
HaG: Hash Graph Based Key Predistribution Scheme
for Multiphase Wireless Sensor Networks

Salim Sarımurat and Albert Levi
Computer Science and Engineering

Sabanci University
Istanbul, Turkey

{sarimurat, levi}@sabanciuniv.edu

Abstract—Wireless Sensor Networks (WSN) consist of small
sensor nodes which operate until their energy reserve is depleted.
These nodes are generally deployed to the environments where
network lifespan is much longer than the lifetime of a node.
Therefore, WSN are typically operated in a multiphase fashion,
as in [1-3, 9-10], which use different key pools for nodes deployed
at different generations. In multiphase WSN, new nodes are
periodically deployed to the environment to ensure constant local
and global network connectivity. Also, key ring of these newly
deployed nodes is selected from their deployment generation key
pool to improve the resiliency of WSN. In this paper, we propose
a key predistribution scheme for multiphase WSN which is
resilient against permanent and temporary node capture attacks.
In our Hash Graph based (HaG) scheme, every generation has its
own key pool which is generated using the key pool of the
previous generation. This allows nodes deployed at different
generations to have the ability to establish secure channels.
Likewise, a captured node can only be used to obtain keys for a
limited amount of successive generations. We compare the
connectivity and resiliency performance of our scheme with other
multiphase key predistribution schemes and show that our
scheme performs better when the attack rate is low. When the
attack rate is high, our scheme still has better resiliency
performance inasmuch as using less key ring size compared to
the existing multiphase schemes.

Keywords—Wireless sensor networks, security, key
predistribution, generation keys, multiphase.

I. INTRODUCTION

Wireless Sensor Networks (WSN) are composed of sensor
nodes which have limited amount of memory, energy and
computation power. In typical application settings, sensor
nodes are spread randomly over an environment and collect
data that is transferred to a trusted central point for further
examination [4]. Most of these application scenarios require
long term sensing of the environment and energy reserve of the
sensor nodes last for a very limited time. Therefore, deploying
new nodes to the environment in certain intervals, called
generations, is the only way to have stable network
connectivity. Since the network lifespan is much longer than
the lifetime of a sensor node, it is most likely that we have
multiple generations while sensing an environment. Networks
that provide this property are called Multiphase WSN.

This paper presents a new key predistribution scheme based
on hash graphs of keys that provides secure communication
between sensor nodes deployed at different generations. In our

Hash Graph based (HaG) scheme, each deployment generation
has its own key pool and these pools are generated using the
pool of the previous generation. Key pool of the first
generation is randomly generated and the subsequent
generations use two consecutive keys of the preceding
generation to form a key for the next generation. More
specifically, two sequential keys are XORed (i.e. logical
Exclusive Disjunction operation) and hashed together using a
secure hash function to constitute a key of the next generation
key pool. When two nodes are in the communication range,
they use the generation that they have been deployed to the
network in conjunction with the identification numbers to
decide whether they have a common key or not. If they can
find at least one common key, then nodes perform XOR
operation on all common keys to generate a direct link key that
is used for secure communication. With the HaG scheme, a
temporary attacker can only compromise some portion of the
network and right after the attack stops, scheme self-heals the
keys until the compromised key ratio decreases to zero.
Similarly, a permanent attacker is only able to compromise
some steady fraction of the network. Compared to other
multiphase schemes, HaG scheme provides better in resiliency
if the attack rate is low. If the attack rate is high, we have some
considerable improvements on the resiliency as well. Using a
smaller amount of keys, HaG scheme delivers same
connectivity rate with better resiliency performance.

The rest of this paper is organized as follows. The next
section summarizes existing key predistribution methods. We
provide detailed information about the scheme that we are
proposing in Section III. Section IV discusses the comparative
performance evaluation of our scheme and RoK scheme and
finally Section V concludes the paper.

II. RELATED WORK

Depending on the application area of the WSN, security of the
communication becomes an important criterion. There exist
various solutions to the key predistribution problem, such as
full pairwise [5], probabilistic [5, 6] and matrix-based
approaches [7, 8]. Full pairwise scheme proposed by Chan et
al. loads pairwise keys to every node of the nodes in
the network [5]. Although this scheme provides high level of
security, it requires high amount of memory on the sensor
nodes to store pairwise keys. Besides, addition of new nodes to
the network is only possible if pairwise keys of them are
preloaded to the nodes that are deployed before.

