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Abstract—In this work, two methods based on statistical mod- applications in which the subject will need to control the
els that address temporal changes in the Electroencephalograjth interface continuously without cues or temporal constsain
(EEG) signal are proposed for asynchronous brain computer ¢, eyecution of the mental task. A BCI system operating in
interfaces (BCI) based on imaginary motor tasks. Unlike current . . L .
approaches to asynchronous BCI systems that use windowedth's manner is called asynchronous. Mpst existing pieces of
versions of EEG data combined with static classifiers, the WOrk on asynchronous systems use windowed EEG signals
methods proposed here are based on discriminative models that (or features of the EEG signals) and static classifiers,(e.g.
allow sequentfial Iabelinﬁ of data. In partiCléIar, tcTe two medthodsI LDA, Gaussian classifiers, neural networks) [4], [5], [61].
we propose for asynchronous BCI are based on Conditiona ;

Random Fields (CRF) and Latent Dynamic CRFs (LDCRF), (8], [9].’ [10], [11] _In tho;e {:\pproaches, the dlfferen_ce of
respectively. We describe how the asynchronous BCI problem power in the EEG S|gnals |n_ d|ffer_ent frequency bands_|s used
can be posed as a classification pr0b|em based on CRFs Orto determ|ne the SubjeCt'S Intention. Other research ml
LDCRFs, by defining appropriate random variables and their the detection of transitions between tasks by identificatio
relationships. CRF allows modeling the extrinsic dynamics of of abrupt changes in the estimated power densities of the
data, enabling modeling the transitions between classes, which in EEG signals [12], [10]. This so-called mental task transiti

this context correspond to distinct tasks in an asynchronous BCI detect ff . d f in th lassificati
system. On the other hand, LDCRF surpasses this approach by etector otiers Iincreased performance in the classiixcato

incorporating latent variables that permit modeling the intrinsic ~ accuracy of EEG signals [12], [10]. However, the temporal
structure for each class and at the same time allows modeling structure of the EEG signal which has been shown to increase

extrinsic dynamics. We apply our proposed methods on the the performance of the synchronous BCI systems [13], [14],

publicly available BCI competition Ill dataset V. Results are :
compared to the top algorithm in the BCI competition as well [15], [16], [17], [18] has not been not exploited.

as to methods based on Hierarchical Hidden Markov Models ) ) )
(HHMM), Hierarchical Hidden CRF (HHCRF), neural networks ~ IN @an asynchronous scenario, the subjects execute differen

based on particle swarm optimization (IPSONN), and to a mental tasks without cues, so when the subjects start the
recently proposed approach based on neural networks and fuyz execution of a specific task is unknown. In this case, the
theory, the S-dFasArt. Our experimental analysis demonstrate ) plem s labeling sequential data. Statistical modekshsu
the improvements provided by our proposed methods in terms . o
of classification accuracy. as hidden Markov models (HMM) and co_nd|t|0nal _random
fields (CRF) have been used with success in other fields such
as gesture recognition and natural language processifig [19
[20], [21], [22]. Given that CRFs can in principle be used
to model the dynamics of sequential data, they are attectiv
for asynchronous BCI applications. However, although CRFs
. INTRODUCTION can model the extrinsic dynamics of the data (or features),
RAIN computer interfaces (BCl) are systems thawhich in asynchronous BCI corresponds to dynamics across
provide an alternative non-muscular communication pattifferent tasks, CRFs lack the ability to model intrinsic
for people who suffer severe muscular disabilities resglti dynamics, i.e., the temporal evolution in the course of
from disease or accident [1]. Moreover, BCIs have founeikecution of a particular task. Physiological theory iadhis
application for healthy subjects in multimedia and gaming ithat different states in the human brain emerge during the
recent years [2]. BCls use brain signals generated by variaxecution of mental tasks and those states are observed in
physiological mechanisms such as slow cortical potentiathe EEG signal through the well known phenomena of event
sensorimotor rhythms, P300 potentials and steady-sta¢dated synchronization and de-synchronization (ERS/ERD
visually evoked potentials [3], to provide control over th§23]. Several studies have attempted to capture that steict
environment through a computer. In the case of non-invasitlerough various random process models. Of particular éster
BCI systems based on electroencephalographic (EEG)a method capable of modeling the intrinsic structure,
signals, two types of BCI systems are used: synchronous grdposed by Sugiura et al. [24]. This method is based on
asynchronous. In a synchronous BCI approach, the subjb@rarchical hidden CRFs (HHCRFs), which generalize the
receives cues that indicate when the mental task showhididen conditional random field (HCRF) model of [22].
be executed. Although this approach can be appropri®egiura et al. apply HHCRF to EEG signal segmentation
for laboratory research, it is not useful for most real lifin an asynchronous BCI application and demonstrate the

