-

NMR) [245] and Quasi-ElasticNeutron Scattering (QENS) [246]. Both techniques are 

capable of measuring the meansquare displacement of the molecules inside the pores. 

Seferinoglu and Yürüm measured the diffusion coefficients of pyridine in raw and acid-

washed low rank coals with a simple and precise gravimetric method [247, 248]. They 

observed that the diffusion of pyridine in the coal was increased with increasing 

temperature.  

Yürüm and coworkers also studied diffusion of organic volatile substances into natural 

zeolites using the same method [249, 250]. They investigated that, as the molecular 

weight of the solvent increased, the coefficients of diffusion decreased, the time 

necessary to reach equilibrium increased, and the activation energies increased. In 

addition to these, they observed that for all volatile solvents, the diffusion coefficients 

increased linearly with an increase in temperature.  
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2.3.1 Theory 

Diffusion is the random migration of molecules or small particles in which movement 

occurs due to thermal energy [251-269]. In a more simple way, diffusion is the result of 

chaotic movement of atoms, molecules or small particles where fewer elements of its 

own type are located. Diffusion of gases in porous media is a very important topic since 

this effect plays an important role in catalysis, gas chromatography, and gas separation 

processes. 

Two types of diffusion can be distinguished: transport diffusion resulting from a 

concentration gradient, and self -diffusion which takes place in a system which is at 

equilibrium. Adolf Fick and Thomas Graham started the quantitative study of diffusion 

in 1850-1855. According to his studies, Fick concluded that diffusion law is isomorphic 

to the Fourier law of heat transfer. Consequently, he proposed his first law of diffusion 

describing diffusion process macroscopically. The flux due to transport diffusion can be 

described using Fick‟s First Law of Diffusion given in equation (2.13): 

CD
__

J        (2.13) 

in which the matter flux, 
_

J is linearly related with concentration gradient, C
_

  and D is 

the Fickian diffusion coefficient or transport diffusion coefficient.  

Transport diffusion results from a gradient concentration however self-diffusion occurs 

in the absence of a chemical potential gradient. The differences in the microphysical 

situations between these two phenomena result in different diffusion coefficients 

(transport diffusion coefficient, D and self-diffusion coefficient, D*). Although 

transport and self-diffusion generally occur by essentially the same microscopic 

principle, usually these coefficients for transport and self-diffusion are not the same. 

Diffusion equation can also be expressed in terms of chemical potential of materials 

where L is the phenomenological Onsager coefficient: 


__

J  L       (2.14) 

Fick‟s second equation defines the diffusion where D does not depend on C (equation 

2.15): 
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CD
t

C z




     
(2.15) 

In microporous and mesoporous materials, such as silica, alumina and activated carbon, 

pores are typical. So assuming that the framework atoms are stable, diffusion 

phenomena of the mobile species can be calculated within the fixed coordinates of solid 

porous materials. If we consider the diffusion into a porous solid as a special case of 

binary diffusion where the diffusivity of the solid atoms is zero, then interdiffusion 

coefficient will be simply the diffusivity of mobile species.  

In order to calculate the corrected diffusion coefficient, the following equations are 

used: 

iii CvJ 
      (2.16)

 

where v is the average drift velocity. It is defined as: 

iii Fbv
__


      (2.17)

 

Where b is the molecular mobility and F is the force applied on particles where it is 

assumed that the only driving force is a concentration gradient. F is defined as: 

iF 
_

      (2.18)
 

And chemical potential is defined as: 

iii PRT ln0  
     (2.19)

 

where P is the partial pressure of the component i. 

So combining these equations result in: 
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For microporous materials, there is no clear distinction between molecules on the 

surface and the molecules in the gas phase because adsorption in micropores is a 

volume filling process [270]. So, D0 is defined as the corrected diffusion coefficient 

where Pi is the sorptive gas pressure and Ci is the concentration of the sorbed phase and 

Ψ is a thermodynamic correction factor which defines the nonlinearity between pressure 

and concentration of the adsorbent [258]. For macroporous materials diffusion is not 

affected by the adsorption process where Ψ equals to 1 so that diffusion coefficient is 

the corrected diffusion coefficient. 

Experimental diffusion studies in the zeolites with several different methods, such as 

steady-state methods [271], uptake methods [272-281] to calculate Fickian diffusion 

coefficients and microscopic methods [282] to calculate self-diffusion coefficients. In 

experimental studies, the corrected diffusivity is calculated where transport diffusion is 

measured [277]. In these experiments, first Fickian diffusion coefficients, D are 

calculated then by using D, corrected diffusion coefficients, D0 are obtained which are 

approximately equal to self-diffusion coefficients, D* [283]. 

When we consider the porous materials, it is observed that zeolites with micropores 

have overlapping surface forces of opposed pore walls and MCM-41 with mesoporous 

have surface forces and capillary forces while materials with macroporous have little 

effect of pore wall forces in contribution of diffusion phenomena.   

There are four well-known diffusion types: 

1. Gaseous or molecular diffusion  

2. Knudsen diffusion  

3. Liquid diffusion  

4. Atomic diffusion in solids  

When we consider the transport mechanism in porous media there are 6 types of 

diffusion (Figure 2-21): 

1. Gaseous or molecular flow 

2. Knudsen flow 

3. Surface diffusion 

4. Multilayer diffusion 

5. Capillary condensation 

6. Configurational diffusion 
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Figure 2-21 Transport mechanisms in porous media: (a) gaseous or molecular flow, (b) 

Knudsen flow, (c) surface diffusion, (d) multilayer diffusion, (e) capillary condensation, 

(f) configurational diffusion [284]  

In gaseous flow pore diameter is larger than the mean free path so the collisions 

between molecules are more frequent than those between molecules and pore walls 

[285-288]. 

In Knudsen diffusion, mean free path of the molecules increases or the pore diameter 

decreases, so the molecules move in such a way that they collide with pore walls and 

flow independently without disturbing others [286, 288]. Surface diffusion is the result 

of adsorption of diffusing molecules on the pore walls [171, 287, 289]. An extension of 

this mechanism is multilayer diffusion that is the transition regime between the capillary 

and surface diffusion. Capillary condensation is the result of condensing diffusing 



51 

 

molecules within the pore until the molecules fill the pore and evaporation of molecules 

at the other end of the pore.  The last mechanism is configurational diffusion, which is 

active when pore diameters are so small that only small molecules can diffuse through 

the pores [258, 171].  

According to the pore diameter, different type of diffusion mechanism roles. For 

macropores, collisions between molecules are much dominant than the collisions with 

the wall that molecular diffusion take place. When the pore size decreases, the number 

of collisions with the wall increases so that Knudsen diffusion is the dominant 

mechanism in which the mobility now starts to depend on the pore size of the material. 

As the pore size gets smaller and smaller like zeolites or related materials, 

configurational diffusion regime plays an important role [258].  

In a porous adsorbent system, the diffusion of the volatile species in the porous material 

can be done by uptake measurements assuming spherical sorbent particles with stable 

particle sizes. In order to calculate the Fickian diffusion coefficient in radial coordinates 

the following formula with specific boundary conditions should be solved [263, 290]: 
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(I) @ t>0   CA = C∞     for r = r0 

(II) @ t = 0   CA(r) = C = constant    for 0 < r < r0 

 

in which CA is the concentration (mol/m
3
), D is the diffusion coefficient constant 

through the process (m
2
/s), t is time (s), r is the distance from the particle center (m), C 

is the initial concentration (mol/cm
3
) and r0 is the particle radius (m).  

Solving equation (2.22) for gas phase diffusion in spherical system gives [291-293]: 
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where Mt and M∞ are the amount of solvent diffused at time t and at steady state, 

respectively into the spherical solute particles with radius a.  

The solution to equation (2.23) is given by equation (2.24) [294]: 
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For small times equation (2.24) becomes: 
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Neglecting the contribution of the second term in equation (2.25), value of diffusion 

coefficient D is found from the slope of Mt/M∞ vs t
1/2

. 

When the collisions of the molecules with the container walls are more frequent than 

the intermolecular gaseous collisions, Knudsen diffusion will be dominant and it will be 

demonstrated that the net flow of molecules in gas flow direction will be proportional to 

molecular flux gradient. To be more specific, for porous catalysts, the Knudsen 

diffusion coefficient will be expressed as follows for a capillary of circular cross-section 

and radius r [295]: 
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(2.26) 

where M is the molecular weight of diffusing gas. This equation has some limitations 

because most of the catalyst particles do not have straight cylindrical capillaries. So a 

more specific formula may be applied which strongly depends on the pore geometry in 

terms of porosity (Ψ), specific surface area (As) and particle density (
p , mass per unit 

total particle volume including volume occupied by space): 
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(2.27) 

The porosity can be calculated by using particle density (
p ) and true density of the 

solid (
p ). The ratio of 

p / s  will give the fraction of solid present in the particles 

and 1-(
p / s ) is the porosity.  

The effective diffusivity in the region of the molecular flow (De) and Knudsen flow 

(DeK) for the porous solid can be calculated from the following formula by using a 

geometric factor including porosity and tortuosity (η): 



53 

 











KeK

e

DD

DD

      

(2.28) 

Tortuosity is the ratio of path length which must be traversed by molecules diffusing 

between two points within a pellet to the direct linear separation between those points. 

2.3.2 Activation Energy 

Activation energy of diffusion is also called energy barrier for diffusion. Activation 

energy of diffusion is calculated from the following equation [258]: 
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(2.29) 

where D0 (m
2
/s) is the pre-exponential factor and EA is the activation energy for 

diffusion (J/mol) [296]. 

According to this formula, activation energy, EA can be determined by measuring the 

diffusion coefficients at different temperatures.  

Diffusion as a process that takes place in the form of a series of jumps [297] where Do 

is related to the elementary rate at which particles aim to jump to a nearby adsorption 

site. The exponential is an expression of the change when the particles manage to 

overcome EA, the free energy barrier, between these neighboring sites. The temperature 

dependence in diffusion systems is explained with this simple theory.  
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2.3.3 Mode of Transport 

In order to analyze the sorption data a comprehensive equation is used to describe the 

kinetics of diffusion: 

nt kt
M

M


      (2.30) 

where Mt and M∞ denote the amount of solvent diffused in the macromolecular 

structure at time t and at steady state, respectively. t is the release time, k is the rate 

constant which depends on structural characteristics of the system, and n is an exponent 

characteristic of the mode of transport of the solvent in the porous structure depends on 

diffusion mechanism and particle geometry. In the graph of ln(Mt/M ) versus ln(t), ln(k) 

is the intercept and n is the slope [298]. 

 

In macromolecular systems sorption mechanism are defined in terms of two limiting 

cases of Fickian diffusion and Case II transport [299].  

For n > 0.5, non-Fickian diffusion is observed, while n = 0.5 represents the Fickian 

diffusion mechanism. The value of n = 1 provides Case II transport mechanism and the 

values between 0.5 and 1 indicates anomalous transport. The values of n can be used for 

initial approximation for the nature of the process since it is structure sensitive.  

For an infinite plan sheet, the values of n would be 0.5 and 1 for Fickian and Case II 

respectively. For the case of an infinite cylinder, n values would be 0.45 and 0.89 for 

Fickian and Case II respectively [299]. Different n values can be found in the literature 

[300]. 

In a porous structure, they may be different sections which affect the diffusion behavior 

of the system. So, n values could be used only as a rough estimation of the nature of the 

process.  

A preliminary analysis of sorption data results in equation 2.30, however, this equation 

can only be used up to 60% of the final weight of diffused molecules, and moreover, it 

does not give comprehensive information like inflections or penetrant loss over time 

[300].  
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CHAPTER 3.  EXPERIMENTAL 

 

 

3.1 Materials 

3.1.1 Chemicals Used in MCM-41 Synthesis 

In the synthesis of MCM-41 mesoporous materials, an aqueous solution of sodium 

silicate, containing 27 wt. % SiO2 (Aldrich) was used as the silica source and   

hexadecyltrimethylammonium bromide (CTABr, (C16H33)N(CH3)3Br), Merck 99% 

pure) was used as the surfactant. Metal sources used in metal incorporated synthesis of 

MCM-41 mesoporous materials were: 

 Iron (III) nitrate nonahydrate (Merck ≥ 99 % pure),  

 Cobalt (II) nitrate hexahydrate (Fluka ≥ 98 % pure),  

 Nickel(II) nitrate hexahydrate, and  

 Copper (II) nitrate trihydrate  

 

3.1.2 Carbon Nanotubes  

Carbon nanotubes named as “Baytubes® C 150 HP” from Bayer Company were 

purchased for diffusional studies. The structural properties of carbon nanotubes were 

given in Table 3-1. 

Baytubes® are agglomerates of multi-wall carbon nanotubes with low outer diameter, 

narrow diameter distribution and an ultra-high aspect ratio (length-to-diameter ratio). 

Baytubes® show excellent tensile strength and E-modulus, as well as exceptional 

thermal and electrical conductivity. 
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Table 3-1 Structural properties of Baytubes® C 150 HP 

Property  Value Unit Method 

C-Purity > 99 % Elementary analysis 

Free amorphous carbon Not detectable % TEM 

Number of walls 3 - 15 - TEM 

Outer mean diameter 13 - 16 nm TEM 

Outer diameter distribution 5 - 20 nm TEM 

Inner mean diameter 4 nm TEM 

Inner diameter distribution 2 - 6 nm TEM 

Length >1 µm SEM 

Bulk density 140 – 230 kg/m
3
 EN ISO 60 

Loose agglomerate size 0.1 – 1 mm PSD 

Average agglomerate size 0.5 mm PSD 

Lenght of Baytubes 0.2 – 1 µm TEM 

BET surface area 220-250 m
2
/g N2 sorption analyzer 

 

 

Baytubes® are produced in a high-yield catalytic process based on chemical vapor 

deposition. The process yields easy to handle agglomerates with high apparent density. 

The optimized process results in a high degree of purity (low concentration of residual 

catalyst and absence of free amorphous carbon). SEM image of Baytubes® was given in 

Figure 3.1. 
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Figure 3-1 SEM image of Baytubes C 150 HP 

3.1.3 Chemicals Used in Diffusion Experiments 

The alcohols used in diffusion experiments were: 

 Methanol (Labkim, 99.9% pure),  

 ethanol (Labkim, 99.8% pure),  

 1-propanol (Lab-Scan, 99.5% pure),  

 n-butanol (Ideal)  

 

The aromatic solvents used in diffusion experiments were: 

 Benzene (Merck, 99.8% pure),  

 Ethylbenzene (Merck, ≥ 99% pure),  

 Propylbenzene Fluka ≥98% pure),  

 Toluene (Merck, ≥ 99% pure),  

 o-xylene (Merck, ≥ 99% pure),  

 m-xylene (Merck, ≥ 99% pure),  

 p-xylene (Merck, ≥ 99% pure)  

 

The chemicals purchased for diffusion experiments in mesoporous medium were used 

as received. 
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3.2 Microwave Assisted Synthesis of MCM-41 

3.2.1 Pure MCM-41  

The synthesized procedure was a modified method described in [3]. 6.6 gr of 

hexadecyltrimethylammonium bromide was dissolved slowly in 43 ml of deionized 

water at 40 
°
C and 5.65 ml of sodium silicate solution was added dropwise to the clear 

solution with continuous stirring at the same temperature. After stirring for 1 hours, the 

pH of the mixture was adjusted to 11 by adding sufficient amount of 1 M H2SO4. The 

resulting gel is stirred for 1 hour before being transferred to a 120 ml Teflon bottle and 

placed in a domestic microwave (Delonghi, Max. power: 800 W, Max. adjustable time: 

30 minutes).  

For finding the optimum synthesis conditions, the microwave power and reaction time 

were combined in several ways. Summary of the experiments were given in Table 3.2. 

The optimum synthesis condition was devised as 30 minutes and 120 W.  

