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Abstract

We study the effects of exit threat in continuous two person bargaining games. Players try
to establish reputation of being irrational type who never accepts an offer below his demand
and exits the game at the time he announced in the beginning of the game. We show that a
player becomes advantageous if he is able to threaten with exit time compared to the case
where no one can choose exit time. However, this advantage becomes smaller if his opponent
can also choose exit time to threaten. Moreover, we show that whether players can choose exit
time or not, a player’s payoff is decreasing with his discount rate and the initial probability
of his opponent’s irrationality and increasing with the discount rate of his opponent and the
initial probability of his irrationality.

In this thesis we use Matlab program for computation. Detailed information and program
codes can be found in the file named codes.
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TERK ETME TEHDİDİ İLE PAZARLIK

Mustafa Emre Demirel

Ekonomi Yüksek Lisans Tezi, 2012

Tez Danışmanı: Selçuk Özyurt

Anahtar Kelimeler: Pazarlık; Ün; Sinir Harbi; Terk Etme Tehdidi; İrrasyonel Tipler.

Özet

Bu tezde, terk etme tehdidinin iki kişilik sürekli zaman pazarlık oyununa etkileri analiz
edilmektedir. Oyuncular kendilerininin irrasyonel tipler olarak tanınması için çaba sarfed-
erler. İrrasyonal tipler kendi taleplerinin altında hiçbir öneriyi kabul etmeyenler ve oyunun
başında açıkladıkları zaman geldiğinde oyunu terk eden tiplerdir. Bu tezde, sadece bir oyuncu
terk etmekle tehdit edebildiği zaman, o oyuncu tehdit olmayan duruma göre daha avantajlı
olduğunu gösteriyoruz. Fakat, diğer oyuncu da tehdit etme hakkına sahip olduğu zaman bu
avantaj küçülmektedir. Ayrıca dengede bir oyuncunun alacağı beklenen getirisinin o oyuncu-
nun geleceği iskonto oranı arttıkça veya diğer oyuncunun irrasyonel tip olma olasılığı arttıkça
azalmakta olduğunu, fakat bu getirinin rakip oyuncunun geleceği iskonto oranı arttıkça veya
kendisinin irrasyonel olma ihtimali arttıkça artmakta olduğunu gösteriyoruz.

Bu tezde hesaplamalar için Matlab programı kullanılmaktadır. Ayrıntılı bilgi ve program
kodları codes isimli dosyada bulunmaktadır.
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1 Introduction

Division of surplus is one of the most important issues in economics. It is a central issue
for human beings, firms, states, even for animals. While some bargaining problems may be
resolved immediately, some may continue for a while, even forever. In the bargaining which
is not resolved immediately, one of the agents who bargain may threaten the others by saying
that they will stop bargaining at a certain time if a solution is not reached by that time. Such
a threat is often encountered in bargaining problems. The one who threatens to exit may gain
advantage of from this or he may lose advantage. A rational player, who wants to maximize
his payoff never leaves the game. So, for such a threat to work a player must either be a type
who certainly leaves the game at the specified time when he threatens or a rational player
who mimic the former type. So, we use irrational types our model who leaves the bargaining
game at the time he specified to leave the game and never accepts an offer which gives him
a share less than his demand. The probability of one’s being a irrational type is the main
determinant of the outcome.

There is huge literature for bargaining. It generally asks the following question. One unit
of surplus will be shared by two agents, how will they share it? Many factors may affect the
bargaining outcomes, namely the way they share the surplus. We want to show what hap-
pens if players may use the threat of leaving the game by using their reputation. Rubinstein
(1982), in his seminal paper, explains how players’ impatience determines bargaining out-
comes. Abreu&Gul (2000) and Kambe (1999) emphasize the role of reputation along with
impatience. In their models each player is an irrational type with a small probability. They
use simple irrational types; an irrational type never accepts an offer below his demand. Our
model, in essence, is similar to the models in Abreu&Gul (2000) and Kambe (1999), but the
main difference in our model is that an irrational player announces an exit time and he really
exits at this time and rational players may mimic the irrational types by pretending they have
a fixed acceptance rule like irrational types and by threatening their opponents with an exit
time.

In Section 2 we explain the model. In Section 3, we investigate the equilibrium of the
game where players do not choose exit time. In Section 4, we investigate the case where
only player 1 can choose an exit time to threat. In Section 5, we show the complete model:
both players can choose exit time. In, Section 6 we compare the results of the models. In
Appendix, there are proofs that are not given in the main text.
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2 The Model

We investigate a continuous time bargaining game with threat of exit. There are two players,
i = 1, 2, who try to split one unit of surplus (From now on player i′s opponent will be called
as player j). In the beginning of the game each player i chooses a demand αi ∈ (0, 1)

for i ∈ {1, 2}. We call (α1, α2) as a demand profile. Then players’ choices are publicly
observed. If α1 + α2 ≤ 1 each player gets his demand and then the remaining surplus is
divided equally, i.e., each player i gets (1 + αi − αj)/2. If α1 + α2 > 1, bargaining will
continue as a continuous time war of attrition game on [0,∞). Before the war of attrition
starts, player i chooses a quitting time Ki ∈ [0,∞] for i ∈ {1, 2}. Normally players are
rational, that is, each player maximize his discounted expected utility. But, with probability
zi ∈ (0, 1), player i is replaced by an “irrational” type. An irrational type always offers his
initial demand, accepts any offer weakly more than his initial demand and never accepts a
lower offer. Moreover, he leaves the bargaining game at time Ki, he announced at time 0 (a
rational player never leaves the game). Then the war off attrition starts. In the war of attrition
game, if a player accepts and his opponent waits he gets what his opponent offers and his
opponent gets what he had demanded. In case of simultaneous acceptance each player gets
what his opponent offer and the remaining surplus is shared equally. If a player leaves the
bargaining game without an agreement, both players get their outside option which is 0 for
both player. The game ends when one player accepts his opponent’s offer or when one of the
players leaves the game. If player i choose to accept player j’s offer and player j choose to
leave the game at the same, game will be over by the acceptance of player i. Finally each
player i discounts time by rate ri ∈ (0,∞). So, if the game ends by acceptance of player i, he
will get (1− αj) and his payoff will be e−rit(1− αj) and player j will get αj and his payoff
will be e−rjtαj. Note that ri < rj means player j discounts future more, that is he is more
impatient than player i.

