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Abstract—Cloud computing technologies become more and
more popular every year, as many organizations tend to outsource
their data utilizing robust and fast services of clouds while
lowering the cost of hardware ownership. Although its benefits
are welcomed, privacy is still a remaining concern that needs to
be addressed. We propose an efficient privacy-preserving search
method over encrypted cloud data that utilizes minhash functions.
Most of the work in literature can only support a single feature
search in queries which reduces the effectiveness. One of the main
advantages of our proposed method is the capability of multi-
keyword search in a single query. The proposed method is proved
to satisfy adaptive semantic security definition. We also combine
an effective ranking capability that is based on term frequency-
inverse document frequency (tf-idf) values of keyword document
pairs. Our analysis demonstrates that the proposed scheme is
proved to be privacy-preserving, efficient and effective.

I. INTRODUCTION

Due to increasing storage and communication requirements,
today’s organizations demonstrate a strong tendency to out-
source their searchable data to remote servers. Clouds provide
efficient and cost effective solutions for data storage and
data processing requirements of organizations. Nevertheless,
the outsourced data may contain sensitive information that
needs to be hidden. An essential requirement, with which the
cloud providers are not necessarily trusted. Therefore, some
precautions are required to protect the sensitive data from both
the cloud server and any other non-authorized party.

One of the most important operations on remote data is the
search operation. The data is assumed to be accessible to sev-
eral authorized users that frequently execute search operations.
Hence, the search operation should not only protect the privacy
of the users and the data but also should be highly efficient.
Due to the significance of privacy concerns, privacy-preserving
search methods have been extensively studied in recent years.
While most of these work focus on single keyword search
[1], [2], [3], [4], few propose solutions to multi-keyword
search [5], [6], [7]. As we show in the experiments section
(cf. Section VIII), our proposed work provides a significantly
more efficient solution than [5], [6], [7]. Considering the
large dataset sizes, a single keyword search query usually
matches with lots of data items, where only few are relevant.
Moreover, user needs to apply several queries and takes the

intersection of the corresponding results, which imposes a
serious burden of both computation and time on the user. A
multi-keyword search, instead can incorporate a conjunction of
several keywords in a single query. Via increasing the search
constraints, only the most relevant items will be returned
to the user which reduces the computation burden on the
users. Therefore, in this work, we propose a novel secure
and efficient multi-keyword search method that returns the
matching data items in a ranked ordered manner.

The contributions of this paper are multifold. Firstly, we
present a novel minhash based privacy-preserving multi-
keyword search method that provides high precision rates. Sec-
ondly, we provide security requirements and formally prove
that the proposed method satisfies adaptive semantical security.
Thirdly, we utilize a ranking method based on term frequencies
and inverse document frequencies (tf-idf) of keywords. Finally,
we implement the proposed scheme and demonstrate that it is
efficient and effective by providing the implementation results.

The rest of this work is organized as follows. In Section II,
we discuss the related work. The preliminary background
information such as minhash functions and tf-idf values is
given in Section III. In Section IV, we provide the framework
of the proposed model and define the necessary security
terms and requirements. Then, we present the crucial steps
of our proposed method in Section V. We formally prove
that the privacy-preserving scheme we propose is adaptive
semantically secure in Section VI. In Section VII, we propose
an improvement to our scheme utilizing multiple servers.
An extensive cost analysis and comparison of the proposed
method with the most related work are given in Section VIII.
Finally, Section IX is devoted for the concluding remarks.

II. RELATED WORK

The problem of privacy-preserving keyword search is ad-
dressed by various work in literature. Related work can be
analyzed in two major groups: single keyword and multi
keyword search. While the user can only search for a single
feature per query in the former, the latter enables search for a
conjunction of several keywords in a single query.

Most of the privacy-preserving keyword search protocols
existing in literature concentrate on single keyword search.



Goh [8] proposes a security definition for formalization of
the security requirements of searchable symmetric encryption
schemes. One of the first privacy-preserving search protocols
is proposed by Ogata and Kurosawa [1] using RSA blind
signatures. The scheme is not very practical due to the
heavyweight public key operations per database entry that
should be performed on the user side.

Later, Curtmola [3] provides adaptive security definitions
for privacy-preserving keyword search protocols and proposes
a scheme that satisfies the requirements given in the defi-
nitions. Another single keyword search scheme is proposed
by Wang et al. [2] that keeps an encrypted inverted index
together with relevancy scores for each keyword document
pair. Different from the previous work, this method is capable
of ranking the results according to their relevancy with the
search term.