The resultant solid was recovered by filtration, washed thoroughly with distilled water 

until the pH got neutralized and dried at room temperature. Before calcination step the 

solid was kept at 40C for 24 hours. The as-synthesized MCM-41 was finally calcined 

inside a quartz filter installed quartz tube (120 cm long x 1 cm diameter) which was 

placed in a tubular furnace, by heating from ambient temperature to 550 C at a rate of 1 

C/min and kept at 550 C for 6 hours in a flow of dry air.  
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Table 3-2 Parameters of the microwave synthesis of pure MCM-41 

Sample ID Power (W) Time (min) 

MCM-41-80-1 80 1 

MCM-41-80-10 80 10 

MCM-41-80-20 80 20 

MCM-41-80-30 80 30 

MCM-41-80-60 80 60 

MCM-41-80-120 80 120 

MCM-41-120-1 120 1 

MCM-41-120-10 120 10 

MCM-41-120-20 120 20 

MCM-41-120-30 120 30 

MCM-41-120-60 120 60 

MCM-41-120-120 120 120 
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3.2.2 Metal Incorporated MCM-41  

3.2.2.1 Impregnation 

For impregnation method sodium silicate and surfactant mixture was heated in 

microwave oven as described above. After washing and drying steps required amount of 

metal was dissolved in 10 ml of distilled water and the solution was added to the dried 

as-synthesized MCM-41 to obtain different Si/metal mole ratios as 25, 50, 75 and 100. 

In the impregnation technique, the metal solution was mixed with about 2 gr of as-

synthesized MCM-41 (average product yield before calcination) in order to keep the 

Si/Metal mole ratio reliable. After overnight stirring the excess liquid portion was 

removed by centrifuge. After drying at 40 C in an oven, the solid product was calcined 

in the tubular furnace, by heating from ambient temperature to 550 C at a rate of 1 

C/min and kept at 550 C for 6 hours in a flow of dry air.  

3.2.2.2 Direct Synthesis 

In the direct synthesis method, the required amount of metal was dissolved in 10 ml of 

distilled water and the solution was added into the sodium silicate and surfactant 

mixture before pH adjustment as described above in pure MCM-41 synthesis. The metal 

solutions were prepared in such a way that Si/metal mole ratios were 25, 50, 75 and 100 

for each metal. After adjusting the pH to 11, the resulting gel was stirred for 1 hour 

before being transferred to a 120 ml Teflon bottle and placed in the microwave and 

reacted for 30 minutes at 120 W. The resultant solid was recovered by filtration, washed 

thoroughly with distilled water until the pH got neutralized and dried at room 

temperature. Before calcination step the solid was kept at 40C for 24 hours. The 

product was finally calcined in the tubular furnace, by heating from ambient 

temperature to 550 C at a rate of 1 C/min and kept at 550 C for 6 hours in a flow of 

dry air.  

Four different type of metal were incorporated into the MCM-41 structure with two 

different methods and four different Si/Metal mole ratios. In Table 3.3 the experiments 

were summarized. 
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Table 3-3 Summary of the metal incorporated experiments 

 Direct Synthesis Method Impregnation Method 

Type of 

metal  

Fe Co Ni Cu Fe Co Ni Cu 

Si/Metal 

mole ratio 

25 25 25 25 25 25 25 25 

50 50 50 50 50 50 50 50 

75 75 75 75 75 75 75 75 

100 100 100 100 100 100 100 100 

Power/time 

(W/min) 

120/30 120/30 80/60 

120/30 

80/60 

120/30 

 

120/30 120/30 120/30 120/30 

 

Schematic representation of direct and impregnation synthesis techniques were given in 

Figure 3.2. 
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Figure 3-2 Schematic representation of synthesis techniques 

aaa 

6
2
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3.3 Characterization of MCM-41 

 

Development of the hexagonal mesoporous structure was confirmed by X-ray 

diffraction (XRD) and N2 physisorption and Fourier transform infrared (FT-IR), while 

the metal dispersion were characterized by energy dispersion spectroscopy (EDS) and 

transmission electron microscopy (TEM). Thermal stabilities and structural morphology 

of the samples were characterized by thermal gravimetric analyzer (TGA) and Scanning 

Electron microscopy (SEM) respectively. 

3.3.1 N2 Sorption Analysis 

The surface area and porosity properties of the mesoporous materials were determined 

using NOVA 2200e Surface Area and Pore Size Analyzer by Quantachrome 

Instruments Co., USA. The measurement was performed at the liquid nitrogen boiling 

point of 77 K. The samples were outgassed at 150 °C overnight. The BET surface area 

was determined by a multipoint BET method using the adsorption data in the relative 

pressure (P/P0) range of 0.05–0.3. The pore volume and pore size distributions were 

calculated using a procedure developed by BJH method. 

3.3.2 XRD  

XRD measurements of the samples were done with an X-ray powder diffractometer 

(Bruker AXS-D8 advance powder diffractometer fitted a Siemens X-ray gun and 

equipped with Bruker axs Diffrac Plus software) at room temperature. The 

measurements were performed in the 2θ range of 2°- 7° at 40 kV and 40 mA, using Cu-

Kα radiation with a wavelength of 1.5406 Å. In all measurements, the step size was 

0.01°, and data collection period was 1 second in each step. The samples were 

outgassed before XRD measurements. 

3.3.3 SEM and EDS 

Leo G34-Supra 35VP scanning electron microscope coupled with and energy dispersive 

spectrometer software was used for images and elemental analysis respectively. The 

samples were coated with carbon by Emitech T950 Turbo Evaporator before SEM and 

EDS analyses in order to maintain a conductive layer on the surface to prevent charging. 
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The gun chamber pressure was about 10
-11

 mbar. The column was equipped with a 

secondary electron detector,back-scattered electron detector, and in-lens detector for 

annual secondary electron detection. Imaging was done at the exractor voltage of 5.2 

keV, and the accelerating voltage range of 2-5 keV using secondary electron detector. 

3.3.4 TEM 

High Resolution transmission electron microscopy (TEM) analyses were performed by 

JEOL 2100 LaB6 HRTEM in TUBITAK MAM Electron Microscopy Laboratories of 

Material Institute. 

3.3.5 FT-IR 

Structural analyses were done by Nicolet iS10 Fourier transform infrared spectroscopy 

with KBR pellet technique. The effective range was from 400 to 4000 cm
-1

. 

3.3.6 TGA 

Thermal stabilities of the samples were characterized by Netsch 449C thermal 

gravimetric analyzer. The thermal behavior of the samples were analyzed by heating the 

samples up to 1000 ºC from room temperature with a heating rate of 10 °C/min under 

nitrogen atmosphere in pure alumina crucibles. 
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3.4 Diffusion Experiments 

 

Diffusional behaviors of alcohols (methanol, ethanol, propanol, n-butanol) and 

aromatics (benzene, ethylbenzene, propylbenzene, toluene, o-xylene, m-xylene, p-

xylene) in mesoporous media were investigated in detail in an adiabatic isothermal 

setup. A Sartorius CP 124S analytical balance with 4-digit accuracy was placed in a 

Memmert model 300 laboratory oven.  

Approximately 0.2 g of degassed MCM-41, or metal incorporated MCM-41 or CNT 

was evenly distributed in a Petri dish and the balance was tared. A total amount of 200 

ml solvent was evenly poured into four Petri dishes and placed in the closest vicinity of 

the balance pan. The temperature of the experiment was set, and the system was closed. 

After the temperature reached a constant set value between 26 and 32 °C, the weight 

increase of the sorbent as a result of  vapor uptake was recorded every 5 s with the aid 

of Sartorius Connect software installed on the PC. The experiment was continued until 

uptake measurement reached to equilibrium. 

The effect of temperature and chain length of solvents on the diffusion character were 

investigated at four different temperatures, 26, 28, 30 and 32 °C namely. The aims of 

this work are to determine realistic diffusion coefficients in mesoporous MCM-41 

materials and CNTs, mode of transport, and activation energies of some alcohols into 

mesoporous channels of MCM-41 and CNT. 
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Figure 3-3 Set-up of diffusion experiments 
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CHAPTER 4.  RESULTS AND DISCUSSION 

 

 

4.1 Synthesis of MCM-41 by Microwave Radiation 

Microwave assisted synthesis of MCM-1 molecular sieves is a promising method due to 

the advantages such as more rapid nucleation, more uniform dimension and 

composition of product as well as saving energy [134]. Also it was informed that the 

formation mechanism of MCM-41 under microwave heating is similar to that observed 

with conventional oven heating [150]. In this study, MCM-41 was synthesized by using 

domestic microwave oven at several different combinations of power and time. The 

optimum reaction time and microwave power was determined after the trial of several 

combinations. 

In the literature, the synthesis temperature and duration varied between 100-160 °C and 

30-240 min., respectively [150-156]. In the present survey, microwave assisted 

hydrothermal aoutoclave heating was applied for the synthesis of mesoporous materials. 

The first set of direct synthesis experiments were done at 80 Watt for 1, 10, 20, 30, 60 

and 120 minutes. X-ray diffraction graphs and N2 sorption analysis were given in Figure 

4-1 and Table 4-1 respectively to understand the formation of ordered structure. 

The XRD pattern of MCM-41 point out the high level of ordered structure of 

mesoporous channels with amorphous silica walls [5]. The characteristic Bragg peaks 

were at low angles and typically 3-5 peaks which can be indexed to a hexagonal lattice 

as (100), (110), (200), (210), and (300) [6]. The sample prepared at 10 minutes did not 

show the characteristic Bragg peaks of MCM-41 structure. For the case of 20 minutes 

synthesis time, it was observed that the ordered structure was started to form and two 

reflections were observed at 2θ values of 2.68 and 4.42. When we increased the 

synthesis time to 30 minutes, a sharp Bragg peak corresponding to d100 and two 

reflections were observed at 2θ values of 2.48, 4.20 and 4.80. For 60 minutes treated 
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sample, the highest intensity was observed corresponding to d100 at 2θ value of 2.47 and 

two more reflections at 4.19 and 4.65. 

The samples prepared at 80 Watt for 1 minute and 120 minutes did not give any Bragg 

peaks by XRD analysis. The reason for the initial case was that the time was not enough 

to initiate the formation of ordered structure and also it was evidence that no crystalline 

MCM-41 was formed before the microwave treatment. For the latter case over heating 

resulted in phase deformation. 

 

 

Figure 4-1 XRD patterns of MCM-41 (80/10, 80/20, 80/30, 80/60) 

 

The N2 adsorption isotherms of samples prepared at 80 Watt for 20, 30 and 60 minutes  

showed isotherms of type IV with a sharp inflection around P/P0 = 0.25–0.35, 

characteristic of MCM-41 (Figure 4-2) [169]. For the sample prepared in 10 minutes, 

the sharp inflection was not observed. The specific surface area (BET), pore volume and 

average pore diameter (Dpore ) evaluated from the desorption branch of N2 isotherm by 

BJH theory, d100, lattice parameter (a), and pore wall thickness (δ) of these samples as 

calculated from the N2 desorption isotherms were presented in Table 4-1. 
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The characteristic lattice parameter a, which was defined as the repeating distance 

between the two pore centers, was evaluated from equation (2.10) [173]: 

100
3

2
da 

      (2.10) 

 
and the pore wall thickness (δ) values were evaluated from equation (2.12) [173]:  

 

δ=a- Dpore      (2.12) 

 

BET surface area values increased with the increase of time as 558, 1211, 1385 and 

1390 m
2
/g for 10, 20, 30 and 60 minutes respectively. Pore diameters remained 

unchanged which may be explained by using the same surfactant for all samples. There 

was slight increase in pore wall thicknesses and lattice parameters as the samples 

became more organized. There was also a noticeable increase in the pore volume of 

sample prepared in 60 minutes compared to other samples, which had the highest 

regularity according to XRD data. For instance, pore volumes were 0.18, 0.45, 0.39 and 

1.10 cm
3
/g, respectively. 

In the literature, Bein and coworker [150] reported that, using cethyltrimethhly 

ammonium bromide as surfactant, microwave treatment of the sample at 150 C for 60 

minutes resulted in the formation of MCM-41 mesoporous sieves with 800-1000 m
2
/g 

specific surface area values. 

MCM-41 materials were prepared at 100-120 °C within 40 minutes in ethylene glycol 

solution using the same surfactant under microwave radiation [152]. The BET surface 

areas and pore volumes of MCM-41 materials formed by this ethylene glycol method 

were 700-1150 m
2
/g and 0.60-0.78 cm

3
/g, respectively.  

In this study, MCM-41 mesoporous material was obtained at 80 Watt, 60 minutes with 

specific surface area value of 1390 m
2
/g and pore volume of 1.10 cm

3
/g which were 

higher than the values reported in the literature. 
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Figure 4-2 N2 sorption isotherms of MCM-41 a) 80/10 b) 80/20 c) 80/30 d) 80/60 
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The second set of experiments was performed at 120 Watt for 1, 10, 20, 30, 60 and 120 

minutes. X-ray diffraction graphs and N2 sorption analysis were given in Figure 4-3 and 

Table 4-1 respectively to understand the formation of ordered structure. 

When we observe the XRD data of these samples, the formation of ordered structure 

started even in the case of 20 minutes sample with three remarkable peaks at 2θ values 

of 2.51, 4.15 and 4.69. Since the ordering started earlier, it was also decomposed earlier 

than the 80 Watt samples. When the synthesis time reached 60 minutes, a decrease was 

observed in the intensity of XRD peaks compared to the sample prepared at 30 minutes. 

Also no peaks were observed for the samples prepared ad 1 minute and 120 minute 

duration. 

The sample prepared at 120 Watt in 30 minutes gave the most ordered structure 

according to XRD data. The three peaks were observed at 2θ values of 2.50, 4.26 and 

4.82, respectively. 

 

 

Figure 4-3 XRD patterns of MCM-41 (120/10, 120/20, 120/30, 120/60) 
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The specific surface area (BET), pore volume and average pore diameter (Dpore ) 

evaluated from the desorption branch of N2 isotherm by BJH theory, d100, lattice 

parameter (a), and pore wall thickness (δ) of these samples as calculated from the N2 

desorption isotherms were presented in Table 4-1. 

The N2 adsorption isotherms of samples prepared at 120 Watt for 10, 20, 30 and 60 

minutes all showed isotherms of type IV with a sharp inflection around P/ P0 = 0.25–

0.35, characteristic of MCM-41 (Figure 4-4). BET surface area values increased with 

the increase of time as 688, 1343, and 1438 m
2
/g for 10, 20, and 30 minutes 

respectively. Than it started to decrease to 1210 m
2
/g for the sample prepared at 60 

minutes. 

Pore diameters were 4.46, 4.02, 3.49 and 4.02 nm for the sample prepared 10, 20, 30 

and 60 minutes, respectively. There was also a noticeable decrease in the pore volume 

of sample prepared in 10 minutes compared to other samples, which had the lowest 

regularity according to XRD data. For instance, pore volumes were 0.28, 0.71, 0.53 and 

0.58 cm
3
/g, for the sample prepared 10, 20, 30 and 60 minutes respectively. 

Pore wall thicknesses of the samples were 0.37, 0.88 and 0.35 nm for the sample 

prepared 20, 30 and 60 minutes, respectively.  As the samples became more organized, 

pore wall thickness values became higher as for the sample prepared at 120 Watt in 30 

minutes. 

The BET surface area of the samples increased from 688 to 1438 m
2
/g when the time 

reached from 10 minutes to 30 minutes. The increase in the pore volume was not as 

high as the samples prepared at 80 Watt, but still there was an increase when the 

reaction time increased. Pore diameter value of the sample prepared at 120 Watt in 30 

minutes was close to the samples prepared at 80 W in 60 minutes, another evidence that 

using the same surfactant would not affect the pore size when ordered hexagonal 

mesoporous structure was formed.  

The sample prepared at 120 Watt in 30 minutes had the highest specific surface area 

value compared to other samples obtained under microwave radiation in this study and 

reported in the literature. 
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Figure 4-4 N2 sorption isotherms of MCM-41 a) 120/10 b) 120/20 c) 120/30 d) 120/60 
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Table 4-1 Physical and structural properties of MCM-41 type catalytic materials 

synthesized by microwave assisted direct synthesis method 

 

  

Sample ID 

(Power/Time) 

(Watt/Min.) 

BET 

Surface 

Area 

(m
2
/g) 

BJH Des. 

Pore Volume 

(cm
3
/g) 

BJH Des. 

