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3 Boğaziçi University, Istanbul, Turkey

Abstract. In this paper, we present an action recognition framework
leveraging data mining capabilities of random decision forests trained on
kinematic features. We describe human motion via a rich collection of
kinematic feature time-series computed from the skeletal representation
of the body in motion. We discriminatively optimize a random decision
forest model over this collection to identify the most effective subset
of features, localized both in time and space. Later, we train a support
vector machine classifier on the selected features. This approach improves
upon the baseline performance obtained using the whole feature set with
a significantly less number of features (one tenth of the original). On
MSRC-12 dataset (12 classes), our method achieves 94% accuracy. On
the WorkoutSU-10 dataset, collected by our group (10 physical exercise
classes), the accuracy is 98%. The approach can also be used to provide
insights on the spatiotemporal dynamics of human actions.

Keywords: human motion analysis, action recognition, random deci-
sion forest

1 Introduction

The proliferation of new depth sensing technologies in recent years has positively
changed the climate of the automated vision-based human action recognition
problem, deemed to be very difficult due to the various ambiguities inherent to
conventional video. Depth sensors, such as Microsoft Kinect [11][9] or Asus Xtion
[1], and associated computer software have loudly been revolutionizing human-
computer interactions by enabling users to control their virtual avatars without
requiring any proxies but their own bodies. Microsoft Kinect SDK, for instance,
provides markerless full-body tracking by extracting 20 joints of the user’s body
at 30fps and establishes a gliding wireframe skeleton. Using kinematic features
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extracted from such a powerful representation, statistical learning algorithms
can interpret the user’s gestures in order to control the interaction [11][5][10].

In the present work, our aim is to find the most discriminative subset of
kinematic features that represent an action, which is understood here as a se-
quence of movements generated by a human agent during the performance of a
task. Representation of the human motion via a moving skeleton plays a cru-
cial role in the overall action recognition pipeline. Even though not so much as
with conventional video, skeletal data obtained from the processing of raw data
acquired from a depth camera are still prone to uncertainty due to anthropomet-
rical differences across users. In addition, geometrical invariance issues, arising
due to camera-user position variability are also present. In this work, we employ
translation and rotation-invariant features to over-come the Euclidean-part of
the invariance problem (Section 3.2). To alleviate user variability due to inher-
ent action performance differences and minor scaling, we rely on discriminatively
selected features.

To find the most effective and efficient subset of features for a given set of
actions from a high-dimensional spatiotemporal feature space, we first discrimi-
natively optimize a random decision forest (RDF) [3] model over a forest-specific
set of hyper parameters and then, we collect all the unique features from the
nodes of each tree in the optimal forest. We feed this selected feature set into a
linear support vector machine training procedure to learn the final classifier.

We test our classifier on two datasets acquired using Microsoft Kinect plat-
form. The first one is the Microsoft Research Cambridge dataset (MSRC-12)
[5], where our classifier attains an average accuracy of 94% on MSRC-12. We
additionally test the classifier on the WorkoutSU-10 dataset collected in our
laboratory, Sabancı University VPALAB. WorkoutSU-10 contains 10 exercise
gesture classes, selected by professional sport trainers for therapeutic purposes.
Our classifier reaches an average accuracy of 98% on this dataset, which will be
soon released publically.

Our contributions in this paper are three-fold: (1) we use a large set of invari-
ant spatiotemporal features extracted from skeletons in motion, (2) we introduce
a discriminative RDF-based feature selection framework capable of reaching im-
pressive action recognition performance when combined with a linear SVM clas-
sifier, and (3) we present a novel therapeutic action dataset to be soon released
publically (as far as we know there is no available dataset recorded via Microsoft
Kinect which contains both skeleton joints position and depth information and
put in therapeutic exercises).