Recently, Kuzu et al. [4] propose another single keyword
search method that uses locality sensitive hashes (LSH) and
satisfies adaptive semantic security. Different from the other
work, this scheme is a similarity search scheme, which means
that matching algorithm works even some typos exist in the
query. We take the locality sensitive hashing idea used in [4]
for single keyword search and adapt it to efficient multi-
keyword search.

All the work that are given above, are only capable of
conducting single keyword search. However, in the typical
case of search over encrypted cloud data, the size of the
outsourced dataset is usually huge and single keyword search
will inevitably return an excessive number of matches where
most will be irrelevant for the user. Multi-keyword search
allows more constraints in the search query and enables
the user to access only the most relevant data. Raykova et
al. [9] proposed a solution using a protocol called re-routable
encryption. They introduce a new agent called query router
(QR) between the user and the server. User sends the queries
to the server through this QR to protect his anonymity with
respect to the server. Security of the user’s message with
respect to QR is satisfied by confidentiality (i.e., encryption).
They utilize bloom filters for efficient search. Although this
work is presented as a single keyword search method, the
authors also show a trivial multi-keyword extension. Wang
et al. [10] proposed a multi keyword search scheme, which
is secure under the random oracle model. The method uses a
hash function to map keywords into a fixed length binary array.
Later an improvement to this work is proposed by Orencik and
Savas [6] that additionally provides strict privacy protection
and ranking capability. Cao et al. [7] proposed another multi
keyword search scheme that encodes the searchable database
index into two binary matrices and uses inner product similar-
ity during matching. This method requires keyword fields in
the index. This means that the user must know a list of all valid
keywords and their positions as a compulsory information to
generate a query. This assumption may not be applicable in
several cases. While our work is more efficient than [9], [7],
the privacy requirements that we satisfy is stricter compared to
the ad-hoc solutions in [10], [6]. Detailed comparative analysis

is provided in Section VIII.
Bilinear pairing based solutions for privacy-preserving

multi-keyword search are proposed in [5], [11]. In contrast
to other multi-keyword search solutions that are based on
either hashing or matrix multiplications, the results returning
from bilinear pairing based solutions are free from false
negatives and false positives (i.e., only the correct results
return). However, computation costs of pairing based solutions
are significantly high both on the server as well as on the user
side. Our proposed work provides several orders of magnitude
faster solution compared to [5], [11]. Moreover, those schemes
do not provide any additional privacy for hiding access or
search patterns of users. Therefore, pairing based solutions
are not practical in many applications.

III. PRELIMINARIES

The fundamental problem of privacy-preserving search is
examining the similarity of items. We use a well known
technique, known as minhashing [12] to deduce the similarity
between sensitive data and the given encrypted query. We also
utilize some of the metrics used in information systems to
estimate the order of relevancy of the matching results. We
present the definitions and the basics of these techniques in
Sections III-A and III-B, respectively.

A. Minhashing

Each document is represented by a small set called signa-
ture. The important property of signatures is that, it should
be possible to compare two signatures and estimate a distance
between the underlying sets without any other information.
Although the exact similarity cannot be deduced from the sig-
natures, they still provide a good approximation. Moreover, the
accuracy of the similarity further increases as larger signatures
are used. The signatures are composed of several elements,
each of which is constructed using minhash functions [12].

Definition 1: minhash: Let ∆ be a finite set of elements,
P be a permutation on ∆ and P [i] be the ith element in the
permutation P . Minhash of a set D ⊆ ∆ under permutation
P is defined as:

hP (D) = min({i | 1 ≤ i ≤ |∆| ∧ P [i] ∈ D}). (1)

In the proposed method, for each signature, λ different
random permutations on ∆ are used so the final signature of
a set D is:

Sig(D) = {hP1
(D), . . . , hPλ(D)}, (2)

where hPj is the minhash function under permutation Pj .

B. Relevancy Score

In order to sort the matching results according to their
relevancy to the query, a similarity function is required. This
function assigns a relevancy score to each matching result
corresponding to a given search query.

A commonly used weighting factor for information retrieval
is tf-idf weighting [13]. Intuitively, it measures the importance
of a search term within a document for a database collection.



