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We analyze a business model for e-supermarkets to enable multi-product sourcing capacity through
co-opetition (collaborative competition). The logistics aspect of our approach is to design and execute
a network system where “premium” goods are acquired from vendors at multiple locations in the supply
network and delivered to customers. Our specific goals are to: (i) investigate the role of premium product
offerings in creating critical mass and profit; (ii) develop a model for the multiple-pickup single-delivery
vehicle routing problem in the presence of multiple vendors; and (iii) propose a hybrid solution approach.
To solve the problem introduced in this paper, we develop a hybrid metaheuristic approach that uses a
Genetic Algorithm for vendor selection and allocation, and a modified savings algorithm for the capaci-
tated VRP with multiple pickup, single delivery and time windows (CVRPMPDTW). The proposed Genetic
Algorithm guides the search for optimal vendor pickup location decisions, and for each generated solu-
tion in the genetic population, a corresponding CVRPMPDTW is solved using the savings algorithm.
We validate our solution approach against published VRPTW solutions and also test our algorithm with

Solomon instances modified for CVRPMPDTW.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In a market-driven e-grocery setting, fulfilling consumer de-
mand for diverse and premium products is a challenge. A key strat-
egy to increase the number of customers served as well as the
margin and the basket size in many businesses is to offer premium
services and a variety of products that meet the needs and desires
of consumers. Yet, most e-groceries have not been able to elevate a
business from providing low value ‘staple’ and bulky goods to ful-
filling the diverse consumer demand for premium (e.g. organic) or
premium-priced (e.g. wine, special gifts) products for special occa-
sions (e.g. birthday, anniversary). In this paper, we analyze a busi-
ness model for e-supermarkets to enable multi-product sourcing
capacity through co-opetition (collaborative competition). The
logistics aspect of our approach is to design and execute a network
system where (premium) goods are acquired from possibly differ-
ent vendors at multiple locations in the supply network and deliv-
ered in a single visit to each customer. Our specific goals are to: (i)
investigate the role and business value of premium product offer-
ings and advanced logistics in creating critical mass and profit; (ii)
develop a model for a variant of the vehicle routing problem (VRP)
with pickup and delivery and time windows; and (iii) propose a
hybrid metaheuristic solution approach.
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The proposed business model addresses a co-opetitive opera-
tion between an e-supermarket chain and premium product
vendors. In this setting, the product range offered by the
e-supermarket includes the SKUs (stock keeping units) in the
brick-and-mortar grocery stores and the premium products at a
set of external third-party provider/vendor locations. We distin-
guish between the former and latter category of products using
the terms standard and premium, where the first group is provided
only by the brick-and-mortar store; the second group, only by
external vendors. We assume that neither standard nor premium
goods require special handling for cases such as perishability or
special storage such as refrigerating, special rack or pallet. Thus,
we include no special constraints regarding the transportation or
storage of goods in the vehicle. Furthermore, we set a same-day
order cycle equivalent to a couple of hours, based on the practical
operation cycles within predefined time slots.

The routing problem of interest consists of two components: (a)
selection of vendors and their allocation to customers who have or-
dered premium products in their e-basket; (b) routing of the vehi-
cles that serve the customers by picking up customers’ premium
products from external vendors and consolidating them with se-
lected in-store products for delivery as a single complete basket.
For each customer, a multiple pickup and single delivery combina-
tion is defined by assigning specific vendors to that customer. We
refer to this problem, which is a variant of the classical capacitated
vehicle routing problem with pickup and deliveries as well as time
windows, as CVRP with multiple pickup, single delivery and time
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windows (CVRPMPDTW). We formulate this problem as a mixed
integer programming model with an objective of minimizing total
transportation costs. In our model, a given fleet of vehicles origi-
nates at the store location from which standard in-store e-delivery
products are assembled and shipped. The vehicles visit assigned
vendor locations to pick up premium products before delivering
the complete basket to a customer. Additional constraints make
sure vehicle capacities are not violated and the customer delivery
time windows are honored. This type of problem and the corre-
sponding model, to the best of our knowledge, has not been previ-
ously studied in the literature.

To solve the CVRPMPDTW, we have developed a hybrid meta-
heuristic approach using a Genetic Algorithm for vendor selection
and customer-vendor allocation, and a modified savings algorithm
for the CVRPMPDTW. The proposed Genetic Algorithm guides the
search for optimal vendor pickup location decisions; then for each
generated solution in the genetic population, the savings algorithm
solves a corresponding CVRPMPDTW instance. We first validate
our solution methodology against published solutions of Solomon
VRPTW instances. Then we test our methodology on a random
dataset based on modified versions of these Solomon instances.
Next, we test the economic viability of our business model using
a real dataset in the metropolis of Istanbul, Turkey where the use
of e-grocery has had a marked acceleration both in scope and scale
(Yanik et al., 2010; deKervenoael et al., 2011). We introduce the
concept of profitability by assuming basket sizes and profit mar-
gins for standard as well as premium products. We then perform
a sensitivity analysis based on the sales parameters and transpor-
tation costs. Results show that the increased cost of logistics oper-
ations due to inclusion of premium vendors can be potentially
offset and translated into higher gross margins, with increased
product profit margins and basket sizes, all of which demonstrate
a valid business case.

The rest of the paper is as follows: in Section 2, we present an
overview of the related literature and point out the fact that our
problem is a new variant of the VRP with pick up and deliveries
and time windows. In Section 3, we present our model; in Section 4,
our solution methodology. Section 5 provides the results of our
numerical analysis and case study. Finally, in Section 6, we con-
clude with further remarks on applicability of our proposed busi-
ness model.