Index Terms—Brain computer interface, sequential labeling,
brain states, sensorimotor rhythms, imaginary motor tasks,
discriminative models, conditional random fields.
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performance improvements it provides over the generative

counterpart, the hierarchical HMM [25], [26]. Sugiura etsal 1 m

work shares certain aspects of our research. In particular,Py(y|x) = 7 exp{z Zfl’l(yj,l,yﬁx,j)&l’l
similar to our work, Sugiura et al’s work also involves a leLy j=1

discriminative model for asynchronous BCI. However, their m

model focuses on building the hierarchy of various state + Z Zf2,l(yj7xvj)92,l} 1)
variables and leads to a rather complicated structure niagui leLs j=1

an extra level involving indicator variables. We proposatthwhere f;; and f,; are feature functions related to the edges
nature of the asynchronous BCI problem can be effectiveind nodes of the graph, respectively; both functions arengiv
captured by a simpler discriminative model, as presented and fixed.L; and L, are the set of indices for the feature func-
our work. We experimentally demonstrate the advantagtisns related to the edges and nodes respectively (seeeFigur
offered by our model over that proposed by Sugiura et dl). The feature functions are real-valued and express iunffic

in Section V. Another algorithm used for classification o$tatistics describing their arguments and relationships.
temporal patterns is presented in a recent work by Cano et alThe conditional probability expressed in (1) can be simpli-
[27]. This algorithm is based on neural networks and fuz#ied by writing:

theory, the S-dFasArt. Cano et al. show that the S-dFasArt m

algorithm provides an improvement in the classificatiore rat Py(y|x) = eXp{ZZfz(yjfhyj,X,J)@} (2)

of spontaneous metal activity by using the dataset V of the Z(x) el j=1

BCI competition 111,

where L is a set of indices for the feature functions, each
(yj—1,Y4,X, ) is either a state (node) function of a transition

A method that provides the combined advantages @dge) function andZ(x) is a normalization factor .

CRF with the use of hidden states has been proposed ¥n an asynchronous BCI scenario with reference to Figure
Morency et al. for gesture recognition [28]. The so calle

. . 7 r1(a) , the observation sequenceorresponds to EEG features
latent dynamic CRF (LDCRF) allows modeling extr|n3|c( ) q P

q . £ th tial dat " the intri and each elemeny; of the label sequence corresponds to the
ynamics ol the sequential cata as well as the in rInsﬁ%agined mental/motor task (relax, right finger movemestt, |
‘?ﬁiger movement, mathematical mental operation, etc.)ra ti

This approach permits modeling different states during t %intj. Then the feature functions provide sufficient statistics

execution of a specific mental task and at the same ti € classification of motor tasks
modeling transitions between different mental tasks. Bive o, o0 octimation in CR.Fs for a linear chain (con-

these fea_tu_res, LDCRF can be_ appli_ed directly to Sequen%%ered here for BCI signals) can be performed through a
data avoiding the need for windowing the signal. In th'?naximum likelihood approach [29], as we describe next.

work two methods for asynchronous BCI, one based . . . L . L
' d dent identically distributed (i.i.d.) t dat
CRF and another on LDCRF, are presented. For CRF t y/en independent iaentically distribute (I(il) ) tiaig data

7 1 3 7 H
nodes in the model represent the mental task executed by {x! )’y(_)}i]\il’ where x;) = {xg(i))’ x%i)""x%} !S a
the user. For LDCRF, hidden variables are incorporated apgduence of inputs and eash) = {y; .45, ..ym } is @
represent different states that occur during the executfcn S€duence of mental/motor task labels, the conditional log -
specific task. Nodes in a second layer of the graph represlélfﬁ“hoc’d of the training data can be expressed as follows:
different mental tasks. We use surface Laplacian filters to N
obtain the signals over centro-parietal electrode postiand 1(6) = Zlog P(y@x®)
power spectral densities of the signals in specific frequenc P

bands are used as features. Feature selection is performed L 2 .
by sequential floating forward selection (SFFS), produciﬁ’&here the regularization temﬁ? is the log of a Gaussian