The weight of each search term in each document is calculated
using the tf-idf weighting scheme that assigns a composite
weight using both term frequency (tf) and inverse document
frequency (idf) informations. The tf-idf of a search term w in
a document D is given by:

tf-idfw,D = tfw,D × idfw, (3)

where tf is the number of times a keyword appears in a
document and idf is the rarity of a search term within the
database collection.

IV. FRAMEWORK

In this paper, we are considering privacy-preserving key-
word search over encrypted cloud data for the database out-
sourcing scenario. In this setting, we assume the data owner
does not have sufficient resources or is unwilling to store
the whole database. He outsources the data to an untrusted,
semi-honest server, but maintains the ability to search without
revealing anything except the access and search patterns. The
data owner encrypts the sensitive documents to be outsourced
and generates a secure searchable index using the features of
these sensitive documents. In an offline stage, both searchable
index and the encrypted documents are outsourced to a semi-
honest cloud. Utilizing the searchable indexes, authorized
users can perform search on the cloud and receive the en-
crypted documents that match with their queries. During this
process, the cloud server should not learn anything other than
what the data owner allows to leak. Finally, user decrypts the
retrieved documents using the decryption key.

The method is formalized as follows. Let D be the set
of sensitive documents and Fi be the set of features (i.e.,
keywords) of Di ∈ D. There are four algorithms in the
scheme, namely: setup, index generation, query generation and
search.

1) Setup(Ψ): Given a security parameter Ψ, it generates a
secret key K ∈ {0, 1}Ψ.

2) IndexGeneration(K,D): Given the collection of sen-
sitive documents D, it extracts the feature set Fi for each
document Di ∈ D and generates a searchable secure
index I via encryption with the key K.

3) QueryGeneration(K,F ): Generates a query Q for the
given set of features F with key K.

4) Search(I, Q): Query Q is compared with the search-
able index I and returns encrypted versions Ci of the
matching documents Di.

The details of these algorithms are given in Section V.

A. Security Model

The privacy definition for almost all of the existing efficient
privacy-preserving search schemes allows the server to learn
some information such as the search and access patterns. In
case there is a need for hiding the access patterns, traditional
private information retrieval (PIR) methods [14], [15] or
Oblivious RAM [16] can be utilized for the document re-
trieval process. However these methods are not practical even
for medium sized datasets due to incurred polylogarithmic

overhead. Therefore, due to efficiency concerns, the proposed
method also leaks similarity and access pattern.

Definition 2: Search Pattern (Sp) is the frequency of the
queries searched, which is found by checking the equality
between two queries. Formally, Let {Q1, Q2, . . . , Qn} be a
set of n consecutive queries, and Fi be the feature set of
Qi. Search pattern Sp is an n × n binary matrix, where
Sp(i, j) = 1⇔ Qi = Qj .

Definition 3: Similarity Pattern (Simp) is same with Sp
with the extension for multiple features. Let feature set of Qi
be Fi = {f1

i , . . . , f
y
i } and

(
{f1

1 , . . . , f
y
1 }, . . . , {f1

n, . . . , f
y
n}
)

be the feature set of n queries. Simp[i[j], p[r]] = 1 if f ji = frp
and 0 otherwise for 1 ≤ i, p ≤ n and 1 ≤ j, r ≤ y.
Intuitively, similarity pattern is the information of common
features between two queries.

Definition 4: Access Patten (Ap) is the collection of data
identifiers that contains search results of a user query. Let
Fi be the feature set of Qi and R(Fi) be the collection of
identifiers of data elements that matches with feature set Fi,
then Ap = R(Fi).

Definition 5: History (Hn) Let D be the collection of
documents in the dataset and Q = {Q1, . . . , Qn} be a
collection of n consecutive queries. The n-query history is
defined as Hn(D,Q).

Definition 6: Trace (γ(Hn)) Let C = {C1, . . . , Cl} be the
set of encrypted documents, id(Ci) be the identifier of Ci and
|Ci| be the size of Ci. The trace of Hn is defined as γ(Hn) =
{(id(C1), . . . , id(Cl)), (|C1|, . . . , |Cl|), Simp(Hn), Ap(Hn)}.
We allow to leak the trace to an adversary and guarantee no
other information is leaked.

Definition 7: View (v) is the information that is accessible
to an adversary. Let I be the secure searchable index and,
id(Ci) and Q are as defined above. The view of Hn is defined
as v(Hn) = {(id(C1), . . . , id(Cl)), C, I,Q}.

