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Abstract

Multi-project problem environments are defined according to the way resources are managed in the problem environment
which is called the resource management policy (RMP) in this study. Different resource management policies can be
defined according to the characteristics of the projects and/or resources in the problem environment. The most common
RMP encountered in the multi-project scheduling literature is the resource sharing policy (RSP) where resources can be
shared among projects without any costs or limitations. This policy can be seen as an extreme case since there is a strong
assumption of unconstrained resource sharing. Another RMP can be defined as the other extreme such that resources
cannot be shared among projects which is called resource the dedication policy (RDP). The last RMP considered in
this study is between these two policies where resources are dedicated but can be transferred among projects when a
project finishes, the dedicated resources to this project can be transferred to another one starting after the finish of the
corresponding project. This RPM is called the resource transfer policy (RTP). In this study we investigate a problem
environment where all these three types of RPM are present. Additionally, the general resource capacities are taken
as decision variables that are constrained by a given general budget. We call this multi-project environment as the
Generalized Resource Portfolio Problem (GRPP). We have investigated this problem and proposed an iterative solution
approach based on exact solution methods which determines the general resource capacities from the budget, resource
dedications, resource sharing and resource transfer decisions and schedules the individual projects. Computational results
for over forty test problems are reported.

Key words: Multi-project scheduling, resource management policies, resource sharing, resource dedication, resource
transfer

1 Introduction

In multi-project problem environments, different projects are coupled with resource related constraints in the
problem. Thus resource management policy (RMP) is a very important conceptual part of the problem envi-
ronment since it defines how this coupling is realized. In resource sharing policy (RSP), the sharable resources
couple the individual projects for their resource usages over the time periods. In resource dedication policy
(RDP), dedicated resources couple the projects with their maximum resource usages. And finally in resource
transfer policy (RTP), transferable resources not only couples individual projects with their maximum resource
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usages but also with the transferred resources among themselves. Here, a resource transfer from a project to
another one can only be achieved, if one of the projects finishes before the start of the other one.

RDP is extensively investigated in [3] and [2]. RDP is first introduced in [3] leading to the so- called resource
dedication (RD) problem, where the objective is minimizing the total weighted tardiness over all projects.
The authors present a mathematical formulation for RD problem and two different solution methodologies; a
genetic algorithm (GA) based on combinatorial auction (CA) for RD heuristic and a sub gradient optimization
approach. CA for RD is based on preferences of the projects for the resources and improves a given initial
solution.

The study [3] is extended to deal with resource portfolio problem (RPP) under RDP by including general
resource capacity decisions in [2]. The objective is the minimization of the total weighted tardiness over all
projects. A two phased GA is proposed for the problem where in the first phase the RD space is searched
and in the second phase RD and resource portfolio (RP) spaces are searched simultaneously. For the RP space
search, the authors propose a new improvement move called the CA for RP. CA for RP employs general resource
preferences to improve a given initial solution.

RTP is introduced in [1] where the general resource capacities are decisions. The resource transfer from a project
to another one is only feasible for the condition that one of the projects finishes before the start of the other
one. Thus, to allow resource transfers among projects, the release time of the projects are introduced as a new
decision to the problem. A solution procedure based on modification for Branch and Cut (B&C) procedure
of CPLEX is proposed. The modification includes new branching strategies, heuristic solution procedures and
valid inequalities. Note that by including the general resource capacity decision in [2] and [1] a new decision
level, which can be thought as rough-cut-capacity planning, is added to the problem environment.

This paper generalizes all the types of RMP in a multi-project problem environment. Sharable, dedicated and
transferable resources are present in the multi-project problem environment and all these resource types bring
different aspects to the problem environment. Additionally, a general budget is introduced to the problem which
further emphasizes the importance of resource related decisions in multi-project problem environments. We call
this problem as Generalized Resource Portfolio Problem (GRPP). The multi-project environment leading to
GRPP and its mathematical programming formulation is given in Section 2. In iterative solution approach based
on exact methods for GRPP is explained in detail in Section 3. Experimental results for over forty problems
are provided in Section 4. Section 5 concludes together with suggestions for further research.

2 Generalized Resource Portfolio Problem

GRPP in a multi-project environment is determination of the general resource capacities for a given total
resource budget, dedication of dedicated and transferable resources to the projects, setting of the sharable
resource usages, determination of the project sequence relations and resource transfers between feasible projects
(according to the project sequence relations) in such a way that individual project schedules would result in
an optimal solution for a predetermined regular objective function. The objective is taken as the minimization
of the total weighted tardiness of the projects, since the weighted tardiness is a relatively common objective
function employed in the scheduling problems with due dates and has practical relevance as well. Note that this
objective can be replaced by any regular objective function.

