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Abstract

We identify a new channel through which schools can potentially manipulate the well-

known student and school optimal stable mechanisms. We introduce two different fictitious

students creation manipulation notions where one of them is stronger. While the student and

school optimal stable mechanisms turn out to be weakly fictitious student-proof under acyclic

(Ergin (2002)) and essentially homogeneous (Kojima (2013)) priority structures, respectively,

they still lack strong fictitious student-proofness. We then compare the mechanisms in terms

of their vulnerability to manipulations in the sense of Pathak and Sönmez (2013) and find

out that the student-optimal stable mechanism is more manipulable than the school-optimal

one. Lastly, in the large market setting of Kojima and Pathak (2009), the student-optimal

stable mechanism becomes weakly fictitious student-proof as the market is getting large.
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1 Introduction

Initiated by Gale and Shapley (1962), matching theory has been fruitful both in the-

ory and practice. Theoretical findings have been successfully applied to real-life problems,

including doctor assignments, student placements, and kidney exchanges. It has been docu-

mented that the theoretically appealing stability notion of Gale and Shapley (1962) has also

proved to be very critical for the well-working of real-life matching markets.1

Fortunately, Gale and Shapley (1962) show the existence of a stable solution through

introducing the celebrated deferred acceptance algorithm. This positive result, however, has

not solved all the problems of matching market design, especially regarding the strategic

ones. Roth (1982) shows that no stable mechanism is immune to preference manipulations.

However, in the one-to-one matching setting where either side’s preferences are common

knowledge, there exists a stable and strategy-proof mechanism (Dubins and Freedman (1981),

Roth (1982)). As well as preference misreporting, Sönmez (1997, 1999) show that no stable

mechanism is immune to capacity and pre-arrangement manipulations, respectively. Some

recent related papers on manipulation incentives in matching markets include Kojima (2011),

Kojima and Pathak (2009), Afacan (2012, 2013), and Kesten (2012).

In the current study, we investigate another channel via which schools could potentially

manipulate matching mechanisms. Yokoo et al. (2004) study the bidders’ incentives to

submit bids under fictitious names in combinatorial auctions. On the other hand, as cor-

responding manipulation in the school choice context, one can think of a situation where

schools create fictitious students in the hope of getting better assignments. This paper,

thereby, studies the schools’ fictitious students creation incentives under two well-known

matching mechanisms.

We first introduce two different manipulation notions where one of them is stronger. In

the strong one, schools encounter two natural constraints in creating fictitious students: they

can not affect the preference profile of “non-fictitious” (real) students and the relative priority

1For an excellent source, refer to Roth and Sotomayor (1990).
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rankings of schools over them. On the other hand, for the weak one, we also impose that

fictitious students have to be either unassigned or matched with the school which created

them. Then, unfortunately, it turns out that both the student and school-optimal stable

mechanisms are not even weakly fictitious student-proof.

Given the above negative result, we look for some structure on the primitives helping us to

gain fictitious student-proofness. The extant literature shows that the student-optimal stable

mechanism admits good properties (including strategic ones) under Ergin (2002)’s acyclic

priority structures,2 which makes acyclicity a worthwhile condition to consider. The student-

optimal stable mechanism becomes weakly fictitious student-proof under acyclicity. However,

it still lacks strong fictitious student-proofness. The school-optimal stable mechanism, on

the other hand, is not weakly fictitious student-proof even under acyclicity. This leads us to

look for a stronger condition for the school-optimal stable rule. A recent paper by Kojima

(2013) shows that in the many-to-many matching environment, the student-optimal stable

mechanism becomes strategy-proof and Pareto efficient if and only if the priority structure is

“essentially homogeneous”. Fortunately, essential homogeneity proves useful in the current

paper as well: the school-optimal stable mechanism is weakly fictitious student-proof if the

schools’ priorities are essentially homogeneous.

In spite of the above positive results, both acyclicity and essential homogeneity require

strong conditions in that the schools’ priorities would barely satisfy them. Therefore instead

of assuming them, we next compare the manipulability of the mechanisms on problem basis

a la Pathak and Sönmez (2013). Even though the school-optimal stable mechanism requires

a stronger priority condition for the weak immunity than the student-optimal stable rule

does, interestingly, the latter is “more manipulable” than the former. That is, the student-

optimal stable mechanism is strongly manipulable via creating fictitious students at any

problem where so is the school-optimal rule, and there is a problem instance at which the

latter is not manipulable, yet the former is.

2Please refer to the Related Literature section for details.
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Lastly, we investigate the scope of fictitious student manipulations under the student-

optimal stable mechanism in large markets. The existing literature (Roth and Peranson

(1999), Immorlica and Mahdian (2005), Kojima and Pathak (2009), and Hatfield et al.

(2011)) shows that some of the undesirable properties of mechanisms may disappear as the

number of participants goes to infinity. Motivated by this fact, we employ the large market

setting of Kojima and Pathak (2009) and address the question of whether the same is true

for fictitious student manipulations as well. To this end, we show that instead of considering

fictitious student manipulations, we can consider a certain type of priority misreporting in

the sense that whenever there is a room for manipulation of the former kind, then so is there

of the latter kind. This result enables us to directly apply the results of Kojima and Pathak

(2009) for fictitious student manipulations as well: the student-optimal stable mechanism

becomes weakly fictitious student-proof under some regularity conditions as the number of

participants goes to infinity.

Why should we care about fictitious students creation manipulations? From the well-

known comparative statistics result of Gale and Sotomayor (1985b), we know that under

both the student and school optimal stable mechanisms, the fictitious student manipulation

leads real students to be at least weakly worse off, with at least one of them being strictly

worse off. This means that such manipulations result in Pareto inferior outcomes to what

would otherwise arise.3 The social planner, hence, should take this kind of manipulation

possibilities into account in the matching market design. A related policy recommendation

of the paper is that the social planner might influence the schools’ priorities in a way that

makes them acyclic (essentially homogeneous) to avoid manipulations under the student

(school)-optimal stable mechanism.

3Since schools are considered as objects to be consumed in the school choice problems, only the students’
welfare matters (in our setting, naturally, only the welfare of real ones is considered).

4



Two conceptual issues are whether schools are strategic agents and whether their prior-

ities reflect their actual preferences. In the conventional school choice model, it is assumed

that schools are just objects to be consumed and their priorities are exogenously given based

on certain criteria imposed by law.4 Hence, neither they are assumed to be strategic agents

nor their priorities necessarily reflect their actual preferences. However, there are some

student placement systems where schools can influence their priorities. Hence, schools can

be strategic and their priorities can reflect their actual preferences. The New York City

school district (see Abdulkadiroglu (2011) for details), which is the largest one in USA, is an

example for such student placement system.