2. Literature

The problem we study in this paper is considered as a variant of
capacitated VRP with pickup and deliveries and time windows
(CVRPPDTW) in the literature. A classification of VRP with pickup
and delivery has been presented in the review paper of Parragh
et al. (2008a,b). They first define a main class of problems, which
deal with the transportation of goods from the depot to linehaul
customers and from backhaul customers to the depot. Four sub-
types of problems have been identified in this class. In the VRP
with clustered backhauls, all linehauls are completed before back-
hauls. VRP with mixed linehauls and backhauls allows any se-
quence. In the VRP with divisible (simultaneous) delivery and
pickup, customers can be visited twice (simultaneously) both for
delivery and pickup. The second main class is identified as classical
to all those types of problems where goods are transported be-
tween pickup and delivery locations. This class comprises prob-
lems in which pickup and delivery points may be paired or
unpaired. A special type of the paired pickup and delivery VRP that
deals with passenger transportation is identified as Dial-a-Ride
problem in the literature.

The CVRPMPDTW arising from the business case defined in our
Introduction is basically a paired pickup and delivery problem but
differs from the classical problems defined in the literature. In our

problem setting, we consider multiple types of commodities. The
vendor pickup locations are specialized based on commodities;
that is, each pickup location can only supply one type of commod-
ity. Yet, there are multiple vendor locations in the network, offer-
ing each type of commodity, and choosing one or more vendor
locations to supply a particular type of commodity to a specific
customer is an assignment-type problem. Furthermore, the trans-
portation of goods from the originating store to customer delivery
points exists, in addition to the transportation of the paired pickup
and deliveries. In other words, the vehicles leave the store with a
load of standard goods for which the target delivery points are cus-
tomer addresses.

The complexity of VRPPD problems is higher than the classical
VRP, which is an NP-hard problem. The single vehicle case, namely
the traveling salesman problems (TSPs), has been studied widely.
Yet it provides insights into the complex problem structure and al-
lows developing solution concepts. These approaches have then
been used to develop exact and approximate algorithms for VRPs
(Toth and Vigo, 2002). Such an instrument is used similarly for
VRPPDs in the literature in order to investigate the single vehicle
case first, and then use the acquired knowledge for the search of
the multi-vehicle problem solution.

The pickup and delivery traveling salesman problem (PDTSP),
which is a generalization of the well-known TSP where each cus-
tomer provides or requires a given non-zero amount of product
served by a single vehicle, has also been investigated in the litera-
ture along with the exact and heuristic solution methodologies
developed (Hernandez-Perez and Salazar-Gonzalez, 2004). The
methodologies offering exact solution algorithms are branch-
and-bound (Kalantari et al., 1985), branch-and-cut (Balas et al.,
1995), and dynamic programming (Desrosiers et al., 1986; Bianco
et al., 1994). PDTSPs are defined in a setting where the goods to
be delivered are of a different type with respect to the goods to
be collected. A similar problem to PDTSPs is the one-commodity
Pickup and Delivery Traveling Salesman Problem (1-PDTSP) where
the set of customer locations is partitioned into pickup and deliv-
ery customers to be served by a single vehicle based at the depot
for a single commodity (Berbeglia et al., 2007). In the literature,
the exact solutions for 1-PDTSPs have been also been tackled with
branch-and-cut procedures (Hernandez-Perez and Salazar-Gonz-
alez, 2004, 2007). Besides, an exact algorithm for the TSP with clus-
tered backhauls (the case where all deliveries are completed before
pickups) has been presented by Baldacci et al. (2003) using an
additive lower bounding procedure which can be embedded with-
in a branch-and-bound framework similar to the procedure of Fis-
chetti and Toth (1989). On the other hand, heuristics serve as an
alternative for solving the PDTSP. Different algorithms such as ge-
netic algorithms, tabu search, local search and insertion methods
are developed in the literature (Pankratz, 2005; Landrieu et al.,
2001; Van Der Bruggen et al., 1993; Lu and Dessouky, 2006).

Efforts on developing efficient solution algorithms for VRPPD
have grown tremendously in the last years. Many literature re-
view papers examine the exact and heuristics solution techniques
of VRPPD (Desaulniers et al., 2002; Cordeau and Laporte, 2003a;
Nagy and Salhi, 2005; Gendreau et al., 2008; Cordeau and Laporte,
2007; Berbeglia et al., 2007; Cordeau et al., 2008). The most com-
monly used heuristics to deal with the VRPPD include insertion
procedures (Jaw et al., 1986), cluster-first, route-second methods
(Cullen et al., 1981; Bodin and Sexton, 1986; Dumas et al.,
1989; Desrosiers et al., 1991; Toth and Vigo, 1996; Borndorfer
et al., 1997), tabu search (Toth and Vigo, 1997; Nanry and Barnes,
2000; Caricato et al., 2003; Cordeau and Laporte, 2003b; Attanasio
et al., 2004; Montane and Galvao, 2006; Melachrinoudis et al.,
2007), genetic algorithms (Rekiek et al., 2006; Ganesh and Naren-
dran, 2007), simulated annealing (Hart, 1996; Li and Lim, 2001)
and ant colony optimization (Doerner et al., 2001, 2003). In
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addition, Bent and van Hentenryck (2006) have developed a hy-
brid heuristic for the VRPPDTW. In their two-stage heuristic, the
first stage applies simulated annealing (SA) to minimize the num-
ber of routes, while the second stage minimizes the total route
length through large neighborhood search.

Another approach in the VRPPD is to split the vehicles into pick-
up vehicle fleet and delivery vehicle fleet. In order to maintain an
interaction between these two fleets, transfers are introduced dur-
ing the delivery phase. Lin (2008) has compared a classical VRPPD
model to a model where transfers take place between the vehicles
at the depot. In another study, Thangiah et al. (2007) have intro-
duced transfer points in the network different from the depot. They
allow transfers between the vehicles and assume a divisible deliv-
ery to the customer, which leads to multiple numbers of vehicles
delivering goods to the customer.

