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Abstract

This paper presents a heuristic method to solve a dynamic pricing problem under costly price

modifications. This is a remarkably difficult problem that is solvable only under very few special

cases. The method is applied to a more general form of the problem and is numerically tested for a

variety of demand functions in the literature. The results show that the method is quite accurate,

approximating the optimal profit within usually much less than 1%. A more important result is

that the accuracy tend to be much greater as the number of price changes increases, precisely when

the underlying optimization problem becomes much harder, which makes this approach particularly

desirable.
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1 Introduction

Dynamic pricing is one of the basic tools in a revenue management. In part due to advances in

information technology, the theory and practice of dynamic pricing have witnessed a tremendous

growth recently. Today, real time price changes have become a common fixture in several industries

such as airline, car rental, and hospitality. However, such a practice is infeasible or too costly in

certain industries due to significant amount of managerial and labor resources and other associated

costs. For example, Levi et al. [10] report that a supermarket’s price adjustment cost could be as high

as 35% of profits while Zbaracki [15] cite that a large manufacturer spends about one million dollars a

year, which is roughly one percent of the revenues or 20% of the reported profits. Continuous pricing

might not also be feasible when the seller and the customers desire a certain level of price stability to

facilitate their business plans.

In this paper, we present a new solution approach to a dynamic pricing problem with fixed costs

under deterministic conditions. This problem has been first studied by Netessine [13]. The problem

is to determine the number and time of price changes, prices to charge, and the initial inventory or

capacity. The demand is assumed to be an arbitrary deterministic process that depends on the price

at the time. If the firm wishes to change the current price it has to incur a fixed cost. Netessine derives

various structural results on the uniqueness of the solution and monotonicity of prices during the sales

period. While he is able to provide more results on the prices, his work demonstrates the difficulty

of finding optimal timing of price changes. He was able to offer analytical solutions to two demand

functions to derive optimal timing of price changes and prices. Subsequently, Li and Huh [11] analyze

a more restricted model in more detail. They also provide exact solutions for particular linear demand

functions while deriving structural properties of optimal prices and optimal timing of price changes

under more general conditions. Both works, however noteworthy in their comprehensive treatments of

the problem, is a testament to the difficulty of the problem, which defies any analytical or numerical

approach under reasonably general conditions. Therefore, we adopt an alternative approach which

relies on an approximate reformulation.

While dynamic pricing problems have received considerable attention in the literature particularly

recently, the version with limited number of price changes received much less attention. As early
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examples, Feng and Gallego [7] study timing of a single price change and the optimal price given a

discrete set of prices under uncertainty. Subsequently, in a second paper ([8]) they study the timing

of exogenously given number of price changes and the prices. A more general version of the problem

with uncertain demand and endogenous number of price changes is studied by Celik et al. [2], who

consider a time-homogenous demand function and develop heuristics based on fluid approximation.

These works consider demand uncertainty however deal with more restrictive environments such a

time-homogeneity or limited number of changes. We on the other hand explicitly consider time-

inhomogenous demand process with endogenously determined price changes, We however study the

problem under deterministic conditions as in Netessine [13] and Li and Huh [11].

The solution approach that we adopt here is called “continuous approximation” (a.k.a. “continuum

mechanics) which is introduced to the operations research literature with the seminal work of Newell

[14]. Continuous approximation is a technique that is used in reformulation of finite-dimensional

problems using continuous variables so that elementary calculus techniques can be utilized. Although

logistics literature appears to be forerunner in utilizing this technique (see for example, Daganzo [4]

and Langevin et al. [9]), recently, a variety of involved location problems have also been treated with

this technique (see for example, Dasci and Laporte [5, 6], Cui et al. [3], and Li and Ouyang [12]).

The structure of the model that we study here is almost exactly the same one presented in Netessine

[13] and Li and Huh [11]. However unlike these works, we focus on an approximate solution method for

a more general class of demand functions rather than exact solutions for a subset of instances with more

restrictive demand functions. Furthermore, cost side of our model is slightly more general than theirs.

We believe that such problems under deterministic conditions are more useful at the strategic level and

therefore, perhaps does not need the most accurate treatment. After all, in practice where conditions

are naturally random, such operational or tactical level decisions are better made dynamically with

real time demand observation and information updating. However, for example, if a firm is interested

to know the value of dynamic pricing over the static pricing, one probably does not need to find the

precise timings of price changes and prices optimally but a rough solution may serve a better purpose.