Pore 

Diameter 

(nm) 

 

d100 

(nm) 

Lattice 

Parameter 

“a” (nm) 

Pore Wall 

Thickness 

“δ” (nm) 

MCM-41 (80/10) 558 0.18 3.48 3.54 4.09 0.79 

MCM-41 (80/20) 1211 0.45 3.47 3.54 4.09 0.79 

MCM-41 (80/30) 1385 0.39 3.50 3.65 4.21 0.89 

MCM-41 (80/60) 1390 1.10 3.50 3.65 4.22 0.89 

MCM-41 (120/10) 688 0.28 4.46 3.54 4.09 - 

MCM-41 (120/20) 1343 0.71 4.02 3.63 4.19 0.37 

MCM-41 (120/30) 1438 0.53 3.49 3.64 4.20 0.88 

MCM-41 (120/60) 1210 0.58 4.02 3.61 4.16 0.35 
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The morphologies of samples prepared at 120 W in 30 minutes and at 80 W in 60 and 

120 minutes were given in Figure 4-5 and Figure 4-6 respectively by using SEM. 

   

Figure 4-5 SEM images of MCM-41 (120/30) by inlens detector 

   

Figure 4-6 SEM images of MCM-41 a) 80/60 b) 80/120 by secondary electron detector 

The thermal gravimetric analyses of MCM-41 samples were done by heating the 

samples from room temperature to 1000 ºC with a heating rate of 10 ºC/min under air 

atmosphere. At 950 ºC, MCM-41 lost 23% by weight while it only lost 7% by weight 

around 120 ºC which was in good agreement with the literature [301, 302]. The TGA 

thermogram of MCM-41(120/30) was given in Appendix A, Figure A.1. 

The structural analysis of the samples were also done by FTIR technique. The FTIR 

spectra uncalcined and calcined sample prepared at 120 W in 30 minutes were given as 

an example in Figure 4-7a. In the uncalcined sample, the bands at 2922, 2852 and 1478 

cm-1 were the characteristic bands of surfactant alkyl chain. These bands disappeared 

after the calcination step. In Figure 4-7b the band at 3407 cm
-1

 was characteristic band 

of Si–OH and water molecules adsorbed; the band at 1632 cm
-1

 were from vibration of 

water molecules adsorbed. The band at 1065 cm
-1

 is from asymmetric extension 

a b 

a b 
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vibration of Si–O–Si. There were no other peaks that were related to the surfactant 

which showed that the calcination step was perfectly performed [303, 304]. 

 

 

Figure 4-7 FTIR spectra of MCM-41 synthesized at 120 W in 30 minutes a) uncalcined 

b) calcined 

 

 

 

a 

b 
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As a conclusion, high quality hexagonal mesoporous materials of good thermal stability 

were obtained in 30 minutes by microwave assisted heating. The variation of 

crystallinity with various reaction conditions suggests that the formation mechanism of 

MCM-41 under microwave heating was similar to that observed with conventional oven 

heating. Apparently, the effect of the microwave heating was to accelerate the 

condensation reactions of the silicate network. It is thought that the microwave 

radiation, by stimulating the water molecules around the silicon atoms via vibration and 

rotation, causes the condensation process of the framework to accelerate. 

The specific surface area values were found to be very high especially for the sample 

obtained at 120 W and 30 minutes. The pore volumes, average pore diameters were 

close to each other, showing reproducibility. Lattice diameter and pore wall thicknesses 

were in agreement with the published values in literature.  

There was no temperature control in our microwave system, so when the heating time 

was too long (or temperature was too high) continued heating resulted in decomposition 

of the already formed structure. A hexagonal phase was already formed after heating the 

gel at 80 Watt for 20 minutes. Increasing the microwave power and time first increase 

the crystallinity then decrease it after heating for two hours. Continued microwave 

action may cause the meta stable MCM-41 material to collapse into a denser phase in 

the reaction solution, for example by destroying the surfactant [150]. 

It was important to note that the first aim of the synthesis of mesoporous material by 

microwave heating was the significant effect to reduce synthesis time. This goal was 

achieved with the synthesis of MCM-41 by microwave induced heating at 120 Watt for 

30 minutes with highly ordered structure.  

For all metal incorporated samples this optimum condition was applied in both direct 

synthesis and impregnation techniques. For the case of Cu and Ni samples, at the 

highest metal amount (Si/Metal:25), direct synthesis experiments were performed at 80 

Watt for 30 and 60 minutes in order to see whether the incorporation of metal would 

result in a better orientation at lower energy. The results that correspond to above 

discussion were given in the following title. 
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4.2 Synthesis of Metal Incorporated MCM-41  

Si-MCM-41 mesoporous materials lack intrinsic catalytic applicability by themselves, 

but can be modified with organic functional groups or heterogenized with transition 

metals in order to make them suitable for various applications. 

The synthesis of transition metals such as Cu [305-309], Ni [310-314], Co [315-319] 

and Fe [320-324] containing mesoporous molecular sieves by different methods has 

already been investigated. However, there has been very few data published about 

microwave assisted synthesis of metal incorporated MCM-41 mesoporous molecular 

sieves [161-166]. 

In this research, the effect of metal incorporation into the MCM-41 hexagonal structure 

by microwave radiation was studied in detail with transition metals such as copper, 

nickel, cobalt and iron. Two different techniques were used (impregnation and direct 

synthesis) to investigate the effects of synthesis procedures on the physical and 

structural properties of the synthesized catalytic materials.  

The incorporation of metal into MCM-41 structure was investigated using different 

Si/Metal mol ratios as 25, 50, 75 and 100. Development of the hexagonal mesoporous 

structure was confirmed by X-ray diffraction (XRD) and N2 physisorption and Fourier 

transform infrared (FT-IR), while the metal dispersion were characterized by energy 

dispersion spectroscopy (EDS) and transmission electron microscopy (TEM). Thermal 

stabilities of the samples were characterized by Netsch 449C Thermal Gravimetric 

Analyzer (TGA).  

The materials with highest metal content (Si/Me: 25) were used in diffusion 

experiments. With redox properties it was expected to enhance the intraparticle 

diffusion when compared to zeolites, due to their special characteristics such as higher 

surface area and higher pore diameter [325]. With microwave radiation, materials with 

relatively high Metal/Si mole ratios as well as high order were obtained in a shorter 

time. 
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4.2.1 Cu-MCM-41 

4.2.1.1 Microwave Assisted Direct Synthesis Results 

Cu-MCM-41 mesoporous molecular sieves were synthesized by microwave assisted 

direct synthesis technique with different amounts of Si/Cu mole ratios as 25, 50, 75, and 

100 at 120 Watt in 30 minutes. In addition to those experiments, two more trials were 

performed at 80 Watt for 30 and 60 minutes as well for the highest amount of Cu 

content (Si/Cu: 25) in order to see the effect of metal introduction into the reaction 

solution. As can be seen from Figure 4-8, the samples prepared at 80 Watt for 30 and 60 

minutes had diffraction peak of d100 at 2θ value of 2.397º and 2.402º respectively which 

were shifted to the lower angles with respect to MCM-41 as Cu incorporated into the 

structure. 

 

Figure 4-8 XRD patterns of Cu-MCM-41-DS-25 (80/30 and 80/60) 

Lattice parameters and pore wall thickness values of these samples were higher than 

pure MCM-41 as 4.25 and 0.93 nm respectively. The surface area values were increased 

from 649 to 721 m
2
/g when time increased from 30 to 60 minutes. No significant effect 

was observed at 80 Watt in the ordering of the structure. The pore diameter and pore 

volume values were also very close to each other (Table 4-2). 
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The specific surface areas of the samples were determined using the nitrogen-desorption 

data from the relative equilibrium pressure interval of 0.05–0.3 P/P0 according to the 

standard BET procedure. In Figure 4-9, N2 sorption isotherms of Cu-MCM-41 samples 

prepared at 80 Watt were given: 

 

 

Figure 4-9 N2 sorption isotherms of Cu-MCM-41-DS-25 a) 80/30 b) 80/60 

The samples had typical Type IV isotherms with hysteresis loop caused by capillary 

condensation in mesopores. The abruptions between the relative pressure of 0.3-0.4 

were not so sharp which showed the lack of uniform pore size distribution. 

The morphology of samples prepared at 80 Watt in 30 minutes and 80 Watt in 60 

minutes were observed by SEM and given in Figure 4-10. 

a 

b 
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Figure 4-10 SEM images of Cu-MCM-41-DS-25 a) 80/30 b) 80/60 

The XRD patterns of Cu incorporated samples prepared at 120 Watt for 30 minutes 

were given in Figure 4-11. As the amount of Cu incorporated into the structure 

increased, the main peak in the XRD patterns shifted to the lower angles which leads to 

higher lattice parameters as expected. Mainly 3 peaks were observed for all samples 

which could be indexed as (100), (110) and (200) planes on hexagonal unit cell 

respectively. The sharp Bragg peaks corresponding to d100 were observed at 2θ values of 

2.361, 2.499, 2.486, and 2.504º for Si/Cu mole ratios of 25, 50, 75 and 100 respectively. 

 

Figure 4-11 XRD patterns of Cu-MCM-41 (120/30) with different Si/Cu mol ratios 

prepared by microwave assisted direct synthesis 

a b 



82 

 

In the high angle range of XRD patterns, no peaks were observed corresponding to large 

metal or metal oxide particles.  

In Figure 4-12 N2 adsorption-desorption isotherms for the Cu incorporated samples 

synthesized at 120 Watt-30 minutes were given. All samples had typical Type IV 

isotherm as expected of mesoporous materials. Between P/P0 0.3-0.4 a well defined step 

occurs especially for the samples with low metal content. 

Surface area values increased from 941 to 1368 m
2
/g as the Si/Cu mole ratios increased. 

Pore diameter values increased as the Cu content decreased which may be due to the 

fewer blockages of pores with metal incorporation. The increase in pore wall thickness 

was also an evidence of the metal incorporation into the walls of mesoporous matrix as 

the metal content increased (Table 4-2). 

The sample with highest metal content (Si/Cu:25) prepared at 120 Watt in 30 minutes 

gave much better results than the samples prepared at 80 Watt in 30 and 60 minutes. 

Lattice parameter increased from 4.25 to 4.32 nm and wall thickness increased from 

0.93 to 1.40 nm which reinforce the idea of better metal incorporation into the 

mesoporous structure. The surface area value also increased from 649 to 941 m
2
/g.  

The lattice parameters of Cu incorporated MCM-41 type mesoporous materials were 

greater than that of pure MCM-41. This was consisted with the Metal-O bonds being 

longer than that of Si-O bonds and gave an evidence of the metal incorporation into the 

framework. 

It was also observed that the lattice parameters increased with the metal content which 

indicated that the metal content incorporated in the framework increased with increasing 

amount of metal salt added in the synthesis gel. 
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Figure 4-12 N2 sorption isotherms direct synthesized Cu-MCM-41 (120/30) samples   

a) Si/Cu:25 b) Si/Cu:50 c) Si/Cu:75 d) Si/Cu:100 

a 

b 

c 

d 
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Table 4-2 Physical and structural properties of Cu-MCM-41 type catalytic materials 

synthesized by microwave assisted direct synthesis method 

Sample ID 

(Power/Time) 

(Watt/Min.) 

Si/Metal 

(mole 

ratio) 

EDS 

BET 

Surface 

Area 

(m
2
/g) 

BJH 

Des. 

Pore 

Volume 

(cm
3
/g) 

BJH 

Des. 

Pore 

Diameter 

(nm) 

 

d100 

(nm) 

Lattice 

Parameter 

“a” 

(nm) 

Pore Wall 

Thickness 

“δ” 

(nm) 

Cu-MCM-41 

(80/30) DS 25 

22 649 0.72 3.49 3.68 4.25 0.93 

Cu-MCM-41 

(80/60) DS 25 

24 721 1.06 3.50 3.68 4.24 0.92 

Cu-MCM-41 

(120/30) DS 25 

21 941 1.00 3.07 3.74 4.32 1.40 

Cu-MCM-41 

(120/30) DS 50 

44 1067 1.14 3.46 3.53 4.08 0.79 

Cu-MCM-41 

(120/30) DS 75 

63 1010 0.61 3.46 3.55 4.10 0.81 

Cu-MCM-41 

(120/30) DS 100 

81 1368 0.79 3.49 3.53 4.07 0.75 

 

The metal content in the samples were determined by EDS with a Si/Cu mol ratio in the 

range of 21-81. The Si/Cu mol ratios were in good agreement with the initial values. 
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Some examples to show the morphology of Cu-MCM-41 samples prepared at 120 Watt 

in 30 minutes were given in Figure 4-13. 

   

Figure 4-13 SEM images of Cu-MCM-41 (120/30) a) Si/Cu:25 b) Si/Cu:75 

TEM analysis of the highest metal incorporated sample (Si/Cu: 25) revealed that the 

catalyst particles were distributed into the structure with particle sizes less than 100 nm 

(Figure 4-14). 

   

Figure 4-14 TEM of Cu-MCM-41-DS-25 (120/30) 

  

a b 
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4.2.1.2 Impregnation Results 

The XRD patterns of the samples prepared by impregnation technique were given in 

Figure 4-15. Well defined XRD patterns with 3 distinct peaks were observed for all 

samples. The peaks corresponding to d100 shift to lower angles as metal impregnation 

increased except Si/Cu: 50 sample. 2θ values of the sharp peak were observed at 2.190, 

2.326, 2.568 and 2.470 as the Si/Cu mol ratio increased from 25 to 100 respectively. 

 

Figure 4-15 XRD patterns of Cu-MCM-41(120/30) with different Si/Cu mol ratios 

prepared by microwave assisted impregnation synthesis 

No peaks were observed in the high angle XRDs of the Cu impregnated mesoporous 

sieves which indicated the absence of large crystalline metal or metal oxide particles on 

the silica surface.  

All the samples prepared by impregnation method had Type IV isotherms indicating the 

mesoporous structure. Capillary condensation of nitrogen was obserbed at relative 

pressures between 0.3 and 0.4 (Figure 4-16).  
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Figure 4-16 N2 sorption isotherms of impregnated Cu-MCM-41 (120/30) samples       

a) Si/Cu:25 b) Si/Cu:50 c) Si/Cu:75 d) Si/Cu:100 

a 

b 

c 

d 
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The surface area increased from 837 to 1481 m
2
/g as the Si/Cu mol ratio increased from 

25 to 100. The pore diameter decreased and pore wall thickness values of the samples 

increased as the amount of metal impregnated to the structure increased which was 

related to the metal incorporation. However pore volume of the samples decreased from 

1.59 cm
3
/g to 0.46 as the initial Cu amount decreased (Table 4-3). This might occur 

because as the amount of metal increased, pore size distribution of the samples became 

wider with some pores even close to 10 nm due to high metal loading. Once the metal 

content decreased, the pore size distribution became narrower and pore volume of these 

samples decreased. 

Table 4-3 Physical and structural properties of Cu-MCM-41 type catalytic materials 

synthesized by microwave assisted impregnation method 

Sample ID 

(Power/Time) 

(Watt/Min.) 

Si/Metal 

(mole 

ratio) 

EDS 

BET 

Surface 

Area 

(m
2
/g) 

BJH 

Des. 

Pore 

Volume 

(cm
3
/g) 

BJH 

Des. 

Pore 

Diameter 

(nm) 

 

d100 

(nm) 

Lattice 

Parameter 

“a” 

(nm) 

Pore Wall 

Thickness 

“δ” 

(nm) 

Cu-MCM-41 

(120/30) Imp. 25 

9 837 1.59 3.08 4.04 4.66 1.74 

Cu-MCM-41 

(120/30) Imp. 50 

15 1108 0.95 3.29 3.80 4.38 1.26 

Cu-MCM-41 

(120/30) Imp. 75 

22 1399 0.55 3.49 3.44 3.97 0.65 

Cu-MCM-41 

(120/30) Imp. 100 

33 1481 0.46 3.52 3.65 4.21 0.87 

 

The metal content in the samples were determined by EDS with a Si/Cu mol ratio in the 

range of 9-33. The Si/Cu mol ratios showed that higher amount of metal were 

incorporated into the structure than that of direct synthesized samples. 
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4.2.2 Ni-MCM-41 

4.2.2.1 Microwave Assisted Direct Synthesis Results 

Long-range and ordered Ni-MCM-41 mesoporous molecular sieves with different 

amount of nickel were successfully synthesized by microwave assisted direct synthesis 

using nickel nitrate hexahydrate as the nickel source. In order to see the effect of 

microwave power on the incorporation of metal into the structure, additional 

experiments were performed at 80 Watt for two different durations for the highest 

amount of metal content. The XRD patterns of the Ni incorporated MCM-41 sample 

with the highest metal content prepared at 80 Watt in 30 minutes and 80 Watt in 60 

minutes were given in Figure 4-17.  