The problem defined in our paper arises from a practical e-
delivery setting. In this setting, transfers are not allowed between
vehicles and each customer must be visited only once by a single
vehicle. However, customer orders may be picked up from the
sourcing store as well as the external suppliers (vendor pickup
locations) within the network. In this case, the vehicles start their
routes with a load of goods available at the sourcing store. The ven-
dor pickup points are matched to customers ordering premium
goods, and the vehicles stop at the matching vendor pickup loca-
tions to pick up the premium goods ordered. An assignment of a
pickup location to each customer is maintained in the solution
methodology as well as the route sequence; while the minimum
cost solution is sought in the presence of pickup and delivery loca-
tion precedence, time window and capacity constraints. Based on
our literature review, we find that this variant of the CVRPPDTW
has not been studied before. However, as the popularity of e-shop-
ping has increased and led to a growth in e-delivery models, prob-
lems related to e-delivery have recently attracted attention in the
literature. One such study on e-delivery location and routing prob-
lem is by Aksen and Altinkemer (2008). The authors formulate a
model for store selection for delivery and routes based on the se-
lected stores for online orders. Provided that their study includes
a location and routing aspect of the e-delivery setting, the routing
part does not contain any pickup operations, which means they are
dealing with a classical VRP problem. Besides, the location aspect
in their study is the search for the start point of the route whereas
in our case we look for the best assignment between the pickup
and delivery points so that the total distribution cost is minimized.

In this study, we also aim to show that the case we have de-
scribed is a viable business model for e-supermarkets in order to
create further value added through extra services and a more effi-
cient use of the geographical context in large metropolises. The
mathematical model we have developed is a new variant of the
CVRP with multiple pickup and deliveries, and time windows.
Though we are able to formulate this problem as a mixed integer
linear programming model, we resort to a hybrid metaheuristic ap-
proach due to the complex nature of the problem.

3. Model

In our proposed model, customers are served with standard
products shipped from a sourcing store, whereas the premium prod-
ucts are picked up from the external vendor location(s). Customer
delivery is accomplished only after all the pickups of the premium
products are made and consolidated with the standard products in
a vehicle designated for service. The single delivery to the customer
is scheduled during the time window of customer’s choice.

We use the following notation for our model formulation pre-
sented below. V is the set of vendor (pickup) locations, I is the set
of customer (delivery) locations, D ={d} is the depot (in case of
supermarket e-delivery, depot is the sourcing store). The network

is defined with these locations where, N=VUI, A= NuD. The set
of customers having premium product orders is denoted by I, C I.
P denotes the set of premium products served to the customers. The
premium products and their suppliers are defined by a compatibil-
ity matrix denoted by e,,, whereas the quantity to be picked-up
from vendor v for customer i is denoted by g;, and the quantity to
be loaded onto a vehicle for customer i from the depot is denoted
by gia. Ojp is a binary indicator taking the value 1 if customer i has
an order for premium product p and O otherwise.

K is the set of vehicles and C, denotes the vehicle capacity. The
start and the end time of customer i’s time window is denoted by a;
and b;. The time needed to serve customer i is s;, and the time
needed for a pickup at vendor v is s,. The time needed for vehicle
k to travel from location i to location j is denoted by t;, and the
associated cost is cjj. The fixed cost of using vehicle k is fi. Finally,
M represents a sufficiently large value used to ensure only one of
the two constraints on pickup-delivery synchronization is in effect.

The decision variables of the model to optimize the routes and
the sequence of the stops for the pickup and delivery are as
follows:

X;ir: 1 if vehicle k traverses from location i to location j, other-
wise 0; i,j €A, ke K

Ziwk: 1 if customer i is served from vendor » by vehicle k, other-
wise 0;iel, veV, kekK

V. 1 if vehicle k is used, otherwise 0; k € K

Ti: time for vehicle k to arrive at locationi;ie N, k€ K

Li: load for vehicle k leaving location i; i € A, k € K

Lk, li: load picked up/delivered by vehicle k from vendor » or at
customer i; ive N, ke K

The mixed integer programming model formulated for the pre-
sented problem is as follows:

min ZZZCkaijk + kaJ/k 1)

keK icA jeA keK

StY Xk =Y. VkeK 2)
jeN
> Xk =Y, VkeK (3)
JjeN
> K= X, VeA VkekK (4)
ieA icA
>N ewzivk = 0y, Viel, VpeP (5)
keK veV
> Zik <MY Xju, VveV, Vkek (6)
ielp jeA
D Xu=1, Viel (7)
keK jeA
To+ S+ tyie < T + M(1 — zi), Viel,, YveV, Vk € K8)
Ty +8i + tie < Tj + M(1 — x), VijeA, Vkek (9)
a;<Ty <b;, VicA, VkcK (10)
Lac=Y (qideﬁk>, vk € K (11)

iel JjeA
k= ZinGy,, VvV, VkeK (12)
ielp

ij—l,'k <Lik+M(l —Xﬁk), Viel, VjEA, vk e K (13)
ij + lvk < ka + M(] — X]'yk)7 Yve V7 V] € A, Vk e K (14)
Li<Cy VicA VkekK (15)

The objective function formulated in (1) requires the minimization
of the variable and fixed costs of the distribution. The variable costs
are defined by the road length traversed by the vehicles, whereas
the fixed costs are based on the use of the vehicles. Constraints
(2) and (3) ensure that the routes start and end at the depot,
whenever the corresponding vehicle is used. Constraint (4) is used
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for the vehicle flow balance. Constraint (5) identifies the pickup
location for the ordered premium products. Constraint (6) is em-
ployed for consistency between the decision variables so that the
routes are formed based on the customer and vendor stops of the
vehicles. Constraint (7) ensures that each customer is visited only
once. Constraint (8) provides that the premium products are picked
up before the delivery. Constraint (9) ensures the time consistency
throughout each route. Constraint (10) matches the delivery time
with the time window of the customer. Constraint (11) provides
that the initial load of the vehicle be equal to the customer orders
from the depot. Constraint (12) identifies the total load to be
picked-up at the vendor location. Constraints (13) and (14) ensure
that the load quantity throughout the route is consistent with the
customer delivery and vendor pickup quantities. Finally, constraint
(15) is the vehicle capacity constraint.

