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Functional Observers for Motion Control Systems

This paper presents a novel functional observer for motion control systems to provide higher accuracy and less
noise in comparison to existing observers. The observer uses the input current and position information along
with the nominal parameters of the plant and can observe the velocity, acceleration and disturbance information
of the system. The novelty of the observer is based on its functional structure that can intrinsically estimate and
compensate the un-measured inputs (like disturbance acting on the system) using the measured input current. The
experimental results of the proposed estimator verifies its success in estimating the velocity, acceleration and dis-
turbance with better precision than other second order observers.
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1 INTRODUCTION

The demand toward better measurement capabilities has
been increasing recently with the advances in high pre-
cision applications of motion control systems. For any
kind of application related to the research areas like force
robotic manipulation or transportation and in particular
for micro level applications like microassembly, microma-
chining or micromanipulation, one of the primary needs is
to have a clear and accurate measurement of position, ve-
locity and even acceleration of the corresponding system.

High precision position transducers like encoders and
resolvers, are widely used as the means of position mea-
surement both in industrial applications and in research.
However, they are incapable of measuring the velocity of
the system, which is a must in many areas of motion con-
trol. Generally in motion control systems, the measure-
ments available to the controller are the input current to
the system and position information from the encoder. The
problem to obtain the real time velocity and acceleration
data with the desired precision and low noise while main-
taining a very large bandwidth sits in the middle of all
motion control applications that require high performance.
The standard approach is to use the first and second order

derivatives of position information of an incremental en-
coder and process the resulting data through a low pass
filter. However this approach brings two disadvantages
which are impossible to overcome simultaneously. With
this classical structure, one either has to acquire a fast but
very noisy data, or has to have a less noisy but sluggish
data [1], [2]. The payoff between those two cases is deter-
mined by the cut-off frequency of the filter. In either case,
the degradation in the performance of controllers might be
problematic.

Many researchers analyzed this problem and tried to
come up with fast and accurate estimators using different
approaches. A primary solution for this problem is usually
proposed with the use of a Kalman Filter. In [3] Kalman
Filter is used to estimate the velocity and disturbance in
low speed range. Although this approach is a good way to
clear the noise in estimation, the computational cost might
be problematic for cases where fast response in estimation
is desired. Another study, which relies on the use of Ex-
tended Kalman Filter, implements the velocity estimation
with current and DC voltage inputs of an induction mo-
tor [4]. A more recent example of Extended Kalman Fil-
tering on velocity estimation can be found in [15]. On the
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other hand, the major problem about the tuning of Kalman
Filter parameters makes it difficult to use in many applica-
tions. The payoff stands between the convergence rate of
the filter and ability to clear the noise. So, with Kalman
Filter, one should either ignore to observe the very rapid
changes and have a clear velocity estimate or to admit a
fast response with more noise.

On the other hand, some researchers used the direct out-
put of well known disturbance observer to estimate the
velocity. In [5] the disturbance torque and the input cur-
rent is used to observe the speed of the system. A similar
methodology is performed by implementing a disturbance
observer based full state observer algorithm to recover the
dead time problem in estimation of low speed motion [6].
However, although disturbance observer is proven to be
very useful for robust motion control [7], the observer
structure intrinsically requires the velocity information of
the plant which again requires the precise calculation of
the system velocity. Besides, since the disturbance ob-
server gives non-zero value for a scenario where there is
non-zero current input and zero position change, this kind
of approach might give a non-zero velocity value which
can mislead the controllers using this information. In their
study, Patten et al. proposed a structure to observe veloc-
ity based on optimal state estimation using input torque
and position information [8]. Their work basically origi-
nates through closing the loop for velocity estimator. This
way, even though the estimation result is accurate for low
speeds, it is not fast enough to recover rapid fluctuations
in velocity. In a recent study by Berducat et al. the speed
information is obtained via an adaptive two level observer
using estimation of friction model [9]. In [10] a novel ap-
proach is tried and the authors used adaptive fuzzy logic
to realize the velocity observer. In this method, the fuzzy
controller adopts the disturbance acting on the plant and
hence it can perform very good in eliminating the noise in
the estimation. However, this approach can lose reliabil-
ity where there is rapid change of disturbance acting on
the system. [11] presents another speed estimation method
based on a model reference adaptive scheme that can re-
cover mechanical inertia time for changing load. More in-
formation about velocity and acceleration estimators can
be found in [12], [13], [14], and [16].