 

Figure 4-17 XRD patterns of Ni-MCM-41-DS-25 (80/30 and 80/60) 

From the XRD analysis, it was easily observed that the duration had no significant 

effect on the formation of ordered structures at 80 Watt. There was a slight increase in 

the surface area from 738 to 873 m
2
/g when the time increased from 30 to 60 minutes 

(Table 4-4). From the N2 sorption isotherms, no sharp inflection was observed around P/ 

P0 = 0.25–0.35 (Figure 4-18). 
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Figure 4-18 N2 sorption isotherms of Ni-MCM-41-DS-25 a) 80/30 b) 80/60 

The morphology of Ni-MCM-41 prepared at 80 Watt in 30 minutes was given in Figure 

4-19. 

 

Figure 4-19 SEM image of Ni-MCM-41-DS-25 (80/30) 

a 

b 
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For the case of Ni incorporated MCM-41 mesoporous molecular sieves obtained at 120 

W at 30 minutes, a strong low angle diffraction pattern was observed at around 2.315 ° 

for 2θ and this was assigned to a (100) reflection from a hexagonal arrangement of 

mesopores for Si/Ni ol ratio of 25. Propagation of the metal loading leads to a gradual 

reduction of intensity and a shift towards the lower angles of the peak in the (100) 

(Figure 4-20). The aforementioned reduction of intensity was in prospect, as introducing 

metal based nanoparticles into the pores causes an increase in the phase cancelation, and 

to this respect, reduced scattering intensities for the Bragg reflections. No peaks were 

observed in the high angle XRDs of the Ni incorporated mesoporous sieves which 

indicated the absence of large crystalline metal or metal oxide particles on the silica 

surface.  

 

Figure 4-20 XRD patterns of Ni-MCM-41 (120/30) with different Si/Ni mol ratios 

prepared by microwave assisted direct synthesis 
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Figure 4-21 showed the N2 adsorption-desorption isotherms for the nickel incorporated 

mesoporous materials. All samples had typical type IV isotherms as expected for 

mesoporous materials. At P/P0 0.3, a well defined step occurs, representing the 

spontaneous filling of the mesopores due to capillary condensation. The shape of the 

isotherms becomes less inclined with increasing the Ni content. Nitrogen physisorption 

data showed a decrease in pore volume, average pore diameter and surface area values 

with increasing nickel content in accordance with expectations as the amount of metal 

species increased within the pores. In Table 4-4, the results corresponding to the 

discussion were given in detail. The sample with highest metal content had the lowest 

surface area value of 1047 m
2
/g and lowest pore diameter of 3.07 nm. It also had the 

highest pore wall thickness value of 1.48 nm which indicated the incorporation of metal 

particles on to the walls of silica material. 

SEM images of Ni incorporated samples prepared at 120 Watt in 30 minutes with 

different Si/Ni mol ratios were given in Figure 4-22. 

   

   

Figure 4-21 SEM images of Ni-MCM-41 (120/30) a) Si/Ni: 25 b) Si/Ni:50 c) Si/Ni:75 

d) Si/Ni:100 by inlens detector 

  

a b 

c d 
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Figure 4-22 N2 sorption isotherms of direct synthesized Ni-MCM-41 (120/30) samples 

a) Si/Ni:25 b) Si/Ni:50 c) Si/Ni:75 d) Si/Ni:100 

a 

b 

c 

d 
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Table 4-4 Physical and structural properties of Ni-MCM-41 type catalytic materials 

synthesized by microwave assisted direct synthesis method 

Sample ID 

(Power/Time) 

(Watt/Min.) 

Si/Metal 

(mole ratio) 

EDS 

BET 

Surface 

Area 

(m
2
/g) 

BJH 

Des. 

Pore 

Volume 

(cm
3
/g) 

BJH 

Des. 

Pore 

Diameter 

(nm) 

 

d100 

(nm) 

Lattice 

Parameter 

“a” 

(nm) 

Pore Wall 

Thickness 

“δ” 

(nm) 

Ni-MCM-41 

(80/30) DS 25 

19 738 1.16 3.47 3.86 4.46 1.17 

Ni-MCM-41 

(80/60) DS 25 

21 873 1.59 3.08 3.67 4.24 1.32 

Ni-MCM-41 

(120/30) DS 25 

18 1047 1.13 3.07 3.81 4.40 1.48 

Ni-MCM-41 

(120/30) DS 50 

33 1393 1.93 3.49 3.49 4.03 0.71 

Ni-MCM-41 

(120/30) DS 75 

55 1238 0.90 3.51 3.52 4.06 0.73 

Ni-MCM-41 

(120/30) DS 100 

76 1431 0.90 3.47 3.46 3.99 0.70 

 

The metal content in the samples were determined by EDS with a Si/Ni mol ratio in the 

range of 18-76. The Si/Ni mol ratios were in good agreement with the initial values. 
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TEM analysis of the sample with highest metal content (Si/Ni: 25) confirmed the 

production of nano scale metal particles on the mesoporous host. In Figure 4-23 

nanoparticles with 100 < nm size could be clearly observed.  

 

 

Figure 4-23 TEM of Ni-MCM-41-DS-25 (120/30) 
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4.2.2.2 Impregnation Results 

In the XRD patterns of Ni-MCM-41 materials prepared by microwave assisted 

impregnation synthesis, the characteristic sharp Bragg peak corresponding to d100 and 

two to three other reflections were detected (Figure 4-24). For instance, the major peak 

and the reflections were observed at 2θ values of 2.257, 3.868, 4.456 and 5.879 with the 

Ni-MCM-41 sample with highest metal content (Si/Ni:25). The d100 spacings and 

corresponding values of lattice parameter „„a‟‟ were reported in Table 4-5. As the 

amount of metal content decreased, the peaks shifted to higher angles as 2θ values of 

2.312, 2.468 and 2.540 for Si/Ni mol ratio of 50, 75 and 100 respectively. 

 

 

Figure 4-24 XRD patterns of Ni-MCM-41(120/30) with different Si/Ni mol ratios 

prepared by microwave assisted impregnation synthesis 

The samples prepared by impregnation showed a type IV isotherm, which are 

characteristic of mesoporous materials. The nitrogen adsorption-desorption  isotherms 

of samples prepared by impregnation technique were given in Figure 4-25.  
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Figure 4-25 N2 sorption isotherms of impregnated  Ni-MCM-41 (120/30)  samples      

a) Si/Ni:25 b) Si/Ni:50 c) Si/Ni:75 d) Si/Ni:100 

a 

b 

c 

d 



98 

 

The specific surface area values of Ni impregnated materials were found to be as high 

as 1485 m
2
/g. The pore diameters were close to each other showing the reproducibility 

of synthesizing materials by using the same surfactant. The lattice parameters decreased 

from 4.52 nm to 4.17 nm as well as the pore wall thickness values decreased from 1.11 

nm to 0.84 nm as the metal content decreased.  

Table 4-5 Physical and structural properties of Ni-MCM-41 type catalytic materials 

synthesized by microwave assisted impregnation method 

Sample ID 

(Power/Time) 

(Watt/Min.) 

Si/Metal 

(mole ratio) 

EDS 

BET 

Surface 

Area 

(m
2
/g) 

BJH 

Des. 

Pore 

Volume 

(cm
3
/g) 

BJH 

Des. 

Pore 

Diameter 

(nm) 

 

d100 

(nm) 

Lattice 

Parameter 

“a” 

(nm) 

Pore Wall 

Thickness 

“δ” 

(nm) 

Ni-MCM-41 

(120/30) Imp. 25 

11 1085 1.46 3.58 3.91 4.52 1.11 

Ni-MCM-41 

(120/30) Imp. 50 

19 1271 1.87 3.49 3.77 4.35 1.04 

Ni-MCM-41 

(120/30) Imp. 75 

29 1060 1.23 3.58 3.66 4.23 0.83 

Ni-MCM-41 

(120/30) Imp. 100 

42 1485 0.49 3.50 3.61 4.17 0.84 

 

The metal content in the samples were determined by EDS with a Si/Ni mol ratio in the 

range of 11-42. The Si/Cu mol ratios showed that higher amount of metal were 

incorporated into the structure than that of direct synthesized samples 
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4.2.3 Co-MCM-41 

4.2.3.1 Microwave Assisted Direct Synthesis Results 

The XRD patterns of the Co-MCM-41 materials clearly showed the characteristic Bragg 

peaks of MCM-41 structure corresponding to (100) and the three reflections. It is 

observed that, when the metal content of the sample increased (Si/Co ratio decreased), 

the intensity of the XRD graphs decreased as shown in Figure 4-26. For instance, for 

Co-MCM-41 material synthesized by microwave assisted direct synthesis with highest 

metal content (Si/Co:25), Bragg peak corresponding to d(100) and three reflections were 

observed at 2θ values of 2.37, 4.08, 4.66, and 6.20 respectively. For the case of lowest 

metal content (Si/Co:100), corresponding 2θ values were 2.46, 4.20, 4.72, and 6.22 

respectively. It is observed that as the incorporation of the metal content into MCM-41 

structure increased, the interplanar spacing values (d(100)) increased (Table 4-6). 

 

Figure 4-26 XRD patterns of Co-MCM-41 (120/30) with different Si/Co mol ratios 

prepared by microwave assisted direct synthesis 
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The N2 adsorption isotherms of all Co-MCM-41 type mesoporous catalytic materials 

prepared by microwave assisted direct synthesis showed Type IV isotherm with a sharp 

inflection around P/ P0 = 0.25–0.35, which is the characteristic of MCM-41 type 

ordered mesoporous materials (Figure 4-27). The specific surface area, pore volume and 

the average pore diameter of these samples as calculated from the N2 adsorption 

isotherms are presented in Table 4-6. 

The highest metal loaded Co-MCM-41 synthesized by direct synthesis technique 

showed a broad pore size distribution as given in Figure 4-28. 

 

 

Figure 4-27 Pore size distribution of Co-MCM-41-DS-25 (120/30) 

The materials prepared by microwave assisted direct synthesis method had surface area 

values higher than 1000 m
2
/ g evaluated from BET theory. Metal incorporation into the 

mesoporous structure with this technique increased the lattice parameter of the samples 

as Si/Co ratio decreased. Pore wall thickness evaluated from equation (2.12) was 2.06 

nm for the highest metal incorporation (Co-DS-25). For other samples, pore wall 

thickness values were around 1 nm. 
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Figure 4-28 N2 sorption isotherms of direct synthesized Co-MCM-41 (120/30) samples 

a) Si/Co:25 b) Si/Co:50 c) Si/Co:75 d) Si/Co:100 

a 

b 

c 

d 
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Table 4-6 Physical and structural properties of Co-MCM-41 type catalytic materials 

synthesized by microwave assisted direct synthesis method 

Sample ID 

(Power/Time) 

(Watt/Min.) 

Si/Metal 

(mole 

ratio) 

EDS 

BET 

Surface 

Area 

(m
2
/g) 

BJH 

Des. 

Pore 

Volume 

(cm
3
/g) 

BJH 

Des. 

Pore 

Diameter 

(nm) 

 

d100 

(nm) 

Lattice 

Parameter 

“a” 

(nm) 

Pore Wall 

Thickness 

“δ” 

(nm) 

Co-MCM-41 

(120/30) DS 25 

19 1151 0.30 3.41 3.72 4.30 1.06 

Co-MCM-41 

(120/30) DS 50 

36 1499 0.63 3.40 3.77 4.35 1.12 

Co-MCM-41 

(120/30) DS 75 

56 1546 1.06 3.44 3.69 4.26 1.00 

Co-MCM-41 

(120/30) DS 100 

73 1305 0.92 3.04 3.66 4.23 1.34 

 

The metal content in the samples were determined by EDS with a Si/Co mol ratio in the 

range of 19-73. The Si/Co mol ratios were in good agreement with the initial values. 

Incorporation of high cobalt content into the mesoporous structure lead to a decrease in 

surface area and pore volume values due to the blockage of metals inside the channels. 

In the N2 sorption analysis of Co-DS-25 material (Figure 4-27), the hysteresis between 

adsorption and desorption isotherms was smaller than other samples. Also pore 

diameter of Co-DS-25 was 3.41 nm, while other samples with lower metal content had 

pore diameter value between 3-3.4 nm.  
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The morphology of the Co incorporated MCM-41 materials synthesized by microwave 

assisted direct synthesis technique was given in Figure 4-29. 

 

   

Figure 4-29 SEM images of Co-MCM-41 (120/30) a) Si/Co: 25 b) Si/Co:50 c) Si/Co:75 

d)Si/Co:100 

No peaks were observed at high angle XRDs of the metal incorporated mesoporous 

materials which indicates the absence of large crystalline metal or metal oxide particles 

on the silica surface. 

The lattice parameters of Co incorporated MCM-41 type mesoporous materials were 

greater than that of pure MCM-41. This was consisted with the Metal-O bonds being 

longer than that of Si-O bonds and gave an evidence of the metal incorporation into the 

framework. 

It was also observed that the lattice parameters increased with the metal content which 

indicated that the metal content incorporated in the framework increased with increasing 

amount of metal salt added in the synthesis gel. 

  

a b 

c d 
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The morphology of the Co-MCM-41 catalysts were investigated by TEM at 100 nm and 

the metal particles were well distributed within the catalyst with an average pore size 

below 20 nm. The TEM picture of Co-MCM-41 with the highest metal content (Si/Fe 

25) was given in Figure 4-30. 

 

 

Figure 4-30 TEM of Co-MCM-41-DS-25 (120/30) 
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4.2.3.2 Impregnation Results 

Cobalt incorporated materials were also obtained from microwave assisted 

impregnation techniques with different initial Si/Co mole ratios as 25, 50, 75 and 100. 

The XRD patterns of the impregnated Co-MCM-41 materials clearly showed the 

characteristic Bragg peaks of MCM-41 structure corresponding to d(100) and the three 

reflections for the case of low metal impregnated samples (Figure 4-31). For the case of 

Co-Imp-25, the highest metal content in the mesoporous structure, Bragg peak 

corresponding to d(100) and one reflection were observed at 2θ values of 2.08, and 3.82 

respectively. For the case of lowest metal content (Si/Co mol ratio 100, Imp-100), 

corresponding 2θ values were 2.37, 4.05, 4.59, and 6.12 respectively. The interplanar 

spacing values and lattice parameters increased as the amount of Co content 

impregnated into the structure decreased (Table 4-7). 

 

 

Figure 4-31 XRD patterns of Co-MCM-41(120/30) with different Si/Co mol ratios 

prepared by microwave assisted impregnation synthesis 
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Figure 4-32 N2 sorption isotherms of impregnated Co-MCM-41 (120/30) samples        

a) Si/Co:25 b) Si/Co:50 c) Si/Co:75 d) Si/Co:100 

a 

b 

c 

d 
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Table 4-7 Physical and structural properties of Co-MCM-41 type catalytic materials 

synthesized by microwave assisted impregnation method 

Sample ID 

(Power/Time) 

(Watt/Min.) 

Si/Metal 

(mole ratio) 

EDS 

BET 

Surface 

Area 

(m
2
/g) 

BJH 

Des. 

Pore 

Volume 

(cm
3
/g) 

BJH 

Des. 

Pore 

Diameter 

(nm) 

 

d100 

(nm) 

Lattice 

Parameter 

“a” 

(nm) 

Pore Wall 

Thickness 

“δ” 

(nm) 

Co-MCM-41 

(120/30) Imp. 25 

14 656 0.22 3.10 4.09 4.72 1.78 

Co-MCM-41 

(120/30) Imp. 50 

27 1420 2.25 3.05 4.04 4.66 1.77 

Co-MCM-41 

(120/30) Imp. 75 

35 1182 0.72 3.40 3.88 4.48 1.25 

Co-MCM-41 

(120/30) Imp. 100 

41 1307 0.80 3.43 3.72 4.30 1.04 

 

The metal content in the samples were determined by EDS with a Si/Co mol ratio in the 

range of 24-41. The Si/Co mol ratios were higher than samples obtained from direct 

synthesis method. 
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4.2.4 Fe-MCM-41 

4.2.4.1 Microwave Assisted Direct Synthesis Results 

The XRD patterns of Fe incorporated calcined mesoporous catalysts prepared at 120 

Watt for 30 minutes were given in Figure 4-33. As the amount of Fe incorporated into 

the structure increased, the main peak in the XRD patterns shifted to the lower angles 

which leads to higher lattice parameters as expected. It is observed that the intense peak 

at 2.2 – 2.5 ° (2θ) due to (100) plane confirmed the hexagonal meso-structure of the 

materials. The sharp Bragg peaks corresponding to d100 were observed at 2θ values of 

2.31, 2.25, 2.36, and 2.51º for Si/Fe mole ratios of 25, 50, 75 and 100 respectively. 

