A Linear Programming-Based Method for Job Shop Scheduling

Kerem Biilbiil

Sabanci University, Manufacturing Systems and Industrial Engineering, Orhanli-Tuzla, 34956 Istanbul, Turkey
bulbul@sabanciuniv.edu

Philip Kaminsky
Industrial Engineering and Operations Research, University of California, Berkeley, CA
kaminsky@ieor.berkeley.edu

AssTrAaCT: We present a decomposition heuristic for a large class of job shop scheduling problems. This heuristic
utilizes information from the linear programming formulation of the associated optimal timing problem to solve
subproblems, can be used for any objective function whose associated optimal timing problem can be expressed
as a linear program (LP), and is particularly effective for objectives that include a component that is a function of
individual operation completion times. Using the proposed heuristic framework, we address job shop schedul-
ing problems with a variety of objectives where intermediate holding costs need to be explicitly considered. In
computational testing, we demonstrate the performance of our proposed solution approach.

Keywords: job shop; shifting bottleneck; intermediate inventory holding costs; non-regular objective; optimal timing
problem; linear programming; sensitivity analysis; single machine; earliness/tardiness.

1. Introduction The job shop scheduling problem, in which each job in a set of orders requires
processing on a unique subset of available resources, is a fundamental operations research problem,
encompassing many additional classes of problems (single machine scheduling, flow shop scheduling,
etc). While from an application perspective this model is traditionally used to sequence jobs in a
factory, it is in fact much more general than this, as the resources being allocated can be facilities in a
logistics network, craftsmen on a construction job site, etc. In light of both the practical and academic
importance of this problem, many researchers have focused on various approaches to solving it. Exact
optimization methods, however, have in general proved effective only for relatively small problem
instances or simplified versions of the problem (certain single-machine and two-machine flow shop
models, for example). Thus, in many cases, researchers who wish to use approaches more sophisticated
than simple dispatch rules have been motivated to focus on heuristics for practically sized problem
instances, typically metaheuristics (see Laha (2007) and Xhafa and Abraham (2008) and the references
therein) or decomposition methods (see Ovacik and Uzsoy (1996) and the references therein). In almost
all of this work, however, the objective is a function of the completion time of each job on its final
machine, and is not impacted by the completion times of intermediate operations.

This is a significant limitation because objectives that are only a function of job completion times rather
than a function of all operation completion times ignore considerations that are increasingly important
as the focus on lean, efficient supply chains grows. For example, in many cases, intermediate inventory
holding costs are an important cost driver, especially when entire supply chains are being modeled.
Often, substantial value is added between processing stages in a production network, but intermediate
products may be held in inventory for significant periods of time waiting for equipment to become
available for the next processing or transfer step. Thus, in this case, significant savings may result from
schedules that delay intermediate processing steps as much as possible. On the other hand, sometimes it
makes sense for certain intermediate processing steps to be expedited. Consider, for example, processes
when steel must be coated as soon as possible to delay corrosion, or when intermediates are unstable
and degrade over time. Indeed, some supply chains and manufacturing processes may have certain
steps that have to be expedited and other steps that have to be delayed in order to minimize costs.

Similarly, consider the so-called “rescheduling problem.” Suppose that a detailed schedule exists,
and all necessary arrangements have been made to accommodate that schedule. When a supply chain
disruption of some kind occurs, so that the schedule has to be changed to account for changing demand
or alternate resource availability, the impact of these changes can often be minimized if the new schedule

2 Bulbul and Kaminsky: An LP-Based General Method for Job Shop Scheduling

adheres as closely as possible to the old schedule. This can be accomplished by penalizing operations
on machines that start at different times than those in the original schedule.

In these cases and others, a scheduling approach that considers only functions of the completion
time of the job, even those that consider finished goods inventory holding cost (e.g., earliness cost) or
explicitly penalize deviation from a targeted job completion time, may lead to a significantly higher cost
solution than an approach that explicitly considers intermediate holding costs. We refer the reader to
Bulbul (2002) and Bulbul et al. (2004) for further examples and a more in-depth discussion.

Unfortunately, the majority of previous work in this area (and of scheduling work in general) focuses
on algorithms or approaches that are specific to an individual objective function, and are not adaptable
to other objective functions in a straightforward way. Because each approach is highly specialized
for a particular objective, it is difficult for a researcher or user to generalize insights for a particular
approach to other objectives, and thus from an application point of view, software to solve scheduling
problems is highly specialized and customized, and from a research point of view, scheduling research is
fragmented. Indeed, published papers, algorithms, and approaches typically focus on a single objective:
total completion time, flowtime, or tardiness, for example. It is quite uncommon to find an approach
that is applicable to more than one (or one closely related set) of objectives.

Thus, there is a need for an effective, general approach to solve the growing class of scheduling prob-
lems that explicitly considers the completion time of intermediate operations. In this paper we address
this need by developing an efficient, effective heuristic algorithmic framework useful for addressing job
shop scheduling problems for a large class of objectives where operation completion times have a direct
impact on the total cost. To clarify the exposition, we present our results in the context of explicitly min-
imizing intermediate holding costs, although our approach applies directly and without modification
to other classes of problems where operation completion times are critical. This framework builds on
the notion of the optimal timing problem for a job shop scheduling problem. For any scheduling problem
where intermediate holding costs are considered, the solution to the problem is not fully defined by the
sequence of operations on machines — it is necessary to specify the starting time of each operation on
each machine, since the time that each job is idle between processing steps dictates intermediate holding
costs. The problem of determining optimal start times of operations on machines given the sequence
of operations on machines is known as the optimal timing problem, and for many job shop scheduling
problems, this optimal timing problem can be expressed as an LP.

Specifically, our algorithm applies to any job shop scheduling problem with operation completion
time-related costs and any objective for which the optimal timing problem can be expressed as an LP.
As we will see, this includes, but is certainly not limited to, objectives that combine holding costs with
total weighted completion time, total weighted tardiness, and makespan.

Our algorithm is a machine-based decomposition heuristic related to the shifting-bottleneck heuristic,
an approach that was originally developed for the job shop makespan problem by Adams et al. (1988).
Versions of this approach have been applied to job shop scheduling problems with maximum lateness
(Demirkol et al. (1997)) and total weighted tardiness minimization objectives (Pinedo and Singer (1999),
Singer (2001) and Mason et al. (2002)). None of these authors consider operation completion time-
related costs, however, and each author presents a version of the heuristic specific to the objective
they are considering. Our approach is general enough to encompass all of these objectives (and many
more) combined with operation completion time-related costs. In addition, we believe and hope that
other researchers can build on our ideas, particularly at the subproblem level, to further improve the
effectiveness of our proposed approach.

In general, relatively little research exists on multi-machine scheduling problems with intermediate
holding costs, even those focusing on very specific objectives. Avci and Storer (2004) develop effec-
tive local search neighborhoods for a broad class of scheduling problems that includes the job shop
total weighted earliness and tardiness (E/T) scheduling problem. Work-in-process inventory holding
costs have been explicitly incorporated in Park and Kim (2000), Kaskavelis and Caramanis (1998), and
Chang and Liao (1994) for various flow- and job shop scheduling problems, although these papers
present approaches for very specific objective functions that do not fit into our framework, and use very
different solution techniques. Ohta and Nakatanieng (2006) considers a job shop in which jobs must
complete by their due dates, and develops a shifting bottleneck-based heuristic to minimize holding

Bulbul and Kaminsky: An LP-Based General Method for Job Shop Scheduling 3

costs. Thiagarajan and Rajendran (2005) and Jayamohan and Rajendran (2004) evaluate dispatch rules
for related problems. In contrast, our approach applies to a much broader class of job shop scheduling
problems.

2. Problem Description In the remainder of the paper, we restrict our attention to the job shop
scheduling problem with intermediate holding costs in order to keep the discussion focused. However,
we reiterate that many other job shop scheduling problems would be amenable to the proposed solution
framework as long as their associated optimal timing problems are LP’s.

Consider a non-preemptive job shop with m machines and # jobs, each of which must be processed
on a subset of those machines. The operation sequence of job j is denoted by an ordered set M; where
the ith operation in M; is represented by 0;;, i = 1,...,m; =| M; |, and J; is the set of operations to be
processed on machine i. For clarity of exposition, from now on we assume that the ith operation o;; of
job j is performed on machine i in the definitions and model below. However, our proposed solution
approach applies to general job shops, and for our computational testing we solve problems with more
general routing.

Associated with each job j, j = 1,...,n, are several parameters: p;;, the processing time for job j on
machine i; 7;, the ready time for job j; and h;;, the holding cost per unit time for job j while it is waiting in
the queue before machine i. All ready times, processing times and due dates are assumed to be integer.

For a given schedule S, let w;; be the time job j spends in the queue before machine 7, and let C;; be the
time at which job j finishes processing on machine i. We are interested in objective functions with two
components, each a function of a particular schedule: an intermediate holding cost component H(S), and
a C(S) that is a function of the completion times of each job. The intermediate holding cost component

can be expressed as follows:
n mj
H(S) = Z Z h,‘]‘wi]‘.
j=1 =1
Before detailing permissible C(S) functions, we formulate the m-machine job shop scheduling problem

(Jm):

(Jm) min H(S) + C(S) @)
s.t.

Clj—wlj 21’]'+p1j Vj (2)

Ci_l]'—ci]'+w,']' = —Ppij i=2,...,mj, V] (3)

Cix — Cij 2 pix or Cjj — Cy 2 pjj Vi, ¥k €] 4)

Cij,w,']'ZO i:1,.‘.,m]-,\7’j. 5)

Constraints (2) prevent processing of jobs before their respective ready times. Constraints (3), referred
to as operation precedence constraints, prescribe that a job j follows its processing sequence 01, . . ., Om;j-
Machine capacity constraints (4) ensure that a machine processes only one operation at a time, and an
operation is finished once started. Observe that even if the objective function is linear, due to constraints
(4) the formulation is not linear (without a specified order of operations).

The technique we present in this paper is applicable to any objective function C(S) that can be modeled
as a linear objective term along with additional variables and linear constraints added to formulation
(Jm). Although this allows a rich set of possible objectives, to clarify our exposition, for our computational

experiments we focus on a specific formulation that we call (Jm) that models total weighted earliness,
total weighted tardiness, total weighted completion time, and makespan objectives. For this formulation,
in addition to the parameters introduced above, d; represents the due date for job j; €; is the earliness
cost per unit time if job j completes its final operation before time d;; 7; represents the tardiness cost
per unit time if job j completes its final operation after time d;; and y represents the penalty per unit
time associated with the makespan. Variables E; and T; model the earliness, max(d; — Cy, i 0), and the
tardiness, max(Cm]. j—d;,0), of job j, respectively. Consequently, the total weighted earliness and tardiness
are expressed as). ;€;E; and }.; 7i;T}, respectively. Note that if d; = 0 Vj, then T; = C; Vj, and the total
weighted tardiness reduces to the total weighted completion time. The variable Cpax represents the
makespan and is set to max; Cy,;; in the model, where s; is the slack of job j with respect to the makespan.

4 Bulbul and Kaminsky: An LP-Based General Method for Job Shop Scheduling

Formulation (]’11\1), which we present below, thus extends formulation (Jm) with additional variables
and constraints. Constraints (7) relate the completion times of the final operations to the earliness and
tardiness values, and constraints (8) ensure that the makespan is correctly identified.

nMj n
(J’r\n) min Z Z hi]'wij + Z(GjE]’ + ﬂjT]') + chax (6)
=1 i=1 =1
s.t.
2)-0)
Cuyj +Ej—Tj =dj vj)
ij]‘ — Crax + 8j = 0 Vj (8)
Ej, Tj, Sj >0 Vj)
Crmax > 0. (10)

m

Following the three field notation of Graham et al. (1979), Jm/r;/ 27:1 hy

¥Cmax represents problem (]/r\n). (]/r\n) is strongly NP-hard, as a single-machine special case of this problem
withall inventory holding and earliness costs and the makespan cost equal to zero, i.e., the single-machine
total weighted tardiness problem 1/r;/ ¥ 7t;T}, is known to be strongly NP-hard (Lenstra et al. (1977)).

”
]1 hijwi,- + Z]'Ll(ejE]- + ﬂjTj) +

In the next section of this paper, Section 3, we explain our heuristic for this model. The core of
our solution approach is the single-machine subproblem developed conceptually in Section 3.3.1 and
analyzed in depth in Appendix A. In Section 4, we extensively test our heuristic, and compare it to the
current best approaches for related problems. Finally, in Section 5, we conclude and explore directions
for future research.

