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ABSTRACT 

We consider a non-preemptive, zero time lag multi-project scheduling problem 

with multiple modes and limited renewable and nonrenewable resources. A 2-

stage decomposition approach is adopted to formulate the problem as a hierarchy 

of 0-1 mathematical programming models. In stage one; each project is reduced to 

a macro-activity with macro-modes. The macro-activities are combined into a 

single macro-activity network over which the macro-activity scheduling problem 

(MP) is defined, where the objective is the maximization of the net present value 

with positive cash flows and the renewable resource requirements are time-

dependent. An exact solution procedure and a genetic algorithm (GA) approach 

are proposed for solving the MP. A GA is also employed to generate an initial 

solution for the exact solution procedure. The first stage terminates with a post-

processing procedure to distribute the remaining resource capacities. Using the 

start times and the resource profiles obtained in stage one, each project is 

scheduled in stage two for minimum makespan. Three new test problem sets are 

generated with 81, 84 and 27 problems each, and three different configurations of 

solution procedures are tested. 

 

Keywords: Multiple projects, multiple modes, scheduling, decomposition, 

genetic algorithm. 

 

1. INTRODUCTION 

The resource constrained multi-project scheduling problem with multiple 

modes (MRCMPSP) is one of the more challenging problems in project 

management. As a result of the global expansion of the IT sector and the increase 

in research and development (R&D) and engineering services activities, project 
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based management is used increasingly as a management paradigm. In particular, 

R&D organizations (Liberatore and Titus, 1983) and large construction companies 

(Liberatore et al., 2001) regularly execute multi-project scheduling procedures. 

Payne (1995)suggested that up to 90%, by value, of all projects occur in a multi-

project context. As markets become more competitive, the obligation for firms to 

simultaneously carry out multiple projects by managingscarce resources becomes 

even more critical, increasing the need to build appropriate management structures 

to reduce the risk offailures resulting fromdecisions made at different managerial 

levels. The frequencies, time horizons and details of these decisions are suitable 

for a hierarchical management scheme such as the one presented by Hans et al. 

(2007). 

One of the arrangements frequently used for managing multiple projects is 

the dual level management structure (Yang and Sum, 1993), which consists of 

anupper-level manager and several project managers. While the project managers 

work at the operational level and are responsible for scheduling and controlling 

individual projectactivities, the upper-level manager works on a more tactical 

level and is responsible for all the projects and project managers. At the higher 

level, projects are scheduled as individual entities to generate the start times and 

due dates for each project. Then, based on these start times and due dates, each 

project is scheduled individually by employing renewable and non-renewable 

resource capacities imposed at the higher level. This dual level managerial 

mechanism provides for a decision-making environment where decision-making 

approaches with different performance criteria can be combined. This reasoning 

also motivated researchers to exploit a similar approach by introducing dual level 

decomposition methodologies to multi-project planning and scheduling as in 

Speranza and Vercellis (1993).  

This paper is organized as follows. Section 2 provides a brief description of 

the problem environment and a survey on the related work in the literature. The 

mathematical models and the solution methodology are presented in section 3. In 

section 4, a genetic algorithm (GA) for solving multi-mode resource constrained 

project scheduling problems with positive discounted cash flows (MRCPSPDCF) 

and time dependent renewable resource requirements is introduced. Section 5 

provides the computational study and the results. In section 6, the summary and 

some suggestions for future work are presented. 
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2. PROBLEM DESCRIPTION AND RELATED LITERATURE  

This study considers a multi-project scheduling problem with multiple 

modes and limited renewable and non-renewable resources. The activities are 

non-preemptive with finish-to-start zero time lag type precedence relations and 

deterministic durations. Activity-on-node project networks are employed. The 

start and completion activities of each network are represented by dummy 

activities with a single mode of zero duration and resource requirement. There are 

no due dates for the projects and no precedence relations among the projects. 

Although the problem is not formulated as a multi-objective programming 

problem, two objectives are considered in two consecutive decision stages. The 

first stage corresponds to the tactical level aiming to determine the start times of 

the projects and resource allocations such thatthe net present value (NPV) of the 

relevant cash flows is minimized. The second stage corresponds to the operational 

level of activity schedulingwith the objective of minimizing the makespan values 

of the individual projects based onthe results of the first stage. Hence, both 

tactical and operational levels are treated by one model. 

Three types of cash flows are employed in this study.  Revenues: A lump 

sum payment is made at the end of the completion period of each project. Fixed 

Costs: The project'sfixedcosts are resource independent and incurred initially at 

the start of the first period for each project. Variable Costs: The resource usage 

costs for the renewable and the non-renewable resources are incurred periodically 

throughout each activity. It is assumed that an activity's consumption of non-

renewable resources as well as the variable cost distribution associated with this 

consumption are uniform over the execution periods of that activity.The variable 

costs associated with an activity are discounted to the starting point of that 

activity. The resource usage cost for a resource is taken to be the same over all 

projects and over all periods. 

The resource constrained multi-project scheduling problem (RCMPSP) 

consists of scheduling a collection of projects that share limited resources. The 

scheduling output consists of the start times of the projects and their activities and 

the allocation of resources to activities. A large body of literature for RCMPSP, 

with or without multiple modes, reflects implicitly or explicitly a single level 

management scheme for the planning and the scheduling of multiple projects. A 

0-1 linear programming formulation of this problem was introduced by Pritsker et 
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al. (1969), and three possible objective functions were discussed: minimizing total 

throughput time for all projects; minimizing the completion time for all projects, 

and minimizing the total lateness or lateness penalty for all projects.Some 

heuristic sequencing rules introduced by different researchers have been 

categorized by Kurtulus and Davis (1982). Considering the penalties due to 

project delays, Kurtulus and Narula (1985) analyzed six penalty functions with 

four priority rules and determined that the MAXPEN (Maximum Penalty First) 

rule performed best for minimizing the weighted project delay. Kim and 

Schniederjans (1989) presented a heuristic framework for RCMPSPand 

demonstrated a practical application. Bock and Patterson (1990) studied a rule-

based heuristic approach to setting due dates and the preemption of resources 

from one project to another in a multi-project environment. A scheduling heuristic 