Since the game is continuous there are measure theoretic problems in defining the strate-
gies. To overcome such technical issues we introduce 2 stages at time Ki. In stage 1 both
players can accept their opponents’ offer or wait. Moreover player i can leave at this time.
(If player j chooses to accept and player i chooses to leave, game will be over by player j’s
acceptance). If player j chooses to wait and player i chooses to leave, then the game will
be over by leaving of player i (both player get zero payoff). Irrational player i leaves the
bargaining game at stage 1 of Ki . Therefore at the beginning of stage 2, rational player i’s
rationality will be common knowledge. (from now on, K1

i and K2
i will represent stage 1 of

Ki and stage 2 of Ki, respectively). If player i is rational, he does not leave the game at his
exit time Ki since his outside option is zero.
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Strategy of player i is defined by a demand αi ∈ (0, 1), exit timeKα1,α2

i for each (α1, α2),
cumulative distribution functions Fα1,α2,K1,K2

i (t) on [0, K1] where K = min{K1, K2} for
each (α1, α2, K1, K2) and acceptance behavior after time K . The value Fi(t) gives the prob-
ability of player i′s acceptance by time t (inclusive). (From know on we will hide the depen-
dence of the strategies, that is Ki and Fi will denote Kα1,α2

i and Fα1,α2,K1,K2

i respectively).
Fi is a weighted avarage of rational player i’s strategy and irrational l player i’s strategy, it
is actually the acceptance behavior of player i which player j believes. Rational player i′s
acceptance behavior is described by Fi(t)/(1− zi) on [0, K1], he never accepts after time K1

if K < Ki and he fully accept at time K2 if K = Ki. A player’s acceptance behavior after
time K is always the same, so from now we will not explicitly write it.
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3 No Exit Time

For now suppose that no player chooses an exit time. This is the case in Abreu&Gul(2000)
and Kambe(1999). Players choose their demands in the beginning of the game. If the de-
mands compatible each player gets his demand and the remaining surplus is shared equally.
If demands are not compatible, then war of attrition starts.

3.1 War Of Attrition Stage

Suppose demands α1, α2 given. If α1 + α2 ≤ 1, the games ends at time 0 and player
i gets a share (1 + αi − αj)/2 for i ∈ {1, 2}. So, we assume α1 + α2 > 1. Define λi =

rj(1 − αi)/(α1 + α2 − 1), Ti = − log(zi)/λi and T0 = min{T1, T2} for i ∈ {1, 2} and
i 6= j. Now let F̂i = 1− cie−λit where ci = zie

λiT0 for t ≤ T0 and F̂i(t) = 1− zi for t ≥ T0

for i ∈ {1, 2}.
We use Abreu and Gul’s result for this case. Proof can be found in Abreu and Gul, 2000.

Lemma 1 (Abreu and Gul, 2000) . Given demand profile (α1, α2) such that α1 + α2 > 1,

(F̂1, F̂2) is the unique equilibrium in the war of attrition stage.

The strategies F̂1 and F̂2 imply that i) at most one player accepts with positive probability
at time zero, ii) each player i accepts at rate λi until time T0 and iii) after time T0 no player
accepts. Player i accepts with positive probability at time zero if Ti > T0 and accepts with
zero probability at time zero if Ti = T0.

Claim 1 . In this equilibrium player j′s expected payoff is given by

Uj = (1− ci)αj + ci(1− αi) (1)

Proof: At time 0 player j gets his demand with probability Fi(0) so he has an expected payoff
equal to Fi(0)αj for time 0. After time 0 player j expects a payoff is equal to (1− αi) since
player j accepts his opponent offer continuously including time 0 and the game continues to
after time 0 with probability (1−Fi(0)). Thus, player j′s expected payoff is Uj = Fi(0)αj +

(1−Fi(0))(1−αi) = (1− ci)αj + ci(1−αi Note that Uj is equal to (1−αi) if Tj ≥ Ti and
more than (1− αi) if Tj < Ti.
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3.2 Demand Stage

Now we investigate equilibrium demands α1 and α2. Players choose their demands simulta-
neously knowing what will be continuation strategies F1, F2 thereafter. Define

ᾱi =
rj log(zj)

ri log(zi) + rj log(zj)
(2)

for i ∈ {1, 2}.

Proposition 1 . The demand profile (ᾱ1,ᾱ2) forms an equilibrium.

Proof : See Appendix.
Since ᾱ1+ ᾱ2 = 1, each player gets his demand at the beginning of the game and war of

attrition does not occur. So, the equilibrium is efficient. Player i′s share, ᾱi is increasing with
zi and rj, and decreasing with ri. That means player i becomes better off as his probability of
irrationality increases. Also he becomes better off if he becomes more patient or his opponent
becomes less patient.

3.2.1 Other equilibria

Although (ᾱ1, ᾱ2), there are many other equilbria. To give the idea we give an example:
Example 3.1: Let z1 = 0.001, z2 = 0.1, r1 = 0.7 and r2 = 0.7. Then, in the equilibrium

of Proposition 1, player 1 demands 0.25 and player 2 demands 0.75 and their payoffs are the
same as their demands. However, there are other equilibria in which player 1′s payoff varies
between 0.25 and 0.259 and player 2′s payoff varies between 0.741 and 0.75. The equilibrium
demands are illustrated in figure 1.
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Figure 1: Equilibrium Demands for z1=0.001,z2=0.1,r1=0.7,r2=0.7

4 Only Player 1 Can Choose Exit Time

Suppose now that only player 1 can choose exit time to threaten his opponent. From now
on we simply denote K as player 1′s exit time. So, F1 and F2 are functions on [0, K1]. If
α1 + α2 ≤ 1, there is no dispute so the game ends with the payoffs described above. Now
we try to find equilibrium α1, α2 , K

α1,α2 for each (α1 , α2) and F (α1 ,α2)

1 , F
(α1 ,α2)

2 for each
(α1 , α2, K).

4.1 War of Attrition Stage

Here, we investigate the strategies in the war of attrition game. The demand profile (α1, α2)

and exit time K are given. Throughout this section we assume that α1 + α2 > 1.

We first look 3 main cases: K = 0, 0 < K < T0 and K ≥ T0.

Case 1: K = 0

Suppose (α1, α2) has been announced and then player 1 announces that he will exit at
time 0. If no agreement is reached at time 01, player 1, if irrational, exits the game at this time
and if rational he accepts his opponent’s offer at time 02, since his rationality is revealed and
a rational player does want to delay the acceptance. So, the game will be over at time 01 or
02. To simplify the strategies, define µi(t) be the acceptance rate of rational player i at time
t. In this subsection will use the function µ to show the strategies. At time 01 and time 02 a
rational player chooses to accept or wait.

Lemma 2 . Suppose (α1, α2) given such that α1 + α2 > 1 and K = 0. Then, in any equilib-

rium µ1(0
2) = 1 and µ2(0

2) = 0
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Proof: It is obvious by the above analysis.
Now the players’ actions in the stage 2 is determined. So,players′ expected payoff by

choosing “accept” or “wait” are given by the following equations.

U1(accept) = (1− z2)µ2(0
1)

(1 + α1 − α2)

2
+ (1− z2)(1−µ20

1))(1−α2) + z2(1−α2) (3)

U1(wait) = (1− z2)µ2(0
1)α1 + (1− z2)(1− µ20

1))(1− α2) + z2(1− α2) (4)

U2(Accept) = (1− z1)µ1(0
1)

(1 + α2 − α1)

2
+ (1− z1)(1− µ10

1))(1− α1) (5)

U2(Wait) = (1− z1)α2 (6)

Define z∗1 = (α1 + α2 − 1)/α2. This is the probability that is just enough to make player
2 to accept player 1 offer at the exit time. Suppose player 1 is irrational with probability z1 in
the beginning of the game and K = 0. So, if z1 > z∗1 , player 2 accepts the offer, if z1 = z∗1 ,
player 2 is indifferent between accepting and waiting. Finally if z1 < z∗1 , player 2 does not
accept the offer. Here are the details.

Case 1.1: z1 > z∗1

Lemma 3. If z1 > z∗1 , there is a unique equilibrium in which µ1(0
1) = 0, µ1(0

2) = 1,

µ2(0
1) = 1 and µ2(0

2) = 0 .