The multi-project environment in this paper has the following additional characteristics: The projects are ready
to start at time zero but their release times are determined by the corresponding decision variables and each
has an assigned due date. No precedence constraints among projects are defined. The due date constraints are
soft in the sense that they can be exceeded at the expense of associated tardiness cost. The activities are non-
preemptive and have finish-to-start zero time lag. The resource set includes both renewable and nonrenewable
resources. As mentioned above, renewable resources are of three different types: i) sharable, ii) dedicated and
iii) transferable. The activities can be executed by choosing one of the available resource usage modes and the
corresponding activity durations. In this problem environment, uncertainty is not considered. Mathematical
programming formulation for the GRPP is given below.
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Mathematical Model GRPP:

Sets and Indices:

V Set of projects, v ∈ V

Jv Set of activities of project v, j ∈ Jv
Pv Set of all precedence relationships of project v

Mvj Set of modes for activity j of project v, m ∈Mvj

K Set of renewable resources, k ∈ K

KD Set of dedicated renewable resources

KS Set of sharable renewable resources

KT Set of transferable renewable resources

I Set of nonrenewable resources, i ∈ I

T Set of time periods

vN Index of last activity of project v

Parameters:

Evj Earliest finish time of activity j of project v

Lvj Latest finish time of activity j of project v

dvjm Duration of activity j of project v, operating on mode m

rvjkm Renewable resource k usage of activity j of project v operating on mode m

wvjim Nonrenewable resource i usage of activity j of project v operating on mode m

ddv Assigned due date for project v

cv Relative weight of project v

crk Unit cost of renewable resource k

cwi Unit cost of nonrenewable resource i

tb Total resource budget

Ω A big number calculated as the sum of time periods of all projects

Decision Variables:

Xvjmt =

 1 if activity j of project v operating on mode m is finished in period t

0 otherwise

BRvk = Amount of renewable resource k dedicated to project v

BWvi = Amount of nonrenewable resource i dedicated to project v

TCv = Weighted tardiness cost of project v

Rk = Total amount of required renewable resource k

Wi = Total amount of required nonrenewable resource i

SRvv′k = Amount of renewable resource k transferred to project v’ from project v

Yvv′ =

 1 if project v′ is released after project v is finished

0 otherwise
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min. z =
∑
v∈V

TCv (1)

Subject to∑
m∈Mvj

Ljv∑
t=Evj

Xvjmt = 1 ∀ j ∈ Nv and ∀ v ∈ V (2)

∑
m∈Mvj

Lvb∑
t=Evb

(t− dvbm)Xvbmt ≥
∑

m∈Mvj

Lva∑
t=Eva

tXvamt ∀ (a, b) ∈ Pv, ∀ v ∈ V and ∀ t ∈ T (3)

∑
m∈Mv′1

Lv′1∑
t=Ev′1

tXv′1mt −
∑

m∈MvN

LvN∑
t=EvN

tXvNmt ≤ Ω(Yvv′ ) ∀ v, v′ ∈ V (4)

∑
m∈MvN

LvN∑
t=EvN

tXvNmt −
∑

m∈Mv′1

Lv′1∑
t=Ev′1

tXv′1mt ≤ Ω(1− Yvv′ ) ∀ v, v′ ∈ V (5)

SRvv′k ≤ Ω(Yvv′ ) ∀ v, v′ ∈ V and ∀ k ∈ KT (6)

∑
j∈Nv

∑
m∈Mvj

max{t+dvjm−1,Lvj}∑
q=min{t,Evj}

rvjkmXvjmq ≤ BRvk +
∑
v′∈V

SRv′vk ∀ k ∈ KT ∀ t ∈ T and ∀ v ∈ V (7)

BRvk +
∑
v′∈V

SRv′vk ≥
∑
v′∈V

SRvv′k ∀ k ∈ KT and ∀ v ∈ V (8)

∑
j∈Nv

∑
m∈Mvj

max{t+dvjm−1,Lvj}∑
q=min{t,Evj}

rvjkmXvjmq ≤ BRvk ∀ k ∈ KD ∀ t ∈ T ∀ and v ∈ V (9)

∑
v∈V

BRvk ≤ Rk ∀ k ∈ KT,KD (10)