 

Figure 4-33 XRD patterns of Fe-MCM-41 (120/30) with different Si/Fe mol ratios 

prepared by microwave assisted direct synthesis 
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Adsorption isotherms of the samples were given in Figure 4-34, with a hysteresis loop 

of a typical type IV isotherm, indicating capillary condensation in the mesopores. The 

isotherms of all samples showed a sharp inflection step at P/P0 of ~0.3-0.4,characteristic 

of condensation of uniform mesoporous materials.  

The isotherm corresponding to P/P0 < 0.3 represents the monolayer adsorption of N2 on 

the walls of the mesopore, while that with P/P0 > 0.4 represents the multilayer 

adsorption on the outer surface of the materials. The point at which the inflection begins 

is related to the capillary condensation within the uniform mesopores.  

Nitrogen physisorption data showed a decrease in pore volume, average pore diameter 

and surface area values with increasing iron content in accordance with expectations as 

the amount of metal species increased within the pores. In Table 4-8, the results 

corresponding to the discussion were given in detail. The sample with highest metal 

content had the lowest surface area value of 1299 m
2
/g and lowest pore diameter of 3.07 

nm.  

Hengbo Yin and coworkers investigated the effect of copper, nickel and cobalt doping 

on the pore structure of pure MCM-41 mesoporous molecular sieve under 220 W 

microwave radiation for 2.5 hr. They achieved synthesis of long-range and well-ordered 

Ni-MCM-41 mesoporous molecular sieves with different amount of Ni content. As in 

the conventional synthesis method, the specific surface area and pore volume of the 

samples obtained by microwave heating decreased with increasing the amount of nickel 

and mesoporous ordering of the samples became poor [163,164]. They investigated the 

synthesis of Cu-MCM-41 mesoporous molecular sieves with different metal content 

with microwave irradiation method and same results as in the Ni-MCM-41 samples 

were observed such as decrease in specific surface area, pore volume and regularity 

with the increase of metal content [164] For the case of cobalt incorporated samples, 

they also investigated the calcination temperature for both microwave assisted and 

conventionally synthesized samples and concluded that the thermal stability of Co-

MCM-41 mesoporous molecular sieve obtained by microwave heating was enhanced 

compared to that of Co-MCM-41 obtained by hydrothermal method. Among all the 

samples, Co-MCM-41 mesoporous molecular sieves had the highest specific surface 

area values [164,165]. 
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Figure 4-34 N2 sorption isotherms of direct synthesized Fe-MCM-41 (120/30) samples 

a) Si/Fe:25 b) Si/Fe:50 c) Si/Fe:75 d) Si/Fe:100 

a 

b 

c 

d 
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Table 4-8 Physical and structural properties of Fe-MCM-41 type catalytic materials 

synthesized by microwave assisted direct synthesis method 

Sample ID 

(Power/Time) 

(Watt/Min.) 

Si/Metal 

(mole ratio) 

EDS 

BET 

Surface 

Area 

(m
2
/g) 

BJH 

Des. 

Pore 

Volume 

(cm
3
/g) 

BJH 

Des. 

Pore 

Diameter 

(nm) 

 

d100 

(nm) 

Lattice 

Parameter 

“a” 

(nm) 

Pore Wall 

Thickness 

“δ” 

(nm) 

Fe-MCM-41 

(120/30) DS 25 

21 1229 0.66 4.01 3.78 4.36 0.56 

Fe-MCM-41 

(120/30) DS 50 

43 1582 0.84 3.99 3.87 4.47 0.67 

Fe-MCM-41 

(120/30) DS 75 

60 1496 0.90 3.47 3.77 4.35 1.06 

Fe-MCM-41 

(120/30) DS 100 

76 1546 0.38 3.50 3.65 4.21 0.89 

 

In this study we investigated the Fe incorporation into MCM-41 structure by microwave 

radiation for the first time. The obtained results were in good agreement with the results 

reported in the literature for other transition metals. 

The metal content in the samples were determined by EDS with a Si/Fe mol ratio in the 

range of 11-76. The Si/Fe mol ratios were in good agreement with the initial values. 
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The morphology of the Fe-MCM-41 catalysts were investigated by TEM at 100 nm and 

the metal particles were well distributed within the catalyst with an average pore size 

below 20 nm. The TEM picture of Fe-MCM-41 with the highest metal content (Si/Fe 

25) was given in Figure 4-35. 

 

Figure 4-35 TEM of Fe-MCM-41-DS-25 (120/30) 
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4.2.4.2 Impregnation Results 

 

Figure 4-36 XRD patterns of Fe-MCM-41(120/30) with different Si/Fe mol ratios 

prepared by microwave assisted impregnation synthesis 

The XRD patterns of Fe incorporated samples prepared by impregnation technique were 

given in Figure 4-36. As the amount of Fe incorporated into the structure increased, the 

main peak in the XRD patterns shifted to the lower angles which leads to higher lattice 

parameters as expected. Mainly 3 peaks were observed for all samples which could be 

indexed as (100), (110) and (200) planes on hexagonal unit cell respectively. The sharp 

Bragg peaks corresponding to d100 were observed at 2θ values of 2.19, 2.20, 2.31, and 

2.38º for Si/Fe mole ratios of 25, 50, 75 and 100 respectively. 

No peaks were observed in the high angle XRDs of the Fe impregnated mesoporous 

sieves which indicated the absence of large crystalline metal or metal oxide particles on 

the silica surface.  
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Figure 4-37 N2 sorption isotherms of impregnated Fe-MCM-41 (120/30) samples        

a) Si/Fe:25 b) Si/Fe:50 c) Si/Fe:75 d) Si/Fe:100 
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Table 4-9 Physical and structural properties of Fe-MCM-41 type catalytic materials 

synthesized by microwave assisted impregnation method 

Sample ID 

(Power/Time) 

(Watt/Min.) 

Si/Metal 

(mole ratio) 

EDS 

BET 

Surface 

Area 

(m
2
/g) 

BJH 

Des. 

Pore 

Volume 

(cm
3
/g) 

BJH 

Des. 

Pore 

Diameter 

(nm) 

 

d100 

(nm) 

Lattice 

Parameter 

“a” 

(nm) 

Pore Wall 

Thickness 

“δ” 

(nm) 

Fe-MCM-41 

(120/30) Imp. 25 

18 995 1.25 3.48 3.87 4.47 1.16 

Fe-MCM-41 

(120/30) Imp. 50 

31 1262 1.48 3.49 3.88 4.48 1.17 

Fe-MCM-41 

(120/30) Imp. 75 

37 1274 1.09 3.49 3.78 4.36 1.05 

Fe-MCM-41 

(120/30) Imp. 100 

49 1520 0.56 3.46 3.73 4.31 1.02 

 

The metal content in the samples were determined by EDS with a Si/Fe mol ratio in the 

range of 8-29. The Si/Cu mol ratios showed that higher amount of metal were 

incorporated into the structure than that of direct synthesized samples  

The obtained catalytic materials showed promising pore diameter and surface area 

values as high as 3.49 nm and 1520 m
2
/g respectively. The synthesis time was reduced 

to 30 minutes in which it took at least 12-24 hours in hydrothermal synthesis. In 

impregnation, high metal loading lead to low surface area values (995 m
2
/g) and 

deformation of crystallinity.  

For the same amount of metal loading, direct synthesis superimposed the products 

obtained by impregnation with high ordering and more homogeneous metal dispersion. 

For both synthesis techniques, surface area decreased as metal content increased. 
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4.3 Diffusion Experiments 

In heterogeneous catalysis and adsorption applications it is critical to have a perception 

how a molecule behaves in nanoporous medium- its adsorption and diffusion behavior 

within the system. In MCM-41, pores are not interconnected and the surface contains 

hydroxyl groups which may experience specific interactions with molecules susceptible 

of having hydrogen bonds. Modifications of the surface of these materials could be 

achieved by grafting of hydrophobic groups [326]. So, specific surface interaction 

effects on the properties of the confined compounds may be of interest to catalyst 

researchers since MCM-41 nanoporous materials has an advantage for application in 

chemical industry. 

In this study we observed the diffusion behavior of single chain alcohols and aromatic 

solvents in MCM-41 by macroscopic method. Also, diffusion of alcohols in metal 

incorporated MCM-41 with Si/Metal mol ratio of 25, were studied in detail to 

understand the effect of metal in diffusion process.  

Beside MCM-41, CNTs with the same inner mean pore diameter of MCM-41 (4 nm) 

were used in alcohols and aromatic solvent uptake measurements. Atomically detailed 

calculations have predicted that the diffusivities of light gases inside the pores of carbon 

nanotubes can be orders of magnitude faster than comparable diffusivities for gases 

adsorbed in polymeric pores, zeolites, or other nanoporous materials [327-330]. These 

extremely high diffusivities can be attributed to the extraordinary smoothness of the 

potential-energy surface defined by carbon nanotubes. 

The diffusion coefficients, mode of transport and activation energies of aromatic 

solvents into the porous channels of MCM-41 and CNTs were investigated in 26-32 ˚C 

temperature range. The diffusion coefficients were measured from the slope of graphs 

of Mt/M∞ versus t
1/2

.  

For the calculation of diffusion coefficients, the following assumptions are made [250]: 

the diffusion mechanism obeys Fick‟s law of diffusion, the crystallites possess a 

spherical shape, the concentration profile of the sorbed gas in these spheres shows radial 

symmetry, the diffusion is assumed to be isotropic; it can be described by a single 

diffusion coefficient rather than a diffusion tensor, and the diffusion coefficient does not 

depend on sorbate concentration. 
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4.3.1 Diffusion in MCM-41 

4.3.1.1 Diffusion Coefficients in MCM-41 

Due to high surface area, adsorption capacity and mesoporous structure MCM-41 has 

high potential as an adsorbent for small and bulky adsorbate molecules. Adsorption of 

N2 [5, 331-335] and water [30, 331, 336, 337] on MCM-41 has been thoroughly 

investigated. There are also some studies based on heavier hydrocarbons, such as 

benzene [338, 339], toluene [340], cyclopentane [341, 342], cyclohexane [176, 343-

345], propane [346], and methane [347] on MCM-41. However, there are very few 

studies on the diffusion properties of MCM-41. 

In this study, diffusion of volatile alcohols and aromatic solvents in the mesoporous 

media of MCM-41 were done by using materials synthesized by microwave assisted 

direct synthesis method at 120 Watt and in 30 minutes. The materials had specific 

surface area values of around 1400 m
2
/g and pore diameters around 4 nm by using 

cethyltrimethyl ammonium bromide as the surfactant and agglomerate sizes around 0.5 

μm. 

The diffusion coefficients of methanol, ethanol, n-propanol and n-butanol at 26, 28, 30 

and 32 ºC were presented in Figure 4-38. Raw data were given in Appendix C, Table C-

1. It is observed that the lower the molecular weight of alcohols, the higher the diffusion 

coefficients, thus higher amounts of low molecular weight alcohols diffused relative to 

high molecular weight alcohols due to steric hindrances at the same temperature. For 

example, diffusion coefficients of methanol, ethanol, n-propanol and n-butanol were 

4.01 x10
-13

, 1.83 x 10
-13

, 8.26 x1 10
-14

 and 2.51x 10
-14

 m
2
/g at 26 ºC, respectively. 

Increasing the temperature increased the kinetic energy of the molecules which result to 

an increase in the diffusion coefficient. For instance, the diffusion coefficients of 

methanol at 26, 28, 30, and 32 °C were measured as 4.01 x 10
-13

, 4.38 x 10
-13

, 8.43 x 10
-

13
, 9.99 x 10

-13
 m

2
/s respectively. 
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Figure 4-38 Diffusion coefficients of volatile alcohols in MCM-41 

Sakintuna and Yürüm [249] studied the diffusion of low carbon chain alcohols in 

natural zeolites with 40.2 % micropores, 57.9 % mesopores and 1.9 % macropores and 

59 m
2
/g surface area. The diffusion coefficients of methanol, ethanol, propanol and n-

butanol were 10 times lower than those measured in the present work. It is clearly seen 

that, larger pore diameter and higher surface area values of MCM-41 make diffusion 

more suitable for volatile substances.  

Wang et al. [348] studied the diffusion of N2 and CO2 in γ-alumina within limited 

volume of a stiff container. The diffusion coefficients were in the order of 10
-7

 m
2
/g.  
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Diffusion coefficients of benzene, toluene, ethylbenzene, propylbenzene, o-xylene, m-

xylene and p-xylene at 26, 28, 30 and 32 ºC were presented Figure 4-39. Raw data were 

given in Appendix C, Table C-2. The experimental results were presented in two 

groups: benzene, toluene, ethylbenzene and propylbenzene as one group and benzene, 

toluene, o-xylene, m-xylene, p-xylene as another according to organic structures. 

Diffusion coefficients of benzene were the highest one in both groups and increased 

from 3.96 x 10
-14

 to 9.52 x 10
-14

 m
2
/g as the temperature increased from 26 to 32 °C. As 

the molecular weight of aromatic solvent increased, diffusion coefficients decreased. 

For instance, diffusion coefficients of benzene, toluene, ethylbenzene and 

propylbenzene were 3.96 x10
-14

, 3.79 x 10
-14

, 3.74 x 10
-14

 and 3.26 x 10
-14

 m
2
/g at 26 

°C, respectively and o-xylene, m-xylene and p-xylene were 3.68 x10
-14

, 3.42 x10
-14

, 

3.11 x10
-14

, at 26 °C, respectively. 

As the chain length of the attachment to the benzene ring increased, the diffusion 

coefficients slightly decreased, i.e. ethylbenzene and propylbenzene. Within the 

xylenes, there were no significant differences between diffusion coefficients at the same 

temperatures. It can be concluded that, the diffusion of isomeric molecules within the 

mesoporous channels were not affected by the branching, the deterministic behavior 

was again the molecular weight of the molecule. 

Hoang et al. [349] investigate the diffusion of aromatic solvents (n-Heptane, toluene 

and oxylene) in bi-porous nano-materials using zero length column (ZLC) method and 

compared the results with pure silicate crystal. The diffusion coefficients were in the 

order of 10
-16

 m
2
/g at 70 °C and increased with temperature. The coefficients were 

higher than the pure silicate due to the presence of mesoporous channels. 
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Figure 4-39 Diffusion coefficients of volatile aromatics in MCM-41 
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4.3.1.2 Diffusional Rate Constants and Mode of Transport in MCM-41 

The diffusion rate constants, diffusion exponents and transport mechanism of alcohols 

and aromatics in MCM-41 were given in Table 4-10 and Table 4-11, respectively. 

Linearity analysis of the data gave acceptable regressional coefficients (R
2
) with values 

greater than 0.98 indicating a linear relationship between ln (Mt/Minf) vs. ln t for 

diffusion of alcohols and aromatics in mesoporous media. 

Diffusion rate constants slightly changed with temperature which might be a reason of 

using different portion MCM-41 source for each experiment and slight structural 

varieties within the crystalline structure. Diffusion rate constants slightly increased with 

temperature within the range of 26-32 °C, and slightly decreased as the molecular 

weight increased for all samples.  

The diffusion rate constant of methanol over MCM-41 was increased from 2.56 x10
-4

 to 

1.50 x 10
-3

 s
-1

 when diffusion temperature increased from 26 to 32 °C. For the case of 

benzene, diffusion rate constant increased from 1.06 x10
-4

 to 2.44 x 10
-4

 s
-1

 when 

diffusion temperature increased from 26 to 32 °C.   

Diffusion exponents being in the range of 0.99-1.3 indicated an anomalous diffusion 

mechanism for alcohol diffusion. However for the case of aromatics, diffusion 

exponents decreased from 1 to 0.7 indicating some change in the diffusion mechanism 

from anomalous diffusion as the attachments to the benzene ring increased.   