Proof: See Appendix. In this equilibrium, expected payoffs:

U1 = (1− z2)α1 + z2(1− α2) > (1− α2) and U2 = (1− α1) (7)

Case 1.2 z1 < z∗1

Lemma 4. If z1 < z∗1 , the set of equilibrium is {(µ1(0
1), µ2(0

1), µ1(0
2), µ2(0

2)) ∈ [0, 1]4 :

µ1(0
1) ≤ 2[1− z1(1−α1)

(1−z1)(α1+α2−1) ], µ2(0
1) = 0, µ1(0

2) = 1 and µ2(0
2) = 0}

Proof: See Appendix.
In this equilibria, expected payoffs

U1 = (1− α2) and U2 = (1− z1)µ1(0
1)α2 (8)

Case 1.3 z1 = z∗1

7



Lemma 5. If z1 = z∗1 , the set of equilibrium is {(µ1(0
1), µ2(0

1), µ1(0
2), µ2(0

2) ∈ [0, 1]4 :

µ1(0
1) = 0, µ1(0

2) = 1 and µ2(0
2) = 0}

Proof: See Appendix.
In this equilibria, expected payoffs

U1 = (1−z2)µ2(0
1)α1+[(1−z2)(1−µ2(0

1))+z2](1−α2) and U2 = (1−α1) = (1−z1)α2

(9)
Define ẑi(t) = z1/(1 − Fi(t)). This shows the way the reputations update. ẑi(t) is prob-

ability of irrationality of player i by time t, that implies that at any time t′ > t, player j
believes that player i is irrational with probability ẑi(t). At time 0 player j believes that
player i is irrational with probability z1. Now suppose that exit time is K. At time K1, player
2 gets a share of (1 − α1) if the accepts, and gets an expected share of (1 − ẑi(K

1))α2

if he waits. He weakly prefers accepting if and only if the former is not less the latter, i.e.,
ẑi(K

1) ≥ (α1+α2−1)/α2.Recall that z∗1 = (α1+α2−1)/α2, so if player 1’s reputation reach
at least z∗1 by the exit time K1, player 2 weakly prefers accepting to waiting at the exit time (
if the inequality is strict, player 2 strictly prefers accepting ). Let T ∗ = − log(z1/z

∗
1)/λ1.

Case 2: 0 < K < T0

Lemma 6 . F1, F2 are equilibrium strategies in the war of attrition game only if Fi(t) =

1− cie−λit where ci ∈ [0, 1] with (1− c1)(1− c2) = 0, for t ∈ [0, K) and i ∈ {1, 2}.

Proof : See Weiss at all (1988).
At time 0, Fi can jump for at most one player i by (1 − c1)(1 − c2) = 0 condition. So,

F1 and F2 are continuous and strictly increasing on [0, K). By claim 1, in any equilibirum
expected payoff of player j is given by

Uj = (1− ci)αj + ci(1− αi) (10)

Case 2.1 K < T ∗

Lemma 7. If 0 < K < T ∗ and K < T0, then in equilibrium F1(t) = 1 − z1
z∗1
eλ1(K−t) for

t ∈ [∈ 0, K1] and accepting with probability 1 at time K2, and F2(t) = 1 − e−λ2t for

t ∈ [∈ 0, K1] and never accepting starting from time K2.

Proof: See Appendix.
Lemma 6 and equation 3 implies that expected payoffs are such that

U1 = (1− α2) (11)

8



U2 = (1− z1
z∗1
eλ1K)α2 +

z1
z∗1
eλ1K(1− α1) (12)

the latter is greater than (1− α1) since z1
z∗1
eλ1K < 1.

Case 2.2 K > T ∗

Lemma 8. If K > T ∗ and 0 < K < T0, in equilibrium player 1’s strategy is F1(t) =

1− c1e−λ1t for t ∈ [∈ 0, K1] where c1 = 1 and accepting with probability 1 at time K2, and

player 2’s strategy is F2(t) = 1 − c2e−λ2t for t ∈ [∈ 0, K1] where c2 = z2e
λ2K and never

accepting starting from time K2.

Proof: See Appendix
Lemma 6 and equation 3 implies that expected payoffs are such that

U1 = (1− z2eλ2K)α1 + z2e
λ2K(1− α2) (13)

U2 = (1− α1). (14)

the former is more than (1−α2) since K < T0 and it less than (1− z2)α1 + z2(1−α2) since
K > 0.

Case 2.3 K = T ∗

Lemma 9 . If K = T ∗ and K > 0, then in equilibrium player 1’s strategy is F1(t) =

1− c1e−λ1t for t ∈ [∈ 0, K1] where c1 = 1 and accepting with probability 1 at time K2, and

player 2’s strategy is F2(t) = 1 − c2e
−λ2t for t ∈ [∈ 0, K1] where c2 ∈ [zz(

z∗1
z1

)
λ2
λ1 , 1] and

never accepting starting from time K2.

Proof: See Appendix.
Lemma 6 and equation 3 implies that expected payoffs are such that

U1 = (1− c2)α1 + c2(1− α2) (15)

U2 = (1− α1) (16)

the former is more than (1− α2) if c2 < 1 and equal to (1− α2) if c2 = 1.

Case 3: K ≥ T0
By lemma 6, in any equilibrium, Fi(t) = 1− cie−λit for t ∈ [0, K) and i ∈ {1, 2}, where

ci ∈ [0, 1] with (1− c1)(1− c2) = 0

Lemma 10 . If K ∈ [T0,∞) , in equilibrium player i’s strategy is Fi(t) = 1 − cie−λit for

t ∈ [∈ 0, K1] where ci = z1e
λiT0 and never accepting starting from time T0 for i ∈ {1, 2}.

9



Proof: See Appendix.
To summarize the payoffs in this equilibria, consider two cases:

Case 3.1 T2 ≤ T1

In this case c2 = 1 since T2 = T0. Then, c1 = z1z
−λ1
λ2

2 by lemma 10. So, by equation 3
expected payoffs are such that

U1 = (1− α2) and U2 = (1− z1z
−λ1
λ2

2 )α2 + z1z
−λ1
λ2

2 (1− α1) (17)

Case 3.2 T2 > T1

In this case c2 = z2z
−λ2
λ1

1 , which is less than 1 since T2 > T0. So, by equation 3 expected
payoffs are such that

U1 = (1− z2z
−λ2
λ1

1 )α1 + z2z
−λ2
λ1

1 (1− α2) and U2 = (1− α1) (18)

The next table summarizes the expected payoff of player 1 in all the equilibria shown
above.

Case U1

1.1 : K = 0 and z1 > z∗1 (1− z2)α1+z2(1− α2)

1.2 : K = 0 and z1 < z∗1 (1− α2)

1.3 : K = 0 and z1 = z∗1 (1− z2)µ2(0
1)α1 + [(1− z2)(1− µ2(0

1)) + z2](1− α2)

2.1 : 0 < K < T0 and K < T ∗ (1− α2)

2.2 : 0 < K < T0 and K > T ∗ (1− z2eλ2K)α1+z2e
λ2K(1− α2) :

2.3 : 0 < K < T0 and K = T ∗ (1− c2)α1 + c2(1− α2) : c2 ∈ [zz(
z1
z∗1

)
−λ2
λ1 , 1]

3.1 : K ≥ T0 and T2 ≤ T1 (1− α2)

3.2 : K ≥ T0 and T2 > T1 (1− z2z
−λ2
λ1

1 )α1+z2z
−λ2
λ1

1 (1− α2)

4.2 Exit Time Stage

Now, given α1, α2 ∈ (0, 1) such that α1 + α2 > 1, we investigate the equilibrium exit time
K which is chosen by player 1. In section 4.1 we’ve determined the continuation strategies
F1, F2 after α1, α2 and K are announced. So, when player 1 chooses K, the demands α1, α2

has already been announced and the continuation strategies of strategies F1, F2 which will be
in the war of attrition game is known .