In this paper, a novel observer is presented that pro-
vides functional structure which, by changing a few pa-
rameters, can be used for estimating the velocity or accel-
eration of a system or the disturbance acting on that sys-
tem. The presented work is an extension of the study given
in [17] providing further proofs over the previously pro-
posed structure. The organization of the paper is as fol-
lows. In Section-2 the definition of the problem is given
with background information about the system under con-
sideration. In Section-3 the mathematical derivation of the

functional observer is made. In Section-4 the sensitivity
analysis of the proposed observer for varying system pa-
rameters is handled. Section-5 presents the experimental
results. Discussion about the results and concluding re-
marks are given in Section-6 and Section-7 respectively.

2 PROBLEM DEFINITION

Throughout the analysis presented in the next section,
design of the observer will be made on a single degree of
freedom (DOF) motion control system. The generalized
depiction of a single DOF motion control system is given
in Fig. 1. In that structure, I, s (s) and Ty;5(s) stand for the

Ty (5) 2 ~T(s)

L
=

T (5)

Fig. 1. Structure of a motion control system with ideal ob-
server

Laplace Transformed reference input current and distur-
bance torque acting on the system respectively. The feed-
back terms B(#,x) and G(z) represent the respective ac-
tions of viscous friction and gravity over the system. In this
generalized structure, the reference input torque T¢ 7 (s) to
the system is given by a transfer function from the input
current as follows;

Tref(s) = H(S)ITEf(S)

where H (s) is the transfer function mapping the reference
input current to the reference input torque. Ideally, this
mapping is given by a constant gain and hence the system
input takes the form;

Tref(s) = Knlres(s) (1)

with K, being named as the nominal torque constant. The
second order plant can be represented with a transfer func-
tion R(s) from the total input torque 7'(s) to the general-
ized coordinate of motion X (s) by;

R(s) = = TNe 2

where, M (x) stands for the plant inertia. Assuming that
the plant inertia shows small variations around a nominal
value, M (z) can be replaced with the nominal inertia value
M,,. In equation (2), T'(s) is the summation of all inputs
acting on the system (i.e. T'(s) = Trc(s) — Tais(s)). So,
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the output X (s) of the structure given in Fig. 1 can be writ-
ten as;

X(s) = R(s) (Knlres(s) = Tuis(s)) 3

In equation (3), it is assumed that the term Ty;s(s)
lumps all inputs other than the reference torque Ty f(s).
In that sense, Ty4;s(s) contains the torques due to; vis-
cous friction B(#, x), deviations from the nominal values
of torque constant AK,, I,..¢(s) and inertia AM,,s*X (s),
gravity G(z) and all other non-modeled external torques
T..t+(s). This way, the content of the disturbance torque
can be given as,

Tyis(s) = AMns®X(8)+ AKpIyef(s)+B(#, )+ G (2) +Text(s)
“)

In order to acquire measurements of the system, one has
to incorporate the plant output, X (s) with a transfer func-
tion. In the structure shown in Fig. 1, Z(s) is the vari-
able of interest that is related to the plant output by the
ideal (not necessarily realizable) transfer function H;(s)
(i.e; Z(s) = H;(s)X(s)). If the actual value of the vari-
able of interest Z(s) cannot be directly measured, then
H;(s) stands for the ideal transfer function of the observer
that needs to be designed. However, the content of this
observer may not be physically realizable if H;(s) is an
improper transfer function like 7, s+ 725 (i.e. a linear
combination of acceleration and velocity). Moreover, di-
rect differentiation would yield a correct result only when
there was an ideal double integrator system. Since the sys-
tem is subject to non-ideality (i.e. Ty;s(s) # 0) the double
integrator assumption is degenerated and the actual value
of the variable of interest should contain additional term
coming from the disturbance. Without loss of generality,
one can assume that the disturbance term is transferred to
the actual output by a transfer function H,(s) and hence
the actual output of the plant gets the following form:

Z(s) = Z(s) + Hq(s)Tais(s) 5)

As a remedy to the improper structure of the ideal ob-
server, one can make use of the reference current measure-
ment with the ability to observe the variable of interest
through integration rather than differentiation. Hence, the
reference current measurement can be fused with the po-
sition measurement to remove the effect of phase delay in
differentiation. Having this in mind, one can utilize an ap-
proximate observer structure as shown in Fig. 2 and come
up with an estimate of the output Z(s). In designing the
observer, the main criteria is to select the error between
the actual value Z(s) and the estimation Z(s) to have a
desired magnitude of zero.