. . - . 2
an optimal set of features used as input to the CRF-baddpr With varianceo?, that is P(0) = exp(5;z [10]°). By
and LDCRF-based classifiers. The Dataset V of the BEHDStituting (2) into (3) and including a regularizatiomteas
competition Il has been used. We compare the performarfzdneasure to avoid over fitting [29] the following expression
of our proposed methods with the BCI competition winndp obtained:

algorithm as well as methods recently proposed by Sugiura et

02
202

®3)

al. [20], Cano et al. [3], and Lin et al. [11]. The superiority . m O 6 )
of our proposed methods is evidenced by the higher levels of ~ 1(0) = > > Y fily;”1, 4", xD, )6,
classification accuracy they provide. i=1j=11eL
N
. 62
_ )y _ e
ZlogZ(x ) 2202. 4
i=1 leL

II. CONDITIONAL RANDOM FIELDS
The parameterg; which maximize the regularized condi-
CRFs are discriminative graphical models. Lafferty et alional log-likelihood above can be found by iterative opti-
[29] define the probability of a particular label sequenceization methods. In our work, we use a quasi-Newton algo-
y = {v1,92,.-.,Yym} Qiven an observation sequense = rithm using Hessian updates based on the Broyden—Fletcher—
{z1,22, ...,z } With z; € R? to be of the form: Goldfarb—Shanno (BFGS) formula.
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all H, sets, wheréH, refers to the class-specific set of hidden
states for clasg. Under this assumption, the conditional
probability in (5) can be written as:

)

)

P(ylx,0)= > P(hlx,0). (6)
h:Vh; €H,
The equality on Equation 6 follows from the assumption of
disjoint sets of hidden states, which produ¢¥s|h, x,6) = 0
for h; ¢ H, and P(y|h,x,0) = 1 for h; € H,. Using the
usual conditional random field formulation:

—~
)
=

=
o

P(hlx,0) = ()1 5

2

ofofo
O
@0 e

exp{ ) Fi(h,x)0,}. @)
l

with F; defined as:

m

Fi(h,x) =Y filhj-1,hy,%,j) 8
j=1

©
O%¢

(b) Each feature functiory;(h;_1,h;,x,j) as in the case of
Fig. 1. (a) CRF model (b) LDCRF model. Shaded nodes repressenadd CRF is either a transition function or a state function.
variables in the training set. Although only one link betweg and hidden The parameters of the LDCRF model can be learnt as is
nodesh is shown in the graph for simplicity, long range dependeneies . . .
also possible in these models. done for those in CRF by finding the optimal paramet#rs
that maximize the objective function in Equation 3.
The feature functions in the LDCRF model correspond to
[1l. L ATENT DYNAMICS CONDITIONAL RANDOM FIELDS  transition and state feature functions. Note that tramsstican

CRFs allow modeling transitions between classes, cagturii€ @mong hidden states within the same class (hence ijrinsi
r among hidden states of different classes (hence extyinsi

the extrinsic dynamics of the EEG features, but cannot re% _ : . _ ; _
resent internal states for each class, an ability whichemse ~ccordingly, weights associated with the hidden statedien t
same subset, model the intrinsic dynamics while weights

the differentiability between classes. A model that incogtes ) v . ,
the ability to capture both extrinsic and intrinsic dynasis associated with hidden variables from different sets mtuel

the Latent Dynamics CRF (LDCRF) proposed by Morenc?XtrinSi_C dynamics. The number of transiFion. functionshie t

et al. [28]. By combining the strengths of CRF and anawdel is given by the square of the.cardlnallty of the’Hgt
Hidden conditional random fields (HCRF) [20]; LDCRF offers | The number of state feature functhns eq'uals to the dimen-
several advantages. As in CRF, LDCRF models the transitiopl§" ©f X times the number of possible hidden stafes.
between classes; and as in HCRF, includes hidden staredure 1(b) shows a diagram for the LDCRF model where the
allowing to model within class dynamics. These charadiesis 'MPUt Sequencex corresponds to EEG features and the labels

allow the LDCRF model to be directly applied for labeling/s rePresent the mental task executed. Given thandy are
unsegmented sequences. observed in the training set, they are represented by shaded
In the application of LDCRF models to BCI, the task is t4'°des in the graph of Figure 1(b).
learn a mapping between a sequence of EEG featxres
{x1,%,..2,} obtained during the subject’s imagination of IV. DATA PROCESSINGMETHODOLOGY AND
motor activity and a sequence of labgls= {y1, y2, ...ym } for EXPERIMENTS
the imaginary task executed; where egglis a class label for A, Problem and Dataset Description
sth i
the ;* element of the sequenceand is a member of the Set  rpig work uses the Dataset V of the BCI competition IIl.