Definition 8: Adaptive Semantic Security [3] A cryp-
tosystem is adaptive semantically secure, if for all probabilistic
polynomial time algorithms (PPTA), there exists a simulator S
such that, given the trace of a history Hn, S can simulate the
view of Hn with probability 1 − ε, where ε is a negligible
probability. Intuitively, all the information accessible to an
adversary (i.e., view (v(Hn))) can be constructed from the
trace (γ(Hn)) that is allowed to leak.

V. PROPOSED SCHEME

In this section, we provide the crucial steps of our proposed
method. Search over encrypted cloud is performed through
an encrypted searchable index that is generated by the data
owner and outsourced to a cloud server. Given a query, server
compares the query with the searchable index and returns the
results without learning anything other than the information
that is allowed to be leaked due to efficiency concerns.

A. Secure Index Generation

Our proposed method utilizes the idea of bucketization
which is a data partitioning technique widely used in litera-
ture [17], [18], [4]. Here, each object is distributed into several



buckets via minhash functions introduced in III-A and the
bucket-id is used as an identifier for each object in that bucket.
This method maps objects such that the number of buckets, in
which two objects collide, increases as the similarity between
those objects increases. In other words, while two identical
objects collide in all of the buckets, number of common
buckets decreases as dissimilarity between objects increases.
The proposed secure index is generated by the data owner
utilizing the following phases, namely: feature extraction,
bucket index construction and bucket index encryption.

1) Feature Extraction: For each document Di ∈ D, the set
of features Fi = {fi1, . . . , fiz} that characterize the document
is extracted. In our case, those features are composed of two
values fij = (wij , rsij). The first one is a keyword wij of
the sensitive document. The second one is the relevancy score
(rs), which is based on tf-idf value of the keyword wij for
document Di as explained in Section III-B. This relevancy
score is later used in the search method (cf. Section V-C)
while ranking the matching results.

2) Bucket Index Construction: We first construct a min-
hash structure by selecting λ random permutations1 on the
set of all possible search terms (∆). We then apply minhash
on the first values of each feature set F ∗i = {wi1, . . . , wiz}
as shown in Section III-A and generate a signature for each
document as:

Sig(Di) = {hP1
(F ∗i ), . . . , hPλ(F ∗i )}. (4)

Note that ∀i ∈ {1, . . . , λ}, hPi(F ∗j ) ∈ F ∗j . In other words,
each signature element of a document is a keyword for that
document.

Then, feature set of each document is mapped to λ buckets
using the elements of the signature of the document. Suppose
hPi(F

∗
j ) = wk, then we create a bucket with bucket identifier

Bik, and identifiers and relevancy scores of all the documents
that satisfy this property are added to this bucket. Bucket
content is a vector of integer elements of size l where l
is the number of documents in the outsourced dataset. Let
Bik be a bucket identifier and VBi

k
be the integer vector,

VBi
k
[id(Dj)] = rsjk if and only if hPi(F

∗
j ) = Bik and

VBi
k
[id(Dj)] = 0, otherwise.

3) Bucket Index Encryption: Bucket identifier Bik is a
sensitive information since it may reveal a search term in a
query that matches with a bucket, so it must be kept encrypted.
Moreover, the server should be able to map the given encrypted
bucket id to the one kept in the server without knowing the
decryption keys. Hence, the encryption method used for hiding
the bucket identifier must be a deterministic scheme. One of
the most efficient methods that hides a value in a deterministic
way is HMAC functions which are essentially cryptographic
hash functions that utilize secret keys. In our proposed scheme,
an HMAC function is used for hiding bucket identifiers. The
secret key of HMAC function (Kid) is only known by the
data owner and never revealed to the server. We denote the
encrypted bucket identifier as πBj

k
= HMACKid(Bjk).

1The permutations are publicly shared with authorized users.

The content of a bucket (VBi
k
) possesses sensitive infor-

mation such as the pseudo identifiers of the documents in
that bucket and their relevancy scores. These information must
also be protected from the untrusted server, hence should be
outsourced to the server only after encryption. A proper ap-
proach for encrypting bucket contents would be using a PCPA-
secure (Pseudorandomness against chosen plaintext attacks)
encryption method such as AES in CTR mode with a secret
key (Kcontent). We denote the encrypted content vector as
VBj

k
= EncKcontent(VBj

k
).