∑
v∈V

∑
j∈Jv

∑
m∈Mvj

max{t+dvjm−1,Lvj}∑
q=min{t,Evj}

rvjkmXvjmq ≤ Rk ∀ k ∈ KS and ∀ t ∈ T (11)

∑
j∈Nv

∑
m∈Mvj

Lvj∑
t=Evj

wvjimXvjmt ≤ BWvi ∀ i ∈ I and ∀ v ∈ V (12)

∑
v∈V

BWvi ≤ Wi ∀ i ∈ I (13)∑
i∈I

cwiWi +
∑
k∈K

crkRk ≤ tb (14)

TCv ≥ Cv(

LvN∑
t=EvN

∑
m∈MvN

tXvNmt − ddv) ∀ v ∈ V (15)

Xvjmt ∈ {0, 1} ∀ j ∈ J , ∀ t ∈ T , ∀ m ∈Mvj and ∀ v ∈ V (16)

BRvk, BWvi, Rk, Wi, TCv ∈ Z+ ∀ v ∈ V , ∀ k ∈ K and ∀ i ∈ I (17)

Yvv′ ∈ {0, 1} and SRvv′k ∈ Z+ ∀ v, v′ ∈ V and ∀ k ∈ K (18)

The objective function (1) is the minimization of the total weighted tardiness cost for all projects. Constraint
sets (2) and (3) impose activity finish and precedence relations. Constraint sets (4) and (5) set the decision
variable Yvv′ to 1, if project v is finished before project v’ is released, and to 0 otherwise. Thus, the SRvv′k values
will only have positive values, if project v is finished before project v’ is released (constraint set (6)). Constraint
set (7) limits the transferable renewable resources employed for each project with the dedicated transferable
renewable resources and the transferred transferable renewable resources from the other projects. In constraint
set (8), the total transferable renewable resource that can be transferred by a project is limited with the total
resource dedicated to this project and the total resource it gained from transfers. Constraint set (9) limits
the dedicated renewable resource usage of a project with renewable resource dedication decision variables. In
constraint set (10) the general transferable and dedicated renewable resource capacities are determined according
to the corresponding resource dedication values. Constraint set (11) is for general sharable renewable resource
capacity where the corresponding resource usages are calculated for all projects over the shared time periods.
Constraint sets (12) and (13) calculate the nonrenewable resource dedication values available for each project
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and general nonrenewable resource capacities, respectively. Constraint (14) limits the sum of the total renewable
and nonrenewable resource costs with the general resource budget. And finally, constraint set (15) calculates the
weighted tardiness value for each project. Constraint sets (16)-(18) define the feasible ranges for the decision
variables.

3 An Iterative Solution Approach Based on Exact Methods For Generalized Resource Portfolio
Problem

GRPP is a conceptually and computationally complex problem. In our previous works, we have proposed
solution approaches for RPP under different RMPs. In GRPP, all these different types of resource are present.
The solution approach we propose for GRPP is an iterative approach and different steps of the algorithm are
based on our previous studies. The basic rationale for the solution approach is obtaining a solution for a relaxed
version of the GRPP and then iteratively make the solution feasible for the original problem. The basic steps of
the algorithm are given below, where α is the step size for increasing the budget and ∆ is the trash hold value
for the closeness of the total budget:

Initialization: Set iteration counter, initialize α and ∆.

Step 1: Relax the problem by removing the corresponding constraints for sharable renewable resources, namely,
constraint (11). Solve the relaxed problem with a modified version of the solution procedure proposed in [1] for
RPP under RTP. If a feasible solution is obtained, go to Step 3 ; otherwise, go to Step 2.

Step 2: Increase the current resource budget by α and go to Step 1.

Step 3: Calculate the sharable renewable resource budget requirement (SRR) for the solution obtained in Step
1 by using the activity finish times and selected modes. The budget requirement of the current solution is given
by the dedicated resource requirement (DRR). Calculate δ which shows the budget excess as follows:

δ =
DRR+ SRR− TotalBudget

TotalBudget
(19)

If this δ value is positive, then the solution obtained is infeasible with respect to the general budget. If so, then
decrease the general budget by SRR and go to Step 1. If, on the other hand, δ is negative, then this means that
there is a feasible solution for the problem and the general resource capacity budget requirement for this solution
is less than the general budget. If δ ≤ ∆ then terminate the solution procedure with the solution obtained.
Otherwise, increase the current budget by (δ−∆). Finally, increase the iteration counter and check whether the
iteration limit is reached. If that is the case, terminate the solution procedure with the best solution at hand.
Otherwise go to Step 1.