This is precisely what we offer here: Our method, although does not attempt to find the optimal

decisions, it approximates the optimal objective function value fairly accurately; within well below 1%

most of the time.
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The reminder of the paper is follows: We present the general model in Section 2. Solution technique

is given in Section 3, which is followed by a small set of computational results in Section 4. Section 5

concludes the paper with few remarks.

2 The model

Consider a firm that sells a standardized product over a finite time, normalized to unit interval [0, 1].

Demand is realized at the rate of D[t, p(t)] for a price p(t) ≥ 0 quoted at time t ∈ [0, 1]. We assume

that revenue rate (i.e., r[t, p(t)] = p(t)D[t, p(t)]), is a nonnegative, twice-differentiable function in its

arguments and is also bounded above and admits a unique maximizer p∗(t) ∈ [0,∞). Unit cost is

normalized to zero without loss of generality. Hence the revenue rate function also represents the gross

profit rate.

The set of demand functions that can be treated here consists of a wide range of functions that are

commonly used in the pricing literature. However, similar to earlier models, we assume that the

demand at a particular time is a function of the time and price at that time. Therefore, we assume

that customers do not behave strategically such as to wait-and-see or to re-trade or affected by the

past trajectory of the price.

We assume that the cost of a price adjustment at time t ∈ [0, 1] is represented by a bounded continuous

function K(t). This is a slight generalization over Netessine [13] and, although not explicitly stated

in their paper, Li and Huh [11] who consider constant price adjustment costs, i.e. K(t) = K

Given a demand and a price adjustment cost function, the objective is to find the number n of price

changes during selling season, times 0 = t1 < t2 < . . . < tn < tn+1 = 1 at which the prices are changed,

and the prices p1, p2, ..., pn to maximize the net profit, which is given as:

maxπ = max
n

{
max
ti,pi

n∑
i=1

[∫ ti+1

ti

piD[t, pi]dt−K(ti)

]}
. (1)

One possible way to attack this problem is to search over n and solve each resulting nonlinear problem

in timing and pricing decisions sequentially. However, as noted by Netessine, even one of the simplest

instances of the problem (such as fixed n, constant K(t) and linear demand function) could be ex-

tremely hard, due particularly to multiplicity of stationary solutions in ti’s. Netessine demonstrates
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that two demand functional forms, D[t, p] = a + bt − p and D[t, p] = 1 − (a + bt)p can be solved in

closed form (the latter is also demonstrated by Li and Huh) and report solutions for a = b = 1.

We also assume that the demand is a linear function of the price but we allow a more general form,

i.e., D[t, p] = α(t) − β(t)p. This form will be better suited to approximate virtually any nonlinear

demand function such as Cobb-Douglas, exponential, and logit, which can then be handled with our

approach.

3 Analysis

We will start the analysis by revisiting the problem with the demand function D[t, p] = a + bt − p,

which lends itself to exact analysis under certain conditions, i.e., K(t) = K for all t ∈ [0, 1]. This

instance will be the building block of our approach. We then extend the analysis incrementally to

the general linear demand function. Once the problem is modelled via continuous approximation the

optimal objective function value of the original problem can be found approximately without actually

explicitly solving for any of the decision variables. However, we will also devise a heuristic solution

method based on the outcome of the continuous approximation. This heuristic will also help us to

measure the accuracy of the continuous approximation.

3.1 A special case

For K(t) = K and D[t, p(t)] = a+ bt− p(t), for t ∈ [0, 1], the problem can be stated as:

maxπ = max
n

{
−nK + max

ti,pi

n∑
i=1

∫ ti+1

ti

pi[a+ bt− pi]dt

}
. (2)

Let us define ∆ti = ti+1−ti for i = 1, 2, . . . , n. The following proposition outlines the optimal solution:

Proposition 1 Let K(t) = K and D[t, p(t)] = a+ bt− p(t), then

a) the optimal number of price changes n∗ is either b 3

√
b2

24K c or d
3

√
b2

24K e,

b) the optimal timing of price changes satisfy ∆t∗i = t∗i+1 − t∗i = 1/n∗, i.e., t∗i = (i− 1)/n∗, and

c) the optimal the prices are p∗i = 1
2∆t∗i

∫ t∗i+1

t∗i
[a+ bt]dt
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Proof: Part (c) is shown by Netessine. Part (b) is also reported to be shown but not explicitly

demonstrated. We briefly present these proofs with completeness. Let us apply a sequential optimiza-

tion approach: Given n and ti, i = 1, 2, . . . , n, n + 1, the objective function (2) separates in pricing

decisions. For each interval [ti, ti+1], the optimal price is

p∗i =
1

2∆ti

∫ ti+1

ti

[a+ bt]dt,

which reduces the problem to

maxπ = max
n

{
−nK + max

ti

n∑
i=1

1

4∆ti

(∫ ti+1

ti

[a+ bt]dt

)}
,

and after some algebra, to

maxπ = max
n

{
−nK + max

ti

1

4

n∑
i=1

(a+
b

2
(ti+1 + ti))

2

}
.

For fixed n, the second-order partial derivatives can be found as:

∂2πn
∂ti∂tj

=

(
−32

b2

)
.


ti − ti−1 if j = i− 1

ti+1 − ti−1 if j = i

ti+1 − ti if j = i+ 1

0 otherwise

for i, j = 2, 3, . . . , n. The Hessian has a block-diagonal symmetric matrix structure, where the main

diagonal entries dominates the off-diagonals. Therefore, it is negative semi-definite (pp. 15 in Berman

and Shaked-Monderer [1]) and the objective function is jointly concave in ti’s. Hence, the following

first-order conditions are sufficient for optimality, i.e.,

16

b2
(t2i+1 − 2titi+1 + 2ti−1ti − t2i−1) = 0, for i = 2, 3, . . . , n.

From the condition for i = 2, we obtain t23 − 2t2t3 = 0, i.e., t3 = 2t2. If we proceed for i = 3, 4, . . . we

obtain ti−1 = (i− 2)t2 and ti = (i− 1)t2. We finally obtain

t2i+1 − 2(i− 1)t2ti+1 + j(i− 2)t2 = 0.

Since ti+1 > ti, ti+1 = it2. Therefore, ti = (i− 1)/n. This completes part (b).

Having obtained optimal timings, we now proceed to solve for n∗. Substituting ti with (i − 1)/n in

the total profit, the problem can written as:

maxπ = max
n

{
−nK − b2

48n2
+

3a2 + 3ab+ b2

12

}
. (3)
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Figure 1: An example point-wise and finite pricing. π∗∞(t) and π∗4(t) denote the gross profit integrand

when point-wise and n = 4 prices are used, respectively.

Let us, for convenience, define σ = (3a2 + 3ab+ b2)/12− π and re-write the problem more compactly

as:

minσ = min
n

{
nK +

b2

48n2

}
. (4)

It is easy to see that minimization (4) can be solved via first-order condition, which gives:

n∗ =
3

√
b2

24K
.

This establishes part (a).2

The solution conforms to several expected results of the problem. For example, it is clear to see that

as K → 0, the point-wise maximizer becomes the optimal solution. Similarly, for sufficiently large

K single-price becomes optimal. Furthermore, as the absolute rate of demand change (|b|) increases,

i.e., demand becomes more volatile, the frequency of price modifications increases. Finally, it is also

easy to establish that the number of price modifications are robust with respect to changes in problem

parameters, more so with respect to the fixed cost.

The objective function (3) deserves a further elaboration. The constant term in the objective function

is the optimal gross profit under point-wise pricing, i.e., π∗∞ =
∫ 1

0 π
∗
∞(t)dt. The optimal point-wise

price path is p∗(t) = (a + bt)/2, which gives π∗∞(t) = (a + bt)2/4, from which the constant term in

(3) easily follows. For a given number of price modifications n, the first term is the total fixed cost

and the middle term is the loss due to infrequent price changes. An example for point-wise pricing

and finite pricing with n∗ = 4 are depicted in Figure 1. On the left, the optimal point-wise and finite

pricing functions are given. On the right, the corresponding optimal profit functions are drawn for
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Figure 2: Example...

a sample interval. The shaded area is the revenue loss due to single-pricing in a particular interval,

which can easily be found. Sum of these areas produces the desired result for the total revenue loss.