In the literature [249], the diffusion exponents of alcohols (methanol, ethanol, n-

propanol, i-propanol and n-butanol) in natural zeolites systems were estimated to be 

between 0.96-1.00 indicating an anomalous diffusion mechanism assuming Fickian 

diffusion mechanism.   
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Table 4-10 Diffusion rate constants, diffusion exponents, and transport mechanism of 

alcohols in MCM-41 

Alcohol T, ºC k, s
-1

 n R
2
 

Methanol 

26 2.56 x 10
-4

 1.27 0.999 

28 2.93 x 10
-4

 1.18 0.985 

30 3.20 x 10
-4

 1.32 0.993 

32 1.50 x 10
-3

 1.16 0.997 

Ethanol 

26 2.16 x 10
-4

 1.18 0.997 

28 2.23 x 10
-4

 1.18 0.990 

30 2.36 x 10
-4

 1.17 0.987 

32 2.69 x 10
-4

 1.17 0.983 

n-Propanol 

26 8.35 x 10
-5

 1.15 0.991 

28 1.12 x 10
-4

 1.14 0.986 

30 1.35 x 10
-4

 1.07 0.984 

32 1.70 x 10
-4

 1.08 0.995 

n-Butanol 

26 8.84 x 10
-5

 1.11 0.993 

28 9.84 x 10
-5

 1.03 0.997 

30 1.09 x 10
-4

 0.99 0.987 

32 1.25 x 10
-4

 1.00 0.984 
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Table 4-11 Diffusion rate constants, diffusion exponents, and transport mechanism of 

aromatics in MCM-41 

Aromatic T, ºC k, s
-1

 n R
2
 

Benzene 

26 1.06 x 10
-4

 1.17 0.993 

28 1.92 x 10
-4

 1.11 0.998 

30 2.39 x 10
-4

 1.09 0.996 

32 2.44 x 10
-4

 0.98 0.999 

Toluene 

26 3.04 x 10
-5

 1.31 0.997 

28 4.45 x 10
-5

 1.23 0.998 

30 4.93 x 10
-5

 1.17 0.997 

32 5.66 x 10
-5

 0.93 0.998 

Ethylbenzene 

26 1.42 x 10
-3

 0.86 0.996 

28 1.55 x 10
-3

 0.78 0.999 

30 1.61 x 10
-3

 0.81 0.999 

32 2.80 x 10
-3

 0.75 0.999 

Propylbenzene 

26 1.67 x 10
-3

 0.76 0.999 

28 1.81 x 10
-3

 0.76 0.998 

30 1.84 x 10
-3

 0.74 0.998 

32 2.36 x 10
-3

 0.72 0.999 

o-Xylene 

26 2.20 x 10
-3

 0.77 0.999 

28 1.49 x 10
-3

 0.83 0.999 

30 2.05 x 10
-3

 0.80 0.998 

32 2.73 x 10
-3

 0.76 0.999 

m-Xylene 

26 1.12 x 10
-3

 0.86 0.999 

28 2.71 x 10
-3

 0.73 0.999 

30 3.55 x 10
-3

 0.70 0.998 

32 3.62 x 10
-3

 0.71 0.995 

p-Xylene 

26 1.08 x 10
-3

 0.86 0.999 

28 2.85 x 10
-3

 0.74 0.998 

30 3.14 x 10
-3

 0.76 0.997 

32 4.41 x 10
-3

 0.73 0.997 
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4.3.1.3 Activation Energies of Diffusion in MCM-41 

The activation energy calculations were done from the graph of lnD versus 1/T for each 

alcohol and aromatics. The results were given in Table 4-12 and 4-13 for alcohols and 

aromatics, respectively.  

The slope of the graphs gave activation energies as 65, 76, 93 and 118 kJ/mol for 

methanol, ethanol, n-propanol, n-butanol, respectively. It is observed that an increase in 

molecular weight (or chain length) results in an increase in activation energy. Larger 

activation energies result in relatively small diffusion coefficients for alcohol diffusion 

measurements in mesoporous media. It can be concluded that there should be a strong 

relationship between the chain length, critical molecular size on the diffusion 

coefficients and activation energies. Activation energies of alcohols were also in good 

agreement with the values of diffusion coefficients of alcohols such that larger 

activation energies resulted in smaller diffusion coefficients. The activation energy of 

methanol in MCM-41 was measured to be the smallest of alcohols and diffusion 

coefficients of methanol were the greatest at all temperatures. 

It is interesting that Sakintuna and Yürüm [249] estimated the activation energies of the 

volatile alcohols diffusion within the natural zeolites as 18.3, 46.4, 79.7 and 90.1 

kJ/mol, respectively. Although the operating conditions were the same, the diffused 

molecules over MCM-41 has to overcome an energy barrier higher than the zeolites. 

Once the molecules overcome this energy barrier, they move more easily within the 

mesoporous channels of MCM-41 than microporous channels of zeolites which explains 

the higher diffusion coefficients of alcohols within MCM-41.  

The activation energies of aromatics were 48, 91, 98, 112, 121, 126 and 133 kJ/mol for 

benzene, toluene, ethylbenzene, propylbenzene, o-xylene, m-xylene and p-xylene, 

respectively. With increasing molecular weight of the volatile aromatics, the activation 

energies also increased. The activation energy of benzene in the mesoporous channels 

of MCM-41 was estimated to be the smallest among those of aromatic solvents and as 

discussed in the previous sections, diffusion coefficients of benzene were the highest at 

all temperatures. 
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Table 4-12 Activation energies of volatile alcohols in MCM-41 

Alcohol Ea, kJ/mol 

Methanol 65 

Ethanol 76 

n-Propanol 93 

n-Butanol 118 

 

Table 4-13 Activation energies of volatile aromatics in MCM-41 

Aromatics Ea, kJ/mol 

Benzene 48 

Toluene 91 

Ethylbenzene 98 

Propylbenzene 112 

o-Xylene 121 

m-Xylene 126 

p-Xylene 133 
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4.3.2 Diffusion in Metal Incorporated MCM-41 

4.3.2.1 Diffusion Coefficients in Metal Incorporated MCM-41 

The coefficients of diffusion of methanol, ethanol, n-propanol, and n-butanol at 26, 28, 

30 and 32 °C into Cu, Ni, Co and Fe incorporated MCM-41 with a Si/Metal mol ratio of 

25 and prepared by microwave assisted direct synthesis technique at 120 Watt in 30 

minutes were  given in Figure 4-40, Figure 4-41, Figure 4-42 and Figure 4-43, 

respectively. In Appendix C.2, all experimental data was tabulated. 

Specific surface area values of all metal incorporated MCM-41 samples were 941, 

1047, 1151 and 1299 m
2
/gr and pore volume values were 1.00, 1.13, 0.30 and 0.66 

cm
3
/gr while average pore diameter of these samples were 3.07, 3.07, 3.41, and 4.01 nm 

for Cu, Ni, Co, and Fe incorporated MCM-41 mesoporous molecular sieves, 

respectively.  

For all metal incorporated MCM-41 mesoporous molecular sieves, diffusion 

coefficients increased with an increase in temperature since the molecules gained higher 

mobility. For instance, diffusion coefficient of methanol increased from 8.06 x 10
-13

 to 

1.06 x 10
-12

 m
2
/s for Cu, increased from 4.58 x 10

-13
 to 5.51 x 10

-13
 m

2
/s for Ni, 

increased from 4.10 x 10
-13

 to 6.05 x 10
-13

 m
2
/s for Co and increased from 2.83 x 10

-13
 

to 4.32 x 10
-13

 m
2
/s for Fe, from 26 to 32 ºC. The diffusion coefficients of methanol for 

pure MCM-41 increased from 4.01 x 10
-13

 to 9.99 x 10
-13 

m
2
/s. Cu-MCM-41 had the 

highest diffusion coefficients for methanol compared to other metal incorporated and 

pure MCM-41 and Fe-MCM-41 had the lowest. 

For the case of ethanol, diffusion coefficient of ethanol increased from 4.12 x 10
-13

 to 

8.34 x 10
-13

 m
2
/s for Cu, increased from 2.23 x 10

-13
 to 5.07 x 10

-13
 m

2
/s for Ni, 

increased from 2.27 x 10
-13

 to 4.15 x 10
-13

 m
2
/s for Co and increased from 2.24 x 10

-13
 

to 4.05 x 10
-13

 m
2
/s for Fe, from 26 to 32 ºC. The diffusion coefficients of methanol for 

pure MCM-41 increased from 1.83 x 10
-13

 to 3.38 x 10
-13 

m
2
/s. It was interesting to 

observe that diffusion coefficient of all metal incorporated samples were higher than 

pure MCM-41.  
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For the case of ethanol, diffusion coefficient of n-propanol increased from 2.11 x 10
-13

 

to 3.60 x 10
-13

 m
2
/s for Cu, increased from 1.40 x 10

-13
 to 2.40 x 10

-13
 m

2
/s for Ni, 

increased from 1.62 x 10
-13

 to 2.28 x 10
-13

 m
2
/s for Co and increased from 1.77 x 10

-13
 

to 2.86 x 10
-13

 m
2
/s for Fe, from 26 to 32 ºC. The diffusion coefficients of methanol for 

pure MCM-41 increased from 8.26 x 10
-14

 to 1.72 x 10
-13 

m
2
/s.  

For the case of ethanol, diffusion coefficient of n-butanol increased from 6.94 x 10
-14

 to 

1.02 x 10
-13

 m
2
/s for Cu, increased from 7.85 x 10

-14
 to 1.39 x 10

-13
 m

2
/s for Ni, 

increased from 7.77 x 10
-14

 to 1.62 x 10
-13

 m
2
/s for Co and increased from 7.39 x 10

-14
 

to 1.18 x 10
-13

 m
2
/s for Fe, from 26 to 32 ºC. The diffusion coefficients of methanol for 

pure MCM-41 increased from 2.51 x 10
-14

 to 6.36 x 10
-14 

m
2
/s.  

Higher the molecular weight of the alcohol, the lower the diffusion coefficient for all 

samples. The diffusion coefficients decreased as the molecular weight of alcohols 

increased for all metal incorporated samples of MCM-41.  

It was interesting to observe that, surface modification by metal incorporation increased 

the diffusion coefficients of alcohol diffusion through mesoporous medium. 

Functionalization of the walls by incorporation of transition metals enhances the 

electron-transfer efficiency to design new sorption systems [27]. Increasing the active 

sites by incorporation of metals, increased the diffusion coefficients of alcohols through 

mesoporous medium. 
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Figure 4-40 Diffusion coefficients of volatile alcohols in Cu-MCM-41 

 

Figure 4-41 Diffusion coefficients of volatile alcohols in Ni-MCM-41 
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Figure 4-42 Diffusion coefficients of volatile alcohols in Co-MCM-41 

 

Figure 4-43 Diffusion coefficients of volatile alcohols in Fe-MCM-41 
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4.3.2.2 Diffusional Rate Constants and Mode of Transport in Metal Incorporated 

MCM-41 

The diffusion rate constants, diffusion exponents and transport mechanisms of different 

alcohols in metal incorporated mesoporous media were presented in Table 4-14, Table 

4-15, Table 4-16 and Table 4.17 for Cu, Ni, Co, and Fe samples, respectively. Linearity 

analysis of the data gave acceptable regressional coefficients (R
2
) with values greater 

than 0.98 indicating a linear relationship between ln (Mt/Minf) vs. ln t for diffusion of 

alcohols and aromatics in mesoporous media. 

Diffusion rate constants slightly changed with temperature which might be a reason of 

using different portion MCM-41 source for each experiment and slight structural 

varieties within the crystalline structure. Diffusion rate constants slightly increased with 

temperature within the range of 26-32 °C, and slightly decreased as the molecular 

weight increased for all samples. The diffusion rate constants of Cu-MCM-41 were 

higher than other metal incorporated MCM-41 mesoporous sieves.  

Diffusion exponents being in the range of 0.6-0.8 indicated a diffusion mechanism 

closer to anomalous type of diffusion for alcohol in metal incorporated mesoporous 

sieves.  The diffusion exponents of metal incorporated samples were lower than that of 

MCM-41 which showed some difference in the diffusion mechanisms.. 
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Table 4-14 Diffusion rate constants, diffusion exponents, and transport mechanism of 

alcohols in Cu-MCM-41 

Alcohol T, ºC k, s
-1

 n R
2
 

Methanol 

26 3.73 x 10
-2

 0.63 0.996 

28 4.08 x 10
-2

 0.70 0.989 

30 4.34 x 10
-2

 0.59 0.996 

32 4.46 x 10
-2

 0.65 0.990 

Ethanol 

26 2.44 x 10
-2

 0.58 0.985 

28 2.65 x 10
-2

 0.63 0.995 

30 2.70 x 10
-2

 0.60 0.992 

32 2.86 x 10
-2

 0.68 0.990 

n-Propanol 

26 1.50 x 10
-2

 0.58 0.994 

28 1.53 x 10
-2

 0.55 0.992 

30 1.54 x 10
-2

 0.67 0.994 

32 1.82 x 10
-2

 0.64 0.997 

n-Butanol 

26 1.37 x 10
-2

 0.60 0.996 

28 1.53 x 10
-2

 0.60 0.986 

30 1.57 x 10
-2

 0.61 0.990 

32 1.70 x 10
-2

 0.62 0.992 
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Table 4-15 Diffusion rate constants, diffusion exponents, and transport mechanism of 

alcohols in Ni-MCM-41 

Alcohol T, ºC k, s
-1

 n R
2
 

Methanol 

26 9.51 x 10
-3

 0.75 0.996 

28 1.06 x 10
-2

 0.74 0.995 

30 1.33 x 10
-2

 0.77 0.999 

32 1.65 x 10
-2

 0.69 0.986 

Ethanol 

26 9.35 x 10
-3

 0.69 0.999 

28 9.47 x 10
-3

 0.70 0.999 

30 9.63 x 10
-3

 0.72 0.999 

32 9.89 x 10
-3

 0.75 0.996 

n-Propanol 

26 5.70 x 10
-3

 0.79 0.984 

28 6.04 x 10
-3

 0.75 0.992 

30 6.58 x 10
-3

 0.75 0.991 

32 7.64 x 10
-3

 0.74 0.998 

n-Butanol 

26 5.52 x 10
-3

 0.68 0.989 

28 6.01 x 10
-3

 0.79 0.989 

30 6.45 x 10
-3

 0.74 0.993 

32 7.08 x 10
-3

 0.68 0.996 
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Table 4-16 Diffusion rate constants, diffusion exponents, and transport mechanism of 

alcohols in Co-MCM-41 

Alcohol T, ºC k, s
-1

 n R
2
 

Methanol 

26 7.39 x 10
-3

 0.76 0.995 

28 8.57 x 10
-3

 0.76 0.995 

30 1.61 x 10
-2

 0.68 0.996 

32 1.88 x 10
-2

 0.65 0.995 

Ethanol 

26 5.64 x 10
-3

 0.79 0.999 

28 6.19 x 10
-3

 0.81 0.997 

30 9.07 x 10
-3

 0.75 0.999 

32 1.01 x 10
-2

 0.71 0.995 

n-Propanol 

26 5.09 x 10
-3

 0.79 0.991 

28 5.84 x 10
-3

 0.74 0.994 

30 6.36 x 10
-3

 0.72 0.996 

32 7.09 x 10
-3

 0.70 0.994 

n-Butanol 

26 4.83 x 10
-3

 0.77 0.982 

28 5.96 x 10
-3

 0.78 0.981 

30 6.21 x 10
-3

 0.69 0.971 

32 6.36 x 10
-3

 0.68 0.999 
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Table 4-17 Diffusion rate constants, diffusion exponents, and transport mechanism of 

alcohols in Fe-MCM-41 

Alcohol T, ºC k, s
-1

 n R
2
 

Methanol 

26 7.13 x 10
-3

 0.78 0.998 

28 8.51 x 10
-3

 0.76 0.995 

30 1.06 x 10
-2

 0.72 0.993 

32 1.88 x 10
-2

 0.65 0.990 

Ethanol 

26 5.31 x 10
-3

 0.77 0.997 

28 5.56 x 10
-3

 0.80 0.997 

30 6.12 x 10
-3

 0.76 0.999 

32 6.49 x 10
-3

 0.80 0.987 

n-Propanol 

26 4.74 x 10
-3

 0.78 0.988 

28 5.48 x 10
-3

 0.74 0.991 

30 5.93 x 10
-3

 0.79 0.988 

32 6.44 x 10
-3

 0.78 0.972 

n-Butanol 

26 4.59 x 10
-3

 0.70 0.995 

28 5.17 x 10
-3

 0.74 0.981 

30 5.63 x 10
-3

 0.70 0.988 

32 6.26 x 10
-3

 0.67 0.989 
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4.3.2.3 Activation Energies of Diffusion in Metal Incorporated MCM-41 

The activation energy calculations were done from the graph of lnD versus 1/T for each 

alcohol and aromatics. The results were given in Table 4-18 for Cu-MCM-41, Ni-

MCM-41, Co-MCM-41 and Fe-MCM-41, respectively. 