3. Solution Approach As mentioned above, we propose a shifting bottleneck (SB) heuristic for this
problem, and our algorithm makes frequent use of the optimal timing problem related to our problem,
and is best understood in the context of the disjunctive graph representation of the problem, so in the
next two subsections, we review these. For reasons that will become clear in Section 3.3.1, we refer to
our SB heuristic as the Shifting Bottleneck Heuristic Utilizing Timing Problem Duals (SB-TPD).

3.1 The Timing Problem Observe that (Jm) with a linear objective function would be an LP if we
knew the sequence of operations on each machine (which would imply that we could pre-select one of
the terms in constraint (4) of (Jm)). Indeed, researchers often develop two-phase heuristics for similar
problems based on this observation, where first a processing sequence is developed, and then idle time
is inserted by solving the optimal timing problem.

For our problem, once operations are sequenced, and assuming operations are renumbered in se-
quence order on each machine, the optimal schedule is obtained by solving the associated timing prob-
lem (TTJm), defined below. The variable i;; denotes the time that operation j waits before processing on
machine i (that is, the time between when machine 7 completes the previous operation, and the time that
operation j begins processing on machine i) .

(TTJm) min H(S) + C(S) (11)
s.t.
2),3),(5)
Cij-1 — Cij + 15 = —pjj Vijjeij#1 (12)
iij > 0 Vi,je]i,j#1 (13)

Specifically, in our approach, we construct operation processing sequences by solving the subproblems of
a SB heuristic. Once the operation processing sequences are obtained, we find the optimal schedule given
these sequences by solving (TTJm). The linear program (TTJm) has O(nm) variables and constraints. As

mentioned above, to illustrate our approach, we focus on a specific example, (Jm). The timing problem
for Jm), (TTJm), follows.

n mj n
(TTJ\IH) min Z Z h,-]-w,»j + Z(GjE]' + ﬂjTj) + chax (14)
j=1

j=1 i=1

Bulbul and Kaminsky: An LP-Based General Method for Job Shop Scheduling 5

s.t.
(2),(3),(5)
(7) - (10)
(12) = (13)

Also, for some of our computational work, it is helpful to add two additional constraints to formulation
(TTJm),

Crnax < CUB. (15)

n
Y Ty < WTH, (16)
j=1

where CYE and WTYE are upper bounds on Cpax and the total weighted tardiness, respectively.

3.2 Disjunctive Graph Representation The disjunctive graph representation of the scheduling
problem plays a key role in the development and illustration of our algorithm. Specifically, the dis-
junctive graph representation G(N, A) for an instance of our problem is given in Figure 1, where the
machine processing sequences for jobs 1, 2, 3 are given by My = {o011,031,021}, Mz = {022,012, 032}, and
M3 = {023,013, 033}, respectively. There are three types of nodes in the node set N: one node for each
operation 0;;, one dummy starting node S and one dummy terminal node T, and one dummy terminal
node F; per job associated with the completion of the corresponding job j. The arc set A consists of two
types of arcs: the solid arcs in Figure 1 represent the operation precedence constraints (3) and are known
as conjunctive arcs. The dashed arcs in Figure 1 are referred to as disjunctive arcs, and they correspond
to the machine capacity constraints (4).

Fq
0

P2)-03(T)
0

F3

Figure 1: Disjunctive graph representation for (Jm).

Before a specific schedule is determined for a problem, there is initially a pair of disjunctive arcs
between each pair of operations on the same machine (one in each direction). The set of conjunctive and
disjunctive arcs are denoted by Ac and Ap, respectively, and we have A = Ac UAp. Both conjunctive and
disjunctive arcs emanating from a node 0;; have a length equal to the processing time p;; of operation o;;.
The ready time constraints (2) are incorporated by connecting the starting node S to the first operation
of each job j by an arc of length 7;. The start time of the dummy terminal node T marks the makespan.

A feasible sequence of operations for (Jm) corresponds to a selection of exactly one arc from each
pair of disjunctive arcs (also referred to as fixing a pair of disjunctive arcs) so that the resulting graph
G'(N,AcUA3) is acyclic where A7) denotes the set of disjunctive arcs included in G’. However, recall that
by itself, this fixing of disjunctive arcs does not completely describe a schedule for (Jm). The operation
completion times and the objective value corresponding to G’ are obtained by solving (TTJm) where the
constraints (12) corresponding to ASD are included. Note that a disjunctive arc (0;j, 0x) € AISj corresponds
to a constraint C;j — Cy + ix = —pi in (TTJm).

3.3 Key Steps of the Algorithm SB-TPD is an iterative machine-based decomposition algorithm.

e First, a disjunctive graph representation of the problem is constructed. Initially, there are no
machines scheduled, so that no disjunctive arcs are fixed, i.e., A% = (. This implies that all

6 Bulbul and Kaminsky: An LP-Based General Method for Job Shop Scheduling

machine capacity constraints are initially ignored, and the machines are in effect allowed to
process as many operations as required simultaneously.

e At each iteration of SB-TPD, one single-machine subproblem is solved for each unscheduled
machine (we detail the single-machine subproblem below), the “bottleneck machine” is selected
from among these (we detail bottleneck machine selection below), and the disjunctive arcs
corresponding the schedule on this “bottleneck machine” are added to A?. As we discuss
below, the disjunctive graph is used to characterize single-machine problems at each iteration of
the problem, and to identify infeasible schedules. Finally, the previous scheduling decisions are
re-evaluated, and some machines are re-scheduled if necessary.

o These steps are repeated until all machines are scheduled and a feasible solution to the problem
(Jm) is obtained.

e A partial tree search over the possible orders of scheduling the machines performs the loop in
the previous steps several times. Multiple feasible schedules for (Jm) are obtained and the best
one is picked as the final schedule produced by SB-TPD.

In the following subsections, we provide more detail.

3.3.1 The Single-Machine Problem The key component of any SB algorithm is defining an appro-
priate single-machine subproblem. The SB procedure starts with no machine scheduled and determines
the schedule of one additional machine at each iteration. The basic rationale underlying the SB proce-
dure dictates that we select the machine that hurts the overall objective the most as the next machine
to be scheduled, given the schedules of the currently scheduled machines. Thus, the single-machine
subproblem defined must capture accurately the effect of scheduling a machine on the overall objective
function. In the following discussion, assume that the algorithm is at the start of some iteration, and let
Mand M® c M denote the set of all machines and the set of machines already scheduled, respectively.
Since “machines being scheduled” corresponds to fixing disjunctive arcs, observe that at this stage of the
algorithm, the partial schedule is represented by disjunctive graph G'(N, Ac UA?)) where A}, corresponds
to the selection of disjunctive arcs fixed for the machines in M®.

In our problem, the overall objective function value and the corresponding operation completion
times are obtained by solving (TTJm). The formulation given in (11)-(13) requires all machine sequences
to be specified. However, note that we can also solve an intermediate version of (TTJm) — one that only
includes machine capacity constraints corresponding to the machines in M® while omitting the capacity
constraints for the remaining machines in M\ M®. We refer to this intermediate optimal timing problem
and its optimal objective value as (TTJm)(M®) and zr1jm)(M®), respectively, and say that (TTJm) is
solved over the disjunctive graph G'(N, Ac U A3).

Observe that initially SB-TPD starts with no machine scheduled, i.e., M® is initially empty. Therefore,
at the initialization step (TTJm) is solved over a disjunctive graph G'(N,Ac U AY) where A3 = 0 by
excluding all machine capacity constraints (12) and yields a lower bound on the optimal objective value
of the original problem (Jm).

Once again, assume that algorithm is at the start of an iteration, so that a set of machines M
is already scheduled and the disjunctive arcs selected for these machines are included in A?. The

optimal completion times C’lf]. for alli € M and j € J; are also available from (TTJm)(M®) . As the

current iteration progresses, a new bottleneck machine i’ must be identified by determining which of
the currently unscheduled machines i € M\ M°® will have the largest impact on the objective function
of (TTJm)(M?® U i) if it is sequenced effectively (that is, in the way that minimizes its impact). Then,
a set of disjunctive arcs for machine i corresponding to the sequence provided by the corresponding
subproblem is added to A7, and a new set of optimal completion times lej foralli e Mand j € J;is

determined by solving (TTJm)(MS U {i’}).

Clearly, the optimal objective value of (TTJm)(M® U {i’}) is no less than that of (TTJm)(M®), i.e.,
Zrmym)y(M® U {i?}) > z(r1ym)(M°) must hold. Therefore, a reasonable objective for the subproblem of
machine 7 is to minimize the difference z(rtjm) (MU {i}) - Zrrjm)(M®). In the remainder of this section,
we show how this problem can be solved approximately as a single-machine E/T scheduling problem
with distinct ready times and due dates.

Bulbul and Kaminsky: An LP-Based General Method for Job Shop Scheduling 7

For defining the subproblem of machine i, we note that if the completion times obtained from
(TTJm)(M°) for the set of operations J; to be performed on machine i are equal to those obtained
from (TTJm)(M® U {i}) after adding the corresponding machine capacity constraints, i.e., if C’l.‘]. = C;], for

all j € J;, then we have z(TTJm)(MS) = Z(TT]m)(MS U {i}). This observation implies that we can regard the
current operation completion times le]. provided by (TTJm)(M?®) as due dates in the single-machine sub-
problems. Early and late deviations from these due dates are discouraged by assigning them earliness
and tardiness penalties, respectively. These penalties are intended to represent the impact on the overall
problem objective if operations are moved earlier or later because of the way a machine is sequenced.

Specifically, for a machine i € M\ M5, some of the operations in J; may overlap in the optimal
solution of (TTJm)(M®) because this timing problem excludes the capacity constraints for machine i.
Thus, scheduling a currently unscheduled machine i implies removing the overlaps among the operations
on this machine by moving them earlier/later in time. This, of course, may also affect the completion
times of operations on other machines. For a given operation 0;; on machine i, assume that C;.‘]. = d;j in

the optimal solution of (TTJm)(M?®). Then, we can measure the impact of moving operation o; jfor6>0
time units earlier or later on the overall objective function by including a constraint of the form

Ci]' + Sij = Elij -0 (Cij < dij - 6) or (17)
Cij—sij =dij+0 (Cij 2 djj +0), (18)

respectively, in the optimal timing problem (TTJm)(M?®) and resolving it, where the variable s;; >
0 denotes the slack or surplus variable associated with (17) or (18), respectively, depending on the
context. Of course, optimally determining the impact on the objective function for all values of o
is computationally prohibitive as we explain later in this section. However, as we demonstrate in
Appendix A, the increase in the optimal objective value of (TTJm)(M?®) due to an additional constraint
(17) or (18) can be bounded by applying sensitivity analysis to the optimal solution of (TTJm)(M®) to
determine the value of the dual variables associated with the new constraints.

Specifically, we show the following:

ProrosiTion 3.1 Consider the optimal timing problems (TTJm)(M?®) and (TTJm)(MS U{i®}) solved in iterations

k and k + 1 of SB-TPD where i is the bottleneck machine in iteration k. For any operation o i if Czl'bj =Cpj—0

or C:'bj = Cy; + 0 for some 6 > 0, then zrrym)(M° U {i*}) = zrrym)(M®) 2| 37, | 6 = 0, where §" is defined in
Appendix A in (36)-(37).