with an update routine for control purposes was developed by Tsubakitani and 

Deckro (1990) based on actual housing data. For RCMPSP with the objective of 

minimizing weighted tardiness costs, Lawrence and Morton (1993) developed a 

cost-benefit scheduling policy with resource pricing. Lova and Tormos (2001) 

analyzed the effect of schedule generation schemes and priority rules in multi-

project and single-project environments. Kumanan et al. (2006) established a 

heuristic and a GA for scheduling a multi-project environment to minimize the 

makespan of the projects. Gonçalves et al. (2008) presented a GA for RCMPSP 

with a chromosome representation employing random keys and chromosome 

evaluation using a parameterized active schedule generating heuristic based on 

priorities, delay times and release times. Zapata et al. (2008) presented three 

models that attempted to overcome the limitations of the indexing of task 

execution modes, the indexing of time periods and the discrete nature of 

resources. In Mittal and Kanda (2009), new two-phase heuristics for RCMPSP 

were developed and compared with existing methods.  

Hans et al. (2007) proposed a positioning framework to distinguish between 

different types of project-driven organizations and aid project management in 

choosingamong the various existing planning approaches. In line with the 

approach taken here, a group of papers dealt with the dual level management 

approach for planning and scheduling multiple projects.Speranza and Vercellis 

(1993) suggested decomposing the problem into a hierarchy of integer 

programming models reflecting the dual level project management structure. 
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Yang and Sum (1997) followed their prior work mentioned above (Yang and 

Sum, 1993) and examined the performance of due date, resource allocation, 

project release, and activity scheduling rules in a multi-project environment. For 

the decentralized version of RCMPSP, in which local and autonomous decision 

makers (project managers) contribute to decision making, some multi-agent 

system based solution procedures were discussed as in Lee et al. (2003), 

Confessore et al. (2007), Homberger (2007), and Homberger (2010).  

The starting point of our paper is the decomposition concept of Speranza 

and Vercellis (1993).Here, we aim to develop an effective and viable 2-stage 

decomposition approach reflecting the dual level project management structure 

and based on the concepts of macro-activity and macro-mode introduced by 

Speranza and Vercellis (1993).Our approach differs from that of Speranza and 

Vercellis in the following respects.  We employ a different cost structure.Our 

procedure for generating macro-modes differs in that we use a streamlined 

procedure for searching over budgets when generating macro-modes.  A GA is 

designed to solve the macro-activity scheduling problem, which is a special kind 

of multi-mode resource constrained project scheduling problem (MRCPSP) with 

discounted positive cash flows and time dependent renewable resource 

requirements. The time horizon employed in this problem is obtained through a 

heuristic procedure developed for this purpose. A post-processing routine is 

applied to the solution of the macro-activity scheduling problem to utilize the 

resources remaining idle. An extensive computational study is providedthat covers 

both stages of the decomposition approach.   

3. SOLUTION APPROACH 

Due to the complexity of the problem at hand, we apply a 2-stage 

decomposition approach as an approximation. The scheduling problem is 

formulated as a hierarchy of 0-1 mathematical programming models in two stages. 

In the first stage, each project is transformed into a macro-activity, and different 

macro-modes are formed by evaluating various combinations of resource 

allocationsby solving single project MRCPSP with a budget based on the 

resourceusage cost involved. After the macro-modes are determined, a proper 

time horizon is generated to build a macro-activity model with the objective of 

NPV maximization. The macro-activities representing individual projects are 

scheduled subject to general resource capacities and maximizing the NPV of the 
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discounted cash flows. Scheduling the macro-activities is a special kind of 

MRCPSP with discounted cash flows (MRCPSPDCF), where the cash flows are 

positive and the renewable resource requirements are time dependent. A GA 

approach is developed for solving this problem.In the computational studies, this 

GA approach is also employed for generating starting solutions for the exact 

solution procedure. The result of the first stage is subjected to a post-processing 

procedure to distribute the remaining resource capacities. The start times and the 

resource allocations for the projects are determined by the start times of the 

macro-activities and by the selection of the macro-modes. Using the start times 

and resource profiles obtained in stage one, each project is scheduled to minimize 

the makespanin stage two. Employing these two objectives separately in two 

consecutive stages reflect a multi-objective environment. For single project 

scheduling problems, resource availabilities may differ from period to period. In 

stage two, tight resource constraints make it easier to computationally solve the 

problems. The flow of the proposed 2-stage decomposition procedure is 

summarized in Figure 1. 

 

Place Figure 1 about here 

 

The sets, indices and parameters used in these models are listed below. 

Sets and Indices: � :set of all projects  Sa :set of all actual projects   � : project indices  ��: set of activities of project � 	, �: activity indices ��: completionactivity of project�;  ��  �� ��: set of precedence relations between all activities 	  �� in project � ���: set of modes of activity 	 of project � � : activity execution mode indices; �  ��� � �1, … , |���|� ��� :  setof the macro-modes forproject � � : macro-mode indices; �  ���  = �1, … , |���|� � : set of renewable resources  � : renewable resource indices; �  � � �1, … , |�|� 
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� : set of non-renewable resources  � : non-renewable resource indices; �  � � �1, … , |�|� � : set of periods  �� : set of periods for project � �,   : periodindices 
Parameters: ! : discount rate  "�#  : processing time for activity 	 performed employing mode � "$�% : processing time for macro-activity � performed employing macro-mode � &� : early start period for activity 	 '� : late start period for activity 	 &̃� : early start period for macro-activity � '$� : late start period for macro-activity � )*  : amount of renewable resource � available  )*+ : amount of renewable resource � available in period � ,-: amount of non-renewable resource � available  .�#*: amount of renewable resource � utilized by activity 	 performed in mode � /�%*+  : amount of renewable resource � utilized by macro-activity � performed in 

mode � in period � 0�#- : amount of non-renewable resource � consumed by activity 	 performed in 

mode � 1�%- : amount of non-renewable resource � utilized by macro-activity � performed 

in mode � 2�3: lump sum payment made at the completion of project � 2�4: project fixed cost to be incurred initially to start project � 5*: unit resource usage cost of utilizing one unit of renewable resource � for one 
period   6-: resource usage cost of consuming one unit of non-renewable resource � 7�#: resource usage cost for activity 	 performed in mode � 
3.1 Macro-Mode Generation 