2 Related Work

The use of 3D geometrical information provides a clear advantage over using 2D
image-based features. The work in [12] has investigated these two categories of
approaches using a wide range of features and has shown that even with high
levels of noise, the recognition process benefits from using pose-based features.
As skeletal kinematic models encode key parameters of the limbs, they are con-
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sidered as very powerful representations for a real-time motion analysis of the
human body, although such models are difficult to extract and track from con-
ventional video. The emergence of real-time depth cameras [9][1] has greatly sim-
plified the extraction of human skeleton models and the tracking of skeletal key
points such as joints. In [10], Raptis et al. present a real-time gesture recognition
platform for classification of skeletal wireframe to evaluate dance gestures. Cor-
relation and energy profiles computed from angular features at skeleton joints
have been used for evaluation of the dance gestures. They obtain an average
recognition accuracy of 96% on their own dataset. In [4], the authors present an
algorithm capable to cope with the latency problem in interactive action-based
systems. Their proposed classifier achieves an average recognition accuracy of
88.7% on MSRC-12 dataset and 90.06% on their own dataset. In spite of all
these works, defining discriminative features and relationships for human mo-
tions still stay challenging. In that sense, our work explores the potential of
feature selection techniques in identifying discriminative kinematic feature sets
for action recognition.

3 Methods

3.1 Feature Extraction

For a faithful representation of the skeleton in motion leading to successful recog-
nition, we extract relational features of joints in a pose at each time point. The
tracking algorithm in the current version of Microsoft Kinect platform can effec-
tively track 20 joints of the active person. In order to characterize human motion,
we calculate the so-called motion or kinematic features at the joints during the
whole course of the action performed. The collection of these features will be
data-mined by RDF model optimization and selected features will be fed into
SVM training. A good set of kinematic features in our context should satisfy at
least the following requirements:

• Invariance to the position and orientation of the sensor. The features
introduced in the sequel are all invariant to Euclidean motion, most of them
being also scale-invariant.

• Stability. In order to ensure stability against unavoidable noise in the form
of jitter to some extent, we smooth the skeletal joint coordinate position
time-series by a Gaussian filter prior to the whole feature extraction process.

• Invariance to intra- and interpersonal variability. While informed
geometric design can cope with variability in the way an action is performed,
invariance of this kind cannot be guaranteed only by feature extraction.
Higher-level information gleaned from classifiers should come into play.

With these ideas in mind, we first define a torso frame, which consists of
seven joints, and apply a PCA on constructed matrix of torso joint coordi-
nate positions [10]. These joints seldom move independently, as such they are
instrumental in constructing a canonical coordinate frame for several features
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described in the sequel. The torso frame is established by the following joints:
neck, spine, hip center, right shoulder, left shoulder, right hip, and left hip (also
indicated in blue in Fig. 1b). The first two basis vectors found by PCA (u and r)
and their cross product t form the torso frame. Let the 20 joints of the skeleton
be indexed by the set J = {0 , . . . , 19} We adopt the following partitioning of
the joint index set J as J = {Head} ∪ J0 ∪ J1 ∪ J2 ∪ J3 . The set J0 indexes the

Fig. 1. (a) Joint representation and (b) skeleton model.

seven torso joints shown in the blue shaded area of Fig. 1b. The set J1 indexes
the four first-degree joints (shown in green in Fig. 1b). The set J2 indexes the
four second-degree joints (shown in pink in Fig. 1b). The set J3 indexes the four
third-degree joints (shown in yellow in Fig. 1b). This representation is similar to
one that is proposed in [10][7]. We can now define the following types of features.

Type-I features. We define eight pairs of azimuth and elevation (θj , ϕj ) angles
for each joint j ∈ J1 ∪ J2 with respect to the torso frame (Fig. 1a) to render
them rotation-invariant at each time point. Accordingly, there are 16 angular
features in total.
Type-II features. Let pj ∈ IR3 be the 3D position of the joint j . The interjoint
distance d i,j is then defined as the Euclidean distance between joints i and j .
We will have

(
20
2

)
= 190 such distance features in total.

Type-III features. We also define the three coordinate components of the 3D
velocity vector of an individual joint with respect to the torso frame as a new
type of feature. There are 20×3 =60 velocity features in total.