.., is the value of the dual variable associated with (17) or (18) if we augment (TTJm)(M°) with (17)
or (18), respectively, and carry out a single dual simplex iteration. Thus, the cost increase characterized
in Proposition 3.1 is in some ways related to the well-known shadow price interpretation of the dual
variables. In Appendix A, we give a closed form expression for §” that can be calculated explicitly using
only information present in the optimal basic solution to (TTJm)(M®). Thus, we can efficiently bound
the impact of pushing an operation earlier or later by 6 time units on the overall objective function
from below. This allows us to formulate the single-machine subproblem of machine i in SB-TPD as a
single-machine E/T scheduling problem 1/7;/ ¥ €,E; + n;T; with the following parameters: the ready
time 7;; of job j on machine i is determined by the longest path from node S to node o;; in the disjunctive

graph G'(N, Ac UA?); the due date d;; of job j on machine i is the optimal completion time C;j of operation
0;j in the current optimal timing problem (TTJm)(M®); the earliness and tardiness costs €; j and 75;; of job
j on machine i are given by

_ Ct Cr _ Ct Cr
€j=~Yy, = = =— mMax — and m;=¥,,,=—= =— max —, 19)
A]'t k#jl1A >0 —A]‘k A]'t klAj<0 Ajk

respectively, where these quantities are defined in (34) and (36)-(37). (If C:j = rij + pij, then it is not
feasible to push operation o;; earlier, and €;; is set to zero.) As we detail in Appendix A, this cost
function, developed for shifting a single operation o;; earlier or later, is based on a single implicit dual
simplex iteration after adding the constraint (17) or (18) to (TTJm)(M°®). We are therefore only able
to obtain a lower bound on the actual change in cost that would result from changing C;; from its
current value C;.. In general, the amount of change in cost would be a piecewise linear and convex
function as illustrated in Figure 2. However, while the values of €;; and 7;; in (19) may be computed

8 Bulbul and Kaminsky: An LP-Based General Method for Job Shop Scheduling

efficiently based on the current optimal basis of (TTJm)(M?®) —see Appendix B for an example on (TTJm)
-, we detail at the end of Appendix A how determining the actual cost functions requires solving one
LP with a parametric right hand side for each operation, and is therefore computationally expensive.
In addition, the machine capacity constraints are introduced simultaneously for all of the operations
on the bottleneck machine in SB-TPD, and there is no guarantee that this combined effect is close to
the sum of the individual effects. However, as we demonstrate in our computational experiments in
Section 4, the single-machine subproblems provide reasonably accurate bottleneck information and lead
to good operation processing sequences. We also note that the single-machine E/T scheduling problem
1/rj/ Y. €E; + m;T; is strongly N'P-hard because a special case of this problem with all earliness costs
equal to zero, i.e., the single-machine total weighted tardiness problem 1/r;/ }. 7;T}, is strongly NP-hard
due to Lenstra et al. (1977). Several efficient heuristic and optimal algorithms have been developed for
1/rj/ Y. €;Ej + m;T; in the last decade. See Bulbul et al. (2007), Tanaka and Fujikuma (2008), Sourd (2009),
Kedad-Sidhoum and Sourd (2010). Our focus here is to develop an effective set of cost coefficients for
the subproblems, and any of the available algorithms in the literature could be used in conjunction with
the approach we present. For the computational experiments in Section 4, in some instances we solve the
subproblem optimally using a time-indexed formulation, and in some instances we solve the subproblem
heuristically using the algorithm of Bulbul et al. (2007). The basis of this approach is constructing good
operation processing sequences from a tight preemptive relaxation of 1/r;/ }’ €;E; + 7;T;. We note that
it is possible to extend this preemptive lower bound to a general piecewise linear and convex E/T cost
function with multiple pieces on either side of the due date. Thus, if one opts for constructing the actual
operation cost functions explicitly at the expense of extra computational burden, it is possible to extend
the algorithm of Bulbul et al. (2007) to solve the resulting subproblems.

, //approximation
Ttij

dij = Cj; Cij

Figure 2: Effect of moving a single operation on the overall objective.

Also, an additional difficulty might arise at each iteration of the algorithm. We observe that when
the set of disjunctive arcs in the graph G'(N, Ac U A3) is empty, then no path exists between any two
operations 0j and 0;; on a machine i € M. However, as we add disjunctive arcs to G’, we may create
paths between some operations of a currently unscheduled machine i ¢ M®. In particular, a path from
node oy to o;; indicates a lower bound on the amount of time that must elapse between the starting
times of these two operations. This type of path is an additional constraint on the final schedule, and is
referred to as a delayed precedence constraint (DPC). Rather than explicitly incorporate these DPC’s into
our subproblem definition, we check for directed cycles while updating G’, since violated DPC’s imply
cycles in the updated graph. If necessary, we remove cycles by applying local changes to the sequence
of the current bottleneck machine.

We conclude this section with some comments on classical job shop scheduling problems with regular
objective functions, such as Jm//Cmax, Jm// Y, jw]-C]-, and Jm// ij]Tj. The cost coefficients in (19)
measure the marginal effect of moving operation o;; earlier or later. The former is clearly zero for any
regular objective function. Furthermore, 7t;; is also zero if the job completion time is not affected by a
marginal delay in the completion time of 0;;. Thus, SB-TPD may be ineffective for the classical objectives in
the literature. The true benefits of our solution framework are only revealed when operation completion
times have a direct impact on the total cost. Furthermore, for regular objectives, the task of estimating
the actual piecewise linear operation cost functions is accomplished easily by longest path calculations
in the disjunctive graph. Of course, solving the resulting single-machine subproblems with a general
piecewise linear and convex weighted tardiness objective is a substantially harder task. Bulbul (2011)
formalizes these concepts and develops a hybrid shifting bottleneck-tabu search heuristic for the job
shop total weighted tardiness problem by generalizing the algorithm of Bulbul et al. (2007) for solving
the subproblems as discussed above.

Bulbul and Kaminsky: An LP-Based General Method for Job Shop Scheduling 9

3.3.2 Selecting the Bottleneck Machine As alluded to above, at each iteration of the algorithm, we
solve the single-machine problem described above for each of the remaining unscheduled machines,
and select the one with the highest corresponding subproblem objective value to be the current bottleneck
machine . Then, the disjunctive graph and the optimal timing problem are updated accordingly to
include the machine capacity constraints of this machine where the sequence of operations on i are

determined by the solution of the corresponding subproblem.

3.3.3 Rescheduling The last step of an iteration of SB-TPD is re-evaluating the schedules of the
previously scheduled machines in M® given the operation processing sequence on the current bottleneck
machine i*. Itis generally observed that SB algorithms without a rescheduling step perform rather poorly
(Demirkol et al. (1997)). We perform a classical rescheduling step, such as that in Pinedo and Singer
(1999). For each machine i € M®, we first delete the corresponding disjunctive arcs from the set
A7, and construct a subproblem for machine i based on the solution of the optimal timing problem
(TTJm)(MS \ {i} U {i*}). Then, machine i is re-scheduled according to the sequence obtained from the
subproblem by adding back the corresponding disjunctive arcs to A3. The rescheduling procedure may

D
be repeated several times until no further improvement in the overall objective is achieved.

3.3.4 Tree Search SB-TPD as outlined up until here terminates in m iterations with a single feasible
schedule for (Jm) by scheduling one additional machine at each iteration. However, it is widely accepted
in the literature that constructing multiple feasible schedules by picking different orders in which the
machines are scheduled leads to substantially improved solution quality. This is typically accomplished
by setting up a partial enumeration tree that conducts a search over possible orders of scheduling the
machines. (See, for instance, Adams et al. (1988) and Pinedo and Singer (1999)). Each node in this
enumeration tree corresponds to an ordered set M® that specifies the order of scheduling the machines.
The basic idea is to rank the machines in M\ M5 in non-increasing order of their respective subproblem
objective function values and create a child node for the §; most critical machines in M\ M, where
1 =| M® |. Thus, an m-dimensional vector B = (o, ..., Pm-1) prescribes the maximum number of children
at each level of the tree. This vector provides us with a direct mechanism to trade-off solution time and
quality. Our solution approach incorporates no random components, and we can expand the search
space with the hope of identifying progressively better solutions by adjusting appropriately. For more
details and a discussion of the fathoming rule that further restricts the size of the search tree, the reader
is referred to Bulbul (2011).

4. Computational Experiments The primary goal of our computational study is to demonstrate that
the proposed solution approach is general enough that it can produce good quality solutions to different

types of job shop scheduling problems. To this end, we consider three special cases of (Jm). In all cases,
the fundamental insight is that SB-TPD performs quite well, and in particular, its performance relative
to that of alternative approaches improves significantly as the percentage of the total cost attributed to
inventory holding costs grows.

In Section 4.1, y = 0 and we solve a job shop total weighted E/T problem with intermediate holding
costs. For small 4 x 10 (m X n) instances, we illustrate the performance of the algorithm in an absolute
sense by benchmarking it against a time-indexed (TI) formulation of the problem (see Dyer and Wolsey
(1990)). However, directly solving the TI formulation is impractical (and often, impossible) for larger
instances. As there are no directly competing viable algorithm in the literature, we follow a different path
to assess the performance of our algorithm on larger 10 x 10 instances. We consider 22 well-known job
shop total weighted tardiness instances due to Pinedo and Singer (1999) and modify them as necessary.
In particular, the unit inventory holding costs h;j, i = 2,...,m;, including the unit earliness cost €; that
represents the finished goods inventory holding cost per unit time, are non-decreasing for a job j through
processing stages, and the unit tardiness cost 7; is larger than ¢;. Depending on the magnitude of 7;
relative to the other cost parameters and the tightness of the due dates, we would expect that a good
schedule constructed specifically for the job shop total weighted tardiness problem does also perform
well under the presence of inventory holding costs in addition to tardiness penalties. Thus, for 10 x 10
instances we compare the performance of SB-TPD against those of algorithms specifically designed
for the job shop total weighted tardiness problem. This instance generation mechanism ensures a fair
comparison. In Sections 4.2.1 and 4.3.1, we utilize a similar approach to assess the performance of the
algorithm for the job shop total weighted completion time and makespan minimization problems with

10 Bulbul and Kaminsky: An LP-Based General Method for Job Shop Scheduling

intermediate inventory holding costs, respectively.

The results reported in Section 4.1.1 for the TI formulation are obtained by IBM ILOG OPL Studio
5.5 running on IBM ILOG CPLEX 11.0. The algorithms we developed were implemented in Visual
Basic (VB) under Excel. The optimal timing problem (TTJm) and the preemptive relaxation of the
single-machine subproblem 1/7;/) €;E; + 7;T; formulated as a transportation problem as described by
Bulbul et al. (2007) are solved by IBM ILOG CPLEX 9.1 through the VB interface provided by the IBM
ILOG OPL 3.7.1 Component Libraries. All runs were completed on a single core of an HP Compaq DX
7400 computer with a 2.40 GHz Intel Core 2 Quad Q6600 CPU and 3.25 GB of RAM running on Windows
XP. The ease and speed of development is the main advantage of the Excel/VB environment. However,
we note that an equivalent C/C++ implementation would probably be several times faster. This point
should be taken into account while evaluating the times reported in our study.

4.1 Job Shop Total Weighted E/T Problem with Intermediate Inventory Holding Costs

4.1.1 Benchmarking against the TI formulation As mentioned above, for benchmarking against

the TI formulation of (Jm), we created 10 instances of size 4 X 10. All jobs visit all machines in random
order. The processing times are generated from an integer uniform distribution U[1, 10]. For jobs that
start their processing on machine i, the ready times are distributed as integer U[0, P;], where P; refers
to the sum of the processing times of the first operations to be performed on machine i. Then, the due
date of job j is determined as d; = r; + |f Z:ifl pijl, where f is the due date tightness factor. For each
job, the inventory holding cost per unit time at the first stage of processing is distributed as U[1,10].
At subsequent stages, the inventory holding cost per unit time is obtained by multiplying that at the
immediately preceding stage by a uniform random number U[100, 150]%. The tardiness cost per unit
time, 7}, is distributed as U[100,200]% times €;. For each instance, the due date tightness factor is varied
as f = 1.0,1.3,15,1.7,2.0, yielding a total of 50 instances. Experimenting with different values of f
while keeping all other parameters constants allows us to observe the impact of increasing slack in the
schedule. Another 50 instances are generated by doubling the unit tardiness cost for all jobs in a given
instance.

In the TI formulation of (jm), the binary variable x;;; takes the value 1 if 0;; completes processing at
time f. The machine capacity constraints are formulated as described by Dyer and Wolsey (1990), and
for modeling the remaining constraints (2), (3), (8), we represent C;; by)., tx;;;. A time limit of 7,200
seconds (2 hours) is imposed on the TI formulation, and the best incumbent solution is reported if the
time limit is exceeded without a proven optimal solution.

For the tree search, § = (3,3,2,1) and at most 18 feasible schedules are constructed for (ﬁ) in the
partial enumeration tree (see Section 3.3.4). At each node of the tree, we perform rescheduling for up to
three full cycles. We do two experiments for each of the 100 instances. In the first run, the single-machine
subproblems are solved optimally by a conventional TI formulation (“SB-TPD-OptimalSubprob”), and
then in the second run, we only seek a good feasible solution in the subproblems by adopting the
approach of Bulbul et al. (2007) (“SB-TPD-HeuristicSubprob”).