Now the problem can be formulated as follows: For the
system given in Fig. 2, using the nominal plant parame-
ters and measurable outputs (i.e. I .f(s) and X (s)), find

1,,(s)

Observer

Plant

Fig. 2. Proposed observer structure

transfer functions Hq(s) and Hs(s) that would approxi-
mate variable of interest Z(s) with error Hy(s)T4:5(s) due
to unmeasurable and unknown plant input.

3 OBSERVER CONSTRUCTION

Using equation (5) and the structure shown in Fig. 2,
one can write the actual and the estimated values of Z(s)
as follows:

Z(s) = Hi(s)X(s)+ Ha(s)Tais(s)

Z(S) = Hl(S)R(S) {H(S)Iref(s) — Tuis (S)} + Hd(s)Tdis(s)
(6)

Z(5) = Ha(s)X(5)+ Hi(9)res(s)

Z(s) = Hs(s)R(s) {H(S)Imf(s) — Tyis (5)} + Hi(8)Ires(s)

(7

From (6) and (7), one can write the error in the estima-
tion as follows:

AZ = Z-2Z
A7 = {RH(HZ'_HQ)_HI}ITef
—{R(H; — H2) — Hq} T4is (8)

where, in (8), all terms are functions of s. The differ-
ence between desired output Z(s) and its estimated value
Z (s), as expressed in (8) depends on both control input and
the disturbance. In order to push this estimation error to
zero, coefficients of both current (I,.¢(s)) and disturbance
(Tuis(s)) should be imposed to have zero value. Letting
those coefficients be equal to zero and solving further, one
finds the following two equations for the transfer functions
Hy(s) and Ha(s);

Hl(S)
HQ(S) ==

H(s)Hq(s)
H;(s) — R™'(s)Hy(s) 9)

The assumption made in (1) saying that the torque
can be transmitted to the plant with a constant gain (i.e.
H(s) = K,,) results in H;(s) being equal to a scaler mul-
tiple of Hy(s). This result is very important since it im-
plies that the error due to disturbance is compensated by
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the current input during estimation. In other words, the ob-
server, while using position information and transfer func-
tion Hy(s) to acquire the estimated value, also uses the
current information and transfer function H; (s) along with
the nominal parameters of the plant to cancel the effect of
disturbance in estimation.

In order to solve for Hi(s) and Ha(s) we can define
a generalized transfer function for Hy(s). Since the dis-
turbance acting on the system pass through a second order
dynamics, we can formulate this generalized transfer func-
tion as follows;

_ PPslys+9)

Hd(S) Mn(SJrg)Q

(10)

where, v and 0 are two unknown parameters which need
to be solved for the variable of interest to be estimated,
M, is the nominal inertia of the plant and g is the cut-off
frequency of the law pass filter to be used in realizing the
disturbance transfer function. Using this error, the expres-
sion for R(s) from (2) and equation (9), generalized forms
for the transfer functions H;(s) and Hs(s) can also be de-
fined;

Ky g%s(ys +0)

) = 3 e a
283 S
Hy(s) = HAs)W (12)

In both of the equations (11) and (12), the coefficients g,
~ and ¢ should be selected in design process. In order to
design the parameters, we have to refer to the format of the
ideal transfer function H;(s). Let the ideal transfer func-
tion be H;(s) = as? + Bs; in other words let us assume
that a linear combination of velocity and acceleration is to
be estimated. Substituting H;(s) into (12), one can obtain;

g°s°(ys +9)
(s+9)°

which can be expanded further as follows,

Hy(s) = (as® 4 Bs) —

0484 + 0383 + 0282 + 018
HQ(S) = (S +g)2

13)

where, the coefficients are

Cy=a—g%y

Cs =290 — g?6 + B

Cy =298+ g’

Cr= 925
Since, for a physical system, the estimator will have at
most second degree derivative, we can set the coefficients

of s* and 53 terms (Cy and C3) be equal to zero, which
gives;

(0%
a—92’y=0=>7=f92 (14)
2
29a—gz§+ﬁ=0:>5:ﬂ+gi2ga (15)

Substituting (14) and (15) into (11) and (12) gives the fol-
lowing set of transfer functions:

Ky as® + (B +2ga)s

H(s) M,  (s+g)?
+23)s +
Hy(s) = QSLQ (s—l—ﬁ)g; &
Hi(s) = as*+fs (16)

Now, the only design parameters are v and 8 which is de-
termined from the structure of the ideal observer H,(s).
Due to the selected structure of disturbance transfer func-
tion (H,4(s)), the functional observer can be realized using
just two first order filters as depicted in Fig. 3.