Another related concern is whether schools manipulate mechanisms via creating fictitious

students in real-life problems? This paper demonstrates the potential for such manipula-

tions rather than claiming that they certainly exist in real-life problems. Indeed, generally

speaking, it is very difficult to identify manipulations even the well-known ones: preference,

capacity, pre-arrangements in real-life problems. Even though one figures out that a partic-

ipant misreports its private information, it is difficult to argue that it does so in the hope

of getting better outcome. However, we can at least argue that schools indeed can create

fake students; hence, such manipulations are feasible in real-life problems. Falsified resi-

dency frauds were documented in some school districts in US. For instance, in the Methuen

School District (Boston), eighty-one students were identified to commit falsified residency

fraud in 2011. Similarly, forty-one students were identified in the Deer Park School Dis-

trict (New York) in 2012.5 Hence, it would not hard to think of a situation where schools

ask students to falsify their residency information to get them to participate in matching.6

Another real-life situation making fake identities feasible is separate matching processes for

different types of schools. Private school admissions in New York are decentralized, hence,

4Such as the proximity of students’ houses to schools and which schools their siblings are attending (if
applicable).

5For more such instances, one may refer to http://www.verifyresidence.com/blog/
6Note that such students with their true residency records might be ineligible to participate in the

matching or low priority ones having no effect on the matching outcome.

5



separated from the public schools centralized matching process. Indeed, New York pub-

lic school admissions involve separate centralized matching processes for different types of

schools as well. Namely, there are two different types of public schools called “mainstream”

and “exam” schools. Students are processed separately for each type of schools at different

dates, therefore, they might learn their particular type school assignments well before than

the other school type’s matching takes place.7 In such an environment, public schools might

ask students to participate in their own centralized matching process even though they are

sure to go to private or other type of public schools.8

2 Related Literature

This paper is broadly related to the extensive literature on manipulations in matching

markets. In the two-sided matching context, Roth (1982) shows that no stable mecha-

nism is strategy-proof.9 Nonetheless, in the one-to-one matching setting, if one side of the

market has commonly known preferences, then there exists a strategy-proof stable mech-

anism (Dubins and Freedman (1981),Roth (1982)). As well as preference manipulations,

Sönmez (1997, 1999) prove that no stable mechanism is non-manipulable via capacities and

pre-arrangements respectively. Similarly, Afacan (2013) shows that no stable mechanism

is immune to application fee manipulations. Given these impossibility results, Pathak and

Sönmez (2013) introduce a new methodology to compare mechanisms by their vulnerability

to manipulations based on the room for strategizing across problems.

The acyclicity (Ergin (2002)) and essential homogeneity (Kojima (2013)) conditions prove

critical in the current paper. There are other related studies sharing the same point. Ergin

(2002) shows that the student-optimal stable mechanism is group strategy-proof10 under

7Both types of public schools have centralized admission processes. For details, the reader could refer to
http://schools.nyc.gov/default.htm.

8As already pointed out previously, New York City public schools can determine their priorities; hence,
they can reflect their actual preferences (for details, see Abdulkadiroglu (2011)).

9A mechanism is strategy-proof if no agent ever benefits from misreporting his preference.
10A mechanism is group strategy-proof if no group of agents ever has incentive to misreport their prefer-
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acyclic priority structures. Kojima (2011) demonstrates that under the student-optimal

stable mechanism, no individual student is better off by first misreporting his preference and

then appealing to the outcome if and only if the schools’ priorities are acyclic. This result is

then generalized to the groups of students by Afacan (2012). Moreover, Kesten (2012) proves

that acyclicity is necessary and sufficient for the student-optimal stable mechanism to be

immune to capacity manipulations. In a recent study, Kojima (2013) shows that the student-

optimal stable mechanism is separately efficient and strategy-proof in the many-to-many

matching setting if and only if the priority structure of schools is essentially homogeneous.

The current paper identifies one more sense in which such priority structures are important

for the matching market design.

While there are many negative results in finite matching markets, some of them have been

shown to disappear in large markets. In the one-to-one matching setting, Immorlica and

Mahdian (2005) demonstrate that the schools’ manipulation incentives vanish as the market

is getting large. This result is then generalized to the many-to-one matching environment

under certain conditions by Kojima and Pathak (2009).11 Moreover, in a recent paper,

Hatfield et al. (2011) study the schools’ incentives to improve themselves and show that

stable mechanisms give right incentives in large markets, whereas, they fail to do so in finite

markets.

This paper is also related to the creating fake bidders incentives literature to which com-

puter scientists well contribute. Yokoo et al. (2004) examine the incentives of bidders to

submit bids under fictitious names in combinatorial auctions. They say that an auction pro-

tocol is false-name-proof if no bidder ever can profitably submit a false name bid. They first

show that no efficient auction protocol is false-name-proof, then give a sufficient condition

which makes VCG mechanism false-name-proof. Another related paper is Todo and Conitzer

(2013) where the authors consider the object allocation problem without money. In their

setting, objects have priorities over characteristics (in the school choice context, for instance,

ences.
11Kojima and Pathak (2009) also do some equilibrium analysis.
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GPA and exam scores might be two such characteristics) rather than over agents. Agents re-

port both their preferences and characteristics. They investigate whether agents can benefit

by creating fake accounts and, to this end, they introduce two manipulation notions where

one of them is stronger. Todo and Conitzer (2013) show that the student-optimal stable

mechanism satisfies the stronger version, whereas, the Top Trading Cycles mechanism just

satisfies the weaker one without an acyclicity assumption on the objects’ priorities. While

Todo and Conitzer (2013) and the current work are close in spirit, the main difference is the

respective manipulating agents (schools are the manipulating agents in our work as opposed

to the students in Todo and Conitzer (2013)). This difference makes the papers’ respective

manipulation formulations and models different. Hence, there is no logical relation between

them. Some other papers on the creating fake identity incentives in various environments

include Conitzer (2008), Yokoo et al. (2005), and Todo et al. (2011).

3 Model & Results

A school choice problem consists of a tuple (S,C, P,�, q). The first two components

are finite and disjoint sets of students and schools, respectively. Each student i ∈ S has a

preference relation Pi, which is a complete, strict, and transitive binary relation over the set

of schools C and being unassigned (denoted by ∅). Let P be the set of all such preference

relations and the list P = (Pi)i∈S is the preference profile of students. We write cRic
′ if

either cPic
′ or c = c′. Each school c ∈ C has a priority order �c, which is a complete, strict,

and transitive binary relation over the set of students S and keeping seat vacant, denoted

by ∅. We write �= (�c)c∈C for the priority order profile of schools. The last component

q = (qc)c∈C is the quota profile of schools where qc is of school c. We call the tuple (�, q)

priority structure.

We interpret the priority orders of schools as their preferences and extend them to over

the set of groups of students in the responsive (Roth (1985)) way. A matching µ is an
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assignment of students to schools such that no student is assigned more than one school,

and no school is assigned to more students than its quota. We write µk for the assignment

of student (school) k ∈ S ∪ C under µ. A matching µ is individually rational if µiRi∅ for

all i ∈ S and, for any c ∈ C, there is no i ∈ µc such that ∅ �c i. Matching µ is blocked by

a student-school pair (i, c) ∈ S × C if cPiµi and either i �c ∅ and |µc| < qc or i �c j for

some j ∈ µc. A matching µ is stable if it is individually rational and not blocked by any pair

(i, c) ∈ S×C. In the rest of the paper as q and C will be fixed, we write (S, P,�) to denote

the problem.