Notice that since all features are calculated during the whole course of the
motion, each quantity above forms a time-series. Once the pool of features is
constructed, we denote the set of all features generically as f (k) = {f (k)(tn)},
where k = 1 , . . .K runs over the set of features (K = 266 ) and n runs over
the set of N consecutive time points. There will be KN feature values in our
collection.
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3.2 Matching Strategies

In order to extract a baseline classification performance to improve upon, we first
employ correlation-based matching and aggregation strategies using the whole
set of spatiotemporal features. Given a description for each action instance, we
can compare two action instances U and V and by computing the similarity
between their respective feature sets F = {f (k)} and G = {g(k)}. A natural basic
procedure is to first compute the normalized correlation coefficient between each
corresponding pair of features f (k) and g(k) in F and G respectively, and then
to aggregate the K correlation values into a unique similarity between sets F
and G by averaging. Using this aggregate similarity measure, the classification
procedure is to determine the label of the test instance V based on the labels of
the database instances in front of the ranked list of similarities by:

• K-NN: Assign the majority label amongst the K-first labels in the ranked
list.

• Classwise score average: Average the scores separately for each class then
assign the label of the class having the maximum average.

• Classwise score product: Compute the score product for each class then
assign the label of the class having the maximum score product.

• K-first versions of classwise average and product.

• Borda count.

3.3 RDF-based Feature Selection

A random decision forest (RDF) is a collection of decision trees, where each
tree is grown randomly. While a RDF is in general used as a discriminative
classifier by itself, in this work we employ it as a discriminative feature selection
tool. More specifically, we leverage (i) one of the randomization mechanisms
coming into play in RDF training, random node optimization, and (ii) the easily
interpretable node structure of decision trees as will be described shortly.

There are two means of injecting randomness into the decision forest growing
process. The first one is to train each tree on a different random subset of the
original training set, in much the same way as in bagging [2]. In the following
account, we do not use this mechanism since we did not find any noticeable
positive effect as compared to making the whole training set available to each
tree. The second mechanism, that we heavily rely upon, is to optimize each node
in each tree over a set of parameters chosen randomly from the whole parameter
set.

In standard decision tree learning, a node is optimized with respect to a
purity measure such as information gain [8] or [6] in order to split the input set
of instances into two subsets, each of which is as “pure” as possible in terms of
class labels. The split at a node is characterized by a so-called split function,

which, in our context, is instantiated as s
def
= f (k)(tn), where k indexes the feature

time-series and tn the time point. Given a test instance U with description
F = {f (k)}, the action of the split function on U is expressed as follows: if
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f (k)(tn) < τ , assign U to the left split; otherwise to the right split, where τ is
the decision threshold. As such, the feature index k , the time point tn and the
decision threshold τ are the parameters to be optimized at each node at each
tree during forest training. Random node optimization consists of testing only
a fraction of these parameters instead of running an exhaustive search over the
whole parameter space, which would be computationally prohibitive if performed
at each node of each tree in the forest. In our case for instance, there are K=266
feature time-series and N=50 time points (totaling K×N=266×50=13300 unique
features) to test; combined with the number of thresholds to test and the number
of all nodes, exhaustive search would be impossible for all practical purposes.
That’s exactly where random node optimization becomes handy in that not
all parameter configurations are tested but only a small subset of them. After
training the forest with a specific configuration, one can identify and collect the
features selected at each node as the most discriminative ones within the original
pool of features. The natural question is then which configuration should be used
to grow the forest.

We consider the RDF training model selection problem in conjunction with
feature selection since a specific RDF leads to a specific set of features retained.
To this end, we follow a discriminative model validation approach. We set a range
for the model parameters (Ntree ,Nfeature ,D ,Nthreshold), and then we train a RDF
for each configuration on some training set. Then, we evaluate the performance
of the RDF classifier for each configuration on a separate set. Once we have all
validation performances, we choose the forest in view of its validation accuracy
and its feature reduction efficiency, which is defined as efficiency = 1 −Kr/KN ,
where Kr is the number of uniquely retained features in the course of training a
specific forest and KN is the total number of features. As will be seen in Section
4.2, this procedure lets us select the feature set, which gives “the most bang for
the buck”.

4 Experiments

In our experiments, we focused on two sets of actions used in MSRC-12 and
our novel dataset WorkoutSU-10. In both datasets, we used the provided 3D
positions of the joints as determined by Microsoft’s markerless motion capture
system.