Exit time chosen by player 1 depends on the initial probability of player 1′s irrationality,
z1. We have four different cases.

10



Case A.1: z1 > z∗1 . In this case, initial probability player 1’s irrationality is high enough
to make player 2 accept at any exit time. He optimally chooses not to delay the exit time.

Proposition 2 . If z1 > z∗1 , in equilibrium player 1 chooses K = 0.

Proof: See Appendix.
In this case, equilibrium expected payoffs:

U1 = (1− z2)α1 + z2(1− α2) and U2 = (1− α1) (19)

Case A.2: z1 = z∗1 . In this case, initial probability player 1’s irrationality is just enough
to make player 2 indifferent between accepting or waiting at exit time 0 . So, he chooses exit
time 0 only if player 2 accepts his offer at time 0.

Proposition 3 . If z1 = z∗1 , in equilibrium player 1 chooses K = 0 and in equilibrium only if

player 2′s strategy µ2(0
1) = 1.

Proof: See Appendix. µ1(0
1) = 0, µ2(0

1) = 0, µ1(0
2) = 1 and µ2(0

2) = 0.

In this case, equilibrium expected payoffs: U1 = (1−z2)α1+z2(1−α2) and U2 = (1−α1)

Case A.3: z∗1z
λ1
λ2
2 < z1 < z∗1 . In this case, in this case, initial probability player 1’s

irrationality is not enough to make player 2 to accept at exit time 0, so player 1 chooses time
K = T ∗ which is enough time for player 1 to build a reputation that makes player 2 not to
wait at the exit time.

Proposition 4 . If z1 ∈ (z∗1z
λ1
λ2
2 , z∗1), Then, in equilibrium K = T ∗, F1(t) = 1 − e−λ1t for

t ∈ [∈ 0, K1] and F2(t) = 1− zz( z1z∗1 )
−λ2
λ1 e−λ2t for t ∈ [0, K).

Proof: See Appendix.
In this case, Case 2.3 happens since T ∗ ∈ (0, T0). So equilibrium expected payoffs:

U1 = (1− zz(
z1
z∗1

)
−λ2
λ1 )α1 + zz(

z1
z∗1

)
−λ2
λ1 (1− α2) and U2 = (1− α1) (20)

Case A.4 : z1 ≤ z∗1z
λ1
λ2
2 . In this case, in this case, initial probability player 1’s irrational-

ity is so low that he must choose K ≥ T0 to build a reputation that makes player 2 not to wait
at the exit time. But then player 1 is no longer advantageous.

Proposition 5 . If z1 ≤ z∗1z
λ1
λ2
2 , then in equilibrium we have K ∈ [0,∞] is an equilibrium.

11



Proof: In this case T ∗ ≥ T0 and T1 > T2. If player 1 chooses K = 0, it will fall into case

1.2 so payoff of player 1 will be (1 − α2). If he chooses K < T0, it will fall into case 2.1

so the payoff is (1− α2). And finally if he chooses K ≥ T0, it will fall into case 3.1 so again

the payoff is (1 − α2). Thus, if z1 ≤ z∗1z
λ1
λ2
2 any K ∈ [0,∞] is an equilibrium. In this case,

equilibrium expected payoffs:

U1 = (1− α2) and U2 = (1− z1z
−λ1
λ2

2 )α2 + z1z
−λ1
λ2

2 (1− α1)

4.3 Demand Stage

Now we investigate equilibrium demands α1 and α2. We’ve determined continuation strate-
gies F1, F2 in section 4.1 and K in section 4.2. So, when players choose the demands, then
they know the continuation strategies F1, F2 and K.

We have defined before z∗1 = α1+α2−1
α2

= and z∗1z
λ1
λ2
2 = α1+α2−1

α2
z
r2(1−α1)
r1(1−α2)
2 both z∗1 and

z∗1z
λ1
λ2
2 depend on α1 and α2, so in the equilibrium path exit time depends on these demands

(see Section 4.2). Thus, players also consider this while they are choosing their demands.

Lemma 11 . In any equilibrium player, 1 always demands α1 such that z1 ∈ (z∗1z
λ1
λ2
2 , z∗1).

Proof: See Appendix.

Proposition 6. Suppose (α∗1, α
∗
2) is the equilibrium demand profile. Then, the following con-

ditions are satisfied:

i) α∗1 = arg max V ∗1 (α1, α
∗
2) = (1−zz(α1+α∗

2−1
z1α∗

2
)
r1(1−α

∗
2)

r2(1−α1) )α1+zz(
α1+α∗

2−1
z1α∗

2
)
r1(1−α

∗
2)

r2(1−α1) (1−α∗2)
ii) α∗2 = arg max V ∗2 (α∗,α2

1 ) = arg max (1− α∗1)

iii) z1 ∈ (z∗1z

λ∗1
λ∗2
2 , z∗1).

Proof: See Appendix.

Remark 1. In any equilibrium z1 ∈ (z∗1z
λ1
λ2
2 , z∗1), then we have K = T ∗ which is greater than

zero. Thus, equilibrium exhibits delay

Condition ii) and iii) of proposition 6 implies that in equilibrium player 1′s demand must
be such that player 2 cannot gain more than player 1 offers to him. This prevent player 1 to
make excessive demands. The next remark gives the boundary.

Remark 2 . In any equilibrium, there is a level αu1 ∈ (0, 1) such that α∗1 < αu1 .

Proof: As α1 goes to 0, supα2∈(1−α1,1)z
∗
1z

λ1
λ2
2 < 0 and as α1 goes to 1,supα2∈(1−a1,1)

z∗1z
λ1
λ2
2 = 1.Then, since z∗1z

λ1
λ2
2 continuously increasing in α1, there exists α′1 ∈ (0, 1) such

12



that when α1 < α′1, supα2∈(1−α1,1) z
∗
1z

λ1
λ2
2 < z1. So, when α1 < α′1, for any α2 ∈ (0, 1),

z1 ∈ (z∗1z
λ1
λ2
2 , 1). Define αu1 = supα′1. If α∗1 > αu1 , then by definition of αu1 , there exists some

α2 ∈ (0, 1) such that z∗1z
λ1
λ2
2 ≥ z1. But, this contradicts with the proposition.

Remark 3. When z2 is constant, as z1 goes to zero, αu1 goes to 0, then expected payoff of

player 1 goes to 0. And conversely when z1 is constant, as z2 goes to zero, αu1 goes to 1, then

expected payoff of player 1 goes to 1.