Y of possible class labels. LDCRFs also contain a vector gfs gataset contains data from three normal subjects during
substructures = {hy, hy, ...h,, } which form a set of hidden ¢\ non_feedback sessions. The subject is requested toiExe
variables in the model, because they are not observed in i@ ot of three mental tasks: 1) Imagination of repetitive
training examples, and represent different mental statéSe o4 hang movements, 2) Imagination of repetitive right dhan
brain during the execution of each of the imaginary tasks. ,vements, and 3) Generation of words beginning with the
Morency et al. define the latent conditional model: same random letter. The subject executes a mental taskgdurin
fifteen seconds and then switches randomly to another task at
Plylx,0) = ZP(Y\hv x,0)P(h|x,0). ®)  the operator’s request. For each subject, four sessionsuof f
h minutes length are available. The first three sessions @@ us
where # are the parameters of the model. In order to kedpr training; the fourth session, for testing. The data ptev
training and inference tractable, Morency et al. restriw t pre-computed features, obtained as follows. EEG signas ar
model to have disjoint sets of hidden states associated wéhatially filtered using a surface Laplacian filter and thevguo
each class. Then, the set of all possible statés the union of spectral density of these signals is calculated every 65 m
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using the last second of data. The power spectral density v
calculated between 8Hz - 30Hz with a resolution of 2Hz owvt 2
centro-parietal electrodes C3, Cz, C4, CP1, CP2, P3, Pz, ¢ "™ a
P4. As a result, the pre-computed feature vector for ea

temporal window is a 96-dimensional vector (8 channels
12 frequency components).

gmmwau.wm>‘i¢,

-
B. Feature Extraction and Selection b
J

1) Feature Extraction.:Using the vector of pre-computed
features, the average power across frequency in Alpha (8H< -
12Hz), Sigma (12Hz - 16Hz), and Beta (18Hz - 26Hz) bands @
were computed for each of the eight electrodes. Figure 2shc ~
the topographic power distribution in the selected bands, 1
each subject. The topographic distribution shows, for ea
class and frequency band, the logarithm of the average pov
during the execution of each mental task (class), usingad#l d
available for each class in the training set. Differencethin

7 F
9 @
. : © ra ! AN A
amplitude of the signal provide information about the typ o= %/ %/
~ y |
<

ssssssssssss

of CRF-features and LDCRF-features that could be used,
will be discussed later. The frequency bands alpha, sign
and beta, were selected because these rhythms are rel A

to the well-known phenomena of ERS/ERD observed durir =~ %/
the execution of mental tasks. This frequency band choi

provides a new feature vector with 24 features, based on

which we perform automatic feature selection for maxingzin

classification performance. L e am

2) Feature Selection.Feature selection is performed using

the sequential floating forward selection algorithm (SFse®
[30], [31], [32]). Given a set of feature® = {f1, f2,...fp},
we are interested in finding a new s&. = {fy, fo,.--f1}
such thatk < D. Ideally the new set of featureB increases
the performance of the system or produces the same per
mance with a reduced number of features, and hence redu
the computational cost. The selection of the feature subset
from set F is performed according to an objective functior
J(F;), where if J(F;) > J(F;) the subsetF; performs
better than subseF; does. SFFS adds sequentially a ne\
feature from the original set to the output set accordinchéo t ©
objective function. On, each iteration the eﬁeCF of IFemg\/mFi . 2. Topographic distribution of power in different fiegncy bands (a)
each one of the previously selected features is evaluatedsl?bject 1. (b) Subject 2. (c) Subject 3.
one feature is found to reduce accuracy, that feature iswvedo
to avoid the monotonic growth of the feature vector size, as
encountered in sequential forward selection (SFS). In SFHABIllows:
we use the classification accuracy as the cost function based 1 m
on three-fold cross-validation in the training data. Py (y|x) = 70 exp{ Z Fia(yj—1,95) - 011

Jj=1

[ S ]

£ forley) - boalyl} ()