Initially, we sought exact solutions for the formulated model
using CPLEX. Such solutions within practical time periods have
only been obtained for very small-sized problem instances. Such
an instance with 10 customer nodes, 5 vendor nodes, 2 premium
product types and 2 vehicles that is used to validate the model is
depicted in Fig. 1. Loose depot due times compared to service times
and loose vehicle capacities have been defined for this instance.
The optimum solution of this instance is obtained as 784,362 cost
units within a computational time period of 760.61 seconds.

We additionally tried larger-sized instances (with 25 custom-
ers, 75 vendors and 3 product types) in search for reasonable lower
and upper bounds. After running CPLEX for 7200 seconds (2 hours),
we were unable to obtain a lower or upper bound for any of the in-
stances. Due to the complexity of the model implied in these early
experiments, we have developed a hybrid metaheuristic solution
methodology to solve realistically sized problems.

4. Solution methodology

The solution approach we have adopted for solving the
CVRPMPDTW described in the previous section is a hybrid meta-
heuristic approach. We employ two different heuristic algorithms
for the vendor-assignment and routing aspects of our problem.
We use a Genetic Algorithm (GA) for fixing the status of the vendor
used for the assignment decisions, i.e. which vendor should be
used for serving which (premium) customer order. The status of
the vendor is defined as the vendor being “active” or “inactive”.
So, only the vendors whose status is defined as active by the GA
are used for the vendor-customer assignments. The CVRPMPDTW
problem is solved by a modified savings algorithm that we have
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designed and implemented in this study. For a given vendor-cus-
tomer assignment vector, the savings algorithm calculates the
CVRPMPDTW cost and this cost value is returned to GA in order
to simultaneously find the best route and vendor—customer assign-
ment. The overall structure of the hybrid metaheuristics solution
approach is depicted in Fig. 2.

4.1. Genetic algorithm for assignment decisions

Genetic Algorithms are heuristic procedures inspired by biolog-
ical and evolutionary principles and have been applied to optimi-
zation problems extensively. The main concept is to maintain a
pool of solutions for the problem, usually referred to as a popula-
tion of chromosomes, and continuously improve it through genera-
tions of crossovers. Through this process, the genetic material is
carried over to offspring and the resulting solutions that are hope-
fully better in terms of objective function value, or the fitness value,
are used to replace inferior solutions in the pool (Bozkaya et al.,
2010). For further details on Genetic Algorithms, the interested
reader is referred to the study by Reeves (2003).

In our approach, we have implemented GA using the C++ pro-
gramming language because C++ is an appropriate language for
dealing with computationally intensive functions and sub-
routines. The fitness value of each individual in the population is
defined as the CVRPMPDTW cost, which is obtained from the
modified savings algorithm implemented in Visual Basic for
Applications (VBA). The modified savings algorithm has been
coded in VBA, which is the programming platform of the ArcGIS
software. ArcGIS is a commercial off-the-shelf software application
for creating, storing, visualizing and analyzing spatial datasets and
solutions. Thus, we aim to integrate the proposed algorithm with
the ArcGIS environment. The VBA routine also maintains the data
transfer between the two components of the solution methodology
namely the GA and the modified savings algorithm.

In our adaptation, we have defined the chromosomes as each
gene representing the customers and the encoding is made numer-
ically where each number represents a vendor location. We use a
constant-sized population, which is a fairly common feature in
the facility location GA literature. That is, we take the size of the
solution pool S as constant. Each chromosome in the population
initially is generated in a random fashion. Two parent chromo-
somes are needed to produce an offspring. We choose the first par-
ent randomly, and the second parent according to a gene diversity
measure that we use. This measure is simply the total number of
genes that are different in both parents. We use a traditional GA

...... .
a '._.
»
{ B Depot
*Vcndors_l
$ ©) Vendors_2
50 3 100
@ Customers
* —» Vehicle 1
+++3 Vehicle 2
'_.v’

Fig. 1. Small instance with 10 customers, 5 vendors and 2 product types.
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Fig. 2. Framework for the overall hybrid metaheuristic solution methodology.

crossover operator where a common crossover point on each par-
ent chromosome is chosen and the portions of the two chromo-
somes after the crossover point are swapped. Our replacement
strategy takes into consideration the offspring produced from
two parents and uses it to replace the worst member of the pool.
We keep track of the worst fitness value and the associated chro-
mosome in the pool, and replace it with the new offspring only if
the offspring fitness value is better. If not, the offspring is discarded
and the algorithm continues to produce a new offspring. The GA
algorithm generates a single offspring in each generation (or itera-
tion) and terminates when it reaches the maximum number of
generations. When the algorithm terminates, the best solution in
the pool along with its objective function value is reported.

4.2. Modified savings algorithm for CVRPMPDTW

Our modified saving algorithm is implemented in a two-stage
fashion where the routes are first constructed and then they are
improved over an improvement search space. The following sec-
tions describe the main components of the proposed modified sav-
ings algorithm for CVRPMPDTW.

4.2.1. Construction phase

The construction phase is initiated by constructing a separate
route for each customer including its assigned vendors if the cus-
tomer has ordered premium goods. The vendors are assigned based
on the minimum distance criterion and the status of the vendor
(active or inactive) retrieved from the GA. Then, these routes are
iteratively merged based on savings obtained, much similar to
the Clarke-Wright savings algorithm. While calculating the cost
saving of each merger, the following procedures are performed
(during temporary mergers):

e Elimination of extra vendors: Since two routes are merged to
construct a new route, these two routes may consist of two ven-
dors that serve the same type of product. Only one of these ven-
dors is required to supply the premium orders for the
corresponding customers in the new route. Thus, the unneces-
sary vendors are eliminated.