1,,.(s) T (5) +,~T(s5) 1 x |1

v

T, (s)
Plant
4 N
:@_ H ++ _@‘
g
s+g
+
>
g
s+g
o
22 Qs Z(s)

@bserver )

Fig. 3. Block diagram of functional observer

This structure mathematically imposes the following
two equations.

as? + (B 4+ 2ga)s o2g 0192
Hi(s) = K, 22 TP T 2905 _
1(9) Mas+9)? O\ Grg TGrer
a7
(g°a +298)s” + g°Bs p2g p1g’
Ha(s) = -
2() G+ 9 mo Mt g T v g2

18)

The values for gains o; and p; (¢ = 0,1,2,3) can be
found by substituting the necessary numbers for o and 3 to
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the ideal observer H;(s). A summary of the coefficients for
velocity, acceleration and disturbance estimation is given
in Table 1

Table 1. Parameters of the Functional Observer for Differ-
ent Configurations

H; 0sZ+s 52+ 0s Knlpef — Mps?
(%) () (&) (Tais)

%0 g M ~Kn

o1 -1 -1 -1

o2 1 0 0

o3 0 1 0

1o g g° —Myg?

I 1 1 1

o -3 -2 -2

n3 2 1 1

4 PARAMETER VARIATION ANALYSIS

In order to have a complete analysis of the given struc-
ture, it is important to analyze the response of the observer
with respect to the variations in the system parameters. Re-
calling from equation (8), H;(s) and Hg4(s) are the trans-
fer functions which map the input and the disturbance to
the output and hence does not include any system depen-
dent parameters. Moreover, transfer functions H; (s) and
H,(s) are derived based on the zero error solution of the
proposed estimator (offline) using the nominal system pa-
rameters, which means that they also do not show varia-
tion. The only remaining source of variation in the system
parameters exist either from R(s) or from H(s). We can
now proceed to analyze them further.

Let us suppose that the original value of plant transfer
function is R(s) + AR(s) while the observer assumes it
as R(s) with bar representing the assumed nominal value.
Inserting this original value into equation (8), the error in
estimation becomes;

AZr(s) = {AR(s)H(s)(Hi(s) — Hz(s))} Ires (s)
— {AR(s)(Hi(s) — Ha(s)) } Tuis(s) (19)

where, in (19) the transfer functions with bar represent the
ones constructed assuming the nominal system parameters.
Looking at the structure of this equation, it is obvious that
the variations in the plant inertia are reflected both in map-
ping from input current and from disturbance to the output.

Now let us suppose that the original value of transfer
function that maps current to the plant is H(s) + AH(s)
while the observer assumes it as H (s) with bar represent-
ing the assumed nominal value. Inserting this original
value into equation (8), the error in estimation becomes;

AZu(s) = {AH(s)R(s)(Hi(s) — Hz(s)) } Ires(s)  (20)

For the selection of H(s) and R(s), there are two pos-
sible sources of uncertainty. Either one or both of the two
nominal plant parameters (i.e. K, and/or M,,) might be
assumed different from their respective true values. The
following subsections analyze the independent effects of
variations in any of those two parameters.

4.1 Response with respect to fluctuations in nominal
inertia
Assuming that the original value of nominal system in-

ertia is M,, + AM while the observer assumes the system
has nominal inertia M,,, one can write down,

AM
Mn(Mn + AZ\4)S2

AR(s) = —

The effect of this difference in the estimation can best
be seen on a bode plot which reflects the transfer func-
tion AZr(s)/Z(s), where Z(s) is the actual output of
the estimator given in (6). Equation (19) is a function of
both input current and disturbance. Hence, the plotted re-
sponse is a mapping from those two inputs to the output
(i.e. the change in the response of the variable of interest).
The responses are obtained with a variation of %10 in the
nominal inertia and with the selection of cut-off frequency
g = 1000 Rad/s.