Proof: αu1 is defined such that when α1 < αu1 , supα2∈(1−α1,1)z
∗
1z

λ1
λ2
2 < z1. Take some

α1 ∈ (0, 1), if z1 becomes small enough, supα2∈(1−α1,1)z
∗
1z

λ1
λ2
2 ≥ z1. But for some smaller α1,

supα2∈(0,1) z
∗
1z

λ1
λ2
2 < z1 since z∗1z

λ1
λ2
2 is increasing in α1. This proves the first part. Second part

is proven similarly.

4.4 Examples

Example 4.1: An Illustration of the Equilibria (Figure 2)

There are multiple equilibrium for demands. So we give an illustration of the equilibrium
demands. I set parameters such that z1 = z2 = 0.1 and r1 = r2 = 0.7 .The demands were
generated using Matlab program. In the figure BRi(α2) is best response function of player i
which gives optimal αi for each value of αj for i, j ∈ {1, 2}. For each α2 ∈ (0, 1), BR1(α2)

is found by the program by choosing α1 such that z1 ∈ (z∗1z
λ1
λ2
2 , z∗1) and it maximizes V1 =

(1− zz( z1z∗1 )
−λ2
λ1 )α1 + zz(

z1
z∗1

)
−λ2
λ1 (1− α2). V1 is 1′s equilibrium expected payoff for Case A.3

in which 1 get more payoff than any other case and z1 ∈ (z∗1z
λ1
λ2
2 , z∗1) implies Case A.3 will

happen. Similarly for each α1 ∈ (0, 1), BR2(α1) is found by the program by choosing

α2 ∈ (0, 1) that makes z∗1z
λ1
λ2
2 ≥ z1 and maximizes U2 = (1− z1z

−λ1
λ2

2 )α2 + z1z
−λ1
λ2

2 (1− α1),
where V2 is 2′s payoff in Case A.4 in which 2 gets more payoff than any other case. If there

is no α2 ∈ (0, 1) such that z∗1z
λ1
λ2
2 ≥ z1, then BR2(α1) = (0, 1) since if z∗1z

λ1
λ2
2 < z1 player 2

is indifferent between all of his demands. The red curve in the figure shows the points where
the best response functions intersects, thus any point (α2, α1) in the red curve represents an
equilibrium for demands. In this example, αu1 = 0.7, so by the remark 2, in any equilibrium
α∗1 < 0.7.

Example 4.2: Let z1 = z2 = 0.1 and r1 = r2 = 0.7. Here, one of the equilibrium

demands are such that: α1 = 0.6143 and α2 = 0.562. Then z∗1z
λ1
λ2
2 = 0.0412 and z∗1 =

0.3137, so z1 ∈ (z∗1z
λ1
λ2
2 , z∗1) as Lemma suggests. Then we are in Case A.3, so in equilibrium

K = T ∗ = 0.7465. F1, F2 are as described by Case 2.3. Until time 0.7465 at least one of

13
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Figure 2: Equilibrium Demands for z1=0.1,z2=0.1,r1=0.7,r2=0.7

the players accepts his opponents offer, or player 1 leaves the game at time 0.7465. The game
ends with player 1′s left only if both players are irrational which happens with probability
0.01. Expected utilities are U1 = 0.5497 and U2 = 0.3857. Since U1 + U2 = 0.9354 < 1,
there is an inefficiency of amount 0.0646.

Example 4.3: First part of Remark 3 says at when z1 decreases relative to z2, player
1 becomes less advantageous. In Figure 3, this point is illustrated: when z2 is constant, as
z1 decreases to zero, αu1 decreases to zero and equilibrium demands becomes very to zero,
hence any payoff of player 1 in the equilibria becomes very close to zero and so any payoff
of player 2 in the equilibria becomes very close to 1. In the figure, the dashed lines shows αu1
for each z1 and the solid lines gives equilibria for demands for each z1. We find the numerical
results and create the figure by using Matlab program. In this example parameters are such
that z2 = 0.1, r1 = 0.7 and r2 = 0.7 while z1 takes four different values; 0.1, 0.01, 0.000001

and 0.0000000001. Note that even if player 1’s payoff is very close to zero, it is still strong,
i.e., player 2’s payoff is equal to (1− α1).

Example 4.4: The second part of Remark 3 says at when z2 decreases relative to z1, player
1 become more advantageous. In Figure 4, this point is illustrated: when z1 is constant, as
z2 decreases to zero, αu1 goes to 1 and equilibrium demands equilibrium demands becomes

14
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Figure 3: Eqm Demands and αu1 for each z1

very to 1, hence any payoff of player 1 in the equilibria becomes very close to 1 and so any
payoff of player 2 in the equilibria becomes very close to 0. In the figure, the dashed lines
shows αu1 for each z2 and the solid lines gives equilibria for demands for each z2. We find the
numerical results and create the figure by using Matlab program. In this example parameters
are such that z1 = 0.1, r1 = 0.7 and r2 = 0.7 while z2 takes four different values; 0.1, 0.01,

0.000001 and 0.0000000001.
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Figure 4: Eqm Demands and αu1 for each z2

5 Both Players Can Choose Exit Time

Now we allow both players to use the threat of exit. If α1 +α2 ≤ 1, there is no dispute so the
game ends immediately. Now we try to find equilibrium values of demands α1, α2, exit time
K

α1,α2

1 for each (α1 , α2) and cumulative distribution functions F (α1 ,α2,K1,K2)

1 , F
(α1 ,α2,K1,K2)

2

for each (α1 , α2, K1, K2)

IfKi < Kj , then player j’s exit time threat is not effective since either player i is irrational
and exits the game at time Ki or he is rational and fully accepts at time Ki. So, equilibrium
strategies in the war of attrition game are the same as the strategies in the game with only
player i can choose exit time (see Section 4.1).

When only player i can choose exit time, given the demands, his optimal exit time K∗i =

max{0, T ∗i } by section 4. The same is true for this case, that is if T ∗i < T ∗j , then K∗i = T ∗i .

So, if (α1 , α2) such that T ∗i < T ∗j , then player i′s exit threat is valid so he gets the payoff
specified in section 4 and player j gets a payoff of (1−αi). In this case equilibrium demands
are not unique so we give illustrations of the equilbria of demands.

Example 5.1: Let z1 = z2 = 0.1, r1 = 0.7 and r2 = 0.7. Then each player gets a payoff
between 0.39 and 0.5. The equilibrium is illustrated at figure 5.
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Figure 5: Equilibrium Demands for z1=0.1,z2=0.1,r1=0.7,r2=0.7

Example 5.2: Let z1 = z2 = 0.1, r1 = 5 and r2 = 0.7. Then player 2 has a payoff
between 0.645 and 0.671 and player 1 has a payoff between 0.26 and 0.33. When we compare
these results to example 5.1 we see that since r1 has increased player 1’s payoff decreases
and player 2’s payoff increases. The equilibrium is illustrated at figure 6.

Figure 6: Equilibrium Demands for z1=0.1,z2=0.1,r1=5,r2=0.7

Example 5.3: Let z1 = 0.001, z2 = 0.1, r1 = 0.7 and r2 = 0.7. Then player 2 has a
payoff between 0.772 and 0.796 and player 1 has a payoff between 0.188 and 0.202. When
we compare these results to example 5.1 we see that since z1 has decreased, player 1’s payoff
decreases and player 2’s payoff increases.. The equilibrium is illustrated at figure 7.
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Figure 7: Equilibrium Demands for z1=0.001,z2=0.1,r1=0.7,r2=0.7

6 Comparison Between the Models

In this section we compare the models. We calculate expected payoff of players for each
model and for different parameters. We compute the equilibriums by using the results of this
paper and matlab code which helps to figure out multiple equilibria.