Feasibility with respect to vehicle capacity and time windows: The
customers have time windows for accepting deliveries and the
vehicles have due times to return to the depot. Thus, a merger
may violate one or more customer time windows and the vehi-
cle capacity. A feasibility check is performed to ensure such a
violation is not the case.

If the merged routes are determined to be feasible according to
the feasibility check, the cost savings of the routes are calculated.
Cost savings are computed with two components: distance saving
and time efficiency. The distance saving is calculated as the differ-
ence in the total of length of the two routes before and after the
merger, which is then transformed into cost using a parameter.
The time efficiency is evaluated based on minimizing the idle time

of the route after merger, which is also transformed into cost using
a parameter. The overall cost saving of a candidate route is calcu-
lated using (16) where p is distance-to-cost parameter and 7 is
time-to-cost parameter,
costsaving (T aster_merger) = Adist(r;, 15, candidate_route) x (p

+ TimeEff (candidate_route, TW)

X T) (16)
Once the savings from the merger of each pair is calculated, the

merger with the highest saving is executed. The pseudo-code of
the constructive heuristic is given in Algorithm 1.

Algorithm 1. Construction Heuristic

Input: G, I, V, K, o - status of vendors, g, C, a;, b;, e, p, 7, and
IterLim - iteration limit

Output: solution - constructive initial solution

: distlink = Do DistLink(G, I, V)

: o = Call GeneticAlgorithm(V)

: assignment = Do Assignment(distlink,I,V,q,e, o)

:fori=1to |l

r; = Do Route(I, assignment)

: next i

: solution = Do Solution(r)

: costmatrix = Do CostMatrix(solution, p, 1)

: for iteration = 1 to IterLim

10: for i =1 to |solution|

11: for j=i+1 to |solution|

12: candidate_route = Do TemporaryMerge(r;, 1)
where r;,1; € solution

13: eliminate = Do Eliminate(py, p;, e, costmatrix)
Vpi, b1 € candidate_route(1,V), e(py) = e(p;)

14: if IsFeasible(eliminate,C,a,b) = True then

15: costsaving(eliminate) = A
dist(r;,rj,eliminate) x (p + TimeEff(eliminate,a,b) x 1)

16: end if

OO U A WN =

(o]

17: next j

18: next i

19: savingmatrix = Do SavingMatrix(costsaving)

20: max_saving = max(costsaving(r;,1;) € savingmatrix)
21: new_route = Do Merge(r;,1})

22: solution = Do Solution(new_route,r;,1;)

23: next iteration
24: return solution = {r,r5,...,1¢}

4.2.2. Local search phase

Once the construction stage is completed, the routes are im-
proved in an iterative fashion. In each iteration, the savings from
three types of improvement moves are calculated. These are:

(a) Intra-route moves: changing the sequence within routes.

(b) Inter-route moves: swapping portions of two routes between
each other.

(c) Replacements: changing vendor locations with other vendors
that supply the same type of product.

In each iteration, the best saving is calculated from all possibil-
ities arising from these three types of moves and the corresponding
move is implemented. The modified savings algorithm is illus-
trated in Fig. 3.

While searching for improvements with intra-route moves, an
important feasibility check is performed to honor the sequence of
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customers and the vendors used to fulfill the orders of these cus-
tomers. The vendors should be visited before the customer who
has orders to be supplied from these vendors. Thus, when the posi-
tion of a vendor is being changed by an intra-route move, the ven-
dor can only be placed before the customer it serves. Similarly,
when a customer’s position in the route is changed, it cannot be
placed before a vendor serving this customer. In addition, feasibil-
ity with respect to vehicle capacity and time windows are also ver-
ified before completing an intra-route move. Subsequently, the
cost saving of the move is calculated using (16). The pseudo-code
of the intra-route move is presented in Algorithm 2.

The inter-route movements are more complex when compared
to the intra-route moves due to customer-vendor assignments. Let
us refer to the two routes subject to an inter-route move as origin
route and destination route.

Algorithm 2. Intra-route Move

Input: [V, o, q, C, a; by, e, p, T, prev_solution - solution from
previous iteration or Algorithm 1

Output: max_savingl - maximum saving with intra-route
moves

1: solution = prev_solution

2: costmatrix = Do CostMatrix(solution, p, )

3: for r=1 to |solution|

4: r=r

5: if IsFeasible_Sequence(r,k,[) = True then

6: ' = Do IntraMove(r, k,I) Vk,| where k,I < |r|, k # | are
two customer positions on route r

7: end if

8: 1’ =Do Eliminate(p,, pn, e, costmatrix) where p,,
pner'(LV), e(pm) = e(pn)

9: if IsFeasible(r,C a,b) = True then

10:
costsaving1(r,k,I) = Adist(r,r’) x (p + TimeEff(r',a,b) x 1)

11: end if

12: next r

13: savingmatrix 1 = Do SavingMatrix(costsaving1)

14: max_saving1 = max (costsaving1(r,k,l) € savingmatrix1)

Aninter-route move is initiated only if the location to be moved in
an origin route is a customer location. As the customer to be swapped
between routes is fixed, logical checks (as depicted in Fig. 4) are re-
quired in order to decide which locations will be swapped between
the two routes due to customer-vendor assignments.

Similar to the intra-route moves, the position of the customer to
be inserted in the destination route also needs to be decided after a
feasibility check so as to maintain the correct sequence of custom-
ers and the vendors that serve them. If the additional vendors are
inserted due to the moved customer, vendors are added just before
the moved customer. Feasibility with respect to vehicle capacity
and time windows is also verified during inter-route moves. Subse-
quently, the cost saving is calculated using (16), where the distance
difference is between the total distances of the two routes before
and after the move. The pseudo-code of the inter-route move is
presented in Algorithm 3.