The results of our experiments are summarized in Tables 1 and 2. The instance names are listed in
the first column of Table 1. In the upper half of this table, we report the results for the first 50 instances,
where 71; is determined as U[100, 200]% times €;. Re-solving each instance after doubling 7; for all jobs in
a given instance yields the results in the bottom half of the table. The objective function values associated
with the optimal/best incumbent solutions from the TI formulation appear in columns 2-6 as a function
of the due date tightness factor f. Applying SB-TPD by solving the subproblems optimally provides
us with the objective function values in columns 7-11, and the percentage gaps with respect to the TI
formulation are calculated in columns 12-16. A gap is negative if SB-TPD-OptimalSubprob returns a
better solution than the TI formulation. The corresponding results obtained by solving the subproblems

11

‘uonnyos fewndQ ,
"SPU0dds (g ST IWI[duiy YT, ,

8FL TIT S'8T £ L1 0'61|XeIN TL €TL THL 911 STI|XeIN TS Sy /4T 04T €01 |[XeW
€6- ¥'8- 00 S 00 |UIN TYI- S91- TP~ SF 00 |UIN 121 T6 0% 18 60 [UIN
GT €T ¥9 6€ 99 |'PPIN 00 ST S% 9T TS |'PPIN v0e €91 6% <TTCT 0S |'PAIN
ve TE TL SS S8 |Sav I'l- 20 €S 0€ 9F |Sav §9z 97 T6 16l ¥S |Say
8G 9F L€ 00 00 |FIST LTET 946T «E6VE «LIFS|T'L- 9% L€ 00 00 |I64T LTET 9L6T «€6¥E «LIVS|LT6T OVFT 14ST «E6¥E «LIFS|0T W[
SV ¥'8 €T 6T 0L |0SL1 F0FT 01ZE ¥#99€ €8IS |00 S91- T'H ¥'% €F |«FLIT T6IT S00E SILE SF0S [«FLIT €T9T 9C1E «09SE «TH8F| 6 Wi
SFL TIT TF 9GS S6 |6V81 9€TT 0861 616C SE8F (00 €TT 00 00 0T [«0T9L TITT 0061 «FH9LT 90ST |«0I9T +STO6T «006T +F9LT «STFF| 8w
L8 ST- T8 0L €S |0V 609T €S€€ G948 6€8S [TZ 81- 69 00 ST |SEFT 6097 €IS «6LTE 6799 |«TLTT LSIT 660 «6LTE LFSS | LW
0€ 09 00 ¥1 09 |FSET 069T «86T€ 0098 T0¥Z [TT TS THL SF- SOL|9EET 6997 TILE TLIS OFLL [«S8TT +LEST +86TE 0TSS «C869| 9 W[
€6- 8T €8 TT €T |8SEE 09/E 8L S89S 6T6L |TFI- 00 00 TI SG |SLIE «E69€ «F6EV TEIS 9L18 [TOLE +E69€ «F6EY 9SS «LPLL| S W[
LPT ST 91T 8% 69T|I6VT $941 16CC TIST LELF |ST 8S 001 91T STI|6IET 1291 91CT S66C LISH |«00ET «E€ST «9L0T «H89T «TSOP| ¥ wif
0C ¥T 9% £L 0¢ |8TLL STOT 119C 929€ 19€S |00 ¥€ TE€ 99 ¥0 |«F69T 80T ST /8SE 8TTS [«F69T «I86L 96¥C +99€€ 907G | ¢ wif
I'T TT S8LS¥ 06I|181C ¥20€ 665F 097G €1S8 |00 T0- €I 0F 80 |8SIT 996C TITHF 9TLS 60TL |«8STT 096 CTILE 90SS SSTZ | Twi
00 S€ OTL LLL TIL|LVET £LS6T SIEY 8S19 9978 |€0- 1€ €S S9 68 |0FEC ¥h6C €60¥ 14SS 0SLL |LPET +9S8T «888E TETS «STIZ| W[
%(00% 002)N - 19 ~ '
61 1T T'61 ¥4T TLI|XeIN 61T 08 TSI 9T THI|XeW I¥C 0ZF 0C°C TEL L6 |XeW
€9- ¥'0- 60- €T- 00 |UIIN 6'6- 00I-F%¢ 00 00 |UIN €0 99 T¢ ¥E¢ ¥e |WIN
€V ST 1€ ¥9 99 |'PPIN I0 €0 6T 6% €€ |'PPIN I'6 897 8S L6 €9 |PN
Sv ¥ 99 T8 S8 |Sav €0 90 TV €S 87 |8av 80T 897 ¥0I 06 ¥9 |8ay
6G- T'T 8T 00 00 |ZL8T 0SZI 00IT «6LIT «ISO0E|€Z- 00 ¥'€ 00 S9 |PSST «PILL €L61 «6LIT TSTE |9L9T «PILL $H0T «6LIT «I80E|0T W[
6L STILGE €T 69 |€9ST F99T IHST 981C €T6C |91~ £€ T8 TO €F |SThl ¥PST €261 1HTC 1S8C [SPH1 «88PL 6441 LETT «bELT| 6 W
T'61 89 T'61 TS ¥9T1|898T £/9T $0LT 9S81 9¥6C |6'IT 08 4T 00 00 |SSLL 691 OLFT +S9LL «0€ST|«89ST T/ST «LEPL «S9LL «0€5T| § Wi
€S ¥0- 60- OFL 8¢ |£81T SOTT TTTT TIET LIS [0S O0I-T'T 00 90 |ISIT €661 99T «TLOT ¥ITE [LL0T ¥1TT THIT «TLOT S6IE | LW
¥¥ ¥¥ T S9L TSL|Z0TT £80T 14TT 66E€ L¥9F |€€ 61 TSI 64 THL|IS80CT LEOT ¥8ST SFIE L09F [F10T 6661 €¥CC LI6C ¥E0F | 9 wif
€9- €T 68 T'F 8T |€85T T19T 860€ 06¥E 98FF |66~ 00 00 €T T'9 |FSVT «8LST «FST STHE 0€9F [9S/T +8LST «FHST «ISEE «S9€F| S wif
80T STL TO F¥LL TLL|99ET FEET L6€T 06T SOLT [€0 00 ¥0 6TL STL|9ETT «L6LL 00F1 ZZST VLST [+E€TL +L6TL «FOEL +8L9T «80€T| ¥ wif
90 €0 8T 9Z SS9 |LIST 98F1 8691 00TC ¥10€ [F1 00 0€ SZ €T |8TST «8VL TOLL 661 TT6T [«80ST «T8PL «TSIL «SPOT £G8T | ¢ wif
€% 60 TS 0T €01|780T TECT 919C TETE 60ST |00 90 90T 9CL S0 8961 €TTT TSLT 89S 601F [«8961 «IITT L8FC 0LIE £80F | T wif
TV 6T TTLOLL¥9 |FP0T 860T €44T S99€ 89SF |F'0- €1 8§€ €0I I'C |¥S6T S90T 89ST LSPE €8EF 7961 +8€0T ¥/¥C €€1€ S6¢h | Twif
0C LT ST €T 0L |0 LT ST €I 0T [0C 4TI ST €L 0L |0C I ST €I 0T |0 41 ST €I 01 |=
(%)IL 03 den AdO (%)1L 03 den AdO AdO

qoidqngonsunayg-Aad.L-dS

qoxdqngrewndo-adr-4ds

(LL) paxapuy-awi],

%(00Z“00T)N - /9 ~ 'L

Bulbul and Kaminsky: An LP-Based General Method for Job Shop Scheduling

"$)S00 JUIP[OY AI0JUSAUL SjRIPaULISIUL Ypim saduejsut [/q doys qol uo ,uorernurioy [, a3 ysurede Supjrewnypusg :1 [qe],

12 Bulbul and Kaminsky: An LP-Based General Method for Job Shop Scheduling

heuristically are specified in columns 17-26. Optimal solutions in the table are designated with a
and appear in bold. The average, median, minimum, and maximum percentage gaps are computed
in rows labeled with the headers “Avg.,” “Med.,” “Min,” and “Max,” respectively. For columns 2-6,
these statistics are associated with the optimality gaps of the incumbent solutions reported by CPLEX
at the time limit. Table 2 presents statistics on the CPU times until the best solutions are identified for
SB-TPD-OptimalSubprob and SB-TPD-HeuristicSubprob.

The TI formulation terminates with an optimal solution in 59 out of 100 cases. Among these 59
cases, SB-TPD-OptimalSubprob and SB-TPD-HeuristicSubprob identify 19 and 5 optimal solutions,
respectively. Over all 100 instances, the solution gaps of SB-TPD-OptimalSubprob and SB-TPD-
HeuristicSubprob with respect to the optimal/incumbent solution from the TI formulation are 2.75%
and 5.86%, respectively. We achieve these optimality gaps in just 31.9 and 3.1 seconds on average with
SB-TPD-OptimalSubprob and SB-TPD-HeuristicSubprob, respectively. We therefore conclude that the
subproblem definition properly captures the effect of the new sequencing decisions on the currently
unscheduled machines, and that SB-TPD yields excellent feasible solutions to this difficult job shop
scheduling problem in short CPU times. We observe that SB-TPD-OptimalSubprob is about an order of
magnitude slower than the SB-TPD-HeuristicSubprob. Based on the quality/time trade-off, we opt for
solving the subproblems heuristically in the rest of our computational study.

For all algorithms, the objective values are almost always non-increasing as a function of f =
1.0,1.3,1.5,1.7. For f large enough, tardiness costs are virtually eliminated, and increasing f further
leads to an increase in the objective function value. Therefore, we occasionally observe that for some
problem instances the objective increases from f = 1.7 to f = 2.0. Furthermore, the performance of the
SB-TPD variants improves significantly as f increases. This may partially be attributed to the relatively
lower quality of the incumbent solutions for large f values. The optimality gaps reported by CPLEX
for incumbents at termination tend to grow with f. Note that larger f values imply longer planning
horizons and increase the size of the TI formulation. As a final remark, doubling the unit tardiness costs
does not lead to a visible pattern in solution quality for the SB-TPD variants.

Table 2: CPU time statistics (in seconds) for the results in Table 1.

‘ | T~ €j- U(lOO, 200)0/0 ‘

SB-TPD-OptimalSubprob SB-TPD-HeuristicSubprob
f= 1.0 1.3 1.5 1.7 20 |10 13 13 17 20

Avg. | 430 198 236 299 415 |28 23 37 28 30
Med. | 39.5 90 101 199 385 |21 14 33 25 25
Min 4.0 4.0 4.5 3.6 49 | 04 04 04 10 07
Max | 817 792 671 846 816 |72 64 74 65 63

| T~ €j- U(ZOO, 400)0/0

Avg. | 454 267 269 264 358 |36 29 33 29 42
Med. | 500 140 298 148 350 |29 17 30 21 38
Min 3.9 41 3.7 3.6 37103 05 03 06 05
Max | 868 918 486 610 762 | 88 65 80 6.8 76

4.1.2 Benchmarking Against Heuristics As we mentioned at the beginning of Section 4, the major
obstacle to demonstrating the value of our heuristic for large problem instances is the lack of directly
competing algorithms in the literature. To overcome this, we pursue an unconventional path. Instead
of simply benchmarking against a set of dispatch rules, we adopt a data generation scheme that is
tailored toward algorithms specifically developed for the job shop total weighted tardiness problem
(JS-TWT). In particular, we suitably modify 22 well-known standard benchmark instances originally
proposed for Jm//Cmax for our problem. Note that this same set of instances were adapted to JS-TWT by
Pinedo and Singer (1999) and are commonly used for benchmarking in papers focusing on JS-TWT, such
as Pinedo and Singer (1999), Kreipl (2000), Bulbul (2011). In the original 10 X 10 makespan instances,
all jobs visit all machines, all ready times are zero, and the processing times are distributed between 1
and 100. For our purposes, all processing times are scaled as p;; « [p;;/101,j=1,...,n,i=1,...,mj, in
order to reduce the total computational burden because the effort required in the approach adopted for

Bulbul and Kaminsky: An LP-Based General Method for Job Shop Scheduling 13

solving the subproblems depends on the sum of the processing times. (Recall that our goal in this paper
is to develop an effective set of cost coefficients for the subproblems, so that we could have employed
other algorithms in the literature that do not have this limitation for solving the subproblems.) The
due dates and the inventory holding, earliness, and tardiness costs per unit time are set following the
scheme described in Section 4.1. Two levels of the unit tardiness costs and five values of f for each
makespan instance yield a total of 220 instances for our problem. As we observe later in this section,
under tight due dates the majority of the total cost is due to the tardiness of the jobs, and we expect that
good schedules constructed specifically for minimizing the total weighted tardiness in these instances
also perform well in the presence of intermediate inventory holding and earliness costs in addition to
tardiness penalties. In other words, we have specifically designed an instance generation mechanism to
ensure a fair comparison.