This work was supported by the Scientific and Technological Research
Council of Turkey (TUBITAK) under grant 110E180.

978-1-4673-3122-7/13/$31.00 ©2013 IEEE

IEEE ICC 2013 - Communication and Information Systems Security Symposium

2079

In probabilistic schemes, nodes receive a group of
randomly selected keys, amount of which is enough for having
a good connectivity percentage over the network. Although
probabilistic schemes are less secure compared to the full
pairwise scheme, they circumvent the memory overhead and
require nodes to store only some predefined amount of keys in
their memory. Practically all of the probabilistic schemes have
three stages: key predistribution, shared key discovery and path
key establishment. Eschenauer and Gligor’s well-known Basic
Scheme [6] is one example for the probabilistic schemes. In
key predistribution phase, each sensor node is loaded with
keys that are randomly selected from a key pool of size
where . After deployment, sensor nodes try to discover
their neighbors. When two neighboring nodes find at least one
common key, then they can create a direct link to communicate
securely. If no common key exists, then nodes start the path
key establishment phase and they try to create a direct link with
the help of their common neighbors. When we evaluate the
performance of the Basic scheme, since , majority of the
keys will be loaded on multiple nodes and this decreases the
resiliency. Finding neighbors with common keys, called local
connectivity, is also an important criterion of the WSN,
therefore the value of should be selected wisely to balance
resiliency and local connectivity. Considering this weakness of
the Basic Scheme, Chan et al. [5] have proposed a modification
on the Basic Scheme, known as Q-Composite Scheme, which
requires two nodes to have at least keys in common in
order to establish a secure direct link. This improvement
increases the resiliency of the scheme, but decreases the
connectivity of the network.

In the literature, we also have deterministic key
predistribution approaches which are developed from the idea
of Blom [7]. Generating one public and one private matrices
and storing only keys from these matrices allow the
nodes to generate a secure direct key with any of the nodes in
the network. However, compromising more than nodes in
the network will compromise all of the keys used in the
network. Du et al. [8] propose a combination of the Basic
Scheme [6] and Blom’s Scheme [7] without increasing value.
This Multiple Space Key Predistribution scheme provides very
good resilience but it has higher memory requirement and
communication overhead.

Up to now, all discussed key predistribution schemes are
intended for single phase WSN. Even though they allow node
additions to the network, it is not a stress-free and secure
operation. Furthermore, modification of single phase WSN key
predistribution solutions to adapt multiphase network has the
weakness of continuous usage of the same key pool for
multiple generations. Keys captured by an attacker at any time
can be used in the course of the network’s operation time.
However, with multiphase WSN, we can use different
generation pools that are completely different from the key
pools used in other generations. This way, an attacker would
only be able to compromise some portion of the network and
after some time, the percentage of the compromised nodes will
become stable if the attack is permanent. To the best of our
knowledge, there are only a few key predistribution schemes
addressing multiple deployments of the sensor nodes, i.e.
multiphase WSN [1-4, 9-10].

Robust Key predistribution (RoK) scheme is a multiphase
scheme proposed by Castelluccia et al. [1]. RoK has forward
and backward key pools for each generation. Keys in these
pools are randomly generated and they are updated in forward
and backward orders by hashing. Nodes are loaded with equal
number of keys having the same key identifier from forward
and backward key pools. Lifetime of node is constrained by

 generations where is the deployment generation of the
node and is the generation window. A node can only
produce forward keys for generation j where , and
backward keys for generation j where . When
two nodes are in communication range, they exchange their
generation number and node identifier. Using these values,
they calculate the identifier of the keys that are loaded on the
node to be communicated and if they find at least one match,
then they create the session key and start the secure
communication. When an attacker captures a node from
generation , he would only be able to compromise keys that
are used between generations because of the
generation window boundary. Therefore, attacker should be
capture at some rate permanently to have some portion of the
network compromised. Even if he permanently captures nodes,
he would only be able to compromise some portion of the
network and as soon as he stops the captures, this percentage
will start decreasing and become zero after some time.
However, this scheme requires number of generations to be
determined before starting the network because of the offline
backward key pool generation phase. Also, sensor nodes use
high computational power to update forward keys at every
generation time.

