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ABSTRACT 

         Drought resistance is the main challenge of wheat genetics and breeding 

programs. Resistance is a complex mechanism involving physiological, biochemical, 

and molecular processes. The effects of drought on these processes were studied in four 

bread wheat (Triticum aestivum) genotypes (Sahal-1, Giza-163, Ozcan and BVD-22) 

that were selected from a screening study. The selected genotypes were grown in the 

greenhouse and  subjected to water deficit induced by withholding water supply for one 

week, at three different growth stages:-40, 60 and 80 days after sowing. 

          The results revealed that 1) drought adversely effected the plant height, biomass, 

number of leaves per plant, leaf and soil water content, macro and micro nutrients 

concentration whereas proline accumulation, soluble carbohydrate, lipid peroxidation, 

and antioxidant enzymes activities except catalase were positively affected; 2) Drought 

resistance was almost seen in Sahal-1 and BVD-22 genotypes but its extent varied from 

one genotype to another and even within genotype from growth stage to other stages. 

Differential display technique was used to study the expression profile of Sahal-1 and 

BVD-22 which was exposed to drought at 40 DAS. We observed ten differentially 

expressed genes. These fragments were isolated, cloned, sequenced, and compared with 

nucleotide and protein sequence databases using BLASTN and BLASTX algorithms. 

          Under field condition, the response of forty-nine wheat genotypes to drought 

significantly reduced the plant height, biomass, harvest index, NDVI, SPAD, and yield 

components as well as delayed the heading date, and increased canopy temperature of 

most genotypes.  

 

Key words: drought, proline, lipid peroxidation, soluble carbohydrate, antioxidant 

enzymes, mRNA DD, SPAD, NDVI, canopy temp., harvest index, biomass, yield. 
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ÖZET 

 

         Kuraklık stresi buğday genetik ve ıslah programlarının ana sorundur. Direnç; 

fizyolojik, biyomedikal ve medikal süreçler içeren karmaşık bir mekanizmadır. 

Susuzluğun bu süreçler üzerindeki etkisi daha önce yapılan bir tarama çalışmasından 

seçilen dört tip (Triticum aestivum) ekmeklik buğday genotipi kullanılarak incelenmiştir 

(Sahal-1, Giza163, Ozcan and BVD-22). Seçilen genotipler serada yetiştirilmiş ve 

ekildikten 40, 60 ve 80 gün sonra üç farklı büyüme safhasında, bir hafta boyunca 

susuzluğa maruz bırakılmıştır.   

          Ortaya çıkan sonuçlara göre: 1) kuraklık bitki boyu, biyokütlesi, bitki başına 

düşen yaprak sayısı, yaprak ve toprak su içeriği ile makro ve mikro besin 

konsantrasyonlarını olumsuz yönde etkilerken; prolin birikimi, çözünebilir 

karbonhidrat, lipit peroksidasyonu ve katalaz dışındaki antioksidan enzim aktivitelerini 

olumlu olarak etkilemektedir; 2) BVD-22 ve Sahal-1 susuzluğa karşı  direnç 

gözleminde daha iyi bir performans göstermiştir; 3) Kuraklık direnci Sahal-1 ve BVD-

22 genotiplerinde az da olsa gözlenmiş; fakat kapsamı bir genotipten diğerine değiştiği 

gibi farklı büyüme safhalarında da farklılıklar ortaya çıkmıştır. 40. günde susuzluğa 

maruz bırakılan Sahal-1 ve BDV-22’nin ifade grafiği çalışılırken mRNA diferansiyel 

görüntü tekniği kullanılmıştır. Farklı seviyelerde ifade edilen 10 gen saptanmıştır. Bu 

genler izole edilmiş, klonlanmış, dizilenmiş, ardışık sıralanmış ve BLASTN ile 

BLASTX algoritmaları kullanılarak nükleotid ve protein dizi veritabanları ile 

karşılaştırılmıştır.        

          Tarla koşulları altında incelenen kırk dokuz buğday genotipinin kuraklığa tepkisi 

belirgin bir şekilde bitki boyunu, biyokütlesini, hasat endeksini, NDVI, SPAD ve verim 

birleşenlerini azaltmış, aynı zamanda çiçeklenme zamanını da geciktirmiş ve çoğu 

genotipin kanopi sıcaklık derecesini arttırmıştır. 