Hence, the profit maximizing price policy minimizes the sum of the fixed costs and the revenue loss.

At the optimal solution the revenue loss and the sum of fixed costs come to:

σ∗ =
1

4
(3bK)2/3.

3.2 Reformulation via continuous approximation

The previous analysis suggest that the problem can be transformed into a minimization problem that

involves the total price modification costs and the revenue loss due to finite pricing. To compute the

overall objective, one also needs to find the point-wise maximizer, which is rather an easy task.

Now, consider the hypothetical example given in Figure 2, which resembles a product going through

a traditional product life cycle: The optimal prices are low when the demand is relatively low during

product introduction and phase-out and higher in between. Therefore, the optimal prices also follow

the pattern. Similar to the earlier example, the shaded area represent the revenue loss. Considering

the wide range of demand functions and time-dependent variables, estimation of these shaded areas

are quite complicated. Therefore, the problem seems to defy analytical approaches even under slightly

more general conditions. The first part of our reformulation aims to approximate this area, which is

based on a linear approximation of the demand.

Let us assume that n and ti for i = 1, 2, . . . , n are given. Furthermore, the demand function in any
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interval [ti, ti+1] can be approximated by a linear function D[t, p(t)] = ai + b(t)t− p(t) for t ∈ [ti, ti+1]

and the fixed cost is given in the general form. We however assume that both b(t) and K(t) is

somewhat constant in a given interval, i.e., b(t) ≈ bi and K(t) ≈ Ki for t ∈ [ti, ti+1]. Let us also

define π∗∞(ti, ti+1) and π∗n(ti, ti+1) gross profits under point-wise maximization and single pricing in

the interval [ti, ti+1] under these assumptions. It is easy to establish that

π∗∞(ti, ti+1) =
1

4

∫ ti+1

ti

(ai + bit)
2dt

and

π∗n(ti, ti+1) =
1

4∆ti

(∫ ti+1

ti

[ai + bit]dt

)2

.

Then the revenue loss in this interval can be found approximately as

π∗∞(ti, ti+1)− π∗n(ti, ti+1) =
b2i (ti+1 − ti)3

48
.

Hence, the problem can approximately be reformulated as:

minσ = min
n

{
min
ti

n∑
i=1

[
Ki +

b2i (ti+1 − ti)3

48

]}
. (5)

Above formulation does not create any simplifications under general demand and price modification

cost parameters. We also like to note that bi’s also depend on the price modifications times, which

makes the problem particularly harder. Therefore, we need to further simplify the problem. Now let

us re-write the minimization problem as:

minσ = min
n

{
min
ti

n∑
i=1

∫ ti+1

ti

[
b2i (ti+1 − ti)2

48
+

Ki

ti+1 − ti

]
dt

}
.

Now let us define a step function, ns(t) = 1/(ti+1−ti) for t ∈ [ti, ti+1), i = 1, 2, . . . , n. This is a peculiar

step function that contains all the information of the number and timing of price modifications in a

compact way. At the moment it only helps us to write the problem more compactly, but its significance

will be clear shortly. Similarly, let us define bs(t) = bi and Ks(t) = Ki for t ∈ [ti, ti+1), i = 1, 2, . . . , n.

Then
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minσ = min
ns(t)

∫ 1

0

[
ns(t)Ks(t) +

bs(t)
2

48ns(t)2

]
dt. (6)

Clearly, the problems (5) and (6) are equivalent and no simplification is achieved yet since one still

needs to explicitly solve the problem for n and ti’s. This is where the continuous approximation

strikes: the idea is to replace all of the step functions defined above with their smooth counterparts,

which approximates the problem as follows:

minσ ≈ min
n(t)

∫ 1

0

[
n(t)K(t) +

b(t)2

48n(t)2

]
dt. (7)

Here, n(t) in effect represents the density of price modification times. As a result of this approximation

the problem frees itself from finding precise values of the number and times of price changes. Above

problem, which in essence is equivalent to problem (4), can easily be solved by point-wise optimization

of the integrand, which results with

n∗(t) = 3

√
b(t)2

24K(t)

and

σ∗ ≈ 1

4

∫ 1

0

[
[3b(t)K(t)]2/3

]
dt.