Random Generation Material (RGM) scheme [2-3] is
another multiphase WSN key predistribution method proposal.
RGM scheme has one key pool for every generation and there
is no relation between key pools of different generations.
Nodes are loaded with generation keys where is the
generation that the node is deployed and is the identification
number of the key. Communication between different
generations is provided with keys that are generated by
XORing the keys between the generations of two nodes. Then
the XORed key is hashed and used to create a direct link
between two nodes in different generations. Compared to the
RoK scheme, RGM has better resilience because keys
compromised from two nodes are only used in the generations
that these nodes are deployed. Also, RGM has no limit on the
deployment of the number of nodes to the network. However,
increasing value also increases the communication and
computation cost of this scheme.

III. PROPOSED SCHEME

This section describes our hash graph based key
predistribution scheme proposal for multiphase wireless sensor
networks.

A. Overview

Sensor nodes have very limited amount of energy reserve
that limits their lifetime to a small period of time. Typically,
this limited lifetime of sensor nodes is very short compared to
the lifetime of the network. Hence, new sensor nodes need to
be deployed to the network in some intervals called
generations.

2080

The symbols and notations we use for our scheme in the
rest of the paper are listed in Table I below.

TABLE I. LIST OF SYMBOLS USED IN OUR SCHEME

Symbol Definition

 Key pool size

 Generation window

 Key pool at generation

 Key ring of node at generation

 Key with index at generation

 Key group with index at generation

 Direct link key between nodes and

Secure hash function

Hash function

 Number of key ring groups that are drawn from key pool

 Number of key groups in the key ring of a node

Number of keys in the key ring of a node at the initial
deployment time

Lifetime of a sensor is bounded by generations, which
is referred as generation window, as in [1]. A node deployed at
generation will drain its battery before generation and
each generation period is assumed to be 1 in the rest of the
paper. A node that is deployed at generation should be able to
establish a secure channel with the nodes that are deployed
between generation periods.

There are three procedures for our scheme: key pool
generation, key ring predistribution and pairwise key
establishment. Specifics of these procedures are explained in
the subsections below.

B. Key Pool Generation

Key pool of our scheme is updated at each generation. Our
initial key pool has P randomly generated keys. When the
generation period ends, two consecutive keys are XORed and
hashed with a secure hash function , such
as SHA1, to generate one key from key pool of the next
generation.

Initial key pool of the network is defined as follows:

where each value is randomly generated.

The construction process of the generation key graph
structure is depicted in Figure 1 below. To put it in more
concrete terms: if the key pool at generation is defined as

, then key pool at generation
 is where

. To reserve the key pool size P in every
generation, key is generated randomly and added to the
end of key pool.

C. Key Ring Predistribution

In our scheme, we pre-distribute keys in groups of keys
from the generation key pool of size . Each node has keys
that can be used to communicate with other nodes that are
deployed to the environment at the same generation. Thus,
nodes are loaded with different key groups from the
key pool of their deployment generation. These key groups are
selected using a pseudorandom function which does not
produce consecutive numbers for the same node. For example,
the first key group of the node A deployed at generation is

 which contains keys in
 range.

Figure 1. Key pool generation and pairwise key estanblishment in our scheme

2081

More precisely, key ring of node is constructed as:

where .

Distribution of keys in groups allows nodes to have better
chances of communication with nodes deployed in the future
generations. We also make sure that our pseudorandom
function does not give two consecutive group numbers
for the same node; because this will give the attacker the
advantage to compromise keys for more generations, and
eventually reduce the resiliency of the scheme faster. For the
same reason, we suggest that the number of keys in groups,
value, should be determined close to ; based on the
observations on age distribution of the nodes provided in [1].

When the generation period ends, nodes should
immediately generate the keys of the succeeding generation
and delete the keys from the past generation key pool. This
improves the resiliency of the network intensely because
nodes that are not yet captured by an attacker will not disclose
as much key as they would, if they were to store the keys of
the past generations.