Algorithm 3. Inter-route Move

Input: I, V, o, q, C, a;, bj, e, p, T, prev_solution - solution from
previous iteration or Algorithm 1
Output: max_saving2 - maximum saving with
inter-route moves
: solution = LocalSearch(prev_solution, 1)
: assignment = LocalSearch(prev_solution,2)
: costmatrix = Do CostMatrix(solution, p, )
: for r1 =1 to |solution|
: for r2 =1 to |solution|
. if IsVendorAssigned(assignment,r1,k) = False,
where r1(k) € I, k < |r1| then
7: go to line12
8: else if IsCustomerAssigned(assignment,r1,
vendor(k)) = False, with r1\{k} then
9: r1 =r1\vendor(k)
10: end if
11: if IsCustomerAssigned(assignment,r1,vendor(k)) =
True then
12: if IsFeasible_Sequence(r2,k,l) = True then
13: i=Do InterMove(r1,k,I) where k < |r1|
14: j = Do InterMove(r2,k,I) where k < |r1], I < |r2], k # 1
15: end if
16: else
17: r1 = Do InterMove(r1,k,I) where k < |r1|
18: 12 = Do InterMove(r2,k,1) where k < |r1|, [ < 12|, k # |
19: r2 =12 U vendor(k)
20: end if
21: eliminate = Do Eliminate(r1, p,,, py, €, costmatrix)
where pm, py € r1(LV), e(pm) = e(pn)
22: eliminate = Do Eliminate(r2, py, Pn, €, costmatrix)
where pm, pn € 12(L,V), e(pm) = e(pn)
23: if IsFeasible(r1,C,a,b) = True and IsFeasible(r2,C,a,b) = True then
24: costsaving2(r1,12,k,1) = AdiSt(r pefuremove M ftermoves PZseforemoves 2aftermove) X
(p + TimeEff(r1,r2,a,b) x 1)
25: end if
26: next r2
27: next r1
28: savingmatrix2 = Do SavingMatrix(costsaving2)
29: max_saving2 = max(costsaving2(r1,12,k,1) € savingmatrix2)

DA WN =

Iterate to construct routes:

Iterate to improve routes:

Fig. 3. Framework for the proposed modified savings algorithm methodology.
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Move the customer to
the destination route

A

Are there vendors
assigned to the
customer?

Are there other
customers assigned
to these vendors?

Can vendors of the
origin route be
assigned to the

customer?

No Eliminate these vendors
from the origin route

No N Move the customer and
add its vendors to the
destination route

Fig. 4. Checks related to customer-vendor assignments during inter-route moves.

Additionally, in each iteration, after implementing an intra- or
inter-route move, a vendor replacement search is conducted to
possibly replace vendors of a route with better ones in the vendor
list. The pseudo-code of the overall local search procedure is pre-
sented in Algorithm 4.

Algorithm 4. Local Search

Input:V, o, q, C, a;, b;, e, p, 7, IterLim

Output:solution®® — the best overall solution

: (assignment, solution) = ConstructiveHeuristic()

: for iteration = 1 to IterLim

: max_saving1 = Intra-routeMoveHeuristic()

: max_saving2 = Inter-routeMoveHeuristic()

: if max_saving1 > max_saving2 then

: new_route = Do IntraMove()

: new_solution = Do Solution(new_route)

: else

9: (new_routel,new_route2) = Do InterMove()

10: new_solution = Do Solution(new_routel,new_route2)

11: end if

12: assignment = Do Assignment(new_solution)

13: costmatrix = Do CostMatrix(new_solution)

14: for r = 1 to|new_solution|

15: new_route=r

16: for j =1 to|r|

17: if IsVendor(j) = True then

18: min_distance = Do Distlink(r)

19: new_supplier = j

20: for v=1 to |V|

21: new_route = Do Replacement(j, v), where o(v) # O,
e(j)=e(v)

22: if distance(new_route) < distance(r) and
IsFeasible(new_route,C,a,b) = True then

23: min_distance = DoDistlink(new_route)

24: new_supplier = v

25: end if

26: next v

O O U A WIN =

27: new_route = Do Replacement(j,new_supplier)
28: end if

29: next j

30: new_solution = Do Solution(new_route)

31: nextr

32: solution = new_solution

33: next iteration

34: solution’®t = solution

5. Computational results

In order to test the performance of our proposed algorithm, we
first solve a set of Solomon benchmark problems. This widely
known class of test problems is frequently used for comparative
purposes in the literature. We then solve a real-world case, which
is obtained from the geographical region of Istanbul, Turkey, to
evaluate the potential profitability of the business model presented
in this paper.

The testing of our proposed algorithm is conducted in two
steps. Since there are no published instances and associated best-
known solutions for the CVRPMPDTW, we first solve a set of pub-
lished capacitated VRPTW instances from the Solomon instance li-
brary. Even though our algorithm is not particularly tailored to
solve VRPTW, a sufficiently good performance with these instances
should suggest that our algorithm could also effectively solve the
CVRPMPDTW. Thus we adapt our overall solution methodology
to solve capacitated VRPTW by eliminating the genetic algorithm
procedure that is only required for customer-vendor assignments.
We report the average results and gaps of each Solomon instance
class in comparison to the average best heuristic results in the lit-
erature (Solomon, 2005) in Table 1. Results indicate that the aver-
age gap between the objective values of best-reported heuristic
solutions of the Solomon instances and those of our solutions is
7.05%, which we find is reasonable for an algorithm that is not par-
ticularly tailored to solve VRPTW.

The Solomon instances listed in Table 1 all include 100 nodes as
customer points and their delivery quantities, and are specified by
the following characteristics:
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Table 1
The comparison of the results for Solomon’s 100-customer benchmark instances.