We use these instances to demonstrate that our (non-objective-specific) heuristic SB-TPD fares quite
well against state-of-the-art algorithms developed for JS-TWT for small values of f. On the other hand,
as more slack is introduced into the schedule by setting looser due dates and holding costs become
increasingly more significant, our approach dominates alternative approaches.

A total of five different algorithms are run on each instance. We apply SB-TPD by solving the sub-
problems heuristically. We test this against the large-step random walk local search algorithm (“LSRW”)
by Kreipl (2000) and the SB heuristic for JS-TWT (“SB-WT”) due to Pinedo and Singer (1999). Both of
these algorithms generate very high quality solutions for JS-TWT. In general, LSRW performs better
than SB-WT. These observations are based on the original papers and are also verified by our compu-
tational testing in this section. We note that Pinedo and Singer (1999) and Kreipl (2000) demonstrate
the performance of their algorithms on the same 22 benchmark instances considered here, except that
they consider a different tardiness cost structure and set f = 1.3,1.5,1.6. Preliminary runs indicated
that the LSRW generally improves very little after 120 seconds of run time. Thus, the time limit for
this algorithm is set to 120 seconds. Due to the probabilistic nature of this algorithm, we run it 5
times for each instance and report the average objective function value. We also run the general pur-
pose SB algorithm (“Gen-SB”) by Asadathorn (1997) that also supports a variety of objectives. Finally,
we construct a schedule using the Apparent Tardiness Cost (“ATC”) dispatch rule proposed for JS-
TWT by Vepsalainen and Morton (1987). The scaling parameter for the average processing time in
this rule is set to 4 for f = 1.0,1.3, to 3 for f = 1.5, and to 2 for f = 1.7,2.0. For these settings, see
Vepsalainen and Morton (1987), Kutanoglu and Sabuncuoglu (1999). These last four algorithms are all
implemented in LEKIN®- Flexible Job-Shop Scheduling System (2002) which allows us to easily test
these algorithms in a stable and user-friendly environment. For these algorithms, we first solve JS-TWT
by ignoring the inventory holding and earliness costs in a given instance. Then, we compute the corre-
sponding objective value for the job shop E/T problem with intermediate holding costs by applying the
earliness, tardiness and intermediate inventory holding costs to the constructed schedule. The results
are presented in Table 3.

Table 3: Results for the job shop total weighted E/T instances with intermediate inventory holding costs.

| 7; ~ €; - U(100,200)% | 7; ~ €; - U(200,400)% |
f=10
B-WT/ Gap to B-OFV(%) B-WT/ Gap to B-OFV(%)
B-OFV(%) |SB-TPD LSRW SB-WT Gen-SB ATC|B-OFV(%)|SB-TPD LSRW SB-WT Gen-SB ATC
Avg. 87.5 10.4 0.1 94 43.0 449 93.3 9.0 0.3 9.9 419 45.0
Med. 87.4 9.8 0.0 9.1 426 420 93.3 9.4 0.0 8.0 403 429
Min 83.9 0.0 0.0 0.0 41 164 91.2 0.0 0.0 0.0 3.8 147
Max 90.1 28.3 2.0 26.6 77.8 99.3 95.2 17.4 6.1 25.7 744 99.2
f=13
B-WT/ Gap to B-OFV(%) B-WT/ Gap to B-OFV(%)
B-OFV (%) |SB-TPD LSRW SB-WT Gen-SB ATC|B-OFV(%)|SB-TPD LSRW SB-WT Gen-SB ATC
Avg. 54.1 12.1 1.0 10.7 70.6 123.0 69.6 14.6 0.5 11.5 80.1 147.4
Med. 54.2 11.9 0.0 10.6 54.6 111.1 70.2 12.3 0.0 10.7 67.3 133.4
Min 34.1 0.0 0.0 0.0 27.0 51.0 50.9 0.0 0.0 0.0 36.5 64.8

14 Bulbul and Kaminsky: An LP-Based General Method for Job Shop Scheduling

‘ | T~ €j- U(lOO, 200)0/0 | T~ €j- U(200, 400)0/0 ‘
| Max| 73.8| 372 109 30.6 203.7 293.6 85.0] 40.8 4.0 38.8 276.6 397.0]
f =15
B-WT/ Gap to B-OFV (%) B-WT/ Gap to B-OFV (%)
B-OFV (%) |SB-TPD LSRW SB-WT Gen-SB ATC|B-OFV(%)|SB-TPD LSRW SB-WT Gen-SB ATC
Avg. 13.0 23 162 21.8 57.9 142.2 20.4 7.2 7.3 14.3 78.0 196.2
Med. 9.7 00 125 16.0 51.2 138.5 16.4 34 1.2 9.7 61.0 184.9
Min 0.0 0.0 0.0 0.0 10.0 71.3 0.0 0.0 0.0 0.0 13.3 96.1
Max 40.0 212 632 70.5 141.2 293.6 56.4 425 555 632 212.1 475.8
f=17
B-WT/ Gap to B-OFV (%) B-WT/ Gap to B-OFV (%)
B-OFV(%) |SB-TPD LSRW SB-WT Gen-SB ATC|B-OFV(%)|SB-TPD LSRW SB-WT Gen-SB ATC
Avg. 1.3 00 527 54.3 51.2 127.2 2.1 00 449 47.1 59.4 165.5
Med. 0.0 0.0 488 55.0 474 1195 0.0 0.0 386 51.5 52.7 150.8
Min 0.0 00 19.8 17.2 22.8 574 0.0 0.0 53 6.3 241 924
Max 12.1 0.0 90.6 99.3 144.4 282.6 21.3 0.0 96.8 92.0 150.3 350.8
f =20
B-WT/ Gap to B-OFV(%) B-WT/ Gap to B-OFV (%)
B-OFV (%) |SB-TPD LSRW SB-WT Gen-SB ATC|B-OFV(%)|SB-TPD LSRW SB-WT Gen-SB ATC
Avg. 0.0 00 976 1168 55.6 149.7 0.0 0.0 893 106.3 51.5 155.1
Med. 0.0 00 990 1103 47.8 132.8 0.0 00 774 1039 48.3 136.9
Min 0.0 0.0 336 68.4 309 76.7 0.0 0.0 301 45.6 23.0 88.3
Max 0.0 0.0 2455 2409 82.6 314.3 0.0 0.0 2445 190.2 80.2 373.8

For each instance, we calculate the best objective function value (“B-OFV”) obtained over five alternate
algorithms, and all gaps in Table 3 are calculated with respect to the best available solutions. Furthermore,
in order to justify our benchmarking strategy against algorithms developed for J[S-TWT we compute the
minimum total weighted tardiness cost (“B-TWT”) over all algorithms applied to an instance, and we
report statistics on the ratio of B-TWT to B-OFV in the first column of Table 3. For f = 1.0, 1.3, the average
of the ratio B-TWT/B-OFV is 90.4% and 61.9%, respectively. Thus, for these instances we expect that the
schedules obtained from algorithms designed for JS-TWT perform very well.

For f = 1.0, LSRW is the best contender. SB-TPD performs on a par with SB-WT, and both of these
algorithms have an average gap of 9-10% from the best available solution. The fact that the tardiness
costs dictate the schedule is also reflected in the gaps obtained by considering tardiness costs only. These
figures (not reported here) are close to their counterparts with inventory holding and earliness costs.
Both Gen-SB and the ATC dispatch rule have average gaps of more than 40% with respect to the best
available solution.

For f = 1.3, LSRW again outperforms the other algorithms. SB-TBD performs slightly worse than
SB-WT. The average gap of SB-TPD is on average 12.1% and 14.6% with respect to the best available
solution for instances with small and large tardiness costs, respectively. The corresponding figures for
SB-WT are 10.7% and 11.5%, respectively. Gen-SB has an average gap of 70.6% and 80.1% with respect
to to the best available solution for instances with small and large tardiness costs, respectively. For ATC,
these average gaps are at 123.0% and 147.4%, respectively.

For f = 1.5, the average of the ratio B-WT to B-OFV drops to 16.7%. That is, the inventory holding
and earliness costs become crucial. In this case, SB-TPD is superior to all other algorithms. For small
tardiness costs, the average gaps with respect to the best available solution are 2.3%, 16.2%, and 21.8%
for SB-TPD, LSRW, and SB-WT, respectively. The corresponding average gaps for large tardiness costs
are obtained as 7.2%, 7.3%, and 14.3%, respectively. The two other algorithms lag by a large margin as
for f=1.0and f=1.3.

For f = 1.7 and f = 2.0, the tardiness costs can almost always be totally eliminated. For these
instances, SB-TPD always produces the best schedule. All other algorithms have average gaps of at least
45% with respect to our algorithm.

Bulbul and Kaminsky: An LP-Based General Method for Job Shop Scheduling 15

In SB-TPD, the time until the best solution identified is 782 seconds on average over all instances
with no clear trend in solution times as a function of f or the relative magnitude of the unit tardiness
costs to the unit earliness costs. However, on average 68% of this time is spent on calculating the single-
machine cost functions which requires inverting the optimal basis of the optimal timing problem in the
Excel/VB environment. This time can be eliminated totally if the algorithm is implemented in C/C++
using the corresponding CPLEX library which provides direct access to the inverse of the optimal basis.
The second main component of the solution time is expended while solving the preemptive relaxation
of 1/rj/ Y €;E; + 1;T; as part of the single-machine subproblem and constitutes about 9% of the total
solution time. On the other hand, the time required by CPLEX for solving the optimal timing problems
is only about 4% of the total time on average. Clearly, SB-TPD has great potential to provide excellent
solutions in short CPU times. Furthermore, by pursuing the different branches of the search tree on
different processors, SB-TPD can be parallelized in a straightforward manner and the solution times
may be reduced further.

In general, we expect to obtain high-quality solutions early during SB-TPD if the subproblem definition
is appropriate and the associated solution procedure is effective. In Appendix C, we present a detailed
analysis of the rate at which good incumbent solution are found and improved. In general, our procedure
finds very good solutions (and often the best solutions found) early during the heuristic run.

4.2 Job Shop Total Weighted Completion Time Problem with Intermediate Inventory Holding
Costs

4.2.1 Benchmarking Against Heuristics The instances in the previous section are converted into
total weighted completion time instances by setting the due dates to zero. The same set of algorithms are
applied to the resulting 44 instances, except that the ATC dispatch rule is substituted by the Weighted
Shortest Processing Time (WSPT) dispatch rule which is more appropriate for weighed completion time
problems. Note that the WSPT rule implemented in LEKIN®- Flexible Job-Shop Scheduling System
(2002) computes the priority of an operation o0;; by taking into account the total remaining processing
time of job j. The results are presented in Table 4.

Table 4: Results for the job shop total weighted completion time instances with intermediate inventory
holding costs.

‘ | Tt~ €j- U(lOO, 200)0/0 | i~ €j- U(ZOO, 400)0/0 ‘
B-WC/ Gap to B-OFV (%) B-WC/ Gap to B-OFV (%)

B-OFV(%)|SB-TPD LSRW SB-WT Gen-SB WSPT |B-OFV(%)|SB-TPD LSRW SB-WT Gen-SB WSPT

Avg. 96.7 2.0 0.4 1.8 10.8 10.7 98.3 1.8 0.4 1.8 99 101

Med. 96.6 1.9 0.0 1.5 9.8 10.2 98.3 1.8 0.0 1.5 8.1 9.5

Min 95.6 0.0 0.0 0.0 2.3 34 97.7 0.0 0.0 0.0 3.2 32

Max 97.9 6.7 33 5.6 246 217 98.9 39 22 6.6 23.7 208

As in Section 4.1.2, we calculate the best objective function value (“B-OFV”) obtained over five
alternate algorithms for each instance, and the gaps reported in Table 4 are based on the best available
solutions. Statistics on the ratio of the minimum total weighted completion time cost (“B-WC”) over all
algorithms to B-OFV are provided in the first column of Table 4 and justify our benchmarking strategy.
For all instances, the ratio B-WC / B-OFV stands above 95%. The job shop total weighted completion
time problem with inventory holding costs appears to be easier in practice compared to its counterpart
with tardiness costs. SB-WT and SB-TPD perform on a par, while LSRW exhibits slightly better gaps. For
small unit completion time (tardiness) costs, the average gaps with respect to the best available solution
are 2.0%, 0.4%, and 1.8% for SB-TPD, LSRW, and SB-WT, respectively. Doubling the unit completion time
costs leads to the average solution gaps 1.8%, 0.4%, and 1.8% for these three algorithms, respectively.
The two other algorithms Gen-SB and WSPT are on average about 10% off the best available solution.