Our scheme has both forward and backward secrecy
features. Forward secrecy, meaning the security of the future
generation keys, is provided by using two sequential keys to
produce a key in the next generation. If an attacker captures a
node, he will only be able to compromise keys for
generations. Backward secrecy, meaning the security of past
keys, is provided by the secure hash function and attacker
is not able to recover any of the past keys even he captures all
of the alive nodes in the network.

D. Pairwise Key Establishment

Nodes start pairwise key establishment phase right after
being deployed to the environment. When a sensor node A,
with node identifier , is deployed to the network at
generation , it broadcast a message containing these values.
Neighbor nodes can use this message to construct the key ring

 and using this key list, they can check whether they have
at least one key in common or not.

If node A is deployed at generation and node B is
deployed at generation where , then they can find a
common key in generation interval. If they find at
least one common key, then they XOR all common keys and
then hash them to generate which will be used to secure
the communication between nodes A and B.

E. Example

In this section, we provide an example for the pairwise key
establishment phase. As seen in Figure 1, we have two nodes,
A and B, that are deployed at generations and
consecutively, with a generation window . Key rings of
these nodes are as follows:

Using these keys, node A and B can only communicate in
generations and using the set of

 keys in

and manner. However, they cannot
communicate in any other generation using these two key
groups.

IV. PERFORMANCE EVALUATION

A. Simulation Setup

We performed several simulations and compared our
scheme with RoK scheme. In these simulations, we have set
the key pool size to 10,000 keys for both schemes. We have
placed sensor nodes to the environment in totally random
manner to have more realistic simulations. We have used 1,000
sensors on square environment.
Communication range for nodes is set to . is set to 10
and sensor nodes have a random lifetime that is determined
using a Normal distribution function with mean and
standard deviation as in [1]. As explained before,
value is set to be 5 which is . We have also assumed that
each generation consists of 10 small time units called rounds.
Dead nodes are replaced with new randomly placed nodes at
the beginning of each generation. Simulations are run for 30
generations. Also, we have run all of our simulations for 25
times and took their average values.

B. Connectivity Analysis

Simulations on connectivity analysis of RoK and HaG
schemes are done using key ring sizes of 200, 220 and 250
keys. Nodes are moved using random walk mobility model and
no changes observed for different network topologies.

Global Connectivity of the network stands for the
percentage of the largest key sharing graph members over the
size of the network. With the specified key ring sizes, both
RoK and our scheme have 100% global connectivity.

Local Connectivity stands for the probability that any two
neighbor sensor nodes share at least one common key in their
ring. Figure 2 shows the Local Connectivity values for both
RoK and HaG schemes using different key ring sizes. As seen
from this figure, nodes in both schemes have 0.8 Local
Connectivity value when using 220 keys for HaG scheme and
250 keys for RoK scheme. For a WSN, having 80% Local
Connectivity can be considered as more than enough for secure
communication in the network.

Figure 2. Local Connectivity of Rok and Our Scheme

2082

C. Resiliency Analysis

In our simulations, attacker actively captures 1, 3 and 5
random nodes per round and compromises all of the keys
available in their memory. Key ring size is set to 220 for HaG
scheme and 250 for RoK scheme in order to have the same
local connectivity value, which is around 0.8 as seen in Figure
2. Figure 3 and 4 shows the resiliency comparison of RoK
scheme and our scheme; the lower the resiliency, the better. In
summary, our simulations have shown that HaG scheme
outperforms RoK scheme in resiliency by using smaller key
ring size.

Active resiliency ratio is calculated using nodes that are
currently alive and has some keys compromised because
attacker has captured some other nodes that are able to
communicate. As it can be seen in Figure 3, active resiliency
ratio reaches its highest value in around 10th generation when
most of the nodes that are deployed at the 5th generation are
still alive. After 10th generation, nodes that are deployed at 5th
generation start to die because their lifetime is determined with
the aforementioned Normal distribution. Our results show that
our scheme performs nearly 50% better when the attack rate is
low, i.e. attacker captures 1 node per round. Although
increasing attack rate affects the performance of our scheme
negatively and it increases in a faster way, our results are still
better than RoK scheme with attack rate of 5 nodes per round.