C. Model Selection and Classification =

1) CRF model.:For the case of linear-chain CRF, giverThe dot producif 1(y;—1,y;)-61,1 measures the compatibility
a new input sequence, the most likely labelingy* = of a transition from a particular motor taskjat 1 to the same
arg max, p(y|x) can be efficiently and exactly calculatecor another motor task at Each element of thedge weight
by variants of dynamic programming algorithms for HMMyector ¢, ; contains a weight for a particular pair of labels.
as described in [29]. The particular form we use for th€he feature functiorf; 1 (y;_1,y;) is an indicator vector, with
conditional probability of the labels given the data is aa value ofl for the entry corresponding to the particular set of
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TABLE |
CROSS VALIDATION RESULTS IN TRAINING DATA FOR THE PROPOSEICRF
AND LDCRF BASED METHODS

Subject CRF(%) LDCRF (%). Hidden states (LDCRF).

BO1 89.34 91.55 2
B02 78.08 83.89 2
BO3 59.73 59.30 3

intrinsic dynamics by means of the weights associated with
e e e e pairs of hidden states in the same sulEgt and extrinsic
dynamics by means of the weights associated with hidden
Fig. 3. EEG dynamics example for different classes. Diffeesnbetween states in different subsets. The second term, which insolve
classes and also intra-class differences are observedsighal corresponds the dot prOdUth2(xj) ’ e[hj] with f5 (xj) = x; measures the
to alpha band in electrode CP3. compatibility of the current EEG feature;with the hidden
stateh,;.

For testing, given a new test sequenge we want to
values(y;-1,y;), and0 for all the other entries. The secondestimate the most probable sequercethat maximizes the
term, which involvesfs 1(x;) - 02,[y] with fo1(x;) = x;, conditional model [28]:
measures the compatibility between the current EEG feature . .

x; and the label;. y" =argmax } P(hfx,0%) (11)

The class-dependent structure of the features as shown by hivhi €Hy
the topographic distributions in Figure 2 suggest that théden  To estimate the labe} of the elementr; of the sequence
compatibility function chosen in this manner has the paténtx, the marginal probabilities?(h; = a|x,6*) are evaluated
for use in classification. for all possible hidden statese 7{. Then the probabilities of

2) LDCRF model.:In the case of LDCRF, parameter sehidden states corresponding to each distinct label are sgmm
lection is performed according to the description in Ecprati up, and the label corresponding to the maximum probability
(4). The topographic power distributions shown in Figure Bidden state set is chosen. That is, assuming that the states
highlight the differences in power distribution when difat are not shared across classes, the set of states with the
motor tasks are executed. However, one can also observe teigher global probability defines the label to be declardte T
poral variations of power during the execution of a paricul marginal probabilities mentioned above can be calculated b
task. Figure 3 aims to display both phenomena. For the casslief propagation [28], [33].
of motor tasks, phenomena such as ERD and ERS explain th©ur experiments, use three different models with 2,3, and
within class temporal variations. As observed in Figureh®, t 4 states per class. For each model SFFS is employed to select
magnitude of the signal is class-dependent but variatibtieeo the optimal set of features and the accuracies in the tlulde-f
power during execution of the same task are also evident. Tdév@ss - validation process in the training data are compared
LDCRF model has the potential to fit and explain such da®he model which provides the best accuracy is selected for
well, because LDCRFs are able to model extrinsic and iritrinause in labeling the test data.
dynamics of the signal. Based on this, the feature functions
are selected to obtain information about those dynamice. Th V. RESULTS

conditional distribution of the labels given the data can be Table | shows the classification accuracies obtained by

written as: cross-validation in the training set using CRF and LDCRF,
as well as the number of states in the LDCRF model, that
1 i provides the best results. Table Il shows the selectedrett
P(ylx,0) = hV}ZH Z(h,x) exp{ 2} filhj—1,hy) - 62 and frequency bands using SFFS for each subject for CRF and
Vhi€H, j=