Step 1 of the algorithm needs a detailed explanation since it provides a solution approach for the relaxed problem
(without any sharable resource constraints). This solution procedure is based on the approach proposed in [1]
with a modification to include both dedicated and transferable resources in the RPP. The next section gives
detailed explanation for the solution approach.

3.1 A Modified Branch and Cut Procedure for Dedicated and Transferable Resources

Dedicated and transferable resources are similar to some extend such that during the planning horizon of the
projects the resources cannot be shared among projects. The only difference is that a transferable resource can
be transferred from a project to another one when one of them is finished before the start of the other one. To
solve the RPP with dedicated and transferable resources the solution approach proposed in [1] will be modified
accordingly. The solution procedure is based on B&C algorithm of CPLEX and some modification in the certain
steps of the B&C procedure.

CPLEX employs the well known B&C procedure to solve integer problems [4]. The steps of B&C procedure
can be modified by the user by employing special purpose algorithms developed specially for the problem at
hand. The control of the above procedures is enabled with callback functions in the CPLEX. At every node,
when a feasible LP relaxation solution is found for the problem, the associated callback functions for each of the
above procedures can be used to control the details of the B&C procedure. Three basic steps will be modified
to control the details of the B&C procedure in this study; branching, feasible solution generation and local cut
generation. Explanations of these modifications are given in detail below.
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3.1.1 Branching Strategies

Branching variable selection is an important part of the B&C procedure and can improve the execution of
the procedure greatly. There are different sets of integer and binary decision variables which can be used for
branching. In CPLEX, branching variable can be selected at each viable node. Here, we will select branching
variables to a degree and then leave this procedure to CPLEX.

The proposed branching strategy is based on the structure of the mathematical model GRPP. Note that when
Yvv′ variables are known, the problem reduces to RPP with available resource transfer options according to
the values of Yvv′ decision variables for transferable resources. In other words, when Yvv′ variables are set,
the remaining decisions are general resource capacities, resource dedications for dedicated and transferable
resources, resource transfers between feasible projects (for projects finishing before the start of another one)
and finally scheduling of individual projects. This structure of the problem not only facilitates the search but
also allows for different feasible solution generation approaches. To branch on Yvv′ decision variables, the branch
callback function of CPLEX is used and branches are generated from integer infeasible variables from the linear
relaxation solution on the node explicitly and fed into B&C procedure of CPLEX.

The selection rule for Yvv′ variable among the integer infeasible ones is given below:

Initialization: Select all the projects having integer infeasible Yvv′ decision variables in a node and add selected
projects to set InP.

Step 1: Select the projects from InP that do not have any sequence relations (i.e., all Yvv′ and Yv′v variables
are integer infeasible for project v) and add selected projects to set SP. If set SP is empty, then go to Step 2 ;
else go to Step 4.

Step 2: Select the projects from InP that are the predecessor projects in their sequence relations (i.e. all Yv′v

variables are integer feasible and 0 for project v) and add selected projects to set SP. If set SP is empty, then
go to Step 3 ; else go to Step 4.

Step 3: Select the projects from InP that have integer infeasible Yvv′ decision variables and add selected projects
to set SP, go to Step 4.

Step 4: Select the project v from SP with maximum weight and select the project v’ with minimum weight
among the projects that have integer infeasible Yvv′ values. Generate two branches with the selected Yvv′ decision
variable (Yvv′ ≤ 0 and Yvv′ ≥ 1).

This selection procedure gives first priority to projects without any sequence relations, and then to the projects
that are predecessor in their sequence relations. Project weights are used for tie breaking.

3.1.2 Feasible Solution Generation Heuristic

Addition of a feasible solution can improve the execution of the B&C procedure since it provides an upper
bound for the algorithm. We propose a feasible solution heuristic for the problem based on top of Yvv′ branching
strategy. Note that when all the Yvv′ decision variables are integer feasible, the problem becomes RPP with
transferable and dedicated resources. In [1], authors propose a feasible solution procedure for RPP with only
transferable resources. We have modified this procedure to obtain a feasible solution heuristic for the problem.
Please refer to [1] for the details of the original procedure. The feasible solution heuristic for RPP with dedicated
and transferable resources is given below:

Step 1: Determine nonrenewable resource values for each project proportional to their no-delay resource require-
ments (resource requirements for the unconstrained case). The no-delay resource requirement is the amount of
resource required for the no-delay schedule of the project. Calculate the remaining budget and go to Step 2

Step 2: Determine dedicated and transferable resource values for each project which does not have any prede-
cessor relations (such that for project v all Yv′v decision variables are 0) proportional to their no-delay resource
requirement from the remaining budget. Here for the projects that have successor relation to other projects
(such that for project v there is at least one project v’ with Yvv′ = 1) their transferable resource values are
calculated considering their successor projects. Go to Step 3.
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Step 3: Resource transfers among projects are determined with the following mathematical model.

min.z =

V∑
v

K∑
k

(NDvk −
V∑
v′

SRv′vk) (20)

Subject to

SRvv′k ≤ BR′
vkYvv′ ∀ v, v′ ∈ V and ∀ k ∈ K (21)

V∑
v′

SRvv′k ≤ BR′
vk v ∈ V and ∀ k ∈ K (22)

V∑
v′

SRv′vk ≤ NDvk v ∈ V and ∀ k ∈ K (23)

where BR′vk is the renewable resource dedication value for predecessor projects calculated in Step 2 and NDvk is
the no-delay renewable resource requirement for successor projects. This mathematical model tries to determine
resource transfers among available projects such that the deviation between total resource transfers to a project
and its no-delay resource requirement is minimized over all projects.

With this mathematical model resource transfer values for each sequential relation is calculated. Go to Step 4

Step 4: With dedicated, transferable resource values determined in previous steps, solve a multi-mode resource
constrained project scheduling problem (MRCPSP) for each project employing an exact solution approaches
and determine their corresponding schedule. Go to Step 5.

Step 5: Improve the solution obtained with CA for RD and CA for RP (refer to works [3] and [2] for a detailed
explanation for CA for RD and CA for RP, respectively). Go to Step 6.

Step 6: Feed the CPLEX with the obtained solution.

3.1.3 Valid Inequalities

Valid inequalities can improve the B&C procedure and can have an important impact on the efficiency of
the procedure. CPLEX generates various valid inequalities based on polyhedral theory. One additional valid
inequality, namely sequence valid inequality, will be generated at every viable node whenever a Yvv′ decision
variable is set to 1:

Fv′ ≥ Fv +EPvYvv′ ∀(v, v′) ∈ V : Yvv′ = 1 (24)

where Fv si the release time of project v and EPv is the possible earliest completion time of project v calculated
from CPM.

Note that these valid inequalities can be applied a priori in the problem formulation with the following constraint
set:

Fv′ ≥ Fv +EPv + Ω(yvv′ − 1) ∀ v, v′ ∈ V (25)

This approach will result in different solutions for the LP relaxation at each node which can improve the B&C
procedure.

4 Experimental Results

To test the proposed solution approach different multi-project problems are created from the j20 and j30
sets in PSPLIB [5]. For a problem 6 projects are used from the corresponding sets. Since there are only two
renewable resources in the problem sets, we have introduced another renewable resource to have one resource
for each renewable resource type. The resource usage for the added renewable resource in the modes of the
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corresponding activities is calculated as the average resource usage of the present renewable resources. Every
resource is given an associated cost and modes are slightly modified to achieve a mode set such that the more
costly modes have faster execution times than the cheaper modes. Node that the network structure is kept the
same.

The solution approach proposed for GRPP is tested with a group of problems. To categorize these problems we
have used a project measure proposed by [6], namely Average Utilization Factor (AUF). AUF is defined as the
ratio of the no-delay resource requirement of the project and available resource. Since this measure is proposed
for sharable resources we have modified it for the transferable and dedicated resources. To calculate AUF for
the corresponding resources, we sum up the no-delay resource requirements of projects individually and then
calculate the ratio. For sharable resources we calculate the AUF from the combined project network. Note that
the final values for AUF is calculated over the budget value of the resource requirements. If AUF value is less
than or equal to one, this means that there is enough budget to obtain a no-delay schedule for the problem.
When AUF value is greater than one, it can be thought as a measure for the tightness of the budget. We used
two levels for AUF: 1.5 and 1.6 and generated 10 problems for each combination.