A mechanism ψ is a function assigning a matching for every problem (S, P,�). Mecha-

nism ψ is stable if its outcome is stable at every problem instance. In the rest of the paper,

we just write ψ(P ) for the mechanism outcome whenever it does not cause confusion.

Below, we outline the student-proposing deferred acceptance algorithm producing the

student-optimal stable matching (Gale and Shapley (1962)).

Step 1. Each student applies to his first choice school. Each school tentatively assign its

seats to its acceptable12 applicants one at a time following its priority order. Any remaining

applicant is rejected.

In general,

Step t. Each student who was rejected in step (t − 1) applies to his next best choice.

Each school tentatively assigns its seats to the current acceptable applicants along with the

ones already assigned seats in the previous step one at a time following its priority order.

Any remaining applicant is rejected.

The algorithm terminates when no student applies to a school, and the tentatively held

offers at the termination step are realized as assignments. The student-optimal stable mech-

anism produces the student-optimal stable matching for every problem (Gale and Shapley

(1962)). On the other hand, the school-proposing version of the above algorithm produces

12Student i is acceptable to school c if i �c ∅.
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the school-optimal stable matching (Gale and Shapley (1962)). Similarly, the school-optimal

stable mechanism assigns the school-optimal stable matching for every problem. In the rest

of the paper, we write ψS and ψC for the student and school-optimal stable mechanism,

respectively.

Definition 1. Mechanism ψ is weakly manipulable via creating fictitious students at a match-

ing problem instance (S, P,�) if there exist a school ĉ ∈ C and another matching problem

instance (S ′, P ′,�′) such that the followings satisfy:

(i) S ⊂ S ′,

(ii) for all i, j ∈ S and c ∈ C, i �c j if and only if i �′c j,

(iii) P ′i = Pi for all i ∈ S,

(iv) ψĉ(S
′, P ′,�′) ∩ S �ĉ ψĉ(S, P,�).

In words, we refer to the students in S ′\S as fictitious students and say that a mechanism

is weakly manipulable via creating fictitious students at a problem if a school can be strictly

better off by creating such students under the constraints that it can affect neither the priority

rankings of schools among non-fictitious students (Condition (ii)) nor the preference profile

of them (Condition (iii)).

Remark 1. In the definition, manipulating school ĉ compares the outcomes based on

its non-fictitious students assignments (i.e, according to �ĉ rather than �′ĉ). This is very

natural since it knows that all students in the set S ′ \ S are fictitious created by itself.

Definition 2. A mechanism ψ is strongly fictitious student-proof if it is not weakly manip-

ulable via creating fictitious students at any matching problem instance (S, P,�).

Proposition 1. Neither ψS nor ψC is strongly fictitious student-proof.

Proof. Consider a problem consisting of S = {i} and C = {a, b} with qa = qb = 1. Assume

that student i prefers school a to school b to being unassigned, that is, Pi : a, b, ∅. The

priorities of schools are such that �a=�b: i, ∅. Then, ψCi (Pi) = ψSi (Pi) = a.
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Now, let school b create fictitious student j with Pj : a, ∅. For the priority order of schools

over {i, j}, assume that �′a=�′b: j, i, ∅. Then, ψCi (Pi, Pj) = ψSi (Pi, Pj) = b. Hence, school b

is better off via creating fictitious student b, which finishes the proof.

The above negative result is indeed very well expected as it is easy to see that whenever

a school does not match with its top priority group under any stable rule, then it can

manipulate the mechanism. Hence, in what follows, we weaken the manipulation concept

and investigate whether the mechanisms are manipulable via creating fictitious students in

this weak sense.

Definition 3. Mechanism ψ is strongly manipulable via creating fictitious students at a

matching problem instance (S, P,�) if there exist a school ĉ ∈ C and another matching

problem instance (S ′, P ′,�′) such that the followings satisfy:

(i) S ⊂ S ′,

(ii) for all i, j ∈ S and c ∈ C, i �c j if and only if i �′c j,

(iii) P ′i = Pi for all i ∈ S,

(iv) for all i ∈ S ′ \ S, either ψi(S
′, P ′,�′) = ĉ or ψi(S

′, P ′,�′) = ∅,

(v) ψĉ(S
′, P ′,�′) ∩ S �ĉ ψĉ(S, P,�).

The only difference between the two manipulation concepts is Condition (iv) in the

above definition. Namely, it imposes the restriction that fictitious students have to be either

unassigned or assigned the school which created them. This condition, which we interpret

as capturing the situations where it is not in the schools’ interest to create such students

where some of them get matched with a school other than the manipulating one, can realize

in real-life matching markets in the presence of some policy.

Definition 4. A mechanism ψ is weakly fictitious student-proof if it is not strongly manip-

ulable via creating fictitious students at any matching problem instance (S, P,�).
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Proposition 2. Neither ψS nor ψC is weakly fictitious student-proof.

Proof. We first prove the manipulability of ψS. Consider a matching problem instance

consisting of S = {i, j}, C = {a, b}, qa = qb = 1, the following preference and priority order

profiles:

Pi : b, a, ∅,

Pj : a, b, ∅,

�a: i, j, ∅,

�b: j, i, ∅.

Let P = (Pi, Pj), then ψS(P ) = (ψSi (P ), ψSj (P )) = (b, a). Now, let school b create a

fictitious student k and assume that the preference Pk and the priority rankings of schools

�′ over {i, j, k} are as follows:

Pk : a, ∅, b,

�′a: i, k, j, ∅,

�′b: j, i, k, ∅.

Let P ′ = (Pi, Pj, Pk). Then, ψS(P ′) = (ψSi (P ′), ψSj (P ′), ψSk (P ′)) = (a, b, ∅) (note that all

the conditions in the manipulation definition are met). Hence, school b is better off through

creating fictitious student k.

For the manipulability of ψC , let us consider the same problem above with the difference

that qa = 2. Then, ψC(P ) = (ψCi (P ), ψCj (P )) = (b, a). Let school a create fictitious student

k with the same preference profile P ′ and same priorities �′ as above. Then, ψC(P ′) =

(ψCi (P ′), ψCj (P ′), ψCk (P ′)) = (a, b, a), making school a better off.

Given the lack of even weak fictitious student-proofness, we look for some condition

on the primitives helping us to overturn at least some of the above negative results. The

extant literature shows that Ergin (2002)’s acyclicity condition has been very useful in that

sense. Specifically, the student-optimal stable mechanism admits many good properties
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including strategic ones under acyclicity condition. In what follows, we therefore investigate

the fictitious student creation incentives under acyclicity.