6.1 Symmetric Players

Example 6.1: Let z1 = z2 = 0.1 and r1 = r2 = 0.7. If no player can choose exit time as
in Section 3, in equilibrium each player gets a payoff between 0.47 and 0.5 . When only
player 1 can choose an exit time as in Section 4, his equilibrium payoff is at least 0.514 while
payoff of player 2 is less than 0.5. Finally, when both players can choose exit time as in
Section 5, each player’s equilibrium payoff is between 0.39 and 0.5. These imply that when
only player 1 choose exit time, he has a greater payoff compared to the case where no player
chooses exit time. Thus, by being able to threaten his opponent to leave the game, player 1

gets an advantage. However, this advantage vanishes when both players can choose exit time
to threat and both players become worse of compared to no exit time case.

6.2 Asymmetric Players

Example 6.2: Suppose z1 = z2 = 0.1 and r1 = 5, r2 = 0.7. Note that although players
are symmetric in their initial reputation, but player1 is more impatient than player 2.In the
first model, player 1′s equilibrium payoff varies between 0.123 and 0.157 and player 2′s
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equilibrium payoff varies between 0.76 and 0.88. Note that player 1 gets a very small share
since he is more impatient. In the second model, where only player 1 can choose exit time,
his payoff is at least 0.267. So, player 1 again takes the advantage of being able to choose
exit time. In the third model, player 1 has a payoff between 0.188 and 0.202, so his advantage
weakens because his opponent can also choose exit time, but again player 1 is better off
compared to the first model.
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7 Appendix (Proofs)

Proof of Proposition 1: When the demand profile is (ᾱ1, ᾱ2), T1 = T2 = 0. Suppose player
1 increases his demand, then T1 will be more than T2 causing player 1 to have an expected
payoff of (1− ᾱ2). However, this is equal to ᾱ1. Thus, player 1 cannot increase his payoff by
increasing his demand. On the other hand, if player 1 decreases his payoff, his new demand
will be compatible with ᾱ2, and the remaining surplus is divided equally. This causes player
1 to get an expected payoff less than ᾱ1 since the initial demand profile is also compatible.
Thus, player 1 cannot increase his payoff by changing his demand. Similarly player 2 cannot
his payoff by changing his demand. So, the demand profile (ᾱ1, ᾱ2) forms an equilibrium.

Lemma 3. If z1 > z∗1 , there is a unique equilibrium in which µ1(0
1) = 0, µ1(0

2) = 1,
µ2(0

1) = 1 and µ2(0
2) = 0 .

Proof: In any equilibrium µ1(0
2) = 1 and µ2(0

2) = 0 by lemma 2. Now suppose
µ2(0

1) > 0, then U1(Reject at time 01) > U1(Accept at time 01), so µ1(0
1) = 0. Then

U2(Accept at time 01) = (1−α1) > (1− z1) α2 = U2(Reject at time 01) since z1 > z∗1 . Then
player 2 accepts his opponent’s offer, i.e., µ2(0

1) = 1. Then since µ2(0
1) = 1 > 0, player 1

prefers to reject at time 01, i.e., µ1(0
1) = 0. Hence { µ1(0

1) = 0, µ2(0
1) = 1, µ1(0

2) = 1
and µ2(0

2) = 0} is an equilibrium. To establish uniqueness, we need to show there is no
equilibrium in which µ2(0

1) = 0. Suppose µ2(0
1) = 0,then it must be the case that U2(Reject

at time 01) ≥ U2(Accept at time 01). But this is true only if µ1(0
1) ≤ 2[1 − z1(1−α1)

(1−z1)(α1+α2−1) ]

which is negative for z1 > z∗1 , contradiction. So if z1 > z∗1 , µ2(0
1) = 0 cannot be in

equilibrium.

Lemma 4. If z1 < z∗1 , the set of equilibrium is {(µ1(0
1), µ2(0

1), µ1(0
2), µ2(0

2)) ∈ [0, 1]4 :

µ1(0
1) ≤ 2[1− z1(1−α1)

(1−z1)(α1+α2−1) ], µ2(0
1) = 0, µ1(0

2) = 1 and µ2(0
2) = 0}

Proof: In any equilibrium µ1(0
2) = 1 and µ2(0

2) = 0 by lemma 2. Now suppose
µ2(0

1) > 0, then U1(Reject at t = 01) > U1(Accept at t = 01), so µ1(0
1) = 0. But

since z1 < z∗1 , U2(Reject at t = 01) > U2(Accept at t = 01) for any value of µ1(0
1),

which implies µ2(0
1) = 0 . Thus, µ2(0

1) > 0 cannot be part of any equilibrium. So, in
any equilibrium µ2(0

1) = 0. But then we must have U2(Reject at t = 01) ≥ U2(Accept
at t = 01) which implies µ1(0

1) ≤ 2[1 − z1(1−α1)
(1−z1)(α1+α2−1) ]. Since µ2(0

1) = 0, U1(Accept
at t = 01) = (1 − α2) = U1(reject at t = 01), so any µ1(0

1) ∈ [0, 1] is a best re-
sponse to µ2(0

1) = 0.Thus, any (µ1(0
1), µ2(0

1), µ1(0
2), µ2(0

2)) such that µ1(0
1) ≤ 2[1 −

z1(1−α1)
(1−z1)(α1+α2−1) ], µ2(0

1) = 0, µ1(0
2) = 1 and µ2(0

2) = 0 is an equilibrium and there is no
other equilibrium.

Lemma 5. If z1 = z∗1 , the set of equilibrium is {(µ1(0
1), µ2(0

1), µ1(0
2), µ2(0

2) ∈ [0, 1]4 :
µ1(0

1) = 0, µ1(0
2) = 1 and µ2(0

2) = 0}

proof: In any equilibrium µ1(0
2) = 1 and µ2(0

2) = 0 by the lemma. Now suppose
µ2(0

1) > 0, then U1(reject at t = 01) > U1(Accept at t = 01), so µ1(0
1) = 0. Then

U2(Accept at t = 01) = U2(Reject at t = 01) since z1 = z∗1 . Thus any µ2(0
1) ∈ [0, 1] is

a best response. Thus, any µ2(0
1) > 0, µ1(0

1) = 0, µ1(0
2) = 1 and µ2(0

2) = 0 forms
an equilibrium. Moreover, if µ2(0

1) = 0, then any µ1(0
1) ∈ [0, 1] is a best response since
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U1(Accept at t = 01) = U1(reject at t = 01). µ2(0
1) = 0 is optimal for player 2 if µ1(0

1) ≤
2[1 − z1(1−α1)