The parameters used in the iterative solution approach are selected as follows. ∆ = 0.05, α = 0.05 and finally
the iteration limit is selected as 10. Tables 1 and 2 report the results for the multi-project problems with 6
projects each having 22 activities. Tables 3 and 4 show the results for multi-project problems with 6 projects
each having 32 activities. The #Iteration column shows the number of iterations that is observed to obtain the
reported solution. The δ Value column shows the calculated δ value in the last iteration. Objective function
value (OFV) and Lower Bound columns show the corresponding values for the solution of the relaxed problem
in the last iteration. Finally, Not Available (NA) states that the procedure could not come up with a feasible
solution in 240 minutes for that particular problem.

Solution approaches are coded with Microsoft Visual Studio 2010 C# and CPLEX 11.2 is used. A total of 4096
Mb working memory is allocated and the hard drive is used when this allocation is exceeded. Test runs are
carried out on an Intel Xeon X 5492, 3.40 Ghz processor

Table 1
Results for the multi-project problems with 6 projects each having 22 activities and AUF = 1.5

Problems #Iterations δ Value OFV Lower Bound

1 3 -0.00015 43 43

2 3 -0.000068 61 61

3 2 -0.002167 40 40

4 3 -0.00023 35 35

5 4 -0.000132 87 87

6 2 -0.003341 38 38

7 2 -0.000352 35 35

8 2 -0.003469 41 41

9 3 -0.00474 41 41

10 2 -0.007927 38 38

As it can be seen from the results, the iterative solution approach has solved most of the problems. When
AUF is increased to 1.6, the solution approach could not find feasible solution for 2 and 3 cases in the problem
groups of 22 and 32 activities, respectively. Note that as AUF increases, finding feasible solution becomes more
difficult. Two paths to the solution can be observed from the detailed investigation of the results. The first one
is a monotonic decrease in the infeasibility of sharable renewable resource usage at each iteration till a feasible
solution is obtained. Note that this can be observed when the relaxed problem can obtain a feasible solution
at each iteration with the reduced budget. Figure 1 shows the behavior of the δ values at each iteration for an
example problem for such a case.

The second path to the solution for the case where feasible solution cannot be obtained in the relaxed problem.
In this case, the general budget is increased by α and the relaxed problem is solved again, which might lead to
a feasible solution. This behavior is displayed in Figure 2.
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Table 2
Results for the multi-project problems with 6 projects each having 22 activities and AUF = 1.6

Problems #Iterations δ Value OFV Lower Bound

1 2 -0.016837 53 53

2 3 -0.005295 61 61

3 NA NA NA NA

4 3 -0.000667 40 40

5 NA NA NA NA

6 2 -0.011667 54 54

7 2 -0.001888 41 41

8 2 -0.000032 50 50

9 6 -0.003019 53 53

10 2 -0.005589 41 41

Table 3
Results for the multi-project problems with 6 projects each having 32 activities and AUF = 1.5

Problems #Iterations δ Value OFV Lower Bound

1 3 -0.000216 52 52

2 3 -0.000345 37 37

3 3 -0.000456 44 44

4 4 -0.000042 38 38

5 2 -0.000044 40 40

6 4 0 37 37

7 2 -0.00008 35 35

8 2 -0.000756 35 35

9 2 -0.006788 35 35

10 3 -0.002178 38 38

Table 4
Results for the multi-project problems with 6 projects each having 32 activities and AUF = 1.6

Problems #Iterations δ Value OFV Lower Bound

1 2 -0.001385 56 56

2 2 -0.003867 36 36

3 4 -0.008789 47 47

4 NA NA NA NA

5 3 -0.006055 38 38

6 4 -0.007645 42 42

7 2 -0.006212 42 42

8 2 -0.009741 45 45

9 NA NA NA NA

10 NA NA NA NA

5 Conclusions and Further Research Topics

We have proposed a generalized multi-project scheduling problem with sharable, dedicated and transferable
renewable resources which is called GRPP. The conceptual and computational complexity of the problem prevent
the use of exact solution approaches for practical cases. We have proposed an iterative solution approach based
on exact solution of the relaxed version of GRPP. To solve this relaxed problem a modified B&C procedure is
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Fig. 1. δ value is decreasing monotonously while a feasible solution is found at each iteration for the relaxed problem

Fig. 2. δ value for the relaxed problem is increased to find a feasible solution

used. The test results show that the proposed solution approach can produce good results for the problems.

The first extension for the study can be the improvement of the solution procedure. When the sharable resources
are accounted to the solution and an infeasible resource budget is resulted, feasible solution procedures can be
used to search a solution near the neighborhood of the current solution of the relaxed problem. Another research
direction would be the consideration of different RMP that we do not consider in this study.
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