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ABSTRACT

SAR imaging of scenes containing moving targets results in

defocusing in the reconstructed images if the SAR observa-

tion model used in imaging does not take the motion into ac-

count. SAR data from a scene with motion can be viewed

as data from a stationary scene, but with phase errors due to

motion. Based on this perspective, we formulate the mov-

ing target SAR imaging problem as one of joint imaging and

phase error compensation. Based on the assumption that only

a small percentage of the entire scene contains moving tar-

gets, phase errors exhibit a group sparse nature, when the en-

tire data for all the points in the scene are handled together.

Considering this structure of motion-related phase errors and

that many scenes of interest admit sparse representation in

SAR imaging, we solve this joint problem by minimizing a

cost function which involves two nonquadratic regularization

terms one of which is used to enforce the sparsity of the re-

flectivity field to be imaged and the other is used to exploit

the group sparse nature of the phase errors.

Index Terms— SAR, moving target, group sparsity, reg-

ularization

1. INTRODUCTION

Synthetic aperture radar (SAR) moving target imaging is a

challenging problem, which has attracted great interest in re-

cent years. Moving targets in the scene cause phase errors in

the data and subsequently defocusing in the reconstructed im-

age. The defocusing caused by moving targets exhibits space-

variant characteristics, i.e., the defocusing arises only in the

parts of the image containing the moving targets, whereas the

stationary background is not defocused.

For a monostatic spotlight mode SAR which is the case of

interest in this paper, a common approach is first to find the

smeared imagery of moving targets and then to focus these

parts of the image [1–4]. These kinds of approaches are based

on post-processing of the conventionally reconstructed im-

age. However, it is known that conventional imaging through,

e.g., the polar-format algorithm [5], does not perform well in

sparse aperture scenarios or when the data are incomplete.
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We handle the problem in the context of inverse problems.

The original inspiration for the work presented here comes

from [6], which presents a method for jointly imaging station-

ary scenes and correcting phase errors due to, e.g., uncertain-

ties in the sensing platform location. SAR data from a scene

with motion can be viewed as data from a stationary scene,

but with phase errors due to motion. Accordingly, in our ap-

proach, phase errors are regarded as model errors and image

formation and phase error compensation are simultaneously

performed through iterative minimization of a cost function

of both the field and the phase errors. Considering that in

SAR imaging, the underlying field usually exhibits a sparse

structure, we previosly proposed a sparsity-driven technique

for joint SAR imaging and space-variant focusing by using

a nonquadratic regularization-based framework [7, 8]. In this

technique we have exploited the sparsity of both the reflec-

tivity field and the phase errors, based on the assumption that

motion in the scene will be limited to a small number of spa-

tial locations. Actually, phase errors not only have a sparse

structure, but they exhibit a group sparse [9] structure as well

when the entire data from all the points in the scene are con-

sidered and handled together. Here, we modify our previous

method using this additional group sparsity information.

Each iteration consists of two steps, the first of which

is for image formation and the second is for phase error

estimation. Besides effective phase compensation, the pro-

posed technique provides many advantages over conventional

imaging as well due to the regularization-based framework.

Regularization based imaging techniques can produce im-

ages with increased resolution, reduced sidelobes, and re-

duced speckle by incorporation of prior information about

the features of interest and imposing various constraints (e.g.,

sparsity, smoothness) about the scene.

2. SAR IMAGING MODEL

The SAR discrete imaging model including all returned sig-
nals is as follows:
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Here, rm is the vector of observed samples, Cm is a dis-

cretized approximation to the continuous observation kernel

at the m-th aperture position, f is a vector representing the un-

known sampled reflectivity image and M is the total number

of aperture positions. The vector r is the SAR phase history

data of all points in the scene. It is also possible to view r as

the sum of the SAR data corresponding to each point in the

scene.

r = Ccl−1f(1)
︸ ︷︷ ︸

p1

+Ccl−2f(2)
︸ ︷︷ ︸

p2

+...+Ccl−If(I)
︸ ︷︷ ︸

pI

(2)

Here, Ccl−i is the i-th column of the model matrix C and,

f(i) and pi represent the complex reflectivity at the i-th point

of the scene and the corresponding SAR data, respectively. I

is the total number of points in the scene. The cross-range

component of the target velocity causes the image of the tar-

get to be defocused in the cross-range direction, whereas the

range component causes shifting in the cross-range direction

and defocusing in both cross-range and range directions [1,2].