The activation energies were related with the electron configuration of the metals 

incorporated to the MCM-41 structure. As the number of valance electrons increased in 

the metal, the activation energy necessary for diffusion decreased. For instance, the 

activation energies of diffusion for methanol, ethanol, n-propanol and n-butanol were  

as 34, 45, 47 and 49 kJ/mol, respectively which were much lower than the pure MCM-

41 values. Although the operating conditions were the same, the diffused molecules in 

MCM-41 had to overcome an energy barrier higher than the metal incorporated 

samples. It can be concluded that surface modification by metal incorporation increased 

the smoothness of the surface and adsorbent molecules favored to diffuse more easily 

than pure Si walls .  

It is also observed that an increase in molecular weight (or chain length) results in an 

increase in activation energy. Larger activation energies result in relatively small 

diffusion coefficients for alcohol diffusion measurements in mesoporous media. It can 

be concluded that there should be a strong relationship between the chain length, critical 

molecular size on the diffusion coefficients and activation energies. Activation energies 

of alcohols were also in good agreement with the values of diffusion coefficients of 

alcohols such that larger activation energies resulted in smaller diffusion coefficients. 

The activation energy of methanol in Cu-MCM-41 was measured to be the smallest of 

alcohols and diffusion coefficients of methanol were the greatest at all temperatures. 
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Table 4-18 Activation energies of volatile alcohols in metal incorporated MCM-41 

Me-MCM-41 Alcohol Ea, kJ/mol 

Cu-MCM-41 

Methanol 34 

Ethanol 45 

n-Propanol 47 

n-Butanol 49 

Ni-MCM-41 

Methanol 44 

Ethanol 57 

n-Propanol 65 

n-Butanol 69 

Co-MCM-41 

Methanol 48 

Ethanol 58 

n-Propanol 67 

n-Butanol 70 

Fe-MCM-41 

Methanol 52 

Ethanol 60 

n-Propanol 65 

n-Butanol 71 
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4.3.3 Diffusion in CNT 

4.3.3.1 Diffusion Coefficients in CNT 

Diffusion coefficients of methanol, ethanol, n-propanol and n-butanol at 26, 28, 30 and 

32 °C into carbon nanotubes were presented in Figure 4.44. In Appendix C, Table C-7 

raw data was tabulated. In all samples, diffusion coefficients increased with increasing 

temperature and decreased as molecular weight increased. 

The diffusion coefficient of methanol in carbon nanotube increased from 5.42 x10
-12

 to 

9.12 x 10
-12

 m
2
/g when the diffusion temperature was elevated from 26 to 32 °C, 

respectively. Higher the molecular weight of the alcohol, the lower the diffusion 

coefficient owing to the steric hindrances. The diffusion coefficient of methanol in the 

carbon nanotube seemed to be highest compared to other alcohols. The diffusion 

coefficients of methanol, ethanol, n-propanol and n-butanol were 5.42 x 10
-12

, 4.03 x 10
-

12
, 3.75 x10

-12
, 2.08 x10

-12
 m

2
/g at 26 °C, respectively.  

Sakintuna and Yürüm [250] observed that diffusion coefficients of alcohols also 

increased with increasing temperature in the natural zeolite templated porous carbons 

which were carbonized at different temperatures, as 700, 800, 900 and 1000 °C with 

397, 350, 405, and 367 m
2
/g surface area values respectively and an average pore 

diameter of 11 nm. The diffusion coefficients of  methanol, ethanol, n-propanol and n-

butanol in the porous carbon carbonized at 700°C at 26 °C were 2.95 x 10
-14

,  1.54 x 10
-

14
, 1.96 x 10

-14
 and 2.97 x 10

-15
 m

2
/g, respectively. 

When we compare the diffusion coefficients between carbon nanotubes with porous 

carbons, there was a significant difference between the results. The diffusion 

coefficients of carbon nanotubes were 10
3
 times higher than porous carbons even 

though the same operating conditions were performed. It is known that there is large 

number of different functional groups on carbon surface; carbonyl, carboxylic acid, 

hydroxyl, ether, lactone, anhydride... etc. which may result in many types of solute-

adsorbent interaction [326] However, these extremely high diffusivities can be 

attributed to the extraordinary smoothness of the potential-energy surface defined by 

carbon nanotubes [327]. 
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Skoulidas et al. [327, 328] reported, on the basis of simulation, that the self- and 

transport-diffusion coefficients of light gases in SWCNs can be orders of magnitude 

higher than those in any known microporous materials, approaching free diffusion in the 

bulk gas. The simulation results were also in good agreement with our experimental 

results for heavier molecules. 

It is also interesting to compare the diffusion coefficients of alcohols in carbon 

nanotubes with MCM-41. Even though they had the same pore diameter and even 

MCM-41 had higher surface area compared to carbon nanotubes, diffusion coefficients 

of alcohols in CNTs were at least 10 times higher than in MCM-41.  

 

 

Figure 4-44 Diffusion coefficients of volatile alcohols in CNT 

 

In this study, the diffusion behavior of aromatic solvents in the nano-channels of carbon 

nanotubes was also investigated. Diffusion coefficients of benzene, toluene, 

ethylbenzene, propylbenzene, o-xylene, m-xylene and p-xylene at 26, 28, 30 and 32 ºC 

were presented Figure 4-45. Raw data were given in Appendix C, Table C-8.  
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It is interesting to observe that benzene diffusions in the nano-channels were even 

higher than those of methanol at all temperatures. Diffusion coefficients of benzene 

increased from 4.67 x 10
-12

 to 1.62 x 10
-11

 m
2
/s from 26 to 32 ºC. As the molecular 

weight of aromatic solvent increased, diffusion coefficients decreased. For instance, 

diffusion coefficients of benzene, toluene, ethylbenzene and propylbenzene were 3.67 x 

10
-12

, 2.85 x 10
-12

, 2.71 x 10
-13

 and 1.52 x 10
-13

 m
2
/g at 26 °C, respectively and o-

xylene, m-xylene and p-xylene were 1.81 x10
-12

, 2.22 x10
-12

, and 2.39 x 10
-12

, at 26 °C, 

respectively.  

As the chain length of the attachment to the benzene ring increased, the diffusion 

coefficients significantly decreased, i.e. ethylbenzene and propylbenzene. Aside from 

MCM-41, diffusion of xylenes within carbon nanotubes showed very different 

characteristics. Within the xylenes, p-xylene had the highest diffusion coefficients at the 

same temperatures. When the spacing between the attached molecules decreased, 

diffusion coefficients decreased. For instance, diffusion coefficients of p-xylene 

increased from 2.39 x 10
-12

 to 9.73 x 10
-12

 m
2
/s from 26 to 32 ºC. 

When we compare the diffusion experiments between MCM-41 and carbon nanotubes, 

there were considerable differences within the results due to the origin of materials, 

structural behavior, steric hindrances and sorption-adsorbate interactions. 
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Figure 4-45 Diffusion coefficients of volatile aromatics in CNT 
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4.3.3.2 Diffusional Rate Constants and Mode of Transport in CNT 

The diffusion rate constants, diffusion exponents and transport mechanism of alcohols 

and aromatics in CNT were given in Table 4-19 and Table 4-20, respectively. As in the 

case of MCM-41, linearity analysis of the data gave acceptable regressional coefficients 

(R
2
) with values greater than 0.98 indicating a linear relationship between ln (Mt/Minf) 

vs. ln t for diffusion of alcohols and aromatics in nano-channels of carbon nanotubes. 

The change in the diffusion rate constants with temperature was more significant 

compared to MCM-41 which might be a reason of using different portion source for 

each experiment and slight structural varieties within the crystalline structure. The 

general trend in diffusion rate constants was a slight increase with temperature within 

the range of 26-32 °C, and slight decrease as the molecular weight increased for all 

samples.  

The diffusion rate constant of methanol over CNT was increased from 4.34 x10
-4

 to 

6.71 x 10
-3

 s
-1

 when diffusion temperature increased from 26 to 32 °C. For the case of 

propylbenzene, diffusion rate constant increased from 3.90 x10
-6

 to 1.49 x 10
-4

 s
-1

 when 

diffusion temperature increased from 26 to 32 °C.  The change in the diffusion rate 

constant with temperature became more significant as the molecular weight of 

aromatics increased. 

Diffusion exponents being in the range of 0.8-1.3 indicated an anomalous diffusion 

mechanism for both alcohol and aromatic diffusion.  

In the literature [250], the diffusion exponents of alcohols (methanol, ethanol, n-

propanol, i-propanol and n-butanol) in natural zeolite templated porous carbon systems 

were estimated to be in a broader range as 0.58-1.00 indicating an anomalous diffusion 

mechanism assuming Fickian diffusion mechanism. However, for the case of carbon 

nanotubes, the diffusion exponent values were estimated in a narrow scale. 
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Table 4-19 Diffusion rate constants, diffusion exponents, and transport mechanism of 

alcohols in CNT 

Alcohol T, ºC k, s
-1

 n R
2
 

Methanol 

26 4.34 x 10
-4

 0.97 0.999 

28 6.51 x 10
-3

 0.95 0.994 

30 5.61 x 10
-3

 0.97 0.994 

32 6.71 x 10
-3

 0.99 0.986 

Ethanol 

26 1.71 x 10
-4

 1.08 0.995 

28 4.51 x 10
-4

 0.94 0.995 

30 1.19 x 10
-3

 0.84 0.995 

32 9.17 x 10
-4

 0.90 0.995 

n-Propanol 

26 2.29 x 10
-4

 1.07 0.996 

28 3.70 x 10
-4

 0.99 0.999 

30 8.04 x 10
-4

 0.92 0.997 

32 5.77 x 10
-5

 1.33 0.993 

n-Butanol 

26 6.19 x 10
-5

 1.21 0.999 

28 6.59 x 10
-5

 1.19 0.997 

30 2.98 x 10
-4

 0.98 0.999 

32 9.03 x 10
-4

 0.90 0.995 
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Table 4-20 Diffusion rate constants, diffusion exponents, and transport mechanism of 

aromatics in CNT 

Aromatic T, ºC k, s
-1

 n R
2
 

Benzene 

26 1.17 x 10
-3

 0.95 0.996 

28 1.09 x 10
-3

 0.98 0.998 

30 4.86 x 10
-3

 1.13 0.993 

32 4.93 x 10
-3

 0.81 0.996 

Toluene 

26 2.49 x 10
-4

 1.13 0.992 

28 2.71 x 10
-4

 1.12 0.991 

30 2.19 x 10
-3

 0.94 0.997 

32 3.37 x 10
-3

 0.94 0.998 

Ethylbenzene 

26 5.56 x 10
-6

 1.56 0.996 

28 2.17 x 10
-5

 1.37 0.994 

30 3.49 x 10
-4

 1.01 0.996 

32 4.48 x 10
-4

 1.03 0.997 

Propylbenzene 

26 3.90 x 10
-6

 1.41 0.995 

28 3.34 x 10
-6

 1.49 0.993 

30 2.60 x 10
-6

 1.56 0.994 

32 1.49 x 10
-4

 1.06 0.997 

o-Xylene 

26 8.05 x 10
-6

 1.47 0.996 

28 6.10 x 10
-5

 1.20 0.997 

30 7.75 x 10
-5

 1.18 0.998 

32 2.28 x 10
-4

 1.05 0.995 

m-Xylene 

26 5.49 x 10-
5
 1.25 0.997 

28 1.94 x 10
-4

 1.07 0.982 

30 4.64 x 10
-4

 0.98 0.994 

32 5.95 x 10
-4

 0.99 0.997 

p-Xylene 

26 1.94 x 10
-4

 1.07 0.993 

28 8.02 x 10
-4

 0.90 0.996 

30 1.35 x 10
-3

 0.82 0.995 

32 6.33 x 10
-3

 0.96 0.993 
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4.3.3.3 Activation Energies of Diffusion in CNT 

The activation energy calculations were done from the graph of lnD versus 1/T for each 

alcohol and aromatic. The results were given in Table 4-21 and 4-22 for alcohols and 

aromatics, respectively.  

The slope of the graphs gave activation energies as 81, 102, 103, 120 kJ/mol for 

methanol, ethanol, n-propanol, n-butanol, respectively in CNTS which were 65, 76, 93 

and 118 kJ/mol for MCM-41. As observed from the results, the energy barrier that an 

alcohol molecule had to overcome to diffuse through MCM-41 and CNT were close to 

each other. It is also observed that larger activation energies result in relatively small 

diffusion coefficients for alcohol diffusion measurements in mesoporous media. For 

both materials, this statement is true within their own results. However, the diffusion 

coefficients of CNTs were much higher than of MCM-41s even though they had the 

same activation energy. That situation might be a result of the smoother surface of 

CNTs which allow the materials diffuse more easily once they overcome the energy 

barrier. 

 It can be concluded that there should be a strong relationship between the chain length, 

critical molecular size on the diffusion coefficients and activation energies. Activation 

energies of alcohols were also in good agreement with the values of diffusion 

coefficients of alcohols such that larger activation energies resulted in smaller diffusion 

coefficients. The activation energy of methanol in MCM-41 was measured to be the 

smallest of alcohols and diffusion coefficients of methanol were the greatest at all 

temperatures. 

The activation energies of aromatics were 163, 190, 245, 261, 189, 169 and 159 kJ/mol 

for benzene, toluene, ethylbenzene, propylbenzene, o-xylene, m-xylene and p-xylene, 

respectively in CNTs as twice as higher than that of in MCM-41s. Even though, the 

diffusion coefficients of aromatics within CNTs were much higher than MCM-41s, the 

activation energies of diffusion were also higher. That is most likely due to the 

interaction between carbon and aromatics in their first contact; once the energy barrier 

was overcome the molecules diffuse more easily on the smooth surface of CNTs. 
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Table 4-21 Activation energies of volatile alcohols in CNT 

Alcohol Ea, kJ/mol 

Methanol 81 

Ethanol 102 

n-Propanol 103 

n-Butanol 120 

 

Table 4-22 Activation energies of volatile aromatics in CNT 

Aromatics Ea, kJ/mol 

Benzene 163 

Toluene 190 

Ethylbenzene 245 

Propylbenzene 261 

o-Xylene 189 

m-Xylene 169 

p-Xylene 159 
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CONCLUSIONS 

 

 

1. MCM-41 mesoporous materials were successfully synthesized in very short 

crystallization times using the microwave method. Apparently, the effect of the 

microwave heating was to accelerate the condensation reactions of the silicate 

network. It is thought that the microwave radiation, by stimulating the water 

molecules around the silicon atoms via vibration and rotation, causes the 

condensation process of the framework to accelerate. 

2. The variation of crystallinity with various reaction conditions suggested that the 

formation mechanism of MCM-41 under microwave heating was similar to that 

observed with conventional oven heating.  

3. High quality MCM-41 hexagonal mesoporous materials of good thermal 

stability were obtained in 30 minutes at 120 Watt by microwave assisted heating 

with specific surface area value of 1438 m
2
/g and average pore diameter of 3.49 

nm.  

4. When the heating time was too long (or temperature was too high) continued 

heating resulted in decomposition of the already formed structure. Continued 

microwave action may cause the meta stable MCM-41 material to collapse into 

a denser phase in the reaction solution, for example by destroying the surfactant. 