Let max be the maximum number of buckets that may
occur in the index and cnt be the number of real buckets in
the index. We add max − cnt dummy elements to the index
in order to hide the number buckets. The dummy elements
(πdumi ,Vdumi) are randomly generated with the condition that

|πBj
k
| = |πdumi | and |VBj

k
| = |Vdumi |.

The secure index generation method is summarized in
Algorithm 1.

Algorithm 1 Index Generation

Require: ∆:set of possible keywords, D: collection of docu-
ments, h: λ minhash functions, Ψ: security parameter

Kid = Setup(Ψ), Kcontent = Setup(Ψ)
for all Di ∈ D do
Fi ← extract features of Di

Sig(Di) = {hP1(F ∗i ), . . . , hPλ(F ∗i )}
for j = 1→ λ do
Bjk = Sig(Di)[j − 1]
if Bjk /∈ bucket identifier list then

add Bjk to bucket identifier list
create VBj

k

end if
add rsik to vector VBj

k
[id(Di)]

end for
end for
for all Bjk ∈ bucket identifier list do
πBj

k
← HMACKid(Bjk)

VBj
k
← EncKcontent(VBj

k
)

add (πBj
k
,VBj

k
) to secure index I

end for
add max− cnt dummy elements (πdumi ,Vdumi)
return I

Subsequent to the index generation, data owner encrypts
each document in the dataset D as Ωid(Di) = EncKdata(Di)
and outsources this set of encrypted documents EDoc to the
server with the I, where

EDoc = {(id(D1),Ωid(D1)), . . . , (id(D|D|),Ωid(D|D|))}.

B. Query Generation

The query generation is constructed in a similar way to the
index generation phase (Section V-A).Given a feature set of n



keywords to be queried (i.e., F = {w′1, . . . , w′n}), the user first
creates the query signature from this feature set using the same
minhash functions that are used in index generation phase.
Then, for each signature element, the corresponding bucket
identifier is hashed with the key Kid. The query Q is this list
of hashed bucket identifiers (i.e., Q = {π1, . . . , πλ}). Note
that independent of the number of keywords in a query (n), the
query signature has λ elements and therefore, the information
of n is not leaked to the server.

C. Secure Search

Given a query Q, server finds the encrypted vectors (VBj
k
)

corresponding to the bucket identifiers in Q. The server then
sends back the λ encrypted vectors EV = {V1, . . . ,Vλ} to
the user. After receiving the buckets, user decrypts the vectors
and ranks the data identifiers as it is detailed in Section V-D.

D. Document Retrieval

The user wants to avoid returning unrelated documents since
this immediately bring forth an unnecessary communication
burden. Hence, user tends to retrieve only the top t matches, in-
stead of returning all documents that share at least one bucket
with the query. The standard formulation for calculating the
document-term weights is tf-idf [19] which is commonly used
for relevance score calculation in search methods. Therefore,
we also utilize tf-idf values for ranking the matching results.

Upon receiving the encrypted vectors EV = {V1, . . . ,Vλ},
the user decrypts those vectors and get the plain vectors
as Vi = DecKcontent(Vi). Then the documents are sorted
according to their scores. Note that Vi[id(Dj)] is the tf-idf
value of document Dj for ith bucket.

In the index generation phase each document is mapped
to certain number of buckets using the output of minhash
functions and tf-idf value of the minhash output is assigned as
the relevancy score of that document for that bucket. Similarly
query Q is also mapped to some buckets. The score of a
document Dj (i.e., score(id(Dj))) is the summation of the
relevancy scores for the buckets that both document and query
share, which is defined as follows:

score(id(Dj)) =

λ∑
i=1

Vi[id(Dj)]. (5)

As the score(id(Dj)) gets higher, the relevancy of the docu-
ment to the query is expected to increase.

After the ranking phase, user retrieves the top t matches
from the server. The document retrieval method is summarized
in Algorithm 2. Note that as database is updated by adding or
removing documents, tf-idf values need to be recalculated and
indices should be updated accordingly. However, we assume
the database is highly static, hence update is done infrequently.

VI. PRIVACY

The privacy-preserving search scheme that we propose is
adaptive semantically secure according to Definition 8.

Theorem 1: The proposed method satisfies adaptive seman-
tic security in accordance with Definition 8.