The bode plots given in Fig. 4 show that %10 change in
parameters is reflected to the output only for frequencies
higher than the cut off frequency. For range of operation
with lower frequencies than the selected cut-off frequency,
the variation of system inertia from its respective nominal
value is tolerated by the observer and is not reflected in the
output for the estimation of velocity. On the other hand, the
bode plots shown in Fig. 5 points out a similar situation for
the estimation of acceleration. One important indication in
both bode plots is that, for applications over selected cut-
off frequency, the effect of disturbance on the estimation is
augmented. Hence, in order to get the best performance out
of the proposed observer, the frequency g of the proposed
observer should be selected as high as possible.

4.2 Response with respect to fluctuations in nominal
torque constant

A similar analysis can be carried out to see the ef-
fect of changes in the nominal torque constant. Suppos-
ing that the original value of nominal torque constant is
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Fig. 4. Effect of %10 change in the nominal inertia on
the estimation of velocity. Mapping from input current is
shown on the left column while mapping from disturbance
is shown on the right column
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Fig. 5. Effect of %10 change in the nominal inertia on the
estimation of acceleration. Mapping from input current is
shown on the left column while mapping from disturbance
is shown on the right column

K,, + AK while the observer assumes the system has a
nominal torque constant value of K,,, one can write down;

AH(s) = AK

Once again, frequency response is used to visualize the
difference in the estimation. The transfer function used in
the bode plots given below is AZy(s)/Z(s), where Z(s)
is the actual output of the estimator given in (6). Since
equation (20) is only a function of the input current, the
plotted response is a mapping only from input current to

the output. The frequency responses shown below is ob-
tained with a variation of %10 in the nominal torque con-
stant. Results obtained for the relative changes in the es-
timation of velocity and relative changes in the estimation
of acceleration is given in Fig. 6 and Fig. 7 respectively.
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-100
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Fig. 6. Effect of %10 change in the nominal torque con-
stant on the estimation of velocity
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Fig. 7. Effect of %10 change in the nominal torque con-
stant on the estimation of acceleration

The bode plots indicate that similar to the responses ob-
tained based on the variation of inertia, the changes in the
nominal torque constant is tolerated for the operational fre-
quencies lower than the cut-off frequency.

5 EXPERIMENTS

Series of experiments were conducted in order to ver-
ify the proposed functional observer. As an experimental
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setup one Hitachi-ADA series linear motor and driver stage
was used. The stage prepared for the setup provides motion
in single dimension and is designed using brushless, high-
precision direct drive linear servomotors. Position feed-
back to the motion stage is obtained from an incremental
optical encoder with a resolution of 1pum. The stage is con-
trolled by the modular Dspace control system DS1005 that
features a PowerPC 750GX processor running at 1 GHz.
Control system features the 24-bit encoder signal process-
ing card and 16-bit DA card. MATLAB-Simulink environ-
ment is used for the implementation of the functional ob-
server algorithms. Picture of experimental setup is shown
in Fig. 8. The verification of the proposed estimator is done

/— Incremental Encoder

Linear Motor
/— Driver Unit

Fig. 8. Picture of the Experimental Setup

with different experiments for velocity, acceleration and
disturbance. The following subsections discuss the details
and results of the experiments for different observer con-
figurations.

5.1 Estimation of Velocity

In order to present the velocity estimation results three
different observers were implemented and tested with the
same reference. Trapezoidal velocity reference is imposed
to the plant and the response is recorded. The rising and
falling edges of the reference have 0.02m/s? slope with
a peak constant velocity of 0.01m/s. The velocity esti-
mation results for this experiment are provided in Fig. 9.
Among the given velocity responses; (a) is the response
of filtered differentiation using 2"¢ order low pass filter
(i.e. two cascaded first order low pass filters), (b) is the
response of filtered differentiation using using a Butter-
worth filter and (c) is the response of proposed functional
observer. All of the observers have cutoff frequency of

159.24 Hz (i.e. 1000 Rad/s). As the graphs show, the per-
formance of the proposed functional observer in estimat-
ing the velocity is much better than filtered differentiation.
Moreover, although internally the structure of the proposed
functional observer includes two cascade filters, it can still
outperform the estimation results obtained via using a But-
terworth type second order filter with direct differentiation.

The reduction in the noise level is also measured numer-
ically for the experiments. In that sense, the signal to noise
ratio (SNR) is calculated for the acquired velocity profiles.
In the calculation of SNR, the ratio of mean to standard de-
viation of the measured response (normalized to the given
reference) is used. The calculated SNRs came out to be
13.305, 19.380 and 21.879 for the experiments given in
parts (a), (b) and (c) respectively. Numerical results for the
improvement in signal power proves the success of func-
tional observer.