Definition 5 (Ergin (2002)). Given a priority structure (�, q), a cycle is a, b ∈ C, i, j, k ∈ S

such that;

(i) i �a j �a k and k �b i, and

(ii) there exist (possibly empty) disjoint sets of students Sa, Sb ⊆ S \ {i, j, k} such that

|Sa| = qa − 1, |Sb| = qb − 1, s �a j for every s ∈ Sa, and s �b i for every s ∈ Sb.

A priority structure (�, q) is acyclic if there exists no cycle.

Definition 6. Mechanism ψ is weakly (strongly) manipulable via creating fictitious students

under acyclicity at a matching problem instance (S, P,�) if there exist a school ĉ ∈ C and

another matching problem instance (S ′, P ′,�′) such that (i) all the conditions in Definition

1 (Definition 3) are met, and (ii) (�′, q) is acyclic.

Definition 7. A mechanism ψ is strongly (weakly) fictitious student-proof under acyclicity

if it is not weakly (strongly) manipulable via creating fictitious students under acyclicity at

any matching problem instance (S, P,�).

Unfortunately, given that the priority structure (�′, q) in the proof of Proposition 1 is

acyclic, it turns out that both the student and school optimal stable mechanisms are weakly

manipulable via creating fictitious students even under acyclicity.

Corollary 1. Neither ψS nor ψC is strongly fictitious student-proof under acyclicity.

Below, we obtain the first sharp difference between the student and school optimal stable

mechanisms in terms of fictitious student creation incentives under acyclic priority structures.

Theorem 1. While ψS is weakly fictitious student-proof under acyclicity, ψC is not.

Proof. See Appendix.
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Note that the priority structure in the proof of Proposition 2 for the manipulability of ψS

is not acyclic. Hence, we obtain a necessary and sufficient condition in terms of the priorities

in the sense that there is a problem instance where a school can succeed in manipulation

in the absence of the acyclicity imposition, whereas, it is otherwise impossible as the above

theorem shows.

ψC being manipulable even under acyclicity leads us to look for more stringent priority

structures. In a recent paper, Kojima (2013) considers the many-to-many matching setting

and shows that as opposed to the many-to-one setting, the student-optimal stable mecha-

nism is neither strategy-proof nor weakly Pareto efficient. Then, he introduces the so called

“essentially homogeneous” priority structures, requiring a stronger condition that acyclic-

ity does. Kojima (2013) shows that the student-optimal stable mechanism recovers those

properties (indeed, it becomes Pareto efficient) if and only if the schools’ priority structure

is essentially homogeneous. In what follows, we will show that the same is true for weak

fictitious student-proofness of ψC as well.

Definition 8 (Kojima (2013)). A priority structure (�, q) is essentially homogeneous if

there exist no a, b ∈ C and i, j ∈ S such that

(i) i �a j and j �b i, and

(ii) There exist sets of students Sa, Sb ⊆ S \ {i, j} such that |Sa| = qa − 1, |Sb| = qb − 1,

k �a j for every k ∈ Sa, and k �b i for every k ∈ Sb.

Remark 2. It is easy to see that essentially homogeneous priority structures are acyclic,

yet, the converse is not true.

Definition 9. Mechanism ψ is weakly (strongly) manipulable via creating fictitious students

under essential homogeneity at a matching problem instance (S, P,�) if there exist a school

ĉ ∈ C and another matching problem instance (S ′, P ′,�′) such that (i) all the conditions in

Definition 1 (Definition 3) are met, and (ii) (�′, q) is essentially homogeneous.

We define strong (weak) fictitious student-proofness under essential homogeneity in the
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same way as Definition 7.

As the priority structure (�′, q) in the proof of Proposition 1 is essentially homogeneous,

we have the following result.

Corollary 2. Both ψS and ψC are not strongly fictitious student-proof under essential ho-

mogeneity.

However, we recover the weak fictitious student-proofness of ψC with the help of essential

homogeneity.

Theorem 2. ψC is weakly fictitious student-proof under essential homogeneity.

Proof. See Appendix.

As the priority structure given in the proof of Proposition 2 for the manipulability of ψC

is not essentially homogeneous, it is also a necessary condition. That is, there is a problem

instance where a school can succeed in manipulation through creating fictitious students in

the absence of the essential homogeneity imposition, whereas, it is otherwise impossible as

the above result shows.

Remark 3. Both acyclicity and essential homogeneity conditions are imposed on the

realized priorities. As they might be manipulated as well as true priorities, both conditions

basically require that not only any possible false priority profile (satisfying the conditions

in the manipulation definitions) satisfies them but also the true profile does. On the other

hand, if we were to impose them just on the true priorities, we could not have obtained the

positive results as the realized priorities might not be acyclic/essentially homogenous even

if the true priorities are.

Remark 4. In the manipulation notions, we assume that the fictitious students’ prior-

ities can be arranged in any way (as long as it is acyclic or essentially homogeneous in the

corresponding parts of the paper) by the school which created them. However, the schools’
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priorities might be correlated, hence, it might not be possible.13 While we need this assump-

tion in order to make analysis possible, our results would not be affected by the absence

of it. It is clear that manipulation would be harder without it, which implies that acyclic-

ity (essential homogeneity) would still be sufficient for the student (school)-optimal stable

mechanism to be weakly fictitious student-proof. On the other hand, since all the examples

for the negative results given in the paper would also work,14 the necessity of them would

be still valid as well.

Theorem 1&2 provide conditions in terms of priority structures making the mechanisms

weakly fictitious student-proof. While acyclicity is less demanding than essential homo-

geneity, it does not necessarily mean that the school-optimal stable mechanism is more

manipulable than the student-optimal stable rule in the sense that whenever the latter is

manipulable at a problem instance, then so is the former. This kind of manipulability com-

parison between mechanisms has been done by Pathak and Sönmez (2013), and the following

notion is taken from their work.

A mechanism ψ is at least as manipulable as mechanism φ via creating fictitious students

if whenever the latter is strongly manipulable at a problem, then so is the former at the

same problem. Mechanism ψ is more manipulable via creating fictitious students than φ if

it is at least as manipulable as φ via creating fictitious students, and there exists a problem

instance at which the former is strongly manipulable, whereas, the latter is not.

Theorem 3. ψS is more manipulable via creating fictitious students than ψC.

Proof. See Appendix.

Remark 5. We only consider strong manipulations in the above manipulability compar-

ison analysis. As pointed out previously, under any stable rule, if a school is not matched

13For example, think of a situation where the manipulating school wants a fictitious student to be at the
top of the priority order of school a while at the bottom in that of school b. This, however, might not be
possible if the qualifications of the fictitious student, which make him top at the priority order of school a,
also put his name in a high position in that of school b as well.

14Basically, in the examples, the relevant underlyings of schools might enable the manipulating schools to
arrange the priority orders as in the proofs even without our assumption.
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with its top priority group of students, then it has incentive to manipulate the mechanism in

the weak sense. This basically implies that whenever the school-optimal stable mechanism

is weakly manipulable, then so is the student-optimal one, and vice-versa. Hence, we can

not say either one is more manipulable than the other one in terms of weak manipulations.