LDCRF. The input feature vector is formed by concatenation
i of the power of the signals in each of the selected frequenc
+Zf2(xj)'9[hj]}’ bands F:‘or each elect?ode in Table 1. Experimental ?esultsy
=t (10) on test data are shown in Table Ill. The proposed CRF
and LDCRF-based methods are compared to the top result
were the dot producf;(h;_1, h;) - 1 measures the compat-in the BCI competition, to the HHMM and HHCRF-based
ibility of the state transitions, where states could cqyoesl methods presented in [24], to a method proposed by Lin et
to the same or different classes. Each element ofeiige al. that employs neural networks based on particle swarm
weight vector 8, contains a weight for a particular pairs ofoptimization [11], and to the recently proposed S-dFasArt
hidden states. The feature functigf(h;_1, h;) is an indicator method of Cano et al. [27]. Results evidence the superiority
vector, with a value ofl for the entry corresponding to theof the proposed methods. LDCRF performs better than CRF
particular set of valuegh;_1,h;), and 0 for all the other does, which can be explained by the use of hidden variables
entries. It is worth noting that this feature function madide that allow modeling, besides extrinsic dynamics, the msid
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TABLE I
FREQUENCY BANDS FOR EACH ELECTRODE SELECTED B8FFSFOR THE S e T
LDCRF AND THE CRFBASED METHODS
1 1 1 [ 1 [ 1
LDCRF CRF Y e o Tatsel
Chn Frequency Band Frequency Band
Subj Alpha Sigma Beta Alpha Sigma Beta
G v - v - v v 1 1 nl—Lr 1 M i
BO1 CP1 v - - v v - n‘,-:;igm oo n‘m:;gg, oo n‘,-::@ o
P3 - v - - [
C3 v - - v m
Cz . } - v 1 1 Il L U 1
BO2 C4 v v v v v
CP1 - v - -
P4 - v - v Fig. 4. Classification output for the proposed methods, CRFLAMICRF on
the test data. Labels 2,3 and 7 correspond to right hand iraggileft hand
BO3 C3 - v - v v h - L .
imaginary and word association respectively.
cP2 - - v - -
Pz - - - - - v
VI. CONCLUSION
TABLE Il

COMPARISON BETWEEN DIFFERENT METHODS
In this work two statistical methods are proposed for use

Subject BO1 B02 BO3  Average in modeling the dynamics of the EEG signal during the
Galan [10] 79.60 70.31 56.02 68.64 execution of mental tasks in an asynchronous BCI scenario.
HHMM [24] 79.05 61.58 3440 58.34 The preprocessing of the signals involve the use of global
HHCRF [24] 9458 70.17 3211  65.62 Laplacian filters and estimation of the spectral density of
IPSONN [11]  78.31 70.27 56.46  68.35 the segmented EEG signals using the last second of data.
S-dFasArt [27] 87.21 8226 5872  76.07 SFFS was used for selection of relevant features. A CRF-
CRF 9295 89.63 61.81 8146 based model and a LDCRF-based model were employed. The
LDCRF 95.63 89.75 7236 8591 former method is able to model extrinsic dynamics of the EEG

features. Those dynamics are related to the transitioma fro
one mental task to the other in an asynchronous BCI system.
dynamics of the signal during the execution of a particulds? CRF surpasses that approach and models, in addition to the
task extrinsic dynamics, the internal structure of the signsie
g't;ert that this structure is related to different mentafest
: o uring the execution of a specific mental task (ERD / ERS
the winner of the BCI competition, and hence have demo or imaginary motor tasks). The superiority of the presénte

strated our approach qﬁers better c|a55|f|cat!qn perfnm_aa CRF-based and LDCRF-based methods is evidenced in the
than all methods considered by the competition organizers. . . .
ults presented using a publicly available dataset, and b

) [
There were a number of other methods submitted to the B(',elS ; . o .
o : o .comparison with recent work. Furthermore it is worth of ngti

competition and not considered by the competition organigz- .
at the proposed methods do not need to use post-processing

ers as they did not follow the requirements for eValu"’morr}']ethods as they automatically learn the dynamics of data.

These excluded methods, however, may provide mteres“ﬂﬁother advantage of the proposed methods is that there is no

information. In particular from the excluded method witte th need for windowing the EEG features, thanks to the fact that
highest performance, proposed by John Q. Gan et al., im:luq '

post processing stages following a linear classifier. Thet poIgle proposed methods inherently model the temporal sweictu

rocessing stage smoothes the output of the classifier tRf Ehe signals and carry temporal information through tagest
P 9 9 P + D&liables. Future work will involve the analysis of the haed

is, previous values of the output were used to define th

current output under the assumption that rapid changes ?}{%te sequences in different brain regions in order to track

not observed during the execution of the mental tasks. Tr%zlisg 2ct|vat|on of those regions during the execution of mient

method obtains an average accuracy of 80.97%. The proposec!( '

CRF and LDCRF methods yield better performance in terms

of the accuracy. Furthermore, they do not need any post-

processing of the output (See Figure 4). The proposed models ACKNOWLEDGMENT
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