5.2 Estimation of Acceleration

The acceleration estimation results are tested with a dif-
ferent experiment. In acceleration experiment, consecutive
positive and negative pulse references are given to the sys-
tem and the estimation responses are recorded. The am-
plitude of the pulse reference was selected to be 15m /5.
The results of the proposed observer are compared to the
results obtained from the double differentiation using us-
ing Chebyshev 0.5dB filter. In order to have a better com-
parison of the observed accelerations, one needs the actual
acceleration response of the system. For that purpose,the
position data obtained from the optical encoder is double
differentiated in an offline setting and shown on the same
plot. For offline numerical differentiation, the three-point
estimation approach is utilized.

The acceleration estimates of the functional observer
and filtered double differentiator are given in Fig. 10 along
with the actual acceleration response. For both observers,
the low-pass filter gains are selected to be 159.24 Hz.
When the results are compared, it becomes obvious that the
tracking performance of the functional observer is much
better than that of the double differentiation using Cheby-
shev 0.5dB filter. Those graphs show the effectiveness of
the implemented methodology, namely using current input
in estimation to eliminate the unmeasured disturbances.

5.3 Estimation of Disturbance

For comparison of disturbance estimation responses, a
constant velocity reference tracking experiment is done.
During the experiment, output of classical disturbance ob-
server is compared to that of functional observer. Fig. 11
show the disturbance estimation results for the proposed
functional observer and classical disturbance observer re-
spectively. Like the velocity observers, the functional dis-
turbance observer is capable of making the same estima-
tion with less noise in comparison to classical disturbance
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(a) Velocity Response of Filtered Differentiation using 2nd Order Low
Pass Filter

x107°

12
10

Velocity (m/s)

o N B~ O

6
Time (s)

(b) Velocity Response of Filtered Differentiation using Butterworth fil-
ter

12
10

Velocity (m/s)

o N M O ©

6
Time (s)
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Fig. 9. Comparison of Velocities from (a) Filtered Differ-
entiation using 2" Order LPF, (b) Filtered Differentiation
using Butterworth Filter and (c) Functional Observer, Un-
der Trapezoidal Velocity Reference

observer. The SNRs for estimated disturbances are cal-
culated to be 6.625 and 7.15 for classical disturbance ob-
server and functional disturbance observer respectively.

6 DISCUSSION

Proposed functional observer is useful for obtaining ac-
curate and low noise level velocity estimation. These char-
acteristics make the functional observer preferable over
conventional filtered derivative methods. Smoother veloc-
ity estimation brings the advantage of acquiring higher pre-
cision in many motion control systems. Moreover, the es-
timation in velocity is as fast as the classical estimators. In

20
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Fig. 10. Comparison of Accelerations from Functional Ob-
server and Double Differentiation using Chebyshev 0.5dB
Filter Under Constant Acceleration Reference

other words, noise in estimation is reduced considerably
while the bandwidth of operation remains the same.

Besides velocity, much faster and more accurate accel-
eration estimation can be made with the proposed func-
tional observer in comparison to filtered double differentia-
tors. Although the acceleration information is usually not
directly used in motion control systems, in many settings
it is used as the feed forward term. Having faster response
in acceleration estimation would decrease the integration
error resulting in a better controller performance.

Concerning the disturbance observer in motion control
systems, usually wide bandwidth operation is very crucial
for the robustness of the system. Instead of using a double
filtered estimation, use of classical disturbance observer
might still perform better in control loop due to having a
single filter and hence a little faster response time. How-
ever, smoother disturbance estimation from the functional
observer can be a better candidate for external torque/force
reconstruction.

7 CONCLUSION

In this paper, a functional observer is presented. The
observer is capable of estimating the velocity, acceleration
and disturbance information of a motion control system
only by a change in the configuration parameters. In ad-
dition to the position measurement, the estimator benefits
from estimating and eliminating the disturbance effects by
using the measured input current and plant’s nominal pa-
rameters. The theoretical development of the estimator has
been validated through experiments.
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(a) Disturbance Estimation Response of Classical Observer
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Fig. 11. Comparison of Disturbances from (a) Standard
Disturbance Observer and (b) Functional Observer, Under
Constant Velocity Reference
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