When generating macro-modes, it is extremely significant to balance the 

trade-off between the diversity of the macro-modes and the size of the macro-

activity scheduling model. Although increasing the number of macro-modes 
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increases the number of possible outcomes and thus may lead to a better solution, 

it also increases the computational effort. For each project �8�9,the corresponding 
macro-mode generation is performed by solving two interacting mathematical 

programming models,��:�;and ��:�<, respectively. The first model employed 

for this purpose, ��:�;, is adopted from the shrinking model introduced by 

Speranza and Vercellis (1993). The second model, ��:�<, is introduced as a 
search systematic for generating representative macro-modes. The interaction 

between these two models is explained later in this section. 

In the following formulations, ei and li for activity 	  �� are calculated using 
the critical path method. For that purpose, the length of the time horizon �� for 
that purpose is determined using the time horizon setting method explained in 

section 3.2.  

 

Model ==>?@    AB �  �C D	� E�,FG                                          A1C 
            �. �.    I I �JK#+

LM
+NOM#PGM

Q I IR"�# S �TJ�#+
LU

+NOU#PGU
A	, �C  ��                                A2C 

I I I .�#*J�#W
XYZALU[\U]^;,   +C

WN_`aAOU,   +^\U][;C#PGU�bG
c )*  �  �, �  ��                                 A3C 

I I 0�#- I J�#+
LU

+NOU#PGU�bG
c ,- �  �                                                                         A4C 

I I J�#+
LU

+NOU#PGU
� 1   	  ��                                                                                           A5C 

I I I 7�#J�#+
LU

+NOU#PGU�bG
c g� A6C 

 

J�#+ � i  1, if activity 	 starts in period � using mode �0, {/. } 	  �� , �  ��	, �  �� A7C 
 

The objective A1C is the minimization of the makespan for project 

sdenoted by E�,FG . Constraint sets regarding precedence relations within project 
sA2C, renewable resource capacities A3C, nonrenewable resource capacities (4) and 
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assignments A5C are included in Model ��:�;. The resource usage costs, 7�#, are 
calculated as in A8C and constrained by abudgetg� for project s (6). 7�# �  I "�#.�#*5**3 S I 0�#-6--�  	  �� , �  ���            A8C 

Model ��:�; can be classified as an MRCPSP but with a budget 

constraint on resource usage costs. The resource constraints are not very tight 

since the capacities )*and ,- are bounds for the whole set of projects.  
 

Model ==>?�AB �  �C D	� g�                         A9C �. �.                                          EFG c E��                                                       A10C g� Q 0      B �  �                                                   A11C              A2C � A7C from Model��:�; 
 

In Model ��:�<, the budget g� is treated as a decision variable 
constituting the objective function A9C.  Constraint (10) provides the definition of g� in terms of the variable resource usage costs and the decision variables. 

Constraint A11C sets a parametric upper bound, E��, on the makespan of the 

project. The specification ofE��is is explained below. Note that there is a negative 
relation between the project makespan and the budget consisting of the resource 

usage costs 7�# for the selected activity modes, which are by definition positive. 

Macro-mode generation procedure is initialized by calculating the mode costs as 

expressed in (8). Then mode costs are made to start from zero by calculating the 

minimal mode costs, 7�X�- for each activity 	  �� and subtracting it from each 

mode cost for each mode �  ���. 
A mode �of an activity 	is called inefficient, if there exists another mode �� 

for activity 	 with "�# Q "�#�  and .�#* Q  .�#�* for each renewable resource �  � 
and 0�#- Q  0�#�- for each non-renewable resource nN (Kolisch et al., 1995). 
Inefficient modesare removed from further consideration.  

The maximum budget required, g�X9�, is computed by determining the 

highest mode cost 7�X9� for each activity 	  �� and summing these costs. The 

bounds on the duration range ���X�-, ��X9�� for E�� are computed by solving 

Model ��:�; for g�  � 0 and for g�  � g�X9�. The duration range for E�� signifies 
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the durations for possible macro-modes that can be generated. Solving Model ��:�<results in a schedule with a makespan less than or equal to E�� and mode 

selections that minimize the budget requirements. Starting with ��X�-, E�� is 
increased by one at each step until ��X9� is reached. At each step, Model ��:�< 
is solved and, if g� is lower than the previous solution, a new macro-mode �is 
generated based on the optimal solution of ��:�;expressed by J�#W�  and added to 

the macro-mode set ��� of project �. Note that� is one of several macro-modes 

that might be generated for the same E��value. The duration, the renewable 
resource profile A12C and the non-renewable resource consumption A13C obtained 
in the solution of the Model ��:�<define the new macro-mode �. 
/�%*+ � I I I .�#*J�#W�XYZALU[\U]^;,   +C

WN_`aAOU,   +^\U][;C#PGU�bG
�  �, �  ���, �  �, �  �1, … , E���A12C 

1�%- � I I 0�#- I J�#W�LU
+N��#��	�bG

  �  �, �  �� �, �  �                A13C 
The cash flow associated with a macro-activity �(project s) and a macro-

mode �  ���is denoted by 2�%and defined in A14C. 2�%isobtained by 

subtractingthe expenditures incurred for the correspondingproject fixed cost from 

the lump sum payment received at the completion of the macro-activity s, and the 

resource usage costs are discounted to the start of macro-activity� using a discount 
factor !. 2�% � 2�3A1 S !C^\�G� � 2�4                                                                     

� � I A1 S !C^W\�G�^;
WN� �I 5*/�%*W*3 S I 6- 1�%-"$�%-� ��     �  �, �  ���     A14C 

 

3.2 Macro-Activity Scheduling 

The macro-activity scheduling problem is designated as Model ��. 
 