Remark 6. Theorem 1&2 show that the student-optimal stable mechanism requires

a less demanding priority condition for weak fictitious student-proofness than the school-

optimal rule does. On the other hand, Theorem 3 demonstrates that the former is more

manipulable than the latter. At first glance, these results seem paradoxical, yet they are not.

In the manipulability comparison analysis (Theorem 3), schools are free to arrange priorities

in any way they like (unless the relative priorities of non-fictitious students change). Hence,

Theorem 1&2 can not have any implication for the manipulability comparison analysis in

Theorem 3.

3.1 Large Market Analysis

Large market analysis has proved to be fruitful in recovering some negative results in

finite markets. Motivated by this fact, we show that the student-optimal stable mechanism

becomes weakly fictitious student-proof as the market is getting large under the regularity

conditions of Kojima and Pathak (2009). For the proof, we first show that whenever there is

a room for fictitious student manipulation in the strong sense, then so is there for a certain

type of priority misreporting so called “dropping strategy”. This result simply says that we

can consider the priority misreporting incentives of schools rather than fictitious students

creation incentives. This enables us to directly apply Kojima and Pathak (2009)’ result to

fictitious student creation manipulations.

A reported priority list is said to be a dropping strategy if it simply declares some students

who are acceptable under the true priority list as unacceptable. Formally, a dropping strategy

is a report �′c such that (i) s �c s′ and s �′c ∅ imply s �′c s′ and (ii) ∅ �c s implies ∅ �′c s.
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Lemma 1. Given a problem instance and a stable mechanism, suppose that the mechanism is

strongly manipulable by school c via creating fictitious students and matching µ is produced

through the manipulation. Then, there exists a dropping strategy of school c producing a

matching which is at least as good as µ for school c.

Proof. See Appendix.

In the rest of this section, we employ the large market setting of Kojima and Pathak

(2009). For the sake completeness, we fully describe it below.

A random market is a tuple Γ = (S,C,�c, k,D). Here, k is a positive integer representing

the length of students’ preferences, that is, the number of acceptable schools that students

can declare in their preferences. On the other hand, D = (pc)c∈C is a probability distribution

over C. Each student i’s preference unfolds as follows:

Step 1. Select a school independently from D and list this school as the top choice of

student i.

In general,

Step t ≤ k. Select a school independently from D until a previously undrawn school is

drawn. List that school as the tth choice of student i.

A sequence of random markets is denoted by (Γ̃1, Γ̃2, ...) where Γ̃n = (Cn, Sn,�Cn , kn,Dn)

is a random market in which |Cn| = n.

Definition 10 (Kojima and Pathak (2009)). A sequence of random markets (Γ̃1, Γ̃2, ...) is

regular if there exist positive integer k and q̄ such that

(i) kn = k for all n,

(ii) qc ≤ q̄ for c ∈ Cn for all n,

(iii) |Sn| ≤ q̄n for all n, and

(iv) for all n and c ∈ Cn, any s ∈ Sn is acceptable to c.

Given a random market Γ̃n, the expected number of schools that can strongly manipu-

late the student-optimal stable mechanism via creating fictitious students when others are
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truthful (i.e., when others do not manipulate via creating fictitious students) , denoted by

α(n), is given below:

α(n) = E[#{c ∈ Cn : school c can strongly manipulate ψS via creating fictitious students

in the induced problem (Sn, Cn, P,�n, qn) when other schools are truthful}|Γ̃n].

Due to Lemma 1, we can directly apply the result of Kojima and Pathak (2009), hence,

we have the following theorem.

Theorem 4. If the sequence of random markets is regular, then the expected proportion

of schools that can strongly manipulate ψS via creating fictitious students when others are

truthful, α(n)/n, converges to zero as the number of colleges goes to infinity.

Remark 7. We have the above large market result for strong manipulations. On the

other hand, Lemma 1 is not true for the weak manipulation. That is, a school might not

have a dropping strategy giving an outcome which is at least as good as the outcome induced

through a weak fictitious student creation manipulation. For instance, consider a problem

consisting of S = {i} and C = {a, b} with qa = qb = 1. Student i prefers school a to b to

being unassigned and both schools prefer him to keeping the seat vacant. Then, under any

stable mechanism, student i is matched with school a, and school b can not be better off by

misreporting its priority. However, it can create a fictitious student j with Pj : a, b, ∅ and

�′a: j, i, ∅. Then, student i is matched with school b under any stable rule, making it better

off.

4 Conclusion & Discussion

We investigate the fictitious student creation incentives of schools under the student and

school optimal stable rules. The former is weakly fictitious student-proof under acyclicity,

and so is the latter under essential homogeneity. Even though essential homogeneity requires

a more stringent condition than acyclicity, the student optimal stable mechanism turns out
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to be more manipulable than the school optimal stable rule. As opposed to these negative

results in finite markets, the student-optimal stable rule becomes weakly fictitious student-

proof as the market is getting large.

In our analysis, we assume that students might be unacceptable to schools.15 While there

are some schools districts where students can be unacceptable,16 since schools are considered

as objects in the conventional model, students are often assumed to be acceptable at any

school. Hence, it is worthwhile to point out that all of our results except Lemma 1 would

carry over to the smaller domain of acceptant priorities where any student is acceptable to

any school. Since Lemma 1 does not hold (as dropping strategies involve reporting students

unacceptable), we do not know whether the large market result would still be true in that

case.

Appendix

A mechanism ψ is group strategy-proof if there are no group of students A ⊆ S and a false

preference profile for them P ′A such that ψi(P
′
A, P−A)Riψi(P )17 for all i ∈ A, with holding

strictly for at least one student in A.

Mechanism ψ is efficient if there is no matching µ such that µiRiψi(P ) for all i ∈ S, with

holding strictly for at least one student.

The following definitions are due to Kojima and Manea (2010).

A preference profile R′i is individually rational monotonic transformation of Ri at c ∈

C ∪ {∅} (R′i i.r.m.t Ri at c) if c′R′ic and c′R′i∅ ⇒ c′Ric for all c′ ∈ C; and R′ i.r.m.t R at a

matching µ if R′i i.r.m.t Ri at µi for all i ∈ S.

A mechanism ψ satisfies individually rational monotonicity if R′ i.r.m.t R at ψ(R), then

15A student i is unacceptable to school c if ∅ �c i.
16As certain schools can determine their priorities at Boston and New York City school districts, they

can declare students unacceptable. Besides, in some school districts, students might not be acceptable due
to the living outside of the districts or discipline problems as well. For instance, not all school districts in
Massachusetts accept students from outside of their districts.

17P ′A and P−A stand for the preference profile of group of student A and that of the rest of the students,
respectively.
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ψi(R
′)R′iψi(R) for all i ∈ S.