Algorithm 2 Document Retrieval

USER:
Require: EV : encrypted vectors, Kcontent: secret key,
t: limit for number of documents to retrieve

for all Vi ∈ EV do
Vi ← DecKcontent(Vi)

end for
for j = 1→ |Vi| do
score(j) =

∑λ
i=1 Vi[j]

end for
sort score list
idList ← identifiers of top t scores
send idList to Server

SERVER
Require: idList: requested document identifiers, EDoc: out-

sourced encrypted documents

for all id ∈idList do
if (id,Ωid) ∈ EDoc then

send (id,Ωid) to user
end if

end for

USER:
Did ← DecKdata(Ωid)

Proof:
Let the original view v(Hn) and the trace γ(Hn) be

v(Hn)={(id(C1), . . . , id(Cl)), C, I,Q},
γ(Hn)={(id(C1), .., id(Cl)), (|C1|, .., |Cl|), Simp(Hn), Ap(Hn)}.

Further let v∗(Hn) = {(id∗(C1), . . . , id∗(Cl)), C
∗, I∗,Q∗}

be the view simulated by the simulator S. The proposed
method is adaptive semantically secure if v(Hn) is indistin-
guishable from v∗(Hn).
• The first component of the view view(Hn) is the docu-

ment identifiers id(Ci) which are also available in trace.
Hence, S can trivially simulate document identifiers as
id∗(C) = id(C). Since id∗(C) = id(C), they are
indistinguishable.

• Each document is encrypted using a PCPA-secure encryp-
tion method (e.g., AES in CTR mode). The output of a
PCPA-secure encryption method [3] is by definition in-
distinguishable from a random number that has the same
size with ciphertext. To simulate ciphertexts C, S assigns
l random numbers to C∗ such that C∗ = {C∗1 , . . . , C∗l }
where ∀i, |C∗i | = |Ci|. Note that size of each ciphertext is
available in the trace. Considering for all i, Ci and C∗i are
indistinguishable, C and C∗ are also indistinguishable.

• Note that I is composed of encrypted bucket identifiers
and corresponding encrypted bucket content vectors. Let
sizeB and sizeV be the sizes of bucket identifier and



bucket content, respectively. Further let max be the max-
imum number of buckets that may occur in I. Simulator
S generates max index elements, I∗[i] = (π∗i ,V∗i ) such
that π∗i is a random number, where |π∗i | = sizeB and
V∗i is another random number, where |V∗i | = sizeV .
Note that π∗i and πi are indistinguishable since πi is
the output of a random function (i.e., HMAC) where
the output is indistinguishable from a random number.
Similarly, V∗i and Vi are indistinguishable since Vi is a
cipher of a PCPA-secure encryption method. Hence, I is
indistinguishable from I∗.

• Q = {Q1, . . . , Qn} is a set of n consecutive queries
where each query Qi is composed of λ encrypted bucket
identifiers (i.e., Q = {π1, . . . , πλ}). S can simulate the
queries using the similarity pattern (Simp). Let Qi[j] be
the jth element of Qi where sizeB is the size of bucket
identifier. If ∃p, r 1 ≤ p ≤ i and 1 ≤ r ≤ λ such that
Simp[i[j], p[r]] = 1 set Q∗i [j] = Q∗p[r]. Otherwise, set
Q∗i [j] to a random value Rji where |Rji | = sizeB . Note
that for all i, Qi is indistinguishable from Q∗i since Qi
is the output of a pseudorandom permutation and Q∗i is
a random number, and they are of the same length.

The simulated view v∗ is indistinguishable from genuine
view v since each component of v and v∗ are indistinguish-
able. Hence, the proposed method satisfies adaptive semantic
security.

VII. TWO SERVER SEARCH

In the proposed scheme, it is possible to correlate an
encrypted query with document identifiers of corresponding
matching documents which is also the case for most of
the privacy-preserving search schemes with the exception of
Oblivious RAM based solutions. In order to prevent such
a correlation, we introduce a second server, referred as file
server, that do not collude with the initial server, which is
referred as search server henceforth. While the search server
returns the encrypted vectors for a given query, the encrypted
documents are retrieved from the file server. With this ap-
proach, the search server does not learn document identifiers
of the retrieved documents and the file server does not learn
the query. Therefore, assuming the two servers do not collude
with each other, correlating a query with the corresponding
document identifiers is not possible.