5. The samples prepared at 80 Watt for 1 minute and 120 minutes did not give any 

Bragg peaks by XRD analysis. The reason for the initial case was that the time 

was not enough to initiate the formation of ordered structure and also it was 

evidence that no crystalline MCM-41 was formed before the microwave 

treatment. For the latter case over heating resulted in phase deformation. 
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6. A hexagonal phase was already formed after heating the gel at 80 Watt for 20 

minutes. Increasing the microwave power and time first increase the crystallinity 

then decrease it after heating for two hours.  

7. In MCM-41, a strong low angle XRD diffraction pattern was observed at around 

2.50º for 2θ and this was assigned to a (100) reflection from a hexagonal 

arrangement of mesopores. 

8. In N2 adsorption-desorption isotherms, all samples had typical Type IV 

isotherms as expected for mesoporous materials. Between P/P0 0.3-0.4, a well 

defined step occurred, representing the spontaneous filling of the mesopores due 

to capillary condensation. The isotherm corresponding to P/P0 < 0.3 represented 

the monolayer adsorption of N2 on the walls of the mesopores, while that with 

P/P0 > 0.4 represented the multilayer adsorption on the outer surface of the 

materials. The point at which the inflection begins was related to the capillary 

condensation within the uniform mesopores.  

9. For metal incorporated MCM-41 samples, propagation of the metal loading lead 

to a gradual reduction of intensity and a shift towards the lower angles of the 

peak in the 100 plane. The aforementioned reduction of intensity was in 

prospect, as introducing metal based nanoparticles into the pores caused an 

increase in the phase cancelation, and to this respect, reduced scattering 

intensities for the Bragg reflections. 

10. No peaks were observed at high angle XRDs of the metal incorporated 

mesoporous materials which indicates the absence of large crystalline metal or 

metal oxide particles on the silica surface. 

11. The lattice parameters of metal incorporated MCM-41 type mesoporous 

materials were greater than that of pure MCM-41. This was consisted with the 

Metal-O bonds being longer than that of Si-O bonds and gave an evidence of the 

metal incorporation into the framework. 

12. It was also observed that the lattice parameters increased with the metal content 

which indicated that the metal content incorporated in the framework increased 

with increasing amount of metal salt added in the synthesis gel. 

 

 



148 

 

13. TEM analyses of the samples with the highest metal loading confirmed the 

production of nanoparticles on the mesoporous host. 

14. N2 physisorption data showed that a decrease in the pore volume, average pore 

diameter and surface area with increasing metal content in accordance with 

expectations as the amount of the metal species increased within the pores. Also, 

there was a slight shift in the inflection step toward lower P/P0 upon the 

introduction of the material. 

15. For microwave assisted direct synthesis method, Cu-MCM-41 mesoporous 

molecular sieves had specific surface areas in a range of 941–1368 m
2
/g and 

average pore sizes in a range of 3.07–3.49 nm; Ni-MCM-41 mesoporous 

molecular sieves have specific surface areas in a range of 1047-1431 m
2
/g and 

average pore sizes in a range of 3.07-3.51 nm; Co-MCM-41 mesoporous 

molecular sieves have specific surface areas in a range of 1151-1546 m
2
/g and 

average pore sizes in a range of 3.04-3.44 nm; and Fe-MCM-41 mesoporous 

molecular sieves have specific surface areas in a range of 1299-1582 m
2
/g and 

average pore sizes in a range of 3.47-4.01 nm.  

16. For microwave assisted impregnation synthesis method, Cu-MCM-41 

mesoporous molecular sieves had specific surface areas in a range of 837-1481 

m
2
/g and average pore sizes in a range of 3.08-3.52 nm; Ni-MCM-41 

mesoporous molecular sieves have specific surface areas in a range of 1060-

1485 m
2
/g and average pore sizes in a range of 3.49-3.58 nm; Co-MCM-41 

mesoporous molecular sieves have specific surface areas in a range of 656-1420 

m
2
/g and average pore sizes in a range of 3.05-3.43 nm; and Fe-MCM-41 

mesoporous molecular sieves have specific surface areas in a range of 995-1520 

m
2
/g and average pore sizes in a range of 3.46-3.48 nm.  

17. The MCM-41 materials obtained from the direct synthesis method had higher 

specific surface area values compared to impregnated samples. In addition to 

this, impregnated samples had higher metal content compared to samples 

obtained from direct synthesis method. This indicated that, higher amount of 

metal incorporation lead to a decrease in specific surface area values due to 

blockage of pores.  
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18. The diffusion behavior (diffusion coefficients, modes of transport, and the 

activation energies) of linear chain alcohols and aromatic solvents in MCM-41 

were investigated by macroscopic method. Also, diffusion of alcohols in metal 

incorporated MCM-41 with Si/Metal mol ratio of 25, were studied in detail to 

understand the effect of metal in diffusion process. Beside MCM-41, CNTs with 

the same inner mean pore diameter of MCM-41 (4 nm) were used in alcohol and 

aromatic solvent uptake measurements. 

19. As the molecular weight of the alcohols and aromatics increased, diffusion 

coefficients into MCM-41 and CNTs decreased, and the time necessary to reach 

equilibrium increased.  

20. The diffusion of alcohols and aromatics into MCM-41 and CNTs obeyed the 

anomalous transport mechanism. Diffusion rate constants slightly increased with 

increasing temperature. 

21. It is also observed that an increase in molecular weight (or chain length) results 

in an increase in activation energy. Larger activation energies result in relatively 

small diffusion coefficients for alcohol and aromatic diffusion measurements in 

mesoporous media. It can be concluded that there should be a strong relationship 

between the chain length, critical molecular size on the diffusion coefficients 

and activation energies. Activation energies of volatile chemicals were also in 

good agreement with the values of diffusion coefficients such that larger 

activation energies resulted in smaller diffusion coefficients. 

22. The diffusion coefficients of low chain alcohols in MCM-41 and natural zeolites 

with 40.2 % micropores, 57.9 % mesopores and 1.9 % macropores and 59 m
2
/g 

surface area were compared. The diffusion coefficients of methanol, ethanol, 

propanol and n-butanol in natural zeolites were at least 10 times lower than 

those measured for MCM-41. It is clearly seen that, larger pore diameter and 

higher surface area values of MCM-41 make diffusion more suitable for volatile 

substances.  

23. It was interesting to observe that diffusion coefficient of all metal incorporated 

samples were higher than pure MCM-41 due to the increase in active sites. 
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24. When we compare the diffusion coefficients between carbon nanotubes with 

porous carbons, there was a significant difference between the results. The 

diffusion coefficients of carbon nanotubes were 10
3
 times higher than porous 

carbons even though the same operating conditions were performed. It is also 

interesting to compare the diffusion coefficients of alcohols in carbon nanotubes 

with MCM-41. Even though they had the same pore diameter and even MCM-

41 had higher surface area compared to carbon nanotubes, diffusion coefficients 

of alcohols in CNTs were at least 10 times higher than in MCM-41. These 

results can be attributed to the extraordinary smoothness of the potential-energy 

surface defined by carbon nanotubes. 
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APPENDIX A   

 

A.1 Exxon Mobil Patents on Selected Applications of M41S Molecular Sieves [26] 

 Table A-1 Selected Exxon Mobil Patents on Catalytic Applications 

U.S. Patent Number Description 

5,134,243 Olefin Oligomerization over MCM-41 

5,174,888 Organic conversion over M41S 

5,183,561 Hydrocracking using M41S/Zeolite Combined 

Catalyst 

5,196,633 Organic Conversion over MCM-41 

5,238,676 Post-synthesis Addition of Activating Metals 

to M41S 

5,264,641 Aromatic Saturation over M41S Materials 

5,451,312 Use of M41S Materials to Produce Low 

Aromatic Distillates 

5,475,178 Organic Conversion over Heteropoly Acid 

Catalysts Supported on M41S Materials 

5,837,639 Metal-containing M41S Compositions as 

Hydroprocessing Catalysts 

 

 

Table A-2 Selected Exxon Mobil Patents on Other Applications 

U.S. Patent Number Description 

5,143,707 Use of M41S in NOx Reduction 

5,220,101 Sorption/Separation 

5,348,687 M41S Materials Having Nonlinear Optical 

Properties 

5,364,797 Sensor Device Containing M41S 

5,378,440 Separation over M41S Material 
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A.2 TGA analysis of MCM-41 

 

Figure A-1 TGA thermogram of MCM-41 (120/30) 

  

Value: 120.0 °C, 92.55 % 

Value: 950.0 °C, 78.32 % 
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APPENDIX B 

 

B.1 Calculating Diffusion Coefficients  

The uptake measurements of volatile solvents into the mesoporous structures were 

recorded until the equilibrium was attained. As an example, ethanol uptake 

measurement in MCM-41 at 26 ºC was given in Figure B-1.  

 

Figure B-1 Ethanol uptake of MCM-41 at 26 ºC 

All the calculations based on diffusion coefficients and activation energies were 

calculated from the region where diffusion was assumed to be occurred linearly during 

the first 60 percent of the ramp of uptake versus time graph. 

Graphs of Mt/M∞ versus t
1/2

 for the solvent diffusion in mesopores were plotted in order 

to calculate the coefficient of diffusion (Figure B-2). 
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Figure B-2 Mt/M∞ vs. t
1/2

 graph of ethanol diffusion in MCM-41 at 26 ºC 

The slope of this graph was used to calculate diffusion coefficient. 
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B.2 Calculating Diffusion Rate Constants and Diffusion Exponents 

The type of transport mechanisms of volatile solvents in the mesopores of MCM-41 and 

CNT materials were predicted from the values of diffusion rate constants, k, and 

diffusion exponents, n, which were calculated from the graphs of ln(Mt/M∞) vs. ln(t) 

(Figure B-3).  

 

 

Figure B-3 ln(Mt/M∞) vs. ln(t) graph of ethanol diffusion in MCM-41 at 26 ºC 
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APPENDIX C 

 

 

C.1 Diffusion Measurements in MCM-41 

Table C-1 Diffusion coefficients of alcohols in MCM-41 

Alcohols/T 26 °C 28 °C 30 °C 32 °C 

Methanol 4.01 x 10
-13

 4.38 x 10
-13

 8.43 x 10
-13

 9.99 x 10
-13

 

Ethanol 1.83 x 10
-13

 2.34 x 10
-13

 2.70 x 10
-13

 3.38 x 10
-13

 

n-Propanol 8.26 x 10
-14

 1.09 x 10
-13

 1.40 x 10
-13

 1.72 x 10
-13

 

n-Butanol 2.51 x 10
-14

 4.13 x 10
-14

 5.68 x 10
-14

 6.36 x 10
-14

 

 

Table C-2 Diffusion coefficients of aromatics in MCM-41 

Aromatics/T 26 °C 28 °C 30 °C 32 °C 

Benzene 3.96 x 10
-14

 5.47 x 10
-14

 7.38 x 10
-14

 9.52 x 10
-14

 

Toluene 3.79 x 10
-14

 4.35 x 10
-14

 5.94 x 10
-14

 7.85 x 10
-14

 

Ethylbenzene 3.74 x 10
-14

 4.12 x 10
-14

 5.87 x 10
-14

 6.64 x 10
-14

 

Propylbenzene 3.26 x 10
-14

 3.52 x 10
-14

 3.90 x 10
-14

 4.41 x 10
-14

 

o-Xylene 3.68 x 10
-14

 3.96 x 10
-14

 5.21 x 10
-14

 6.50 x 10
-14

 

m-Xylene 3.42 x 10
-14

 3.79 x 10
-14

 4.65 x 10
-14

 6.01 x 10
-14

 

p-Xylene 3.11 x 10
-14

 3.47 x 10
-14

 4.35 x 10
-14

 5.67 x 10
-14
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C.2 Diffusion Measurements in Metal Incorporated MCM-41 

Table C-3 Diffusion coefficients of alcohols in Cu-MCM-41-DS-25 (120/30) 

Alcohols/T 26 °C 28 °C 30 °C 32 °C 

Methanol 8.06 x 10
-13

 8.52 x 10
-13

 9.18 x 10
-13

 1.06 x 10-
12

 

Ethanol 4.12 x 10
-13

 4.99 x 10
-13

 5.23 x 10
-13

 8.34 x 10
-13

 

n-Propanol 2.11 x 10
-13

 2.83 x 10
-13

 3.25 x 10
-13

 3.60 x 10
-13

 

n-Butanol 6.94 x 10
-14

 7.93 x 10
-14

 9.94 x 10
-14

 1.02 x 10
-13

 

Table C-4 Diffusion coefficients of alcohols in Ni-MCM-41-DS-25 (120/30) 

Alcohols/T 26 °C 28 °C 30 °C 32 °C 

Methanol 4.58 x 10
-13

 4.81 x 10
-13

 5.13 x 10
-13

 5.51 x 10
-13

 

Ethanol 2.23 x 10
-13

 3.75 x 10
-13

 3.99 x 10
-13

 5.07 x 10
-13

 

n-Propanol 1.40 x 10
-13

 1.90 x 10
-13

 2.10 x 10
-13

 2.40 x 10
-13

 

n-Butanol 7.85 x 10
-14

 1.16 x 10
-13

 1.29 x 10
-13

 1.39 x 10
-13
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Table C-5 Diffusion coefficients of alcohols in Co-MCM-41-DS-25 (120/30) 

Alcohols/T 26 °C 28 °C 30 °C 32 °C 

Methanol 4.10 x 10
-13

 4.85 x 10
-13

 5.33 x 10
-13

 6.05 x 10
-13

 

Ethanol 2.27 x 10
-13

 3.77 x 10
-13

 3.97 x 10
-13

 4.15 x 10
-13

 

n-Propanol 1.62 x 10
-13

 1.70 x 10
-13

 1.97 x 10
-13

 2.28 x 10
-13

 

n-Butanol 7.77 x 10
-14

 1.14 x 10
-13

 1.47 x 10
-13

 1.62 x 10
-13

 

 

Table C-6 Diffusion coefficients of alcohols in Fe-MCM-41-DS-25 (120/30) 

Alcohols/T 26 °C 28 °C 30 °C 32 °C 

Methanol 2.83 x 10
-13

 2.97 x 10
-13

 3.00 x 10
-13

 4.32 x 10
-13

 

Ethanol 2.24 x 10
-13

 2.70 x 10
-13

 2.86 x 10
-13

 4.05 x 10
-13

 

n-Propanol 1.77 x 10
-13

 2.63 x 10
-13

 2.72 x 10
-13

 2.86 x 10
-13

 

n-Butanol 7.39 x 10
-14

 7.62 x 10
-14

 8.33 x 10
-14

 1.18 x 10
-13
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C.3 Diffusion Measurements in CNT 

Table C-7 Diffusion coefficients of alcohols in CNT 

Alcohols/T 26 °C 28 °C 30 °C 32 °C 

Methanol 5.42 x 10
-12

 5.98 x 10
-12

 7.13 x 10
-12

 9.15 x 10
-12

 

Ethanol 4.03 x 10
-12

 5.09 x 10
-12

 6.75 x 10
-12

 9.00 x 10
-12

 

n-Propanol 3.75 x 10
-12

 4.83 x 10
-12

 6.04 x 10
-12

 8.58 x 10
-12

 

n-Butanol 2.08 x 10
-12

 2.66 x 10
-12

 3.99 x 10
-12

 5.20 x 10
-12

 

 

Table C-8 Diffusion coefficients of aromatics in CNT 

Aromatics/T 26 °C 28 °C 30 °C 32 °C 

Benzene 4.67 x 10
-12

 1.11 x 10
-11

 1.30 x 10
-11

 1.62 x 10
-11

 

Toluene 2.85 x 10
-12

 3.85 x 10
-12

 1.06 x 10
-11

 1.23 x 10
-11

 

Ethylbenzene 2.71 x 10
-13

 4.68 x 10
-13

 1.40 x 10
-12

 4.13 x 10
-12

 

Propylbenzene 1.52 x 10
-13

 2.97 x 10
-13

 4.79 x 10
-13

 1.19 x 10
-12

 

o-Xylene 1.81 x 10
-12

 3.22 x 10
-12

 4.93 x 10
-12

 6.10 x 10
-12

 

m-Xylene 2.22 x 10
-12

 3.75 x 10
-12

 5.42 x 10
-12

 6.75 x 10
-12

 

p-Xylene 2.39 x 10
-12

 4.23 x 10
-12

 6.63 x 10
-12

 9.73 x 10
-12
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