MSRC-12 dataset comprises 12 gesture classes, six of them corresponding to
first-person-shooter game actions (iconic gestures) and the other six are gestures
of a music player (metaphoric gestures). The gestures are performed by 30 sub-
jects ranging from 22 to 65 years old. The dataset contains 6244 action instances
while there are unequal repetitions of each action classes.

WorkoutSU-10 dataset comprises 10 gesture classes selected by professional
trainers for therapeutic purposes. There are three broad category of exercises in
the dataset (balance, stretching and flexibility, strengthening). We have chosen
to provide participants with a combined modality before performing each exer-
cise. The combination was an animated character performing the exercise and
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a subscripted text explaining the instructions. All of the recordings have taken
place in our laboratory in different days and the performances were also recorded
using a video camera. In addition to skeletal joints, also the depth images of the
performed exercises were recorded. 12 participants (9 male and 3 female ranging
from 20 to 30 years old) were recruited from students in Sabancı University and
each one performed each exercise for 10 times. In total, there are 1200 action
instances in this dataset. The recording procedure has been conducted in a way
that after reading the instruction and watching the video, the participants have
been asked to stand in front of a green screen with a Kinect sensor in front of it
and the recording has been started when the participant indicated he/she was
ready.

4.1 Performance Results

For template matching using the aggregation methods described in section 3.2,
after constructing of the correlation pool between each pair of action instances in
dataset, we have carried out a leave-one-subject-out cross-validation (LOSOXV)
test on the MSRC-12 dataset. The evaluation test has been repeated for K-NN,
K-first average and K-first product method K=1, 3, 5, and 7. We have linearly
interpolated and resampled all time-series instances to 50 samples. We report the
performance in Table 1. The best aggregation methods turn out to be classwise
K-first product and classwise K-first average with K = 3. We also note that all
schemes except whole classwise average and Borda count, performances are simi-
lar within 0.8% performance points. Aggregation schemes use all the KN=13300
features with a simple but powerful NN-based classifier. As such, they provide
a baseline performance that, with our RDF-based feature selection mechanism,
we aim at maintaining while reducing the number of features significantly.

Table 1. LOSOXV Performance Results of Aggregation Methods on MSRC-12

K-NN Classwise K-First Product Classwise K- Average Whole Borda

Class K K K Classwise Count

1 3 5 7 3 5 7 3 5 7 Average

Kick 96.1 96.5 96.1 96.5 96.5 96.5 96.3 96.5 96.5 96.3 91.4 91.6
Beat Both 84.5 84.7 85.7 86.0 85.5 86.2 85.9 85.5 86.2 85.9 84.1 32.0
Change Weapon 85.7 84.9 84.1 82.5 85.3 84.1 83.9 85.3 84.1 83.9 70.1 43.8
Had enough 91.5 90.2 90.0 90.4 90.6 90.0 90.2 90.6 90.0 90.2 67.5 53.9
Throw 95.9 95.5 95.3 95.5 95.7 95.7 95.7 95.7 95.7 95.7 89.5 81.7
Bow 98.8 98.8 98.4 98.2 99.0 98.6 98.4 99.0 98.6 98.6 93.9 89.3
Shoot 86.9 85.1 84.5 83.6 86.5 85.9 85.5 86.5 85.9 85.5 41.5 16.4
Wind Up 95.8 95.7 95.2 95.1 95.8 95.4 95.8 96.0 95.5 95.8 52.1 81.0
Goggles 96.1 97.5 97.3 97.3 97.1 97.3 97.3 97.1 97.3 97.3 93.5 92.6
Push Right 91.8 92.9 92.1 91.2 93.3 92.7 92.0 93.3 92.7 92.0 58.0 46.7
Duck 99.6 99.4 99.4 99.4 99.6 99.6 99.4 99.6 99.6 99.4 98.2 90.4
Lift Arms 89.2 89.6 89.8 90.2 90.0 90.6 90.4 90.0 90.6 90.2 83.3 68.7

Average 92.7 92.6 92.4 92.2 93.0 92.8 92.6 93.0 92.8 92.6 76.3 66.0
standart deviation 5.15 5.52 5.46 5.77 5.19 5.30 5.37 5.20 5.30 5.40 18.68 26.30