Proof of Theorem 1. We prove by contradiction. Let us assume that ψS is not weakly ficti-

tious student-proof under acyclicity. It implies that there exist a school c, matching problem

instances (S, P,�) and (S ′, P ′,�′) such that (i) (�′, q) is acyclic, and (ii) the following

conditions satisfy:

(i) S ⊂ S ′,

(ii) for all i, j ∈ S and c ∈ C, i �c j if and only if i �′c j,

(iii) P ′i = Pi for all i ∈ S,

(iv) for all i ∈ S ′ \ S, either ψSi (S ′, P ′,�′) = c or ψSi (S ′, P ′,�′) = ∅,

(v) ψSc (S ′, P ′,�′) ∩ S �c ψSc (S, P,�).

Now, consider the following preference profile for students in S ′:

P ′′i =

 ψSi (S, P,�), ψSi (S ′, P ′,�′), ∅ if i ∈ S

ψSi (S ′, P ′,�′), ∅ otherwise

Let P ′′ = (P ′′i )i∈S′ . Then, we claim that ψSi (S ′, P ′′,�′)R′iψSi (S ′, P ′,�′) for all i ∈ S ′, with

holding strictly for some j ∈ S. Once we prove this claim, proof will be finished since it

would contradict the group strategy-proofness of ψS under acyclic priority structures (Ergin

(2002)).

For ease of notation, let µ0 = ψS(S, P,�), µ1 = ψS(S ′, P ′,�′), and µ2 = ψS(S ′, P ′′,�′).

First, from the well-known comparative statistics result (Gale and Sotomayor (1985b)),

µ0
iRiµ

1
i for all i ∈ S, which means µ0

iR
′
iµ

1
i (since R′i = Ri for all i ∈ S). On the other hand,

by the definition of P ′′, µ0
iR
′′
i ∅ and µ0

iR
′′
i µ

1
i for all i ∈ S. Moreover, for all other agents

j ∈ S ′ \ S, µ1
j is his top choice under R′′j . Therefore, R′′ i.r.m.t R′ at µ1. From Kojima and

Manea (2010), we know that ψS satisfies individually rational monotonicity which implies

that µ2
iR
′′
i µ

1
i for all i ∈ S ′. Then, by the definition of P ′′, we have µ2

iR
′
iµ

1
i for all i ∈ S ′.

Next, by our starting supposition, we have µ1
c ∩S �c µ0

c . This implies that there exists a

student i ∈ S such that (i) i ∈ µ1
c \ µ0

c and (ii) i �c j for some j ∈ µ0
c (j might be ∅, which
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means that school c has empty seat under µ0
c and prefers student i to ∅). This along with

the stability of µ0 implies that µ0
iPiµ

1
i , which means µ0

iP
′
iµ

1
i .

Now, we claim that µ2
iP
′
iµ

1
i . We prove by contradiction: let us assume that µ1

i = µ2
i = c.18

Since µ0
iP
′
iµ

1
i , it is also true that µ0

iP
′
iµ

2
i . Then, given µ2

k ∈ {c, ∅} for all k ∈ S ′ \ S (by

Condition (iv)), it implies that there exists a student j ∈ S, j 6= i, such that µ0
i = µ2

j ,

µ0
j 6= µ2

j (these are due to the facts that school µ0
i has no excess capacity under µ2 (otherwise

it can not be stable) and µ0
i 6= µ2

i ), and j �µ0i i (due to the stability of µ2). Moreover, since

µ0 is stable in the problem (S, P,�), we have µ0
jPjµ

2
j , which means µ0

jP
′
jµ

2
j .

Now, let students i, j and school µ0
i point to schools µ0

i , µ
0
j and student j, respectively,

that is, we consider the following sequence:

i→ µ0
i → j → µ0

j . (1)

Then, we have the following two cases:

Case 1. If µ0
j = µ2

i , then let µ0
j point to student i. We, hence, end up with the following:

i→ µ0
i → j → µ0

j → i. (2)

The above situation is called “improvement cycle” in the literature in the sense that there

is a room for improving efficiency by letting students i, j trade their respective assignments

under µ2. Let us denote the matching obtained by implementing this trade while keeping

the other students’ assignments unchanged by µ̃. Then, µ̃ Pareto dominates µ2 with respect

to preference profile P ′. On the other hand, since µ2
iR
′
iµ

1
i for all i ∈ S ′, µ̃ is also Pareto

superior to µ1 in the problem (S ′, P ′,�′). This, however, contradicts the fact that ψS is

efficient under acyclic priority structures (Ergin (2002)).

Case 2.

Step 1. If µ0
j 6= µ2

i = c, then since µ0
jP
′
jµ

2
j , by the same reasoning as before, there exists

18Recall that we already proved µ2
iR
′
iµ

1
i .
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a student k ∈ S different than both i and j such that µ0
j = µ2

k, µ
0
k 6= µ2

k, and k �µ0j j.

Moreover, since µ0 is stable in the problem (S, P,�), we have µ0
kPkµ

2
k, which means that

µ0
kP
′
kµ

2
k.

Now, let school µ0
j and student k point to student k and school µ0

k, respectively. Hence,

we end up with the following sequence:

i→ µ0
i → j → µ0

j → k → µ0
k. (3)

Step 2. Similar to Case 1, if there exists a student in the above sequence who is matched

with µ0
k under µ2, let µ0

k point to that student. Let us say this student is j, then we have

the following:

i→ µ0
i → j → µ0

j → k → µ0
k → j. (4)

In this case, we also end up with the improvement cycle consisting of students j, k and

schools µ0
j , µ

0
k. If we denote the matching obtained by implementing this cycle while keeping

the other students’ assignments unchanged by µ̂, then µ̂ Pareto dominates µ2 with respect

to preference profile P ′, which implies that it also dominates µ1 in the problem (S ′, P ′,�′).

This, however, contradicts ψS being efficient under acyclic priority structures.

Step 3. If there exists no student in the sequence (3) who is matched with µ0
k under

µ2, then this implies that µ0
k 6= c (Since, otherwise, µ0

k would point to student i, who is

matched with school c under µ2 by our supposition). Then, by the same reasoning as before,

there exists a student h ∈ S different than i, j, k such that µ0
k = µ2

h, µ
0
h 6= µ2

h, and h �µ0k k.

Moreover, since µ0 is stable in the problem (S, P,�), µ0
hPhµ

2
h, which means µ0

hP
′
hµ

2
h. Now,

let school µ0
k and student h point to student h and school µ0

h, respectively. We, therefore,

end up with the following sequence:

i→ µ0
i → j → µ0

j → k → µ0
k → h→ µ0

h. (5)

Then, if we continue in the same way as before, since everything is finite, we will end up
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with an improvement cycle. If we denote the matching obtained by implementing that cycle

while keeping the other students’ assignments unchanged by µ′, then µ′ Pareto dominates

µ2 with respect to P ′, which implies that it is also Pareto superior to µ1 in the problem

(S ′, P ′,�′). This, however, contradicts the fact that ψS is efficient under acyclic priority

structures.

Therefore, we show that there exists a student i such that µ2
iP
′
iµ

1
i while µ2

jR
′
jµ

1
j for all

other j ∈ S ′. This, however, contradicts ψS being group strategy-proof under acyclic priority

structures (Ergin (2002)), completing the proof of the weak fictitious student-proofness of

ψS under acyclicity.