The image of a target that experiences significant vibration is

defocused in the cross-range direction as well [10]. The defo-

cusing arises due to the phase errors in the SAR data of these

targets.

Now, let us view the i-th point in the scene as a point target

having a motion which results in defocusing along the cross-

range direction. The SAR data of this target can be expressed

as [1, 2]:
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Here, φi represents the phase error caused by the motion of

the target and, pi and pie are the phase history data for the

stationary and moving point target, respectively. In a simi-

lar way, this relation can be expressed in terms of the model

matrix C as follows:
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Here, Ccl−i(φ) is the i-th column of the model matrix C(φ)
that takes the movement of the targets into account and

Ccl−im(φ) is the part of Ccl−i(φ) for the m-th cross-range

position. In the presence of additional observation noise, the

observation model for the overall system becomes

g = C(φ)f + v (5)

where, v is the observation noise. In this way, we have turned

the moving target imaging problem into the problem of imag-

ing a stationary scene with phase corrupted data. Here, the

aim is to estimate f and φ from the noisy observation g.

3. GROUP SPARSITY APPROACH

Particularly considering motions which result in cross-range

defocusing, we formulate the problem in a nonquadratic

regularization-based framework which allows the incorpo-

ration of the prior sparsity information about the field and

about the phase errors into the problem. To incorporate the

prior information that motion, hence phase errors, are usually

present at a small number of spatial location in the scene,

and this error is in general observed through data collected

at multiple aperture positions, we use a group sparsity con-

straint in the cost function. The phase errors are incorporated

into the problem using the vector β, which includes phase

errors corresponding to all points in the scene, for all aperture

positions.
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Here, βm is the vector of phase errors for the m-th aperture

position and has the following form:

βm =
[

ejφ1(m), ejφ2(m), ...., ejφI(m)
]T

(7)

Now, let us convert the vector β to a matrix so that the

columns of this matrix are the βm vectors as follows:
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Here, Q is the matrix of phase errors and each row of the

matrix Q consists of the phase error values along all aperture

positions, for a particular point in the scene. We expect each

column of Q to exhibit sparse nature across the rows, indi-

cating the expectation that there are small number of moving

pixels in the scene. However no such sparsity is expected

in general across the columns. This structure motivates im-

posing sparsity in a groupwise fashion, where groups in our

setting corresponds to rows of Q.
The method is performed by minimizing the following

cost function with respect to the field and phase errors.

argmin
f ,β

J(f ,β) = argmin
f ,β

‖g −C(φ)f‖22 + λ1 ‖f‖1

+ λ2

I
∑

i=1

(

M
∑

m=1

|Q(i,m)− 1|2
)1/2

(9)

Since the number of moving points is much less than the to-

tal number of points in the scene, most of the φ values in the

vector β and subsequently in the matrix Q are zero. Since the



elements of Q are in the form of ejφ’s, the elements of the

rows corresponding to the stationary scene points become 1,

whereas the elements of the rows corresponding to the mov-

ing points take various values depending on the amount of the

phase error. Therefore, this group sparsity nature on the phase

errors is incorporated into the problem by using the regular-

ization term
∑I

i=1

(
∑M

m=1 |Q(i,m)− 1|
2
)1/2

.

The proposed algorithm intends to find a local minimum

of (9). The algorithm is iterative and at each iteration, in the

first step, the cost function J(f ,β) is minimized with respect

to the field f :

f̂ (n+1) = argmin
f

J(f , β̂
(n)

)

= argmin
f

∥
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∥
∥
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2

2
+ λ1 ‖f‖1 (10)

To avoid problems due to nondifferentiability of the l1−norm

at the origin, a smooth approximation is used [11]:

‖f‖1 ≈
I
∑

i=1

(|f(i)|2 + σ)1/2 (11)

where σ is a nonnegative small constant. In each iteration, the
field estimate is obtained as

f̂ (n+1) =
(

C(φ̂(n))HC(φ̂(n)) + λ1W(f̂ (n))
)
−1

C(φ̂(n))Hg (12)

where W(f̂ (n)) is a diagonal matrix:
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In the second step of each iteration, we use the field estimate f̂
from the first step and estimate the phase errors by minimizing
the following cost function:
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Here, H and D are matrices having the following forms
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where Cm denotes the submatrix for the part of the model

matrix corresponding to the m-th aperture position.
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Here, T is a diagonal matrix, with the entries f̂(i) on its main

diagonal, as follows:

T(n+1) = diag
{

f̂ (n+1)(i)
}

(17)

The convex optimization problem in (14) can be efficiently

solved via second order cone programming [12]. For the sake

of simplicity of the optimization process, in (9) we have not

used an additional constraint to force the magnitudes of the

vector β to be 1. Consequently, since in this step we want

to use only the phase information and to suppress the effect

of the magnitudes, the estimate β̂ is first normalized and then

for every aperture position the following matrix is created,

Bm
(n+1) = diag

{

β̂(n+1)
m (i)

}

(18)

which is used to update the corresponding part of the model

matrix.

Cm(φn+1) = CmBm
(n+1) (19)

After these phase estimation and model matrix update proce-

dures have been completed, the algorithm passes to the next

iteration.

4. PRELIMINARY EXPERIMENTAL RESULTS ON

SYNTHETIC SCENES

We present preliminary experimental results on three different

synthetic scenes. In these experiments the regularization pa-

rameters λ1 and λ2 are chosen empirically. To demonstrate

the performance of the presented approach, for all experi-

ments, the images reconstructed by conventional imaging and

sparsity-driven imaging [11] are presented as well.

The results for the Experiment 1, Experiment 2, and Ex-

periment 3 are presented in Figure 1, Figure 2, and Figure

3, respectively. The scene used in the Experiment 1 involves

four point targets. The leftmost and the rightmost targets are

stationary, whereas the two targets lying in the middle are

simulated to have different constant velocities in the cross-

range direction. To simulate such motion, the phase history

data of the right target are corrupted with a quadratic phase er-

ror of a center to edge amplitude of 2.5π radians and the phase

history data of the left target are corrupted with a quadratic

phase error of a center to edge amplitude of π radians. Sim-

ilarly, in the second experiment the phase history data of the

two large square-shaped targets lying in the middle of the

scene are corrupted with a quadratic phase error of a center

to edge amplitude of π and 2π radians (from left to right).

In the third experiment, a multiple-point target with a differ-

ent shape is simulated to be moving. The phase error used to

corrupt the data is a quadratic phase error of a center to edge

amplitude of π radians.

For all of these three scenarios, in the results of conven-

tional imaging and sparsity-driven imaging without any phase
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Fig. 1. a) Original scene. b) Image reconstructed by conventional imaging. c) Image reconstructed by sparsity-driven imaging.

d) Image reconstructed by the proposed method.
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Fig. 2. a) Original scene. b) Image reconstructed by conventional imaging. c) Image reconstructed by sparsity-driven imaging.

d) Image reconstructed by the proposed method.
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Fig. 3. a) Original scene. b) Image reconstructed by conventional imaging. c) Image reconstructed by sparsity-driven imaging.

d) Image reconstructed by the proposed method.



error correction, the defocusing and artifacts in the recon-

structed images caused by the moving targets are clearly seen.

On the other hand, our approach produces images with fo-

cused targets together with an estimate of the phase errors

which is related to the underlying motion of the targets.

5. CONCLUSION

In this work, the SAR moving target imaging problem is

posed as an optimization problem. Motion in the scene is

modeled through the phase errors it generates on the radar

returns that would be collected from a corresponding station-

ary scene. The presented method is based on minimization

of a cost function in which the sparsity of the field and the

group sparse nature of the phase errors are imposed using

nonquadratic regularization terms. The preliminary results

demonstrate that the method can remove the defocusing ef-

fect of the phase errors errors caused by motion in the scene,

and it also benefits from the advantages offered by sparsity-

driven imaging.
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