For the total weighted completion time instances with inventory holding costs, SB-TPD takes an
average of 817 seconds until the best solution is identified with a similar composition to that in Section
4.1.2. SB-TPD is very effective for the job shop total weighted completion time problem with inventory

16 Bulbul and Kaminsky: An LP-Based General Method for Job Shop Scheduling

holding costs. In Appendix C, we again observe that we typically find good (and often the best found)
solutions early in the heuristic run.

4.3 Job Shop Makespan Problem with Intermediate Inventory Holding Costs

4.3.1 Benchmarking Against Heuristics The instances in this section are identical to the corre-
sponding total weighted completion time instances except that all unit completion time costs are set to
zero and an appropriate unit cost for Cnax is assigned in each instance. In order to determine this cost

parameter y in the objective function (6) of (Jm), we first run LSRW on a given instance once in order to
minimize Cpay, record the resulting makespan and compute the associated total inventory holding cost.
Then, for each instance with small unit completion time costs (7; ~ €; - U(100,200)%) we set y so that the
total cost C(Cmax) due to the makespan is 50% of the total cost. The same procedure is repeated for total
weighted completion time instances with large unit completion time costs (rt; ~ €; - U(200,400)%), and
y is determined so that 90% of the total cost is attributed to Cmax. Thus, we create a total of 44 instances
for the job shop makespan problem with intermediate inventory holding costs.

SB-TPD, LSRW, Gen-SB, and the Longest Processing Time (LPT) dispatch rule are applied to
each instance. The original paper Kreipl (2000) solves well-known “hard” instances of [m//Cpmax
by LSRW and achieves near-optimal solutions. This is the reason why LSRW is the algorithm of
choice in setting the y values as described above. The implementation of the LPT dispatch rule in
LEKIN®- Flexible Job-Shop Scheduling System (2002) takes into account the processing times of all re-
maining operations of the associated job while determining the priority of an operation. Therefore, this
dispatch rule becomes equivalent to the Most Work Remaining Rule (MWKR) in the job shop environ-
ment which has been demonstrated to work well for the job shop makespan problem in the literature
(see Demirkol et al. (1997) and Chang et al. (1996) for details). The results are depicted in Table 5.

Table 5: Results for the job shop makespan instances with intermediate inventory holding costs.

|| C(Cwmax)/OFV~050forLSRW | C(Cpax)/OFV ~0.90 for LSRW |
C(Cax) / Gap to B-OFV(%) C(Cax) / Gap to B-OFV(%)

OFV(%)|SB-TPD LSRW Gen-SB LPT| OFV(%)|SB-TPD LSRW Gen-SB LPT

Avg. 48.4 0.0 25.1 48.1 69.7 89.4 75 0.0 11.6 24.3

Med. 495 0.0 258 43.7 61.4 89.8 7.3 0.0 9.1 23.3

Min 41.3 0.0 6.0 15.7 427 86.4 0.0 0.0 4.3 12.0

Max 52.2 0.0 382 110.4 134.5 90.8 11.8 0.4 35.0 48.2

In the first column of Table 5, we report statistics on the percentage of the total cost attributed to
the makespan for the schedules produced by LSRW which is the best competing algorithm from the
literature. This assures us of a fair comparison of SB-TPD to the other algorithms considered. For
half of the instances, the total inventory holding cost is approximately 10% of the total cost for LSRW.
Thus, for these instances we expect that the schedules obtained by LSRW perform very well. For the
remaining instances, this ratio — referred to as the I/T ratio below — is about 50%. If the I/T ratio is about
10%, LSRW has the best performance. In this case, the average gaps with respect to the best available
solutions are 7.5%, 0.0%, 11.6%, and 24.3% for SB-TPD, LSRW, Gen-SB, and LPT, respectively. If the
I/T ratio is increased to about 50%, SB-TPD has the best performance for all instances. In this case, the
corresponding average gaps with respect to the best available solutions are obtained as 0.0%, 25.1%,
48.1%, and 69.7%.

SB-TPD takes an average of 704 seconds until the best solution is identified for these instances with
a similar composition to those in Sections 4.1.2 and 4.2.1. Once again, in Appendix C, we see that we
typically find good (and often the best found) solutions early in the heuristic run.

5. Concluding Remarks We developed a general method to solve job shop scheduling problems
with objectives that are a function of both job completion times and intermediate operation completion
times. This class of models is growing in importance as considerations such as holding cost reduction
and rescheduling become more important, and our approach works on any job shop scheduling problem

Bulbul and Kaminsky: An LP-Based General Method for Job Shop Scheduling 17

with operation completion time-related costs and any objective function for which the optimal timing
problem can be expressed as a linear program.

We use a decomposition approach to solve our problem, a variation of the celebrated shifting bot-
tleneck heuristic where the single-machine problems are defined using the dual variables from a linear
program to solve the optimal timing problem of partial schedules. To the best of our knowledge, this
is the first paper utilizing a linear program combined with a decomposition heuristic in this fashion,
and the first shifting-bottleneck-based heuristic that is broadly applicable to a large set of objectives
without modification. Our computational study focuses on problems with intermediate holding costs
and a variety of objectives, and demonstrates that our approach performs well on problems for which
we can determine optimal solutions, and is competitive with existing less general heuristics designed
for specific problems and objectives, particularly as holding cost becomes a more significant part of the
total cost.

There are several directions in which this research can be extended. The algorithms can be tested in
a variety of other settings, with different operation-related costs and objectives. Alternate subproblem
solution techniques can be evaluated. It might be possible to analytically bound the performance of
this approach. We are encouraged by the performance of our algorithms, and hope that the framework
outlined in this paper is adopted and extended by other researchers.

References

Adams,]., Balas, E., and Zawack, D. (1988). The shifting bottleneck procedure for job shop scheduling.
Management Science, 34(3):391-401.

Asadathorn, N. (1997). Scheduling of Assembly Type of Manufacturing Systems: Algorithms and Systems
Developments. PhD thesis, Department of Industrial Engineering, New Jersey Institute of Technology,
Newark, New Jersey.

Avci, S. and Storer, R. (2004). Compact local search neighborhoods for generalized scheduling. Working
paper.

Bulbul, K. (2002). Just-In-Time Scheduling with Inventory Holding Costs. PhD thesis, University of California
at Berkeley.

Bulbul, K. (2011). A hybrid shifting bottleneck-tabu search heuristic for the job
shop total weighted tardiness problem. Computers & Operations Research, 38(6):967-983.
http://dx.doi.org/10.1016/j.cor.2010.09.015.

Bulbul, K., Kaminsky, P., and Yano, C. (2004). Flow shop scheduling with earliness, tardiness and
intermediate inventory holding costs. Naval Research Logistics, 51(3):407-445.

Bulbul, K., Kaminsky, P, and Yano, C. (2007). Preemption in single machine earliness/tardiness schedul-
ing. Journal of Scheduling, 10(4-5):271-292.

Chang, S.-C. and Liao, D.-Y. (1994). Scheduling flexible flow shops with no setup effects. IEEE Transactions
on Robotics and Automation, 10(2):112-122.

Chang, Y. L., Sueyoshi, T., and Sullivan, R. (1996). Ranking dispatching rules by data envelopment
analysis in a jobshop environment. IIE Transactions, 28(8):631-642.

Demirkol, E., Mehta, S., and Uzsoy, R. (1997). A computational study of shifting bottleneck procedures
for shop scheduling problems. Journal of Heuristics, 3(2):111-137.

Dyer, M. and Wolsey, L. (1990). Formulating the single machine sequencing problem with release dates
as a mixed integer program. Discrete Applied Mathematics, 26(2-3):255-270.

Graham, R., Lawler, E., Lenstra, J., and Rinnooy Kan, A. (1979). Optimization and approximation in
deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics, 5:287-326.

18 Bulbul and Kaminsky: An LP-Based General Method for Job Shop Scheduling

Jayamohan, M. and Rajendran, C. (2004). Development and analysis of cost-based dispatching rules for
job shop scheduling. European Journal of Operations Research, 157(2):307-321.

Kaskavelis, C. and Caramanis, M. (1998). Efficient Lagrangian relaxation algorithms for industry size
job-shop scheduling problems. IIE Transactions, 30(11):1085-1097.

Kedad-Sidhoum, S. and Sourd, F. (2010). Fast neighborhood search for the single machine earliness-
tardiness scheduling problem. Computers & Operations Research, 37(8):1464-1471.

Kreipl, S. (2000). A large step random walk for minimizing total weighted tardiness in a job shop. Journal
of Scheduling, 3(3):125-138.

Kutanoglu, E. and Sabuncuoglu, L. (1999). An analysis of heuristics in a dynamic job shop with weighted
tardiness objectives. International Journal of Production Research, 37(1):165-187.

Laha, D. (2007). Heuristics and metaheuristics for solving scheduling problems. In Laha, D. and Mandal,
P, editors, Handbook of Computational Intelligence in Manufacturing and Production Management, chapter 1,
pages 1-18. Idea Group, Hershey, PA.

LEKIN®- Flexible Job-Shop Scheduling System (2002). Version 2.4.
http://www.stern.nyu.edu/om/software/lekin/index.htm.

Lenstra, J., Rinnooy Kan, A., and Brucker, P. (1977). Complexity of machine scheduling problems. Annals
of Discrete Mathematics, 1:343-362.

Mason, S., Fowler, J., and Carlyle, W. (2002). A modified shifting bottleneck heuristic for minimizing
total weighted tardiness in complex job shops. Journal of Scheduling, 5(3):247-262.

Ohta, H. and Nakatanieng, T. (2006). A heuristic job-shop scheduling algorithm to minimize the total
holding cost of completed and in-process products subject to no tardy jobs. International Journal of
Production Economics, 101(1):19-29.

Ovacik, I. M. and Uzsoy, R. (1996). Decomposition Methods for Complex Factory Scheduling Problems.
Springer.

Park, M.-W. and Kim, Y.-D. (2000). A branch and bound algorithm for a production scheduling problem in
an assembly system under due date constraints. European Journal of Operations Research, 123(3):504-518.

Pinedo, M. and Singer, M. (1999). A shifting bottleneck heuristic for minimizing the total weighted
tardiness in a job shop. Naval Research Logistics, 46(1):1-17.

Singer, M. (2001). Decomposition methods for large job shops. Computers & Operations Research, 28(3):193—
207.

Sourd, F. (2009). New exact algorithms for one-machine earliness-tardiness scheduling. INFORMS
Journal on Computing, 21(1):167-175.

Tanaka, S. and Fujikuma, S. (2008). An efficient exact algorithm for general single-machine scheduling
with machine idle time. In IEEE International Conference on Automation Science and Engineering, 2008.
CASE 2008, pages 371 -376.

Thiagarajan, S. and Rajendran, C. (2005). Scheduling in dynamic assembly job-shops to minimize the
sum of weighted earliness, weighted tardiness and weighted flowtime of jobs. Computers and Industrial
Engineering, 49(4):463-503.

Vepsalainen, A. P.]. and Morton, T. E. (1987). Priority rules for job shops with weighted tardiness costs.
Management Science, 33(8):1035-1047.

Xhafa, F. and Abraham, A., editors (2008). Metaheuristics for Scheduling in Industrial and Manufacturing
Applications, volume 128 of Studies in Computational Intelligence. Springer.

Bulbul and Kaminsky: An LP-Based General Method for Job Shop Scheduling 19

Appendix A. Development of €;; and 7t;; Recall that our goal is to demonstrate that the increase in
the optimal objective value of (TTJm)(M?®) due to an additional constraint (17) or (18) can be bounded
from below by applying sensitivity analysis to the optimal solution of (TTJm)(M®). This analysis
provides the unit earliness and tardiness costs of job j in the subproblem for machine i denoted by €;; and
m;j, respectively. We assume that the linear program (TTJm)(M®) is solved by the simplex algorithm,
and an optimal basic sequence 8 is available at the beginning of the current iteration.