Model =� 

D5J ��� � I I I A1 S !C^+[;2�%J��%+
L$G

+NÕG%P�G��                          A15C 
s.t. 
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I I I /�%*A+^W[;CJ��%W
XYZAL$G["���^;,   +C

WN_`aAÕG,   +^"���[;C%P�G�� c )*      �  �, �  � A16C 
I I 1�%- I J��%+

L$G
+NÕG%P�G�� c ,- �  �                   A17C 

I I J��%+
L$G

+NÕG%P�G
� 1    �  �                    A18C 

J��%+ � �   1, if macro � activity�startsinperiod�using macro mode�0, {/. } �  �, �  ���, �  �        A19C 
 

The cash flows 2�% in the objective function are definedaboveA14Cand 
represent the NPV of the return and all the costs involved for macro-activity s and 

macro-mode �  ���discounted to the start time of macro-activity s.Hence, the 

objective function is the total discounted NPV of all cash flowsfor all macro-

activities (i.e., projects). Constraint set A16C is the capacity constraint for the 
renewable resources determined based on the schedules evaluated in the macro-

mode generation step. Constraint set A17C is the capacity constraint for the non-
renewable resources. Constraint set A18C ensures that a macro-mode alternative is 

selected for each project and started in the interval �&��, '$��.  
The time horizon �employed in Model MP is obtained through a heuristic 

procedure developed here for this purpose and called the Relaxed Greedy 

Heuristic (RGH). In RGH, a simple binary integer programmingmodel with non-

renewable resource capacity and macro-mode assignment constraintsis solved to 

obtain the non-renewable resource feasible list of macro-mode selections with the 

greatest sum of cash returns. Then, these macro-modes are listed in non-

decreasing order of cash flows and scheduled using a serial scheduling scheme 

(see e.g., Kolisch, 1995; Kolisch, 1996) that takes the renewable resource 

capacities into consideration. In addition, an initial feasible solution, which is a 

lower bound for the actual problem, is obtained while determining the time 

horizon value. 
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3.3 Post-Processing for Macro-Activity Scheduling 

In this section, we introduce a post-processing procedure to redistribute 

resources to the projects.This procedure includes renewable resources,)*+� A20C, 
and non-renewable resources,,-� A21C, that are left over after the macro-activity 

scheduling whereJ��%W� represents the best solution obtained for Model ��.  
)*+� � )* � I I I /�%*A+^W[;CJ��%W�XYZAL$G["���^;,   +C

WN_`aAÕG,   +^"���[;C%P�G��        �  �, �  �    A20C 
,-� � ,- � I I 1�%- I J��%+�L$G

+NÕG%P�G��                �  �           A21C 
To benefit from the left-over capacities, a new macro-mode ��[is generated 

for each project s by solving Model ��:�� .When trying to improve the NPV of 

the schedule, one can change the macro-mode selection,alter the start time of 

projects or do both. Here, thestart time for each project is kept the same to limit 

the search since we seek local improvement resulting in a relatively small 

computational burden. Model ��:�� is an MRCPSPDCF with variable capacities 

for the renewable resources and positive and negative cash flows. The new macro-

mode ��[ is generated to maximize the project ����A22Cby assuming all of the 

extra resource capacities along with the currently assigned resource capacities are 

made available for project � as expressed in the constraint sets A23C and A24C. The 
objective function is defined by including the project fixed cost, the lump sum 

payment at the completion of the project and the variable resource usage costs, 

which are incurred on a periodic basis and calculated as in A25C. The NPV of the 
newly created alternative ��[ is at least as large as that of the macro-mode ���, 
which was selected by solving Model ��. 

 

Model ==>?�AB �  �C 
max   ���� � I A1 S !C^+2�3

L$ G
+NÕ G

JFG;+ � 2�4

� I I IA1 S !C^+[; � I A1 S !C^W\U]^;
WN� �I 5*.�#**3 S I 6- 0�#-"�#-� �� J�#+

LU
+NOU#PGU�bG

  A22C 
�. �.          I I 0�#- I J�#+

LU
+NOU#PGU�bG

c ,-� S 1�%�- �  �                    A23C 
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I I I .�#*J�#W
XYZALU[\U]^;,   +C

WN_`aAOU,   +^\U][;C#PGU�bG
c )*A¡G�[+^;C� S .�%�*+    �  �, �  ¢1, … , "$�%�£         A24C 

A2C, A5C andA7¤Cfrom Model ��:�; 
where E�� is the start time of project � obtained from the solution of the 

Model ��, "���� is the duration of the macro-mode ��� and A7¤C differs from A7C in 
that J�#+  is defined in (24) over �  �1, … , "����� rather than over �  ��. 

Once the new macro-mode ��[ is formed for each actual project s, 

theresulting changes in the NPV and the resource capacities due to macro-mode 

shifts are calculated. 2���, thebenefit gained in NPV due to the macro-mode shift in 

project �, is calculated as in A25C. Changes in renewable resource capacities, )�*+�� and in non-renewable resource capacities, ,�-�� , are defined in A26C andA27C, 
respectively.  2��� � A2�%¥ � 2�%�CA1 S !CA¡G�^;C�  �9     A25C ,�-�� � ,�%¥- � ,�%�-�  �9, �  �  A26C )�*+�� � )�%¥*+ � )�%�*+ �  �9, �  �, �  �1, … , "�%��      A27C 

It may not be possible to simultaneously shift the macro-modes for all 

projects because of conflicting needs for the common leftover capacities. On the 

other hand, making a macro-mode shift for project � may assign some left-over 

capacities to project � but it may also release some of the resources that are no 

longer required once the shift is realized. These possible macro-mode shifts are 

linked with each other. Hence, decisions on macro-mode shifts should be made by 

simultaneously considering the projects and solving Model MMS. 

In Model ���, the aim is to maximize the total NPV gain by applying the 

macro-mode shift (28) to select projects. Model��� is a knapsack-type 

formulation with renewable resource capacities that vary over time. 