Figure 3. Active Resiliency of RoK and Our Scheme with an eager attacker

having capture rates of 1, 3 and 5 nodes per round

Figure 4. Total Resiliency of RoK and Our Scheme with a temporary

attacker having capture rates of 1, 3 and 5 nodes per round

Total resiliency is calculated by considering all dead (i.e.
captured) or alive links that are established over the course of
the network. Our simulations have shown that total resiliency
of HaG scheme also outperforms the RoK scheme as it can be
seen in Figure 4. Similar to the active resiliency, HaG scheme
has nearly 50% better results when the attack rate is low. When
the attack rate increases, HaG scheme still has lower total
resiliency rate compared to the RoK scheme.

V. CONCLUSION

In this paper, we propose a new key predistribution scheme
that is designed for multiphase wireless sensor networks. Our
scheme starts with an initial set of random key pool that
evolves over time, in a graph fashion, to generate key pools for
the subsequent generations. Sensors deployed at different
generations start with a key ring that is randomly selected from
the key pool of their deployment generation in groups.
Deploying keys in groups increase connectivity and decreases
resiliency. An attacker capturing a node can only compromise
keys for generations bounded by the key group size.

Our simulations have shown that after anchoring the local
connectivity value to 0.8 for both our scheme and RoK scheme,
resiliency performance of our scheme is 50% better when the
attack rate is small. When the attack rate increases, our scheme
performs at a rate that is close to the performance of RoK but
still better.

REFERENCES
[1] C. Castelluccia and A. Spognardi, “RoK: A robust key pre-distribution

protocol for multi-phase wireless sensor networks,” in Proceedings of
the 3rd International Conference on Security and Privacy in
Communications Networks, 2007, pp. 351–360.

[2] M. Ergun, A. Levi and E. Savas, “A resilient key pre-distribution
scheme for multiphase wireless sensor networks,” in Proceedings of the
24th International Symposium on Computer and Information Sciences,
IEEE Computer Society, Washington, DC, USA, 2009, pp. 375–380.

[3] M. Ergun, A. Levi and E. Savas, “Increasing Resiliency in Multi-phase
Wireless Sensor Networks: Generationwise Key Predistribution
Approach,” in The Computer Journal, vol. 54 (4), pp. 602–616, 2011.

[4] M. A. Simplício, Jr., P. S. L. M. Barreto, C. B. Margi and T. C. M. B.
Carvalho, “A survey on key management mechanisms for distributed
Wireless Sensor Networks,” in Computer Networks, vol. 54 (15), pp.
2591-2612, October, 2010.

[5] H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes
for sensor networks,” in Proceedings of the 2003 IEEE Symposium on
Security and Privacy, Washington, DC, USA, 2003, pp. 197–213.

[6] L. Eschenauer and V. D. Gligor, “A key-management scheme for
distributed sensor networks,” in Proceedings of the 9th ACM Conference
on Computer and Communications Security, 2002, pp. 41–47.

[7] R. Blom, “An optimal class of symmetric key generation systems,” in
Proceedings of the EUROCRYPT 84 Workshop on Advances in
Cryptology, Springer, Berlin, 1985, pp. 335–338.

[8] W. Du, J. Deng, Y. S. Han, P. K. Varshney, J. Katz and A. Khalili, “A
pairwise key pre-distribution scheme for wireless sensor networks,”
ACM Transactions on Information and System Security vol. 8 (2), pp.
228–258, May, 2005.

[9] O. Z. Yilmaz, A. Levi, and E. Savas, “Multiphase deployment models
for fast self healing in wireless sensor networks”, in Proceedings of
International Conference on Security and Cryptography, 2008, pp. 136–
144.

[10] K. Kalkan, S. Yilmaz, O. Z. Yilmaz, A. Levi, “A highly resilient and
zone-based key predistribution protocol for multiphase wireless sensor
networks,” in Proceedings of the 5th ACM symposium on QoS and
security for wireless and mobile networks, NY, USA, pp. 29–36.

2083

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