With the existence of two servers, they can also be utilized
to perform some work on behalf of the user. The document
retrieval phase explained in Section V-D can be a heavy
burden on user depending on the user’s capabilities. The user
should calculate and then sort the scores of all document
identifiers subsequent to decrypting the retrieved encrypted
vectors. Unlike to a server, users may be using resource-
constraint devices. In order to relieve the burden of the user,
the file server can be utilized to perform sorting the scores of
the matching document identifiers.

In the two server approach, the relevancy score of each
document identifier is calculated by the search server. How-
ever, due to the privacy requirements, the search server should

learn neither the individual scores nor the order between
the scores. This implies that decryption of the encrypted
vectors by the search server should not be possible. The
homomorphic encryption schemes enable computation over
encrypted values which are appropriate for our case. We use
the Paillier encryption [20], a well known additive homo-
morphic encryption method, in the encryption of the bucket
content vectors VBi

k
. The Paillier encryption satisfies the

property that, Dec(Enc(m1, r1) · Enc(m2, r2)) = m1 +m2,
where the search server utilizes to compute Enc(score(j)) =∑λ
i=1Enc(Vi[j]) for each document identifier.
The file server gets the matching Paillier encrypted bucket

content vectors and decrypts the results. Then the plain scores
are sorted and matching items with top t relevancy scores
are sent to the user. With this approach all the computation
burden of the user is transferred to the servers at the cost
of increasing the size of encrypted bucket content vectors.
In the single server approach each element of the vector
is a 32 bit integer, while in the two-server approach, each
element is a dlog2 n

2e-bit ciphertext, where n is multiple of
two large prime numbers. Nevertheless, this vector is only
transferred between the two servers which are known to
possess vast resources of computation and communication;
hence the technique does not affect the communication cost
of the user.

The two-server search method is described in Algorithm 3.

Algorithm 3 Two-Server Secure Search
and Document Retrieval

SEARCH SERVER:
Require: I: secure index, Q: query, n Paillier modulus,
t: limit for number of documents to retrieve
for all πi ∈ Q do

if (πi, {ei1 , . . . , eil}) ∈ I then
Enc(score(j))← Enc(score(j)) · eij

end if
end for
send (j, Enc(score(j))) and t to File Server

FILE SERVER:
Require: Kcontent: secret key, Kpriv : Paillier private key

for all i do
score(i) = DecKpriv(Enc(score(i)))

end for
sort all scores
send encrypted documents corresponding to the highest t
scores

VIII. EXPERIMENTS

In this section, we extensively analyze the proposed method
in order to demonstrate the efficiency and effectiveness of the
scheme. The entire system is implemented by Java language
using a 32-bit Windows 7 operating system with Intel Pentium
Dual-Core processor of 2.30GHz. In our experiments we use
the publicly available Enron dataset [21].



0.00	  
0.10	  
0.20	  
0.30	  
0.40	  
0.50	  
0.60	  
0.70	  
0.80	  
0.90	  
1.00	  

50	   75	   100	   125	   150	   175	   200	  

su
cc
es
s	  r
at
e	  

λ	  

recall	  
precision	  

Fig. 1: Success Rates as λ change for t = 15

The success of a search scheme can best be analyzed using
the precision and recall metrics. Let R(F ) be the set of items
retrieved for a query with feature set F and R∗(F ) be a
subset of R(F ) such that, the elements of R∗(F ) include all
the features in F . Further let D(F ) be the set of items that
contain all the features in F . Note that R∗(F ) ⊆ R(F ) and
R∗(F ) ⊆ D(F ). Precision (prec(F )), recall (rec(F )), average
precision (aprec(F )) and average recall (arec(F )) for a set
F = {F1, . . . , Fn} are defined as follows:

prec(F ) = R∗(F )
R(F ) , aprec(F) =

∑n
i=1

prec(Fi)
n (6)

rec(F ) = R∗(F )
D(F ) , arec(F) =

∑n
i=1

rec(Fi)
n (7)

The matching items are ordered according to the relevancy
scores (cf. Section III-B) and only items with top t scores are
retrieved. We analyzed the effect of the number of minhash
functions (λ) on the accuracy of the method for a fixed
threshold t = 15, by taking the average of 1500 queries with
number of features differ from 2 to 6 (i.e., 300 queries per each
feature size). As Figure 1 demonstrates, recall of the proposed
scheme is 1 for any λ ≥ 150 implying that all of the items that
contain all the features in the given query are retrieved by the
user. For the database outsourcing scenario that we consider,
it is crucial that the user retrieves all the documents matching
with the queried feature set. Precision is rather small, which
indicates about 40% of the retrieved documents contain all
the queried features. Nevertheless, the other retrieved items
are still relevant with the query. Those items contain a subset
of the query features and the matching features have high
relevancy scores indicating that the matching item is highly
relevant to the query even when not all the features are
captured. Note that, an item that has no matching feature with
a query has zero relevancy score, hence cannot match with the
query. We set λ = 150 since it satisfies the best precision rate
while ensuring full recall.