 

Model ==¦ 
D5J I 2���§���                                                                               A28C 
            �. �.             I ,�-�� §��� c ,-�   �  �                             A29C 

I I )�*W�� §�
¡G�[\�G��^;

WN¡G��� c )*+� �  �, �  �          A30C 
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§� � i  1, if project� is selected for macro � mode shift0, {/. } �  �    A31C 
Constraint sets A29C and A30C ensure that the total resource availability 

bounds are not violated. Variable §� defined in A31C indicates whether or not a 
macro-mode shift is applied to a project. 

After applying the macro-mode shifts to the selected projects, individual 

projectsare scheduled as follows. 

3.4 Scheduling Each Individual Project 

After setting the resource capacities and the start times of the projects, each 

project is individually scheduled to minimize the project makespan. The 

scheduling problem is formulated for each project �  �as an MRCPSP with non-

renewable resource capacities ,�-�and renewable resource capacities )�*+� that vary 
over time. The resulting model is denoted by�� is given below: 

 

Model ¦?AB �  �C D	� EFG                                        A32C 
            �. �.          I I 0�#- I J�#+

LU
+NOU#PGU�bG

c ,�-�  �  �                 A33C 
I I I .�#*J�#W

XYZALU[\U]^;,   +C
WN_`aAOU,   +^\U][;C#PGU�bG

c )�*+�  �  �, �  ��        A34C 
A2C, A5C and A7C from Model��:�; 

 

We expected that the time dependence of the resource capacity levels would 

cause a significant increase in computation time, but this did not occur because 

the resource capacities were quite tight. Recall that the resource capacities are 

determined by the selection of the macro-modes, which were generated 

byrepeatedly solving a very similar model. 

4.A GENETIC ALGORITHM APPROACH FOR THE MACRO-ACTIVITY 

SCHEDULING PROBLEM   

The macro-activity scheduling problem MP introduced in section 3.2 is an 

MRCPSPDCF and hence, an NP-hard problem (Herroelen, 1997). Therefore, the 
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use of a heuristic procedure is justified to solve the problem.A GA was developed 

for this purpose,and itwill be presented in this section. 

4.1 Representation 

The problem is a version of the multi-component combinatorial optimization 

problem with sequencing and selection components. Hence, a common 

chromosome structure including two serial lists is used to represent a chromosome 

for the problem as in Şerifoğlu (1997).The first list is a permutation of the non-

dummy activities representing the priority order of activities for scheduling, and 

the second is a list of the mode selections for the activities. Hartmann (1998) also 

employs a list representation in his GA for RCPSP, which he later extended to the 

multi-mode case (Hartmann, 2001). Simulation experiments performed by 

Hartmann and Kolisch (2000) reveal that the performance of activity-list 

representation is superior to other discussed representations (Kolisch and 

Hartmann, 1999).  

4.2 Evaluation of the Chromosomes 

The fitness of a chromosome is determined by calculating NPV values and 

considering the positive cash flows incurred at the start of each activity. Start 

times are determined by obtaining the specific schedule represented by the lists 

stored in the chromosome. Since all cash flows are positive, starting the macro-

activities as soon as possible is more desirable for achieving higher NPVs. A 

serial scheduling scheme is used to schedule the macro-activities based on the 

priority sequence in the first list and the mode selections in the second list of the 

chromosome. 

4.3 Operators 

4.3.1 Crossover Operator 

Considering that there are no precedence feasibility issues among the 

activities corresponding to a project, a 2-point crossover method is employed. In a 

2-point crossover procedure, two random genes from the first parent are picked, 

and then genes before the first randomly selected gene and after the second 

randomly selected gene are directly passed on to the child. Then, the genes 

associated with the activities that are missing fromthe child's priority order list are 
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acquired from the second parent according to its priority order list and associated 

modes.  

4.3.2 Mutation Operators 

Two mutation operators are used to randomly modify the newborn and 

reproduced chromosomes:  

Swap mutation:This mutation is executed on the priority order list to obtain 

different sequences, which may or may not lead to a different schedule, by 

swapping the locations of two randomly selected activities. The activities are 

swapped while preserving their assigned modes.   

Bit mutation: An activity is selected randomly on the priority order list and 

its mode is replaced with another randomlychosen mode value. Bit mutation is not 

permitted to produce a non-renewable resource infeasible solutionby restricting a 

priori the range of modes to feasible ones with respect to non-renewable 

resources. 

4.4 Population Management 

An initial population is formed as follows: First, a mode selection list is 

generated by selecting a random mode for each activity.If the mode selections are 

not feasible with regard to the non-renewable resource capacities, a new list is 

formed from scratch. Note that Kolisch and Drexl (1997) have proven that the 

feasibility problem for |�| Q 2 is NP-complete. The non-renewable resource 

feasible mode selection list is then combined with a random sequence of 

activities. In addition, any existing solutions can be included in the initial solution.  

At each iteration, a new population is created as follows: A number of new 

members, which corresponds to a ratio �-Oª of the population size �«¬«, are 
created by using the 2-point crossover with members randomly selected from the 

current population and added to the new population along with two elite 

individuals. Two distinct individuals with the highest fitness values in the current 

populationare selected as the elite individuals. Any ties are broken arbitrarily.The 

additional number of individuals needed to increase the population size of the new 

populationto �«¬«is then reproduced from the current population with the elite 

individuals deleted using the roulette wheel selection method, where each 

individual is assigned a probability for selection proportional to its fitness value. 

Finally, except for the elite individuals, each individual is considered first for a 
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swap mutation with probability �ª9«and then for a bit mutation with probability ®�+. This new population generation scheme is given in Figure 2. 

 

Place Figure 2 about here 

4.5 Restart 

To avoid the possibility of early convergence and to refresh the population, 

a restart is applied after each �*O� generations,if the ratio of identical individuals 
in the population exceeds 30%. If this is not the case, then the algorithm is run for 

another �*O�generations. In each restart, all the members in the population except 

the elites are replaced by randomly generated new members.  

4.6 Termination 

The procedure is carried out for a predetermined number of 

generations.Once this maximum generation limit �¯O- is reached, the procedure is 
terminated.  