The results are essentially identical to the ones presented in the previous section. Here instead of a

number n∗ we have a function n∗(t) which gives the density of price changes in the planning horizon.

This function does not specify the timings of the optimal price changes but it incorporates those times

in its definition (approximately). At the end of this section we will see how this function can be used

in a heuristic to find the precise timings. The analysis also suggests that the constant term in the

demand intercept (i.e., ai) essentially has no impact on the form of the optimal solution.

3.3 Generalized linear demand

While the form of demand function studied above is fairly general, in this section we show that a more

general form of demand, i.e.,

D[t, p(t)] = α(t)− β(t)p(t)
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can be studied somewhat similarly albeit with another level of approximation.

The analysis follows similar steps outlined above and is based on the assumption that the functions α(t)

and β(t) vary slowly in smaller intervals. Consider any interval [ti, ti+1] where the demand function

can be approximated as:

D[t, p(t)] = β(t)[α(t)/β(t)− p(t)]

≈ βi[α(t)/β(t)− p(t)]

Applying Taylor approximation around ti yields

α(t)

β(t)
≈ α(ti)

β(ti)
+ (

α(t)

β(t)
)′t=ti(t− ti),

where (.)′t=ti denotes the first derivative of the expression evaluated at t = ti. Let ai =
α(ti)

β(ti)
−

ti(
α(t)

β(t)
)′t=ti and bi = (

α(t)

β(t)
)′t=ti . Then the demand function can again be approximated as:

D[t, p(t)] ≈ βi[ai + bit− p(t)].

Applying the results found earlier one can approximate the revenue loss in an interval [ti, ti+1] as

π∗∞(ti, ti+1)− π∗n(ti, ti+1) =
βib

2
i (ti+1 − ti)3

48
.

Therefore, optimization (7) can be re-written as

minσ ≈ min
n(t)

∫ 1

0

[
n(t)K(t) +

β(t)b(t)2

48n(t)2

]
dt,

where b(t) = (α(t)
β(t) )′. The optimal solution can then be found as

n∗(t) = 3

√
β(t)b(t)2

24K(t)

and

σ∗ ≈ 1

4

∫ 1

0

[
[3
√
β(t)b(t)K(t)]2/3

]
dt.

Although α(t) does not appear to have direct effect, it has an effect through b(t).
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Figure 3: Finding price change times.

3.4 A Heuristic

While the main focus of our paper is to give an approximation to the optimal objective function value,

the information obtained here can also be used to devise a simple heuristic algorithm to find the prices

and the timings of the changes. There are several heuristics in the literature such as those presented in

Daganzo [4] and Dasci and Laporte [5]. In this paper we also devise a simple heuristic solution method

based on Daganzo [4] (Chapter 3). The main purpose of the heuristic is to measure the accuracy of

our continuous approximation approach.

We use D(t) = a+ b(t)t− p as an illustration. First, define

H∗(t) =
1

n∗(t)
= 3

√
24K(t)

b(t)2
.

This function, in a way, approximates the difference between the two price change times around time

t. Starting at the origin (point t0 = 0) draw a 45◦ line (Figure 3) and find a horizontal segment t1− t0

satisfying ∫ t1

t0

H(t)dt = (t1 − t0)2.

In other words, the evaluation of t1 should be such that the area of the leftmost square equals the

area under H∗(t). This locates t1, given t0. The construction is then repeated from t1 to locate t2,
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from t2, to locate t3, etc. until tn+2 > 1 since the time horizon is assumed as [0, 1]. The last point in

time tn+1 might be less than 1, so we allocate the residual to each time interval proportionally, i.e.,

the timings of price changes t′i (i = 0, 1, · · · , n+ 1) are adjusted as

t′0 = 0

t′i = t′i−1 + (ti − ti−1) + (1− tn)
ti − ti−1

tn
, i = 1, 2, · · · , n

t′n+1 = 1

Once we obtain the times at which the prices are changed, the corresponding price and profit at each

time interval can be calculated as pi = 1
2(t′i+1−t′i)

∫ t′i+1

t′i
(a+b(t)t)dt and π∗i = 1

4(t′i+1−t′i)
[
∫ t′i+1

t′i
(a+b(t)t)dt]2,

respectively.