(1−z1)(α1+α2−1) ] = 0, i.e., µ2(0
1) = 0 if and only if µ1(0

1) = 0. Thus, µ1(0
1) = 0,

µ2(0
1) = 0, µ1(0

2) = 1 and µ2(0
2) = 0 also forms an equilibrium and there is no other

equilibrium.
Facts 1: In any in equilibrium in which 0 < K < T0, the followings must be satisfied

a) From Weiss at all., we know that equilibrium strategy of player i, Fi(t) = 1− cie−λit
where ci ∈ [0, 1] with (1 − c1)(1 − c2) = 0 for i ∈ {1, 2} and t ∈ [0, K) (i.e., player
i concedes with probability (1 − ci) at time 0 and at constant hazard rate λi =

rj(1−αi)
(α1+α2−1)

starting from time 0). So, F1 and F2 are continuous and strictly increasing on [0, K). Note
that (1− c1)(1− c2) = 0 condition means that at time 0, Fi can jump for at most one player
i.

b) F2(t) does not jump at t = K1, since if it jumps at t = K1, F1 is constant on (K−ε,K)
for some ε > 0, this contradicts with a).

c) F1 will not jump at K1 because player 1 is always prefers to wait and make concession
at time K2.

d) By a), b) and c), F1 and F2 are continuous on [0, K1]. Thus, Fi(t) = 1 − cie−λit for
i, j ∈ {1, 2} and t ∈ [0, K1].

e)Player 1 concedes fully at time K2 since player 1’s rationality is revealed at time K2

and a rational player does not delay conceding.
f) Player 2 never concedes starting from time K2, since at time K2 player 1’s rationality

is revealed.
g) . In any equilibrium ẑ1(K

1) ≥ z∗1 . To see this, suppose ẑ1(K1) < z∗1 . Then for some
ε > 0, player 2 prefers to wait for all t ∈ (K − ε,K), then F2 is constant on (K − ε,K),
which contradicts with a).

Let T ∗ = −
ln(

z1
z∗1

)

λ1
. Note that T ∗ is the time required for player 1 to build this reputation

to z∗1 by conceding at constant hazard rate λ1 starting from time 0 and without making a
concession at time 0.

Lemma 7. If 0 < K < T ∗ and K < T0, then in equilibrium F1(t) = 1 − z1
z∗1
eλ1(K−t) for

t ∈ [∈ 0, K1] and accepting with probability 1 at time K2, and F2(t) = 1 − e−λ2t for
t ∈ [∈ 0, K1] and never accepting starting from time K2.

Proof: By g), reputation of player 1 at time K, ẑ1(K1) ≥ z∗1 . Since T ∗ is time required
for player 1 to build this reputation to z∗1 , without making a concession at time 0. K is less
than T ∗, so player 1 has to make jump at time 0 to build reputation z∗1 at time K1. Here
ẑ1(K

1) > z∗1 is not possible in equilibrium, since if ẑ1(K1) > z∗1 , player 2 strictly prefers
conceding before time K, to conceding at time K2. Then player 2 has to concede fully before
time K2, which implies F2(K

1) = 1 − z2, but then F2 must have a jump at time 0. Both F1

and F2 having jumps at time 0 contradicts a). Thus, ẑ1(K1) = z∗1 . This condition determines
player 1’s strategy uniquely: F1(K

1) = 1−c1e−λ1K
1 where c1 is determined by the condition

ẑ1(K
1) = z∗1 . This condition implies c1 = z1

z∗1
eλ1K (which is clearly is less than 1). F2 is also

determined: since F1 jumps at time 0, F2 does not jump, i.e., c2 = 1 in the formula of F2.Thus
in equilibrium, Fi(t) = 1 − cie−λit for t ∈ [∈ 0, K1] and i ∈ {1, 2} where c1 = z1

z∗1
eλ1Kand
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c2 = 1, player 1 accepts fully at time K2 by e) and player 2 never accepts starting from time
K2 by f).

Lemma 8. If K > T ∗ and 0 < K < T0, in equilibrium player 1’s strategy is F1(t) =
1− c1e−λ1t for t ∈ [∈ 0, K1] where c1 = 1 and accepting with probability 1 at time K2, and
player 2’s strategy is F2(t) = 1 − c2e−λ2t for t ∈ [∈ 0, K1] where c2 = z2e

λ2K and never
accepting starting from time K2.

Proof: Since T ∗ is enough for player 1 to build reputation to z∗1 , reputation of player
1 at time K1, , will be higher than z∗1 ( i.e., ẑ1(K1) > z∗1), since F1 is strictly increasing
on [0, K1]. Then, player 2 prefers fully conceding before time K2, so F2(K

1) = 1 − z2.
Then, since F2(K) = 1 − c2e−λ2K , c2 = z2e

λ2K which is less than 1 since K < T0. By a),
(1 − c1)(1 − c2) = 0 , so c2 < 1 implies that c1 = 1. Thus, we have unique equilibrium:
Fi(t) = 1 − cie

−λit for t ∈ [∈ 0, K1] and i ∈ {1, 2} where c1 = 1 and c2 = z2e
λ2K , and

player 1 accepts fully at time K2 (by e)) and player 2 never accepts starting from time K2

(by f))

Lemma 9 . If K = T ∗ and K > 0, then in equilibrium player 1’s strategy is F1(t) =
1− c1e−λ1t for t ∈ [∈ 0, K1] where c1 = 1 and accepting with probability 1 at time K2, and

player 2’s strategy is F2(t) = 1 − c2e
−λ2t for t ∈ [∈ 0, K1] where c2 ∈ [zz(

z∗1
z1

)
λ2
λ1 , 1] and

never accepting starting from time K2.

Proof: Here if F1(0) > 0, then ẑ1(K1) > z∗1 . But then since conceding before K2 is
optimal for player 2, F2(K

1) = 1 − z2 which requires F2(0) > 0. Both F1 and F2 cannot
jump at time 0, contradiction implies that F1(0) = 0, i.e., c1 = 1. Thus, ẑ1(K1) = z∗1 ,
so player 2 is indifferent between conceding and waiting at time K1. Thus it is possible
that F2(K

1) < 1 − z2 but F2(K
1) cannot be more than (1 − z2) since an irrational player

never concedes. Hence for any c2 ∈ [zz(
z∗1
z1

)
λ2
λ1 , 1], F2(t) = 1 − c2e

−λ2t for t ∈ [∈ 0, K1]

is part of the equilibrium. As a result, in equilibrium F1(t) = 1 − e−λ1t for t ∈ [∈ 0, K1],

F2(t) = 1−c2e−λ2t for t ∈ [∈ 0, K1] where c2 ∈ [zz(
z∗1
z1

)
λ2
λ1 , 1].Moreover by e) and f), player

1 concedes fully at time K2 and player 2 never accepts starting from time K2.

Lemma 10 . If K ∈ [T0,∞) , in equilibrium player i’s strategy is Fi(t) = 1 − cie−λit for
t ∈ [∈ 0, K1] where ci = z1e

λiT0 and never accepting starting from time T0 for i ∈ {1, 2}.

Proof: From Weiss at all. and Abreu&Gul, we know that equilibrium strategy of player
i, Fi(t) = 1 − cie−λit where ci = zie

λiT0 for i ∈ {1, 2} and t ∈ [0, T0] . So F1 and F2 are
continuous and strictly increasing on [0, T0]. Then, both players reputation becomes 1 at the
time T0 and rational players concede fully until T0. Hence, if K ≥ T0, leaving threat has no
effect on equilibrium since rational players already concedes fully until T0 (See lemma 1). If

Ti > T0, then ci = ziz
−λi
λj

j < 1 which implies player i has to make a concession at time 0 and
if Ti = T0, then ci = 1 which implies player i does not make a concession at time 0.(note
that min{T1, T2} = T0 where Ti = − log(zi)/λi).