4.7 Fine Tuning the Design Parameters 

A series of experiments is performed to finetune the design parameters for 

the proposed GA algorithm. Various values of the design parameters shown in 

Table 1 are tested to arrive at a combination of design parameter values, which 

will result in a relatively better performance. The number of elite individualsis set 

to 2, and representative values are evaluated for each remaining design parameter.  

 

Place Table 1 about here 

 

A test data set is formed consisting of 17 instanceswhere optimal values are 

determined using an MIP solver. These instances are sampled from the main data 

set, which is described in section 5, and tested for various design parameter value 

combinations. For each test data set and parameter combination, five replications 

are executed, and the average best solutions and the average computation times 

are calculated. Considering that the primary intention is to obtain solutions that 

are as good as possible and the computational time required for GA application is 

relatively small, the combination performances are evaluated based primarily on 
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the closeness of the best solution to the optimal solution. The computational time 

is used as a secondary performance measure.  

Parameter value combinations are tested in two phases. In the first phase, 

324 combinations of the parameters �«¬«, �¯O-, �-Oª, �ª9«and ®�+are analyzed 
and fixed. Then, using the parameter values fixed previously, 3 combinations per 

restartcheck are tested in the second level.  

Comparing the performances of the parameter value combinations obtained, 

excluding the restart possibility, we observed that �«¬« � 100and �¯O- �500perform better as expected since larger values allow for more computations, 

which cannot have a negative effect on the objective function value. However, we 

realized that there was no significantly dominant set of values for the parameters �-Oª, �ª9«and ®�+, and combinations worked quite well with small differences 

between one other. To resolve this issue,a small segment of the best-performing 

parameter combinations from each data instance were combined. Based on the 

frequency of combinations among the representative combinations over all data 

instances, we observed that a combination with �-Oª � 0.6, �ª9« � 0.5, ®�+ � 0.2 performed better. Fixing the parameter values determined so far, �*O�was tested. �*O� � 100 performed better for the majority of the data 

instances. Hence, we decided to use the combination �«¬« � 100, �¯O- � 500, �-Oª � 0.6, �ª9« � 0.5, ®�+ � 0.2 and �*O� � 100 for all the following 
computations. 

5. COMPUTATIONAL STUDY 

To analyze the performance of the proposed 2-stage decomposition method 

for the multi-project scheduling problem, a series of computational experiments 

are carried out. These experiments are meant to observe and examine the effects 

of various factors that shape the problem environment on the results and the 

computational effort. 

Since no benchmark problem sets with the required structure are available 

currently, new problem sets are generated using the single project cases taken 

from PSBLIB (Kolisch and Sprecher, 1996). Various cases with different numbers 

of jobs from PSPLIB are combined into multi-project problems by assigning cash 

flow values, general resource capacities, and resource utilization costs. 
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5.1 Resource Conditions 

The Resource Factor A�°±C, which measures the usage/consumption, and the 

Resource Strength (��±), which measures the availability, are defined to represent 

the resource-based conditions of resource categories ²  ��, ��. These factors, 
which were shown to have (Kolisch et al., 1995) a strong effect on the behavior of 

RCPSP solution procedures, are adapted here for multi-project scheduling 

environments. �°3  is given by A35C and A36C; and �°�is given by (37) and (38). 
yY´µ � i  1,         wY´µ · 00,  o/w } 	  �� , �  ��	, �  �A35C 
�°3 � 1|�| 1|�| � 2 I 1|��| � 2 I 1|��	|

|��|�1
	�2 I I §	�������	

|�|�1
��2                                   A36C 

��#- � i  1,         0�#- · 00, {/. } 	  �� , �  ��	, �  �A37C 
�°� � 1|�| 1|�| � 2 I 1|��| � 2 I 1|��	|

|��|�1
	�2 I I �	�������	

|�|�1
��2                                A38C 

The resource availability for each renewable resource �  � is given as: 
*̧ � *̧X�- S �{¹�"¢���R *̧X9� � *̧X�-T£       �  �                           A39C 

where *̧X�- � maxY¢min´�.�#*�£, and the maximum level *̧X9� is determined by 

the peak per period usage of the renewable resource � required in the early finish 
schedule obtained through forward recursion and the selection of activity modes 

with maximum requirements for the renewable resource �.  
The resource availability for each non-renewable resource �  � is given as: 

-̧ � -̧X�- S �{¹�"¢���R -̧X9� � -̧X�-T£                          �  �     A40C 
where ¸-X9� � ∑ D5J#¢0�#-£�  and -̧X�- � ∑ D	�#� ¢0�#-£. 
5.2 Financial Parameters 

The discount rate (!) is selected to be 0.05 per period for all cases and 
constant throughout the time horizon. The parameters 5* and 6- are assumed to be 

3. Due to the nature of the problem and the solution procedure, cash flows for 

macro-modes cannot be known initially, but they can be calculated by considering 

the lump sum payments at the completion times of the projects, »�3; the fixed cost 
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to be invested to start a project, »�4; and the resource-based variable costs, 5* and 6-, as the macro-modes created one by one. This condition arises from the 

necessity to seek a sensible approach to set »�3 and »�4 for each project �  �.These 
parametersare determined by using A42C and A43C, where  2��, a base cost related 
with resource usages as expressed in A41C, is multiplied by a factor drawn from 

the uniform distribution ¼~A0, 1C, and the factors  ¾3 for lumpsum payments and ¾4 for investment costs. ¾3 � 18and¾4 � 0.2 are used here in all problem casesto 

ensure positive cash flows for the macro-mode generation process. 

2�� � I 1|���| I �I "�#5*.�#**3 S I 6-0�#--� �#PGU�bG
                A41C 

 »�3 �  2��¾3R1 S A¼~A0, 1CCT        A42C »�4 �  2��¾4R1 S A¼~A0, 1CCT          A43C 
5.3 Problem Sets 

Three problem sets denoted by A,B,C are created to represent a variety of 

different environmental factors. 