Instance  Best known heuristic Proposed algorithm
class Average Average iteration Average distance Average iteration  Average distance Average gap w.r.t. best Std. dev. gap w.r.t. best
distance (construction) (construction) (local search) after local search known heuristic (%) known heuristic (%)

C1XX 828.31 92 951.29 6 867.67 4.76 4.27

C2XX 589.86 99 713.76 9 651.07 10.38 533

R1XX 1265.71 92 1663.87 47 1363.98 7.94 4.10

R2XX 966.18 100 1574.04 40 1062.46 9.57 6.04

RC1XX 1384.16 92 1670.75 28 1475.20 7.32 5.88

RC2XX 1119.35 100 1693.39 32 1186.01 5.98 291

e The placement of the customers is randomly distributed (R1XX 6. Case study

and R2XX), clustered (C1XX and C2XX) or randomized clustered
(RC1XX and RC2XX)
e Vehicle capacities are tight or loose (e.g. vehicle capacity of
R1XX is 200 units but vehicle capacity of R2XX is 1000 units)
e Depot due times are tight or loose compared to service times
(e.g. the service times of R1XX and R2XX are 10 with a depot
due date of 230 for R1XXand 1000 for R2XX).

In our computational study, 8 instances for each of the above
classes have been solved on an Intel Core 2 Quad CPU Q9400
2.67 gigahertz with a memory of 4 gigabyte RAM. The computation
time of tight vehicle capacity instances is around 1-2 minutes. As
the vehicle capacity increases, so does the computational complex-
ity; thus, the time increases to approximately 10 minutes for in-
stances with loose vehicle capacities.

In the second step of our computational study, we use our algo-
rithm to solve modified Solomon problem instances that corre-
spond to the CVRPMPDTW. The original Solomon problems
consist of 100 customer delivery locations. We have modified these
locations to randomly divide them into two groups: 25 customer
delivery points and 75 potential vendor locations for three differ-
ent types of premium products. We report the solutions of these
instances computed by our algorithm in Table 2.

Note that the solution of the CVRPMPDTW does not necessarily
visit each and every vendor pickup location, which means the total
number of stops in all routes is not 100, as in the original Solomon
instance solutions. Moreover, the solutions and the associated
objective values reported in Table 2 correspond to different prob-
lems, namely the VRPTW and the CVRPMPDTW. Thus, it is not fair
to compare these results with the published results for Solomon
VRPTW instances even though we report them in the same table.
We simply report our solutions as the first and best set of solutions
for the new problem CVRPMPDTW we have introduced to
literature.

The resulting routes for the Solomon CVRPMPDTW version are
visualized in ArcGIS 9.3 software and depicted in Fig. 5. The depot,
which is the start and end point for each route is shown with the
green square in the middle of the figure. The customers are repre-
sented by circles and the vendors are represented by triangles in
the figure.

Table 2
The results with modified Solomon instances for CVRPMPDTW.

We now test our solution methodology with a sample dataset
for the city of Istanbul. In this case, we use two scenarios to show
the potential profit increase that can be obtained with the business
model presented in this paper. In the first scenario, an e-supermar-
ket delivers grocery products to several locations in Istanbul in the
classical sense, i.e., using a fleet that originates at the supermarket
and delivers products only available in the supermarket. In the sec-
ond scenario, the e-supermarket utilizes an extended fleet to pick-
up premium products from multiple vendor locations and delivers
them consolidated with the standard grocery products to the cus-
tomer locations.

The study area covers part of the European side of Istanbul, spe-
cifically the Besiktas, Sisli and Sariyer districts, located in a densely
populated part of the city center with usual traffic difficulties. We
consider four different premium products, namely organic goods,
specialty goods, books and sports goods. In Fig. 6, these are marked
with the flower, star, shield and triangle, respectively. Also in Fig. 6
are the customer locations (check symbol) and the e-delivery store
(depot) location (black plus symbol).

In the first (baseline) scenario, we solve the traditional e-deliv-
ery routing problem with no premium goods. In this problem, a
fixed number of trucks leave the store with all standard products
loaded and visit customers sequentially to make deliveries. Based
on a prior study (deKervenoael et al., 2011), where we conducted
a survey with e-supermarket industry leaders and determined
parameters related to delivery operations and e-grocery sales, we
assume that 50 customers place orders for e-delivery with an aver-
age basket size of 100 Turkish Lira (1 USD = 1.8 Turkish Lira) and an
overall bottom line profit margin of 5%, within the regional and
time span of the e-delivery activity.

In the second scenario, when additional premium products are
available for purchase, we expect that some existing customers
will extend their current orders with the added choices. The addi-
tional profit generated will (hopefully) offset the increased logis-
tics costs in the CVRPMPDTW version. In our example, a total of
50 customers requests e-delivery with an average basket size of
120 Turkish Lira. Out of this 120 Turkish Lira, the average profit
achieved is increased to 10% with the additional orders for pre-
mium products. We present in Fig. 7a and b, the routing solutions

Instance Proposed algorithm
Total nr. of stops Nr. of vehicles Total cost Computation time (seconds)

c101 52 7 702.0 1200
C201 36 3 511.2 1140
R101 46 10 897.0 960
R201 33 2 541.2 1860
RC101 50 11 960.0 1800
RC201 34 2 669.8 1680
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Fig. 5. The resulting routes for a modified Solomon CVRPMPDTW instance.

Fig. 6. Problem setting in Istanbul.

obtained by running the traditional VRP model and the
CVRPMPDTW model.