Before we proceed with the analysis, we note that (TTJm)(M?) is an LP in standard form:

min ¢x (20)
Ax=Db (21)
x>0 (22)

where A is an (m X n) matrix of the coefficients of the structural constraints, c is a (1 X n) row vector
of the objective coefficients, and b is an (m X 1) column vector of the right hand side coefficients.
Given a basic sequence 8B corresponding to the indices of the m basic variables and the associated

- ,1 i
nonbasic sequence N, we also define Ag as the basis matrix, X = ())_:f/) = (A% b) = (l(;) as the

basic solution, §y = C3A‘,‘81 as the vector of dual variables, ¢ = ¢ — JA as the vector of reduced costs,
and A = (Ag Ay) = (Az’;lAgg A%IAN) = (I Ay) An optimal basic sequence 8 satisfies the
conditions:

Ax=b, x>0 (primal feasibility), (23)
€ >0 (dual feasibility), (24)
cx=0 (orcx=yb) (complementary slackness). (25)

In our notation, Z; and Z ; denote the ith row and jth column of a matrix Z, respectively.

Now, assume that (TTJm)(M?®) is solved by the simplex method, and an optimal basic sequence B is
available along with the optimal operation completion times C;fj. Then, we either add

Cij + Sij = dij -0 or Ci]' —8jj = dij +0 (26)
Sij 2 0 Sij 2 0

to this model, where d;; = lej. In either case, the model is expanded by one more constraint and one more
variable, and the current optimal solution does not satisfy (26) because 0 is strictly greater than zero and
sij = Oisrequired. However, we can easily construct a new basic solution to restart the optimization. This
basic solution violates primal feasibility (23) while preserving dual feasibility (24) as we show below.
Thus, we can continue with the dual simplex method in order to find the next optimal solution. In
the remainder of this section, we demonstrate that the first iteration of the dual simplex method can be
performed implicitly based on data readily available in the optimal basic solution of (TTJm)(M®). In
addition, the dual variable associated with (26) obtained from this iteration provides us with the unit
earliness or tardiness cost for job j in the single-machine subproblem of machine i.

The updated problem data after adding (26) and s;; are denoted by a prime: A’ = (A(A) (1)) or
m+1).

. (A o)., (b)\ [b\ ., (b [b\, ~
A _(A<m+1>. —1)’b _(bmﬂ)_(dif—é)orb _(bm+1)_(dif+5)'c = om)=

c 0), where the last column in A’ corresponds to the (n + 1)st variable s;;, A1), represents the
coefficients of the original variables in the (i + 1)st constraint (26), b,,+1 is the right hand side of (26),
and c,1 is the objective coefficient of s;;. In order to compute a basic solution, we need to associate a
basic variable with (26). A natural candidate is the slack/surplus variable s;; which leads to the new basic
sequence 8’ = B U {n + 1}. Then, the basis matrix is constructed as:

, Ag 0 , Ag 0
A, = or A, = , 27
B (Am+1,B 1) B (Am+1,‘B -1) ()
where the last column corresponds to s;; and A48 = (00 ... 1 ... 00)is a (1 X m) row vector of the

coefficients of the basic variables 8 in (26). Clearly, the coefficient 1 in A;,;1,8 corresponds to C;j because

20 Bulbul and Kaminsky: An LP-Based General Method for Job Shop Scheduling

the completion time variables are always positive and basic. Assuming that C;; is the jth basic variable,
the inverse of the basis is obtained as:

A 0 A 0
7 -1 B — B
As) ‘(~Anaghy 1)‘(-8, 1) >

A7l 0 A7l 0
7 -1 _ B _ B
(A ‘(AunsAy -1)‘((Az); —1) @9

where (Ag) j. is the row of A; associated with the basic variable C;;. The resulting basic solution is

- b
o[Xg N _ (P) _ (()b’) _| =& 29
. ()_‘;V’) (0 0 o *)

in both cases and violates primal feasibility because the new basic variable s;; = -0 is strictly negative.
Similarly, we compute

¥ =cpAp) " =(cs 0)AR)"=(y 0) (30)
and
“=cd-yA=(c 0)-(y 0)a=(c 0) (31)

in both cases. Note that & > 0 since € > 0 because 8 is an optimal basic sequence for (TTJm)(M?®). Thus,
$’ is primal infeasible and dual feasible which suggests that we can continue with the dual simplex
method. The basic variable s;; < 0 is the only candidate for the leaving variable. The entering variable ¢
is determined by the following ratio test in the dual simplex method:

— =/

C C

— L= max = - k (32)
Al M= AL L
where Agm . = (A)(‘Wf 1) A’. Plugging in the apPropriate expressions for (AiB,)(‘Wll). from (28) and A’
leads to the following explicit set of formulas for A¢
—-Ajj+1=0 forCj Ajj-1=0 forCy
ek =3 1 for s;; or sk =94 L fors;; +. (33)
—Aj o/w Aj o/w

Em+1)(n+1)

above. In addition, all components of Agm 41, corresponding to the remaining basic variables must be
zero, including those corresponding to the completion time variables. Inserting (31) and (33) into (32),
the ratio test takes the form:

Recall that s;; is the basic variable associated with row m + 1, and hence A = 1 must hold as

[¢ ¢ < ¢ c
X ¢ k t

L= max —— =——<0 or ' = max —~ = -
k#jl1A >0 —A]‘k —A]'t A klAj<0 A]‘k Ajt

<0. (34)

’ 7
(m+1)t (m+1)t

The crucial observation is that all quantities required to perform the ratio test (34) are computed based
on the current optimal basic sequence B of (TTJm)(M®).

Replacing s;; by variable t in the basic sequence 8’ leads to the new basic sequence 8” = BU {t}. Next,
we can carry out the pivoting operations in the simplex method. Here, we only need the updated dual

!/

variables §" and the new objective function value. The dual variables are determined using the formula

S (ap) (35)
LAV
A(m+1)t el

=/

y' =y +

Plugging in the relevant expressions, we obtain

(s 0)- (- 1)=(3rE@D E) o &0
]

ey 0)e (g 1)=(3rEa &) @)
]

Bulbul and Kaminsky: An LP-Based General Method for Job Shop Scheduling 21

Based on the conditions of the ratio test (34), we observe that the dual variable y | associated with the
new constramt (26) is nonpositive for C;; +s;; = d;j — 6 (C;; < d;; — 6) and nonnegative for C;; —s;; = djj + 6
(Cij 2 d;j + 0), as expected. We also note that information already present in the optimal basic solution of
(TTJm)(M°) is sufficient to compute y”’. Then, the objective value associated with 8" is calculated by:

WA < KYE -1y, _ & b - i TN _i o
7v'b —(y+ . (Ag); A;)(dij— 6)_yb+Ajt(AB)b Ajt(al,] 0)

= b+ g—fo‘ —§b-y/,.5>yb (becausey,, <0and > 0) (38)
jt
or
T WA < -1 _ & b 1 _ Ct -
v = (7+ (A Aﬂ)(d“é) yb+_ (A);b 5 +9)
=yb - g—té =yb+y,,,0>yb (because y/,., > 0and 6 > 0), (39)

jt

where (A,‘Bl)]-,b = Cj]. = d,j since (A%l)];b provides the optimal value of the jth basic variable in
(TTJm)(M°).

Finally, we prove Proposition 3.1, our main result in this section, which allows us to specify the
appropriate E/T cost parameters in the single-machine subproblems. Consider two successive iterations
kand k+ 1 of SB-TPD. In iteration k, the optimal timing problem (TTJm)(M?®) yields an optimal objective
value z(r1ym)(M®) and the optimal completion times C}; forall jand forall i = 1,...,m;. Next, machine
¥ is selected to be scheduled, and the optimal timing problem (TTJm)(M® U {i%}) is solved providing a
new set of optimal completion times Cl',], forall jand foralli =1,...,m;. Then, Proposition 3.1, which we
repeat below for completeness, establishes a lower bound on the increase in the objective value of the
optimal timing problem from iteration k to k + 1.

Proposition 3.1 Consider the optimal timing problems (TTJm)(M?®) and (TTJm)(M® U {i*}) solved in iterations
k and k + 1 of SB-TPD where i is the bottleneck machine in iteration k. For any operation o i if Cl’,bj =Cpj—oor

Cl’,h], = Ci; + 0 for some 6 > 0, then zrrym)(M® U {i}) = zrrym)(M®) 2| 3/, | 6 2 0, where §" is as defined in
(36)-(37).

Proor. We refer to the optimal timing problem (TTJm)(M?®) with the appropriate additional con-
straint Cpj < dpj— 0 or Cp; > dp; + 0 as (TTJm)’(M°). The optimal objective value of (TTJm)'(M®) is
denoted by zrrymy (M®).

The optimal solution of (TTJm)(M? U {i’}) satisfies all constraints present in (TTJm)’(M?®), in addition
to the machine capacity constraints for machine i*. Therefore, z(TTJm)(MS U {i’}) can be no less than
Z(TTJmy (M°), and we can prove the desired result by showing that z(rrjmy (M) > Z(TTJm) (M) - y, .0 o0r
z(rTymy (M®) > Z(r1ym)(M®)+37/ 6 as appropriate. Clearly, we can solve (TTJm)’(M®) by starting from the
optimal solution of (TTJm)(M?°) and applying the dual simplex method as discussed above. From (38)-
(39), we already know that the increase in the objective function in the first iteration of the dual simplex
method is at least —y)’ 6 > 0or +y,, 6 > 0if Cp; < dp; — 6 or Cpj > dyp; + 6 is added to (TTJm)(M°),
respectively. The proof is completed by noting that the dual simplex method produces non-decreasing
objective values over the iterations. So, we have Z(TT]m)(MS U {i}) > zermymy (M®) > zerrym)(MP) — 377,06
or Zerrym)(M® U {i}) > Z(rrymy (M®) = zer1ym)(M°) + §7/,,6 as desired. o

Based on Proposition 3.1, if the completion time of 0;; decreases by 6 time units in the optimal

timing problem after inserting some set of disjunctive arcs on machine ¥, then the increase in the
optimal objective function is no less than —y”’ 6. This allows us to interpret the quantity -y’ | as the

unit earliness cost of operation o;; in the subproblem of machine i, ie., we set €;j = -y, +1 = =
Jt
- =& - _
man¢]|A}k>o A as in (19). A similar argument leads to 7;; =y’ | = A, = T MaXgau<0 &, A for the

corresponding unit tardiness cost.

Next, we investigate whether the approach presented here can be extended to multiple implicit dual
simplex iterations that would allow us to construct a better approximation of the actual cost function for

22 Bulbul and Kaminsky: An LP-Based General Method for Job Shop Scheduling

Cij depicted in Figure 2. To this end, using the formula
=/ é; A/
=0 - AL (40)
(m+1)t

and inserting the expressions for ¢’ and Agm 41, from (31) and (33) respectively, we first calculate the set

of reduced costs & resulting from the first pivoting operation:

6. — S .0= , 6. — .0 = .
c = v 0=0 forC;j Cx A; 0=0 for C;;
- _) o6, — & 1 =% .) e & = & ..
T =9 % A, 1= A for Sij or ¢ =9 % A 1= A for Sij , (41)
6. — S A G, — St A
& — Ak o/w S v Aj o/w

where all required quantities are readily available in the optimal basic solution of (TTJm)(M®) as before.
We also observe that the updated reduced cost of s;; is nonnegative in both cases as required in the dual
simplex method. Then, b” is computed based on:

_ A -
_ b) - b’ izm+1
by =1) e : (42)
Afmﬂ)lbm“ i=m+1
Substituting b’ and Azm) from (29) and (33) respectively, we obtain the new values of the basic variables:
= A/ = A/
_ bi+—=-06 i#m+1 _ i+ 20 i#Em+1
bll-, = { bl —Ajt . 1 } or bl,/ = { _lb Aje - 1 }/ (43)
A—/_' 1=m+ A—“ 1=m+

where b” | > 0 in both cases for the new basic variable . Until now, we have only used information
that is readily available in the current basic optimal solution of (TTJm)(M?®) and made no assumptions
other than linearity regarding the specific objective or constraints of the job shop scheduling problem
(Jm). However, computing (43) cannot be accomplished without compromising the generality of the
analysis. Observe that the entering variable t is determined by the ratio test in (34) and may be different
for each operation o;;. Furthermore, in (43) we have A/, = (A ,)‘1Af ., where the entries of A’, are given by
the specific formulation under consideration. Consequently, the next basic sequence 8", the associated
values for the basic variables, and the resulting leaving variable all depend on o;; and the specific job
shop problem of interest. We conclude that we no longer have a single basis that allows us to compute
all required quantities as efficiently as in (19). Estimating the actual cost function in Figure (2) more
accurately boils down to solving an LP with a parametric right hand side per operation o;j, i € M\ M®,
j € Ji. We refrain from this in order to retain the generality of our proposed approach and avoid the
extra computational burden. Furthermore, our numerical results in Section 4 clearly demonstrate that
the information retrieved from the subproblems is sufficiently accurate in a great majority of cases.