Problem set A is formed to analyze the effect of resource based factors 

while fixing other factors. Set A includes multi-project caseswith the same 

number of projects and the same number of activities but different resource 

requirements and resource availability levels, categorized by �� and �° values 
for renewable and non-renewable resources. Each instance includes 14 projects 

consisting of 10 activities each as shown in the first two columns of Table 2. 

Three levels are selected for each factor including �°3, �°�, ��3 and ��� as 
given in the last four columns of Table 2. To avoid any infeasibilities due to 

insufficient non-renewable resources, a minimum value for��� ,���X�-, is 

determined by simple testing, and a medium level is also calculated by ���X�\ ����X�- S R1 �  ���X�-T/2 . Combinations of these four variable factors with three 

levels of each result in problem set A gave 81 total instances. 

 

Place Table 2 about here 

 

Problem set B focuses on the effects of different number of projects and 

activities. In these multi-project instances, three levels are set for the number of 



21 

projects and seven levels are set for the number of activities as provided in the 

first two columns of Table 3. The�° values for renewable and non-renewable 
resources are fixed at 0.5 as shown in the third and fourth columns of Table 3. 

Two levels are determined for ��3 and ��� as shown in the last two columns of 

Table 4. The levels for the���values are set using ���X�\; � ���X�- SR1 � ���X�-T/3 and ���X�\< � ���X�- S 2 � R1 �  ���X�-T/3. Combinations of 

these four variable factors with different levels results in problem set B with 

84instances. 

 

Place Table 3 about here 

 

In problem set C, a multi-project environment that is heterogeneous in terms 

of project sizes, is emphasized by grouping projects consisting of different 

number of activities (Table 4). Three multi-project groups are formed, and 

different levels of resource strengths are assigned. In the first group, equal 

numbers of relatively small, medium and large projects are combined. In group 

two, a few larger projects are grouped together with a collection of smaller sized 

projects. In the third group, a few smaller projects are added to a group of 

relatively large projects.The levels for the��� values are set as for problem set A. 

Combinations of these three multi-project groups with three resource strength 

levels result in 27 instances.  

 

Place Table 4 about here 

 

5.4 Software and Hardware Information 

All codes are written in GNU C#, and the MIP solver is CPLEX 12.1. All 

experiments were performed on a HP Compaq dx 7400 Microtower with a 2.33 

GHz Intel Core 2 Quad CPU Q8200 processor and 3.46 GB of RAM. 

5.5 2-Stage Decomposition Method Performance Analysis 

For assessing the performance of the 2-stage decomposition procedure as 

well as the GA approach presented in section 4, three configurations were 

designed with the methods used in this work. Besides the GA approach employed 

for solving the macro-activityscheduling model (Model MP),all of the 
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mathematical programming models presented as part of the proposed 2-stage 

decomposition procedure are solved using an MIP solver. In Configuration 1, 

Model MP is solved by the GA approach, whereas in Configuration 2it is solved 

by the MIP solver. In Configuration 3,Model MP is solved by the MIP solver but 

this time an initial solution is provided to the MIP solver, which is obtained by the 

GA approach.   

5.6 Results 

In this section, we present the results obtained by running the algorithm with 

all three configurations forproblem sets A, B and C. A two-hour time limit is set 

for the MIP solver when solving Model MP. For some of the instances in problem 

sets B and C, this computational time limit was reached before an optimal solution 

was obtained. Such instances are not reportedin theseresults. The number of 

instances,where Model MP is solved optimally,isreported in Table 5.  

 

Place Table 5 about here 

 

The computational results associated with the solution of Model MP are 

reported in Table 6. Model MP is solved both by GA  and the MIP solver without 

and with an initial solution obtained by GA. These are referred to in the Table as 

GA, MIP, GA+MIP, respectively. The average CPU values, CPUMP, for GA are 

relatively much lower than required by the MIP solver results in both MIP and 

GA+MIP over all problem sets. For the average NPV values, NPVMP, we  observe 

that for problem sets A, B and C,  the GA results differ from the optimal solutions 

by 0.11%, 0.59% and 0.56%, respectively.   

 

Place Table 6 about here 

 

Table 7reports NPVAve and CPUTotal for all configurations and all problem 

sets. The average objective function value for stage 1 is designated as NPVAve. 

CPUTotal corresponds to the average CPU time required to solve both stages of the 

solution procedure. Although for Configuration 1 the percentage of optimal  

solutions is relatively low, the NPVAvevalues are very close to the optimal 

solutions obtained by the other two Configurations differing by 0.07%, 0.45% and 

0.36% for the problem sets A, B and C, respectively.CPUTotal for Configuration 1 
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is relatively much less than those for Configurations 2 and 3 over all problem sets. 

Table 7 also shows that Configuration 3 performs slightly better than 

Configuration 2 for the problem sets B and C in terms of the computational effort 

required. Note that the problems in these sets require in general more computation 

time and hence, the effort of generating an initial solution obtained employing GA 

appears to pay off. 

 

Place Table 7about here 

 

The post-processing procedure improves the objective function value 

considerably with relatively little computational effort as shown in Table 8. 

 

Place Table 8about here 

 

Table 9shows that the resource strength,RS, has a significant effect on the 

computational effort required for the macro-activity scheduling step. For a given 

RSN  level, the required computational effort increases to a maximum level as ��3, which indicates the level of renewable resource availabilities, increases to a 
certain medium level (��3=0.6) and subsequently decreases dramatically as the 

renewable resource availabilities climb to higher levels.   

 

Place Table 9about here 

 

Table 10presents the average CPUTotal required to solve the instances from 

problem set B using Configurations 2 and 3  different numbers of projects. 

Columns2 and 3 report the average values including only the instances where the 

macro-project scheduling problem is solved optimally within the time limit. The 

fact that the CPUTotalvalues increase with the number of projects coincides with 

the expectation that the number of projects in the problem environment has a 

significant impact on the problem difficulty. 

 

Place Table 10 about here 

 

6. SUMMARY AND FUTURE WORK 
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We present an operationally effective and viable 2-stage decomposition 

approach reflecting the dual-level project management structure and based on the 

concepts of macro-activity and macro-mode introduced by Speranza and Vercellis 

(1993). We introduce several different formulations and solution procedures.  