Now, for the lack of weak fictitious student-proofness of ψC even under acyclicity, we can

consider the problem instance given in the proof of Proposition 2. The priority structure

given there for ψC : (�′, qa = 2, qb = 1) is acyclic, yet ψC is still strongly manipulable. Hence,

ψC is not weakly fictitious student-proof under acyclicity.

Proof of Theorem 2. Assume for a contradiction that ψC is not weakly fictitious student-

proof under essential homogeneity. This means that there exist a school c′ and problem

instances (S, P,�) and (S ′, P ′,�′) such that (�′, q) is essentially homogeneous and the fol-

lowing conditions satisfy:

(i) S ⊂ S ′,

(ii) for all i, j ∈ S and c ∈ C, i �c j if and only if i �′c j,

(iii) P ′i = Pi for all i ∈ S,

(iv) for all i ∈ S ′ \ S, either ψCi (S ′, P ′,�′) = c′ or ψCi (S ′, P ′,�′) = ∅,

(v) ψCc′ (S
′, P ′,�′) ∩ S �c′ ψCc′ (S, P,�).

It is easy to observe that any fictitious student in S ′ \ S who is unassigned has no effect

on the outcome as it implies that in the course of the school-proposing deferred acceptance

procedure, either no school makes offer to him or he declares all schools from which he receives

offer unacceptable. Therefore, without loss of generality, we assume that any fictitious
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student i ∈ S ′\S is matched with school c′ under ψC(S ′, P ′,�′). For ease of notation,

hereafter, we write µ and µ′ for the outcomes ψC(S, P,�) and ψC(S ′, P ′,�′), respectively.

As S ⊂ S ′ and all fictitious students are matched with school c′, by the well-known

comparative statistics (Gale and Sotomayor (1985b)), either µ′c �′c µc or µ′c = µc for any

school c ∈ C \ {c′}, with former holding for at least one school in C \ {c′}. Moreover, by

our supposition, we have µ′c′ ∩ S �′c′ µc′ (note that �′c over S is the same as �c by our

supposition).

Let C ′ = {c ∈ C : µ′c 6= µc}. Let us pick a school c ∈ C ′. From above, we know that

µ′c �′c µc which implies that there exists a student i ∈ S such that i ∈ µ′c \ µc and i �′c j for

some j ∈ µc. On the other hand, as µ is stable, µi 6= ∅. Let µi = c̃. As µi 6= µ′i, we have

c̃ ∈ C ′. Due to the stability of µ and i �′c j, we have c̃ Pi µ
′
i = c. Hence, this along with the

stability of µ′ implies that there exists a student k ∈ S such that k ∈ µ′c̃ \ µc̃ and k �′c̃ i. By

the same reasoning as above, µk 6= ∅ and let µk = c̄ ∈ C ′. That is, we have the following:

k �′c̃ i �′c j with µi = c̃ and µk = c̄.

If we continue in the same way as above, as everything is finite, we would end up with

a set of schools (ck)
n
k=1 where each of them in C ′ and a set of non-fictitious students (ik)

n+1
k=1

such that

(i) i1 �′c1 i2 �
′
c2
i3, ..., in �′cn in+1 = i1, and

(ii) µik+1
= ck and µ′ik = ck for each k = 1, ..., n.

Now, let us consider the assignments of schools appearing in cycle (i) above under match-

ing µ′. For each ck, µ
′
ck
\ {ik} ⊆ S ′ \ {ik, ik+1}, |µ′ck \ {ik}| = qck − 1, and i �′ck ik+1 for any

i ∈ µ′ck . This is due to the facts that ck = µik+1
Pik+1

µ′ik+1
= ck+1 (due to the well-known

comparative statistics by Gale and Sotomayor (1985a)) and µ′ being stable. Let us write

Sik+1
= µ′ck \ {ik} for k = 1, .., n.

Now, we will create a cycle from (i) consisting of only two schools and two students.

First, if n = 2 in the above construction, then we are done. Let us assume that n > 2. Then,
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it implies that i1 �′c2 i2. As, otherwise, we would have i1 �′c1 i2 �
′
c2
i1. Now, we can shorten

our above cycle by removing school c1 and student i2. That is, we can consider the following

instead of (i) above:

i1 �′c2 i3 �
′
c3
i4..., in �′cn in+1 = i1

Therefore, we now have a cycle of reduced length by one. Moreover, from above, we

know that Si3 ⊆ S ′ \ {i2, i3} such that |Si3| = qc2 − 1 and i �′c2 i3 for any i ∈ Si3 . Moreover,

as i1 /∈ Si3 (since, µ′i1 = c1 and, by definition, Si3 = µ′c2 \ {i2}), Si3 ⊆ S ′ \ {i1, i3} such that

|Si3 | = qc2 − 1 and i �′c2 i3 for any i ∈ Si3 . We can continue in the same way until we have a

cycle consisting of only two schools and two students. Therefore, at the end, we would have

two schools a, b ∈ C ′ and two students i, j ∈ S such that

i �′a j �′b i.

Moreover, by the same as above, there exist sets of students Sa, Sb ⊆ S ′ \ {i, j} such that

|Sa| = qa − 1, |Sb| = qb − 1, k �′a j for every k ∈ Sa, and k �′b i for every k ∈ Sb. This,

however, contradicts the essential homogeneity of (�′, q), finishing the proof.

Proof of Theorem 3. We first show that ψS is at least as manipulable as ψC . To this end, let

us assume that the latter is strongly manipulable via creating fictitious students at problem

(S, P,�) by school c. This means that there exists (S ′, P ′,�′) such that the followings hold:

(i) S ⊂ S ′,

(ii) for all i, j ∈ S and c ∈ C, i �c j if and only if i �′c j,

(iii) P ′i = Pi for all i ∈ S,

(iv) for all i ∈ S ′ \ S, either ψCi (S ′, P ′,�′) = c or ψCi (S ′, P ′,�′) = ∅,

(v) ψCc (S ′, P ′,�′) ∩ S �c ψCc (S, P,�).

For ease of notation, let µ = ψC(S, P,�) and µ′ = ψC(S ′, P ′,�′). We first claim that

any student i ∈ µ′c has higher priority than any student j ∈ µc \ µ′c. For this purpose, first
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observe that, for any student j ∈ µc\µ′c, c Pjµ′j (due to the well-known comparative statistics

result of Gale and Sotomayor (1985b)). This along with the stability of µ′ implies that any

student i ∈ µ′c has higher priority than anyone else in µc \ µ′c. Let us write s for the student

in µ′c ∩ S having the lowest priority at school c.