In the case study, e-deliveries are grouped into specific time
slots based on the time window preferences of customers. Thus,
the deliveries in the same time slot may be treated as deliveries
without time windows. So, we treat the case study problem as if
there is no time window, even though the algorithm we have

developed for CVRPMPDTW is able to honor the time windows

when specified. Once we obtain the results in terms of distance tra-
versed for the first and second scenarios, we convert the distance
into distribution costs using a specific parameter based on the oil
consumption rate and oil prices (0.35 Turkish Lira/kilometer). We
also consider the total fixed cost of a vehicle including fixed vehicle
costs such as insurance, driver salary, etc. We assume 2500 Turkish
Lira/month salary for drivers with monthly total working hours of
225. We calculate the fixed cost of a route by converting the
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M Route 1
M Route 2
Route 3
H Route 4
[l Route 5
[ Route 6
(a)
Nr. of Customers Visited 50
Average Basket Size (TL) 100
Average Margin 5%
Used Nr of Vehicles 3 6
Nr of Stops Visited 50 73
Distance Traversed (km) 122.10 217.50
Distribution Cost (TL) 42.70 75.95
Fixed Cost (TL) 67.83 120.83
Net Profit (TL) 139.47 403.22
Fig. 7. Results for the case study comparing classical VRP vs. CVRPMPDTW.
Table 3

Additional profit levels (in Turkish Lira) with respect to changes in the average basket size and average profit margins.

The increase in the basket size (Turkish Lira) Average margin

5% 6% 7% 8% 9% 10%
-30 -161.25 -126.25 -91.25 -56.25 -21.25 13.75
-20 —136.25 -96.25 -56.25 -16.25 23.75 63.75
-10 —-111.25 —66.25 -21.25 23.75 68.75 113.75
+0 —86.25 -36.25 13.75 63.75 113.75 163.75
+10 -61.25 -6.25 48.75 103.75 158.75 213.75
+20 —36.25 23.75 83.75 143.75 203.75 263.75
Table 4

Profit increase in response to an increase in the number of customers.

VRP CVRPMPDTW with increase CVRPMPDTW with increase
in margin and basket size in margin and basket size and customers
Nr. of customers visited 50 50 60
Average basket size (Turkish Lira) 100 120 120
Average margin 5% 10% 10%
Used nr. of vehicles 3 6 6
Nr. of stops visited 50 73 80
Distance traversed (kilometer) 122.10 217.50 272.0
Distribution cost (Turkish Lira) 42.70 75.95 95.20
Fixed cost (Turkish Lira) 67.83 120.83 151.11
Net profit (Turkish Lira) 139.47 403.22 473.69
Profit increase (Turkish Lira) +263.75 +334.22

distance to time using an average speed of 20 kilometer/hour and
then multiplying the time with the total fixed cost per time. To ob-
tain the solutions reported and illustrated in Fig. 7, we assume a
specific increase in the basket size and average profit margin of
the basket due to the introduction of premium goods.

6.1. Sensitivity Analysis

The increase in the basket size and profit margin clearly may
not be foreseen in advance. In order to evaluate the profitability

of introducing premium products in a CVRPMPDTW, we present
a sensitivity analysis in Table 3. The values in the first column indi-
cate how much the basket size is changed in the sensitivity analy-
sis in relation to the base scenario value of 100 Turkish Lira in
Fig. 7a. The values in the table indicate the additional profit (or
loss) obtained with respect to the value of 139.47 Turkish Lira.
The analysis shows that the costs incurred by additional distance
traversed in the extended operations of CVRPMPDTW; hence, the
increased transportation cost can be offset only when the basket
size and average margin are at a certain level. For example, when
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Table 5

Additional profit levels (in Turkish Lira) with respect to changes in the average basket size and average profit margins with the increased number of customers.

The increase in the basket size (Turkish Lira) Average margin

5% 6% 7% 8% 9% 10%
-30 ~175.78 ~133.78 -91.78 ~49.78 ~7.78 34.22

-20 ~145.78 -97.78 ~49.78 ~1.78 46.22 94.22

-10 ~115.78 ~61.78 ~7.78 46.22 100.22 15422
+0 -85.78 ~2578 3422 94.22 15422 21422
+10 -55.78 1022 76.22 14222 208.22 27422
+20 ~25.78 46.22 118.22 190.22 26222 334.22

the basket size decreases by 30 Turkish Lira, the new operational
setting defined with pickup and deliveries is relatively more prof-
itable only with a margin of at least 10%.

On the other hand, one may further consider that new custom-
ers may place orders when additional premium products are avail-
able for purchase. Such an increase in the number of customers
will also increase the level of profits as illustrated in Table 4.

A similar sensitivity analysis for CVRPMPDTW has been con-
ducted with the increased number of customers as well as varying
margins and value of basket size. The results in Table 5 show that
under the new setting, where premium products lead to increase in
the number of customers, the new operational setting with longer
routes and more vehicles potentially offers more profits (or re-
duced loss) for most of the parameter combinations.

7. Conclusion

The comparison of the results obtained with the proposed solu-
tion methodology in this paper and the solution of Solomon prob-
lem stated in the literature show that our results are indeed
promising for a new problem and a new solution approach devel-
oped. Since the CVRPMPDTW is subject to a higher number of con-
straints such as vendor-supplier sequence and the changing load
level throughout the route-vehicle capacity, it is expected that
the resulting cost of the CVRPMPDTW would be higher than the
classical VRP.

On the other hand, our case study analysis indicates that there
are forgiven profit opportunities for e-supermarkets due to our
proposed business model. As shown in illustrative scenarios,
involvement of premium goods offers possibilities for improving
profits conditional to an increase in the number of customers
served, the value of the basket size and/or margin.

Future research may be extended on the concept of collabora-
tion between the e-grocery and the vendors in this study to the
collaboration among multiple chains of e-groceries and vendors.
Thus, orders of customers from different e-supermarkets may be
picked up and delivered in a unified operation. This problem will
yield a multi-depot pickup and delivery type model illustrated in
this study. Further research may also consider extending the model
to include a reverse logistics dimension of the operation, namely
collecting returned or unwanted goods on the way back to the
store or depot.

In another lane of research, the problem may be expanded by
including the dynamic nature of the business. In this case, orders
that arrive after routing is completed may be added into the rout-
ing decision dynamically.
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