The macro-mode generation procedure in the first stage of the 

decomposition is applied with the introduction of a new search systematic for the 

macro-modes. We introduce a budget based on the different types of costs 

involved. The use of such a budget enables the generation of representative modes 

via ��; and ��<. 
To reduce the number of variables in the formulation for MRCPSPDCF 

with positive cash flows, three different time horizon setting methods are 

developed and tested.  

A GA approach is proposed for solving MRCPSPDCF with time dependent 

renewable resource requirements. Compared to optimal solutions it is shown to be 

extremely effective both in terms of the objective function value obtained and the 

CPU time required. The GA is employed as a standalone solution procedure as 

well as to generate initial solutions for the exact solution procedure.  

An efficient post-processing procedure is introduced to distribute left over 

resources from stage one to the projects to search for any improvements.  

To analyze the performance and behavior of the proposed 2-stage 

decomposition method, new data sets are formed using the single project cases 

taken from PSBLIB compiled by Kolisch and Sprecher (1996), and a series of 

computational experiments are carried out.  

Although this study deals with MRCMPSP, some specific versions of 

MRCPSP are dealt with directly as well due to the nature of the decomposition 

based approach, e.g., an MRCPSP with time-dependent renewable resource 

capacities.  

There are several possible directions to extend this work in the future.  

• Precedence relations between projects can also be included by considering that, 

in practice, some projects need to precede others for technological reasons.  

• Project termination deadlines can be specified and penalty costs for violating 

these deadlines can be included in the cost structure, or a just-in-time 

environment can be considered.   
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Considering the relevance of the problem treated here to manufacturing 

firms as well as project-based firms, we conclude that resource-constrained multi-

project scheduling with hierarchical decomposition-based approaches is a rich 

topic for further investigation. 
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Figure 1. 2-Stage decomposition procedure flow 

 

 

 

Figure 2. New population generation scheme 
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Table 1. Design parameters and their range of values for fine-tuning 

Design Parameters Identifier Values 

Number of elites �OL�+O {2} 

Population size �«¬« {50, 75, 100} 

Number of generations �¯O- {200, 300, 400, 500} 

Ratio of newborn �-Oª {0.4, 0.6, 0.8} 

Probability of swap mutation �ª9« {0.2, 0.5, 0.8} 

Probability of bit mutation ®�+ {0.2, 0.5, 0.8} 

Number of generations per injection check �*O� {0, 50, 100} 

 

 

Table 2. Problem set A 

noProj noAct �°3 �°� ��3 ��� 
14 10 {0.5, 0.75, 1} {0.5, 0.75, 1} {0.3, 0.6, 0.9} {���X�-,���X�\,1} 

 

 

Table 3. Problem set B 

noProj noAct �°3 �°� ��3 ��� 
{10, 15, 20} {10, 12, 14, 16, 18, 20, 30} 0.5 0.5 {0.4, 0.7} {���X�\;,���X�\<} 

 

 

Table 4. Problem set C 

noProj&noAct �°3 �°� ��3 ��� 
{(5 * J10, 5 * J20, 5 * J30); 

  (8 * J10, 8 * J12, 2 * J30); 

(3 * J10, 7 * J18, 7 * J20)} 

0.5 0.5 
{0.3, 0.6, 

0.9} 
{{���X�-,���X�\,1} 

 

 

 



30 

Table 5. Number of instances solved to optimality 

Configuration 
Problem Set A 

(81 problems) 

Problem Set B 

(84 problems) 

Problem Set C 

(27 problems) 

1 60 74.0% 25 29.8% 7 25.9% 

2 81 100% 69 82.1% 24 88.9% 

3 81 100% 72 85.7% 24 88.9% 

 

Table 6. Performance of GA solving Model MP over problem sets A, B and C  

Model MP 

solved by 

AverageNPVMP andCPUMP (sec) 

Problem Set A Problem Set B Problem Set C 

NPVMP CPUMP NPVMP CPUMP NPVMP CPUMP 

GA 97,444.5 13.32 98,482.6 12.62 131,821.2 9.89 

MIP 97,552.5 204.28 99,069.6 795.41 132,565.0 781.32 

GA+MIP 97,552.5 212.00 99,069.6 707.90 132,565.0 717.61 

 

Table 7. 2-stage decomposition results for problem sets A, B and C  

Configuration 

AverageNPVAve andCPUTotal (sec) 

Problem Set A Problem Set B Problem Set C 

NPVAve CPUTotal NPVAve CPUTotal NPVAve CPUTotal 

1 101,839.3 20.69 99,390.8 29.71 133,719.9 29.92 

2 101,912.7 211.46 99,843.4 812.96 134,200.4 801.12 

3 101,906.9 231.84 99,836.6 737.40 134,200.4 747.16 
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Table 8. Performance of post-processing routine 

Configuration 

Average Post-Processing NPV Improvement (%) 

Problem Set A Problem Set B Problem Set C 

1 4.23 1.01 1.41 

2 4.20 0.85 1.20 

3 4.19 0.85 1.20 

Configuration 

Average CPU (sec) for Post-Processing 

Problem Set A Problem Set B Problem Set C 

1 0.60 0.43 0.96 

2 0.52 0.40 0.66 

3 0.51 0.41 0.66 

 

Table 9.Effects of �� factor on computational effort required – Problem set A 

with Configuration 3 

Average CPUTotal(sec) ��� � ���X�- ��� � ���X�\ ��� �1 ��3 = 0.3 237.24 181.44 187.57 ��3 = 0.6 488.12 413.11 406.54 ��3 = 0.9 49.09 61.72 61.73 

 

Table 10. Effect of number of projects – Problem set Bwith Configurations 2 and 3 

 Average CPUTotal(sec) of  
Number of instances solved to 

optimality 

noProj Configuration 2 Configuration 3 Configuration 2 Configuration 3 

10 122.72 104.72 28 out of 28 28 out of 28 

15 1,122.55 1,124.59 25 out of 28 26 out of 28 

20 1,537.13 1,839.36 16 out of 28 18 out of 28 

 

 