We analyze the impact of the number of keywords in a
query on the precision and recall rates and present the results
in Figure 2. The similarity between query and document signa-
tures increases as the number of common keywords increases.
Hence, both the precision and recall rates of the method
increase as the number of keywords in a query increases. The
increase in success rate indicates our proposed method is even
more useful for searches with more than 5 keywords.

We test the efficiency of our proposed method using various
dataset sizes from 4000 to 10000 documents. The most costly

operation of our method is index generation. Figure 3 shows
that the index generation operation takes about a few minutes
and linearly increases as the number of documents increases.
Considering this operation is only performed in an offline
stage by the data owner, the method is practical. One of
the most important parameters of privacy-preserving search
is query response time since this operation is used very
frequently and users want to access their search results as
fast as possible. Search operation does not depend on the
number of documents since, in the proposed method search is
performed by retrieving λ requested buckets which is constant.
This feature is especially important for huge datasets where the
number of documents is in the order of millions. The average
query response time for our method for λ = 150 is 210 ms
independent of the number of documents in the dataset.
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Fig. 3: Timings for index construction for λ = 150

If two-server search method is utilized, the file server needs
to decrypt the Paillier encrypted scores of each document in
dataset D. A single Paillier decryption operation using 1024-
bit primes, takes about 90 ms in the computer that we used
in our experiments. Therefore, two-server setting has about
90 · |D| ms additional cost on the search due to decryption.
Nevertheless, decryption operation can be highly parallelized
and by utilizing high performance computers on the file server,
actual cost of decryption can significantly be reduced.

The communication cost of the user for the single server
case has two phases. First, the encrypted matching vectors
(|EV | = λ|Vi|bits) are received and in the next phase matching
encrypted documents are received. However, using two server
setting, only the matching encrypted documents are sent to the
user which is the minimum communication possible.

Most of the secure search methods in literature do not
support multiple features in queries. We do not provide any
comparison with those single keyword search methods but
compare our proposed method with the existing secure multi-
keyword search methods instead. Some of the multi-keyword
search methods utilize bilinear mapping such as [5]. This
approach has similar security requirements with our proposed
method, such that it reveals search and access pattern but
nothing else. In this work, each search operation does about 2l
bilinear mapping operation where l is the number of features
in a document, which is not practical due to the cost of bilinear
map operations. A recent work by Cao et al. [7] utilizes
matrix multiplication operations where the number of rows
is determined by the size of the complete feature set. This
method performs index construction for 6000 documents in
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Fig. 2: Impact of number of keywords in a query and t on the precision (a) and recall (b) rates

about 4500 s while we perform the same operation in less than
600 s. Similarly, the search operation over 6000 documents
in [7] requires 600 ms, while we perform in about 210 ms.
Moreover, our search time is independent from the number
of documents so our method has paramount advantage as
the number of documents goes in the order of hundreds of
thousands. Another multi-keyword search method is proposed
by Orencik and Savas [6]. This work performs efficiently
in both index construction and search operations. Similar to
[7], the search time of [6] is also linear in the number of
documents, therefore, our proposed method performs better in
search for large datasets.

IX. CONCLUSION

In this work, we addressed the privacy-preserving multi-
keyword search over encrypted cloud data for the database
outsourcing scenario. We present a novel method using min-
hash functions that provide efficient comparison between
signatures of documents and queries. We provide formal
security definitions and prove that our proposed work satisfies
adaptive semantic security. We incorporate ranking capability
to the proposed scheme utilizing well known tf-idf based
relevancy scoring. This approach ensures that only the most
relevant items are retrieved by the user, preventing unnecessary
communication and computation burden on the user. We
implement the entire system and demonstrate the effectiveness
and efficiency of our solution through extensive experiments
using the publicly available Enron dataset [21].
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