4 Numerical results

In this section we present the results of a brief numerical experiment. We have tested five demand func-

tions from Netessine [13]. For each demand function, we first found the maximum profit obtainable;

i.e., point-wise maximization of the objective function by ignoring the fixed costs. We then generated

instances by varying the fixed cost of price changes between 0.001% and 1% of the maximum revenue.

In our experiments, we also assumed that fixed cost of price changes are constant throughout the sales

period, i.e., K(t) = K.

Tables 1 and 2 presents the results for demand functions D(t, p) = 1 + t− p and D(t, p) = 1− (1 + t)p,

respectively. For these demand functions for a fixed number of prices n the optimal solutions are given

by Netessine .These are the only two demand functions that have optimal solutions that can easily

be characterized by solving the first-order conditions. We found the optimal n∗ for each fixed cost

by a simple search over n. The first column reports the fixed costs as a function of the maximum

profit mentioned above, i.e., π∗∞. The next three columns represent the number of prices prescribed

by continuous approximation (CA), the heuristic, and the optimal solution. The number in CA is

calculated by ∫ 1

0
n∗(t)dt.

Keep in mind that in all these numbers as well as in the profit, the first price and its cost are also
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Number of prices Profit Accuracy (%)

K CA Heuristic Optimal CA Heuristic Optimal CA Heuristic

1.000% 1.9 1 2 0.56648 0.55667 0.56646 0.0042 1.7286

0.500% 2.4 2 2 0.57272 0.56938 0.57229 0.0745 0.5095

0.100% 4.1 4 4 0.57970 0.57795 0.57970 0.0009 0.3019

0.050% 5.2 5 5 0.58105 0.57987 0.58104 0.0009 0.2008

0.010% 8.9 8 9 0.58255 0.58213 0.58255 0.0001 0.0717

0.005% 11.3 11 11 0.58284 0.58255 0.58284 0.0001 0.0501

0.001% 19.3 19 19 0.58317 0.58306 0.58316 0.0000 0.0179

Table 1: D(t, p) = 1 + t− p, π∗∞ = 0.58333.

Number of prices Profit Accuracy (%)

K CA Heuristic Optimal CA Heuristic Optimal CA Heuristic

1.000% 2.0 1 2 0.16809 0.16493 0.16811 0.0126 1.8875

0.500% 2.5 2 3 0.17001 0.16897 0.16992 0.0531 0.5612

0.100% 4.3 4 4 0.17217 0.17164 0.17216 0.0027 0.3023

0.050% 5.4 5 5 0.17258 0.17223 0.17258 0.0026 0.2010

0.010% 9.3 9 9 0.17305 0.17291 0.17305 0.0001 0.0799

0.005% 11.7 11 12 0.17314 0.17305 0.17313 0.0002 0.0502

0.001% 20.0 20 20 0.17324 0.17320 0.17323 0.0001 0.0187

Table 2: D(t, p) = 1− (1 + t)p, π∗∞ = 0.17329.

accounted. Note that both the heuristic and continuous approximation give very close results to

the optimal value. The rest of the tables give the objective function values and the accuracies of

continuous approximation and the heuristic solutions, which are calculated as 100 ∗ |Optimal−CA|
Optimal

and 100 ∗ (Optimal−Heuristic)

Optimal
, respectively. A quick glance at the numbers show that both the

heuristic and the continuous approximation perform remarkably well, particularly when the optimal

number of price changes are more than two. This result is somehow expected, because as the number

of price changes increases, the intervals gets smaller in which problem parameters vary slowly, or stay

somewhat constant, which improves the accuracy of the continuous approximation. Also note that

continuous approximation gives neither an upper-bound nor a lower-bound but an approximation of

the optimal value.