Facts 2:
i) all payoffs are weighted averages of α1 and (1−α2). So, since α1 > (1−α2), a payoff

increases as the coefficient of α1 increases.
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ii) For K > 0, z2e
λ2K , zz( z1z∗1 )

−λ2
λ1 and z2z

−λ2
λ1

1 are less than z2, so the greatest payoff that
player 1 can achieve is (1 − z2)α1 + z2(1 − α2). It is the payoff of equilibrium in case 1.1
and it is the payoff of an equilibrium in case 1.3 in which µ2(0

1) = 1, and the payoffs in all
other cases are less than (1− z2)α1 + z2(1− α2).

iii) z2e
λ2K > zz(

z1
z∗1

)
−λ2
λ1 for K > T ∗ and z2eλ2K = zz(

z1
z∗1

)
−λ2
λ1 for K = T ∗.

iv) zz(
z1
z∗1

)
−λ2
λ1 < z2z

−λ2
λ1

1 , so the payoff in case 2.3 when c2 = zz(
z1
z∗1

)
−λ2
λ1 is greater than

the payoff in case 3.2
v) If K = T ∗ + ε for small enough ε > 0 and K < T0, the equilibrium payoff of player

1 by choosing K = T ∗ + ε is more than the equilibrium payoff by choosing K ≥ T0 by

iv. Then if there exits such K, player 1 never chooses K ≥ T0. That is if z1 > z∗1z
λ1
λ2
2 , then

K ≥ T0 cannot be in equilibrium.
vi) If K < T0 and K > T ∗, player 1 can increase his payoff by decreasing K a bit, so no

K such that K < T0 and K > T ∗ be in equilibrium.
vi) If T ∗ < T0, K > T ∗ is not optimal for player 1, since he increase his payoff by

decreasing K to T ∗ + ε, for some small ε > 0. Thus, if T ∗ < T0, K > T ∗ cannot be in the
equilibrium.

vii) 0 < K < T0 and K < T ∗ is also cannot be in equilibrium since player 1 increase his
payoff by choosing K > T ∗.

vii) If T ∗ < T0, K < T ∗ also cannot be in equilibrium since player 1 increase his payoff
by choosing K = T ∗ + ε for some small ε > 0.

Proposition 2 . If z1 > z∗1 , in equilibrium player 1 chooses K = 0.

Proof: If z1 > z∗1 , The payoff player 1 achieve by choosing K = 0 is greater than any
other payoff he can achieve by ii). So, in equilibrium, player 1 chooses K = 0.

Proposition 3 . If z1 = z∗1 , in equilibrium player 1 chooses K = 0 and player 2′strategy
such that µ2(0

1) = 1.

Proof: When z1 = z∗1 , T
∗ = 0 and T ∗ < T0. So by vi), K > 0 is not possible in

equilibrium. Then the only candidate for an equilibrium is K = 0. For K = 0, the payoff is
equal to (1−z2)µ2(0

1)α1 +[(1−z2)(1−µ2(0
1))+z2](1−α2) where µ2(0

1) ∈ [0, 1]. K = 0
is possible in equilibrium only if it gives a payoff which is not less than the payoff with any
K > 0. That is, K = 0 is possible in equilibrium only if µ2(0

1) = 1.

Proposition 4 . If z1 ∈ (z∗1z
λ1
λ2
2 , z∗1), in equilibrium player 1 chooses K = T ∗ and player

2′strategy such that c2 = zz(
z1
z∗1

)
−λ2
λ1 .

Proof: In this case T ∗ > 0 and T ∗ < T0. SoK > T ∗ orK < T ∗ cannot be in equilibrium,
by vi) and vii). Then it remains to choose K = T ∗ but it is optimal only if player 1 must
have a payoff greater than or equal to what he can get by any K > T ∗. So K = T ∗ is in the

equilibrium only if c2 = zz(
z1
z∗1

)
−λ2
λ1 .

In this case, Case 2.3 happens since T ∗ ∈ (0, T0).
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Proposition 5 . If z1 ≤ z∗1z
λ1
λ2
2 , any K ∈ [0,∞] is an equilibrium.

Proof: In this case T ∗ ≥ T0 and T1 > T2. If player 1 chooses K = 0, it will fall into case
1.2 so payoff of player 1 will be (1 − α2). If he chooses K < T0, it will fall into case 2.1
so the payoff is (1− α2). And finally if he chooses K ≥ T0, it will fall into case 3.1 so again

the payoff is (1− α2). Thus, if z1 ≤ z∗1z
λ1
λ2
2 any K ∈ [0,∞] is an equilibrium.

Lemma 11 . In any equilibrium player, 1 always demands α1 such that z1 ∈ (z∗1z
λ1
λ2
2 , z∗1).

Proof: Suppose player 1 demands α1 such that z1 > z∗1 . Then player 1 chooses K = 0
which in turn gives him an expected payoff of (1 − z2)α1 + z2(1 − α2) (see Case A). But
if player 1 demanded α1 + ε, for some small enough ε > 0, still z∗1 < z1, so his resulting
expected payoff would be (1 − z2)(α1 + ε) + z2(1 − α2) which is higher than the initial
payoff. So, α1 such that z1 > z∗1 is never demanded by player 1. Now, suppose that player 1

demands α1 such that z1 ≤ z∗1z
λ1
λ2
2 . Then it would fall into Case A.4 in which player 1’s payoff

is (1−α2). But, if player 1 demands (1−α2+ε) for some enough small ε > 0, z∗1 < z1, then
Case A.1 will happen, so player 1’s expected payoff will be (1− z2)(1−α2 + ε) + z2(1−α2)

which is greater than (1 − α2). So, player 1 never demands α1 such that z1 ≤ z∗1z
λ1
λ2
2 . Now,

so far we have that in any equilibrium α1 such that z1 ∈ (z∗1z
λ1
λ2
2 , z∗1 ], so player 1 expected

utility, U1 = (1 − zz( z1z∗1 )
−λ2
λ1 )α1 + zz(

z1
z∗1

)
−λ2
λ1 (1 − α2) . This expected utitliy is always more

than the utilities which player can get with any α1 such that z1 > z∗1 or z1 ≤ z∗1z
λ1
λ2
2 . In

any equilibrium, player 1 chooses α1 which maximizes this utility for given α2. We show

computationally that α∗1(α2) that maximizes this utility satisfy z1 ∈ (z∗1z
λ1
λ2
2 , z∗1). This proves

the first part.

Proof of Proposition 6:
Suppose (α∗1, α

∗
2) is the equilibrium demand profile. Then condition iii) must be satisifed

by lemma 11, that is we have z1 ∈ (z∗1z
λ1
λ2
2 , z∗1). Then, expected utility of player 1 , U1 =

V1(α1, α
∗
2) := (1−zz( z1z∗1 )

−λ2
λ1 )α1+zz(

z1
z∗1

)
−λ2
λ1 (1−α2) by Proposition 4. Thus, in equilibrium,

α∗1 must maximize V1(α1, α
∗
2) by optimality, so condition i) must be satisfied..Also by iii)

player 2’s payoff is always (1− α∗1), so condition ii) must be satisfied.
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