Let us consider the priority order �′′c for school c over S under which the relative ordering

of students having higher priority than s is the same as �c, and all other students are

unacceptable.19 We write �′′= (�′′c ,�−c). We now claim that ψCc (S, P,�′′) = µ′c ∩ S. To

this end, let us define matching µ′S as in below:

µ′Sc′ =

 µ′c′ ∩ S If c′ = c

µ′c′ otherwise

We first need to observe that µ′S is stable at (S, P,�′′). At µ′S, as no school except

school c is matched with a fictitious student in S ′ \ S and µ′ being stable at (S ′, P ′,�′),

there is no blocking pair involving a school in C \ {c}. On the other hand, school c might

have excess capacity under µ′S since we exclude its fictitious student assignment under µ′.

First, consider the students having lower priority than s. As they are unacceptable under

�′′c , they do not form a blocking pair with school c. On the other hand, for all other students,

the relative ordering under �′′c is the same as that of under both �c and �′c (recall that �c

and �′c are the same over S). Therefore, as µ′ is stable at (S ′, P ′,�′), they do not form a

blocking pair with school c as well. Hence, µ′S is stable at (S, P,�′′). On the other hand,

ψC(S, P,�′′) is stable at the same problem as well. Moreover, since school c is matched

with fictitious students under µ′, |µ′Sc | < qc (If it were not matched with fictitious students

under µ′, then the outcome would not change by creating fictitious students as explained

in detail in proof of Theorem 2). Therefore, by the rural hospital theorem (Roth (1986)),

ψCc (S, P,�′′) = µ′Sc = µ′c ∩ S.

In what follows, we will first think of a fictitious student manipulation scenario under

ψS and show that the part of the student-optimal stable matching over S at the artificial

19Recall that student i is unacceptable to school c with �c if ∅ �c i.
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problem is stable at (S, P,�′′). Then, the result will follow from the rural hospital theorem

(Roth (1986)).

Now, consider a set of students S ′′ such that S ⊂ S ′′ and |S ′′ \S| = qc. For the preference

of each fictitious student i ∈ S ′′\S, consider P̃i : c, ∅. That is, only the school c is acceptable.

We write P̃ = (P̃S′′\S, PS). Lastly, for the priority order of school c over S ′′, let us enumerate

each fictitious student k ∈ S ′′ \ S and write #k for the index of fictitious student k. Then,

the priority order of school c over S ′′, �̃c, is defined as follows:

For any i ∈ S ′′ \ S and j ∈ {k ∈ S : s �c k}, i �̃c j;

For any i ∈ S ′′ \ S and j ∈ {k ∈ S : k �c s} ∪ {s}, j �̃c i.

For any i, j ∈ S ′′ \ S, i �̃c j iff #i > #j.

The priority orders of schools c′ ∈ C \ {c} over S ′′, �̃c′ , can be anything as long as the

relative ordering over S is preserved by our supposition. Now, let us consider the artificial

problem (S ′′, P̃ , �̃). Let µ̃ = ψS(S ′′, P̃ , �̃). As only acceptable school for fictitious students

in S ′′ \ S is school c, they can matched with only school c at µ̃. Now, consider the following

matching µ̃S:

µ̃Sc′ =

 µ̃c′ ∩ S If c′ = c

µ̃ otherwise

We now claim that µ̃S is stable at (S, P,�′′). We will follow the same steps as before in

showing the stability of µ′S. At matching µ̃, since no school other than school c is matched

with a fictitious student in S ′′ \ S and µ̃ being stable at (S ′′, P̃ , �̃), there is no blocking

pair involving a school in C \ {c}. On the other hand, school c might have excess capacity

under µ̃S since we exclude its fictitious student assignment under µ̃. However, as all students

having lower priority than s are unacceptable under �′′c , they do not form a blocking pair

with school c. On the other hand, if any student k ∈ S such that k �′′c s were to form a

blocking pair with school c, then µ̃ could not have been stable at (S ′′, P̃ , �̃) as the relative
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ordering of such students under �̃c is the same as �′′c (note that any fictitious student has

lower priority than those ones under �̃c). Therefore, µ̃S is stable at (S, P,�′′).

Now, we have two stable matchings µ̃S and ψC(S, P,�′′) at (S, P,�′′). Recall that

ψCc (S, P,�′′) = µ′c∩S. On the other hand, we know that |µ′c∩S| < qc. Therefore, by the Rural

hospital theorem (Roth (1986)), we have µ̃Sc = µ′c∩S. This means that µ̃c∩S �c ψS(S, P,�),

hence, ψS is strongly manipulable via creating fictitious student proof at (S, P,�) as well,

showing that ψS is at least as manipulable as ψC .

For a problem instance at which ψC is not strongly manipulable via creating fictitious

student, yet ψS is manipulable, consider a problem consisting of S = {i, j} and C = {a, b}

with qa = qb = 1. The preference and priority order profiles are as follows:

Pi : a, b, ∅; Pj : b, a, ∅;

�a: j, i, ∅; �b: i, j, ∅.

Then, ψCa (P ) = j and ψCb (P ) = i, hence, schools do not have incentive to manipulate ψC

as they are already matched with their first choices. However, ψSa (P ) = i and ψSb (P ) = j.

Now, let school b create fictitious student k with Pk : a, b, ∅. Assume that the new priority

orders of schools are as follows:

�′a: j, k, i and �′b: i, k, j.

Let P ′ = (Pi, Pj, Pk), then ψSb (S ′, P ′,�′) = i and ψSa (S ′, P ′,�′) = j. Hence, school b is

better off, showing the manipulability of ψS.

Proof of Lemma 1. Let us consider a problem instance (S, P,�) and stable mechanism ψ.

Assume that school c can strongly manipulate ψ at the given problem through creating

fictitious students. Let (S ′, P ′,�′) be the artificial problem including fictitious students

created by school c. By our supposition, ψ(S ′, P ′,�′)∩S �c ψ(S, P,�). For ease of notation,

let µ′ = ψ(S ′, P ′,�′).
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Now let us consider the priority order �′′c over S for school c under which the relative

ordering over µ′c∩S is the same as �c, and any student who is not in µ′c∩S is unacceptable.

We write �′′= (�′′c ,�−c). Below, we define a new matching µ′′ :

µ′′c′ =

 µ′c ∩ S If c′ = c

µ′c′ otherwise

Note that, as school c strongly manipulate ψ by our supposition, µ′c′ ⊂ S for any c′ ∈

C \{c}. We now claim that µ′′ is stable at (S, P,�′′). First, there can not be a blocking pair

involving school c′ ∈ C \ {c} as, otherwise, such pair would block matching µ′ at (S ′, P ′,�′),

contradicting the stability of µ′. On the other hand, school c is not involved in a blocking pair

as any student i ∈ S \µ′′c is unacceptable under �′′c . Therefore, µ′′ is stable at (S, P,�′′). On

the other hand, ψ(S, P,�′′) is another stable matching. Then, by the Rural hospital theorem

(Roth (1984)), we know that |µ′′c | = |ψc(S, P,�′′)|. Moreover, as the group of students µ′′c is

the only acceptable ones under �′′c , we have µ′′c = ψc(S, P,�′′) = µ′c ∩ S. This shows that

µ′c ∩ S can be obtained through dropping strategy �′′c as well, which finishes the proof.
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