In RDF-based feature selection, in order to find the best forest configuration,
we have trained 27 forests with different tree sizes (10, 50 and 200 tree), tree
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depths (4, 6 and 8), number of selected features at each node (10,100 and 1000).
We have observed that the number of thresholds to test at each node had no
influence in the performance. In the validation runs, we have used cross-subject
cross-validation (CSXV). Accordingly, we have split each dataset (MSRC-12
and WorkoutSU-10) into two groups A(training) and B(testing). For MSRC-12,
the number of instances in sets A and B was 3600 and 2645 respectively. For
WorkoutSU-10, the split has resulted in 600 instances in both sets A and B.
We have reserved the set A for training the 27 RDFs and the set B to evalu-
ate the cross-validation performance. Fig. 2 depicts CSXV validation vs. feature
reduction efficiency curve on MSRC-12. We picked the configuration giving the
most sensible compromise between accuracy (93.2%) and feature reduction ef-
ficiency (91%), that is, the forest with number of trees = 50, maximum tree
depth = 6 and number of selected features at each node = 100. It’s reassuring
to see that the 93.2% CSXV performance obtained with this scheme coincides
with the 93.0% LOSOXV performance obtained with the full feature set using
aggregation on MSRC-12. The nodes of the RDF trained with this configura-
tion contained 1225 unique features, corresponding to a reduction better than
one tenth with respect to 13300 features in total. After this selection procedure,
we have trained a linear SVM classifier using the 1225 retained features on the
set A of MSRC-12. We have applied a 5-fold cross-validation to find the reg-
ularization parameter of the SVM. The classification performance on set B of
MSRC is shown in Table 2-left. It can be observed that the linear SVM using
the reduced feature improves the performance even further (by 1%). The results
of the same procedure on WorkoutSU-10 is shown in Table 2-right, the average
accuracy turns out to be 98% with a quite balanced classwise performance. Note
that the RDF trained with the best configuration above has yielded 1398 unique
features on WorkoutSU-10 corresponding to 89.8% reduction efficiency. Confu-
sion matrices for individual classes in both datasets are shown in Fig. 3-left and
Fig.3-right.

Fig. 2. Selection of the best forest configuration using the accuracy vs. feature reduc-
tion efficiency measure on MSRC-12.
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4.2 Insights on Selected Features

By data mining the results, we can investigate the feature selection process in
order to find out which feature type has the most effect on the performance
of the classifier. We calculated the ratio of selected features in each type of
features with respect to the total number of features in that type which turned
out that this ratio is 11.04% for type I, 4.77% for type II and 21.40% for type
III. Since we have a large initial feature set, there is considerable reduction in
number of features used in each type. Feature type III (velocity of the joints)
is the most selected type in tree nodes, suggesting they are the most influential
features for the classifier performance. We have also looked at the ratio of the
selected features in skeleton by group of joints each one belongs to. It can be
observed that features from leg joints have more impact the remaining joints
(with 24.58% for right and 24.09% for left leg), which have more or less the
same influence(18.51% for right and 15.57% for left arm and 17.25% for torso
and head together).

5 Conclusion

In this paper, we proposed a discriminative RDF-based feature selection frame-
work capable of reaching impressive action recognition performance when com-
bined with a linear SVM classifier. Our results showed state-of-the-art perfor-
mances in action classification, beating for instance the 88.7% performance of
Ellis et al.’s work [4] on MSRC-12. The large, but possibly redundant set of
invariant spatiotemporal features extracted from the skeleton in motion have
been data-mined thanks to discriminative capabilities of RDF in order to reach
comparable or even better performance with a significantly reduced number
of features (one tenth of the original set). Furthermore, we have introduced a
novel therapeutic action recognition dataset to be prospectively used by the ac-
tion recognition community. Our future work will concentrate on expanding this
dataset and to develop a joint feature extraction and selection mechanism within
the RDF framework. It should be stressed that while our designed framework is
planned to be used as part of a therapy application, it also could be applicable
in other action recognition tasks such as assisted living, intelligent surveillance
and games.
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