Tables 3, 4, and 5 present the result for demand functions D(t, p) = 1 + t2 − p, D(t, p) =
√
t− p, and

D(t, p) = 1 − (1 + t2)p, respectively. Unfortunately, we could not find the optimal solutions in these

cases, since the first order conditions were much too involved. In lieu of the optimal objective however,
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Number of prices Profit Accuracy (%)

K CA Heuristic CA Heuristic UB CA Heuristic

1.000% 1.2 1 0.45795 0.43978 0.46200 4.1329 4.8100

0.500% 1.6 1 0.46118 0.44211 0.46433 4.3126 4.7858

0.100% 2.7 1 0.46479 0.44398 0.46620 4.6875 4.7666

0.050% 3.4 2 0.46548 0.45930 0.46643 1.3472 1.5302

0.010% 5.8 4 0.46626 0.46470 0.46662 0.3367 0.4119

0.005% 7.3 6 0.46641 0.46572 0.46664 0.1488 0.1982

0.001% 12.4 11 0.46658 0.46638 0.46666 0.0425 0.0601

Table 3: D(t, p) = 1 + t2 − p, π∗∞ = 0.46667.

Number of prices Profit Accuracy (%)

K CA Heuristic CA Heuristic UB CA Heuristic

1.000% 4.8 4 0.11595 0.11522 0.12375 6.3038 6.8913

0.500% 6.1 5 0.11930 0.11871 0.12438 4.0820 4.5556

0.100% 10.4 10 0.12305 0.12245 0.12488 1.4615 1.9387

0.050% 13.1 12 0.12377 0.12344 0.12494 0.9329 1.1962

0.010% 22.4 22 0.12458 0.12443 0.12499 0.3260 0.4484

0.005% 28.2 28 0.12474 0.12463 0.12499 0.2070 0.2878

0.001% 48.3 48 0.12491 0.12487 0.12500 0.0710 0.0998

Table 4: D(t, p) =
√
t− p, π∗∞ = 0.12500.

we used a very crude upper-bound, which is the maximum profit less one price setting cost, i.e.,

UB = π∗∞−K. The accuracy of the heuristic is calculated in a similar way, i.e., 100 ∗ (UB−Heuristic)

UB .

However, since continuous approximation does not necessarily give an upper- or a lower-bound, we have

used both the upper-bound and the heuristic (as a lower-bound) to compute the accuracy of continuous

approximation. That is we have taken the maximum of 100 ∗ (UB−CA)

UB and 100 ∗ (Heuristic−CA)

Heuristic ,

which overestimates the continuous approximation’s error.

The last two columns show that while continuous approximation and the heuristic appear to be less

accurate, they are still reasonable and tend the decrease rapidly with the number of price changes.

Nevertheless, based on the results of the first two demand cases, we also have a reason to believe that

the actual accuracies of the continuous approximation and the heuristic are more likely to be much

better than what we report here.
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Number of prices Profit Accuracy (%)

K CA Heuristic CA Heuristic UB CA Heuristic

1.000% 1.9 1 0.19078 0.18554 0.19439 2.8261 4.5523

0.500% 2.4 1 0.19284 0.18652 0.19537 3.3899 4.5294

0.100% 4.1 3 0.19515 0.19425 0.19615 0.5112 0.9675

0.050% 5.1 4 0.19559 0.19505 0.19625 0.3347 0.6107

0.010% 8.8 8 0.19609 0.19592 0.19633 0.1214 0.2085

0.005% 11.1 10 0.19619 0.19608 0.19634 0.0775 0.1326

0.001% 18.9 18 0.19629 0.19626 0.19635 0.0270 0.0460

Table 5: D(t, p) = 1− (1 + t2)p, π∗∞ = 0.19635.

5 Concluding Remarks

We have presented an alternative method for a dynamic pricing problem under costly price modifica-

tions. This is an extremely difficult problem that defies treatment except for few special cases. The

continuous approximation approach that we provide has a number of desirable features. First of all, it

can be implemented under variety of demand and parameter functions. Second, it provides closed form

or simple ways to calculate approximation to the optimal objective function. Finally, the accuracy

of this approximation increases when the optimal number of price changes increases, precisely when

discrete approaches would have failed.

We should note that our method would be more useful to managers who like to have an approximation

of the benefits of dynamic pricing to make strategic pricing decisions. The approach would be of

limited use in operational decision making environments which needs to consider uncertainties and

take demand learning into account. Although, the generalized linear demand case we have solved

allows us to better approximate different forms of demand functions, such as exponential or Cobb-

Douglas types, in general, continuous approximation approach could be extended to those and some

other type of demand, such as logic or probit. Finally, we believe that continuous approximation

has much to offer other dynamic pricing and revenue management settings, especially at the strategic

decision making level.
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