Appendix B. Computing €;; and 7;; Efficiently A fundamental implementation issue is computing
the cost coefficients ¢;; and 7t;; in the single-machine subproblems efficiently. The analysis in Appendix
A reveals that the only information required to this end is the reduced costs of the nonbasic variables
and the rows of A associated with the completion time variables in a basic optimal solution of the current
optimal timing problem. This information may be directly available from the linear programming solver
employed to solve the optimal timing problem. Otherwise, the computational burden of computing A}!
renders this step time consuming. In this section, we show how Ag and A can be computed efficiently

for (TTJm) by exploiting the structure and sparsity of A. In this analysis, we only assume that the
basic sequence B and the corresponding nonbasic sequence N associated with the optimal basis of the
current timing problem are available. Denoting the number of operations by ¢t = }.7_; m;, we note that
the optimal basis is a g X ¢ matrix and has the following block form

T U) (44)

As :(vV W
where T is a t X t square matrix composed of the coefficients of the completion time variables (all

completion time variables are always basic) in the ready time and operation precedence constraints
(2)-(3), Uis a t X (g — t) matrix of the coefficients of the remaining basic variables in the same constraints,

Bulbul and Kaminsky: An LP-Based General Method for Job Shop Scheduling 23

Vis a (g — t) X t matrix of the coefficients of the completion time variables in the last 4 — t constraints
(7),(8), (12), and W is a (g — t) X (g — t) matrix of the coefficients of the remaining basic variables in the
same constraints. Then, Aél is obtained as

-1 _
Ay =

-1 -1 -1 -1 _7-1 -1
T 1+ TUZ VT T'UZ) (45)

-Z7'VT! zZ!

where Z = W — VT~!U is the Schur complement of T. It is a simple exercise to show that T is invertible,
and Z must be invertible because Ag is invertible. An important property of (TTJm) is that all variables

in (TTJm) except for the completion time variables and the makespan variable are either slack or surplus
variables with a single nonzero coefficient in the corresponding column of A.

For computing the values of €;; and 7;; for an operation 0;; as defined in (19), we only need the entries
of the row A]; = (Ag) A corresponding to the nonbasic variables, where C;; is the jth basic variable as in
Appendix A. We denote these entries by A y. Thus, computing the cost coefficients in all single-machine
subproblems requires no more than computing the first t rows of A given by the first row of (45). We
detail the steps of this task below, where representing a matrix M in sparse form refers to storing the
nonzero entries of M column by column in a single vector while the corresponding row indices are saved
in a separate vector. A third vector holds a pointer to the last entry of each column in the other two
vectors.

T~! is computed only once during the initialization of the algorithm and saved in sparse form. Then,
we perform the following steps each time we need to set up the single-machine subproblems after

optimizing (Tﬁ"]\m):

1. Store U in sparse form by noting that all nonzero coefficients in U correspond to the waiting time
variables.

2. Compute VT ! row by row in dense form by observing the following:

a. In arow of V corresponding to a due date constraint (7) or a Crmax constraint (8) for job j, there is a
single entry +1 in the column corresponding to C,, ;.

b. A row of V corresponding to a machine capacity constraint (12) includes exactly two nonzero coef-
ficients +1 and —1 corresponding to two consecutive operations performed on the same machine.

3. Compute —VT'U in dense form by re-arranging the columns of VT~! and observing the following:
a. There is exactly a single nonzero entry +1 or —1 in the columns of U corresponding to the waiting

time variables.
b. All other columns of U are identical to zero.

4. Compute Z = W — VI~'U in dense form. W is retrieved column by column in sparse form, and the
nonzero entries are added to the appropriate entries of —~VT~'U calculated in the previous step. We
can completely disregard the waiting time variables in this step because the associated coefficients in
W are all zero.

5. Compute Z.

6. Compute T'UZ™! and -T~'UZ™! in dense form:

a. The nonzero entries in a given row of T-'U may be determined by using T~! and U already stored
in sparse form. Since there is at most a single nonzero entry in each column of U, we can traverse

the columns of T™! in the order specified by the associated row indices of the nonzero entries in U
and easily calculate the nonzero entries of T~'U in the specified row.

b. T'UZ™! and —~T"'UZ! are then computed row by row in dense form by taking linear combinations
of the rows of Z™! as specified by the nonzero entries in the rows of T~!U calculated above.

7. Compute T 1+ T 'UZ VT in dense form by multiplying T-1UZ' and VT}, and then adding T!
available in sparse form to the result.

8. For the objective function coefficients of the operations in the single-machine subproblems, we need
to compute the first f rows of A y = AgA. n- This is performed column by column for each k € N. We
have Ay = A;A,k, where A includes a single nonzero entry +1 or —1 because all nonbasic variables
in (TTJm) are either slack or surplus variables. Thus, we simply need to retrieve the first ¢ entries in
the proper column of A;! computed previously and multiply them with —1 if necessary.

24 Bulbul and Kaminsky: An LP-Based General Method for Job Shop Scheduling

Appendix C. Solution Quality vs. Time

C.1 Job Shop Total Weighted E/T Problem With Intermediate Inventory Holding Costs To inves-
tigate the behavior of SB-TPD over the course of the algorithm, we present a detailed analysis of the
solution quality versus the solution time and the number of feasible schedules constructed in SB-TPD in
Figure 3.

To this end, we take a snapshot of the optimality gaps after 60, 120, 180, 300, 450, and 600 seconds of
solution time and depict the empirical cumulative distributions of these gaps for f = 1.0,1.3, f = 1.5,
and f = 1.7,2.0 in 3(a), 3(c), and 3(e), respectively. In these figures, gaps larger than 100% appear as
100%. After 120 seconds of solution time, 4.5% (4 out of 88), 27.3% (12 out of 44), and 73.9% (65 out
of 88) of the instances are within 10% of the best solution for f = 1.0,1.3, f = 1.5, and f = 1.7,2.0,
respectively. The corresponding figures after 300 seconds of solution time are obtained as 14.8% (13 out
of 88), 54.5% (24 out of 44), and 89.8% (79 out of 88). For f = 1.0,1.3, the gaps are no more than 5% and
10% for 13.6% (12 out of 88) and 27.3% (24 out of 88) of the instances after 600 seconds of solution time,
respectively. For f = 1.5, 40.9% (18 out of 44) and 65.9% (29 out of 44) of the instances are within 3%
and 10% of the best solution after 600 seconds of solution time, respectively. For f = 1.7,2.0, the best
solution is obtained for 44.3% (39 out of 88) of the instances in 600 seconds of solution time, and the gap
is within 5% for 85.2% (75 out of 88) of the instances while this number increases to 95.5% (84 out of 88)
for a gap of at most 10%. Similar figures are produced for the number feasible schedules constructed
in SB-TPD and appear on the right hand side in Figure 3. Note that each leaf node in the search tree

in SB-TPD corresponds to a feasible schedule for (Jm). Intuitively, if the shifting bottleneck framework
performs well, then good solutions should be identified early in the search tree. These figures indicate
that with as few as 100 feasible schedules constructed over the entire course of the algorithm high quality
solutions are obtained. Furthermore, these figures attest to the enhanced performance of our heuristic as
f grows. With increasing f, we come across excellent solutions very early in the algorithm. For instance,
for f = 1.5 the best available solutions are identified in more than 20% of the instances with at most 20
feasible schedules. This figure increases to above 25% for f = 1.7,2.0.

C.2 Job Shop Total Weighted Completion Time Problem with Intermediate Inventory Holding
Costs For this case, we see in Figure 4(b) that the very first schedule constructed achieves a gap of no
more than 10% with respect to the best available solution in more than 1/3 of the instances. With at most
10 feasible schedules constructed, the gap is reduced to less than 5% in more than 50% of the instances.

C.3 Job Shop Makespan Problem with Intermediate Inventory Holding Costs The effectiveness
of SB-TPD for this problem is readily apparent from Figure 5(b). The very first schedule constructed is
no more than 15% away from the best known solution for 30% (13 out of 44) of the instances. With at
most 10 feasible schedules constructed, this gap falls below 10% in 50% of the instances.

Bulbul and Kaminsky: An LP-Based General Method for Job Shop Scheduling

25

Cumulative Probability

Cumulative Probability

Cumulative Probability

o
ey
T

o
o
T

o
=
T

o
w

0.2

01

i i i i 1
0 10 20 30 40 50 60 70
Percentage Gap

@) f=10,13.

0.9

o

o
@

o
=

o
w

—+— 60 sec.
—6— 120 sec.
x - 180 sec.
5 —%— 300 sec.
0.1 —6— 450 sec.
* - 600 sec.
—%— > 600 sec.
. T

1 i i i i 1 i
0 10 20 30 40 50 60 70 80 9 100
Percentage Gap

(© f=15.

—*— 60 sec.
—6— 120 sec.

x - 180 sec.
—— 300 sec.
—6— 450 sec.

* - 600 sec.
—*— > 600 sec.

T T

i 1 i i i i 1 i
0 10 20 30 40 50 60 70 80 9 100
Percentage Gap

(e) f=17,20.

Cumulative Probability

Cumulative Probability

Cumulative Probability

09
0.8
0.7
0.6
051
0.4
03 —— 1 schedule
—=&— 10 schedules
* - 20 schedules
02 —#— 30 schedules
—6— 40 schedules
* - 50 schedules

—%— 75 schedules
—©6— 100 schedules
X - >100 schedules

; 1 i]
0 10 20 30 40 50 60 70 80 90 100
Percentage Gap

() f=10,13.

0.9

0.8

0.7

0.

05

0.4

0.3 —— 1 schedule
—=6— 10 schedules

* - 20 schedules
0.2

—#*— 30 schedules
—©6— 40 schedules
x - 50 schedules
0.1f —%— 75 schedules
—©6— 100 schedules
X - >100 schedules
T T

i i i 1 1 i T
10 20 30 40 50 60 70 80 90 100
Percentage Gap

d) f=15.

0.9%

0.8

o

—%— 1 schedule
—©6— 10 schedules
4 % - 20 schedules
0. : —#— 30 schedules
F —6— 40 schedules
* - 50 schedules
0.1 4 —#— 75 schedules
—©6— 100 schedules
* - >100 schedules
T T

i i i 1 1 i T
0 10 20 30 40 50 60 70 80 90 100
Percentage Gap

® f=17,20.

Figure 3: The progress of the solution gaps with respect to the best available solution for the job shop
total weighted E/T problem with intermediate inventory holding costs.

26 Bulbul and Kaminsky: An LP-Based General Method for Job Shop Scheduling

09 o SN 09

o

=
T
o
3

z z
5 osf 5 o0
£ E
S S
o ['%
o 05F o 05
2 2
8 8
E]]
E o4 E 04
5 5
o s}
03 03 —— 1 schedule
—6— 10 schedules
60 sec. * - 20 schedules
—&— 120 sec. 02 —#— 30 schedules
x - 180 sec. —6— 40 schedules
—%— 300 sec. x50 schedules
—o— 450 sec. 01 —+— 75 schedules
X 600 sec. —6— 100 schedules
—+— > 600 sec. x - >100 schedules
i T

20 30
Percentage Gap

(@) (b)

10
Percentage Gap

Figure 4: The progress of the solution gaps with respect to the best available solution for the job shop
total weighted completion time problem with intermediate inventory holding costs.

0.9

07

Cumulative Probability
Cumulative Probability

03

—*— 1 schedule
—©— 10 schedules
* - 20 schedules

—*— 60 sec.

o. —o— 120 sec. —%— 30 schedules
x - 180 sec. —6— 40 schedules
—— 300 sec. * - 50 schedules
0.1 —6— 450 sec. —+— 75 schedules
* 600 sec. —6— 100 schedules
—%— > 600 sec. * - >100 schedules
i i T 1 1 T i
10 20 30 10 20 30 40 50
Percentage Gap Percentage Gap

(@) (b)

Figure 5: The progress of the solution gaps with respect to the best available solution for the job shop
makespan problem with intermediate inventory holding costs.