 

 

Anahtar Kelimeler: Kuraklık, prolin, lipit peroksidasyonu, çözünebilir karbonhidrat, 

antioksidan enzimler, mRNA DD, SPAD, NDVI, kanopi derecesi, hasat endeksi,  

biokütle, verim. 
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1 

 

1 INTRODUCTION 

 

           Agriculture is highly dependent on climatic conditions; therefore, any changes in 

these conditions may negatively affect agricultural crops and lead to a shortage in the 

world food supply (Maqsood and Ali, 2007). Drought dramatically affects plant 

functions, metabolism, limiting normal growth and causes a sharp decrease in crop 

productivity (Yamaguchi, et al., 2002). Wang, et al., (2003) reported that drought 

stress reduced average yields of most crops by more than 50%. Drought occurs when 

the available water in the soil decreased and atmospheric conditions causes a continuous 

loss of water from the plant by transpiration process (Jaleel, et al., 2009). 

 

          Wheat is one of the most important cereal crops all over the world (Amjad, et al., 

2009). It is the second important crop on the globe (Johari-Pireivatlou, et al., 2010). 

Furthermore, wheat is essential component for human food and animals feed in many 

countries, especially in developing countries. Wheat growth and productivity are 

adversely affected by drought stress. Nearly half of the cultivated areas of wheat are 

found in developing countries and up to 70% of these areas suffer from drought 

(Bhutta, et al., 2006). Moreover, freshwater resources are limited especially those used 

in agricultural sector. Meanwhile, the world population is increase. It is projected to 

reach 9.2 billion by 2050 (World population prospects, 2007). Thus, to achieve a high 

output of agricultural crops under drought stress, it is necessary to develop new wheat 

genotypes, which are characterized by drought resistance, at the same time, high yield 

to meet the food demands of the growing population. 

 

          Studying the influence of drought stress on growth and the physiological 

characteristics of different wheat genotypes is a helpful tool for development and 

improved wheat resistance toward stressful conditions. The resistance to drought has 

not been defined very well and it is still not clear which aspects of the plant are 

important for such kind of resistance (Abdelhady and Elnaggar, 2007). On the other 

hand, wheat is an attractive study system because of it is wide natural genetic variation 

in traits related to drought tolerance (Loggini, et al., 1999). 
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          For a successful development of drought resistant genotypes, it is necessary to 

study all changes that occur in genotypes of differing susceptibility caused by the 

drought stress (Ramiz and Mehraj, 2004), and compare between tolerant and 

susceptible genotypes under stress and non-stress conditions. The genetic improvement 

for drought resistance requires a search for possible physiological and morphological 

components of drought resistance and exploration of their genetic variation. 

 

          To understand the components of drought resistance, two experiments were 

designed. The first one was a greenhouse experiment that was conducted at the 

Biological Sciences and Bioengineering Department, the Faculty of Engineering and 

Natural Sciences, Sabanci University, Istanbul, Turkey, during the 2009 season. The 

aim was to study the influence of water deficit during three growth stages of four bread 

wheat genotypes, two genotypes from Egypt and two from Turkey. The sowing date 

was done on 6 January 2009, in pots using three replicates. The treatments were two 

water regimes (stress and non-stress), the stress treatment was induced by withholding 

irrigation for one week at 40, 60, and 80 DAS (days after sowing) and non-stress (well 

watered). 

 

          The second experiment was an open field experiment. It was designed to examine 

and evaluate the differences in some morphological, physiological characters among 49 

bread wheat genotypes in response to drought stress. The evaluation was done under 

supplementary irrigation and rain-fed conditions. This experiment was conducted at 

Anatolian agricultural research institute, Eskisehir, Turkey, during 2008 and 2009 

seasons. The sowing was done on 20 October 2008, in rows 20cm apart using three 

replicates. 

 

          The objectives of this study were: 1) Assess the growth and yield of some bread 

wheat genotypes under drought stress conditions; 2) Characterize the changes that occur 

at different levels, in response to drought; 3) Understand and identify some drought 

resistance mechanisms; and 4) Identify, clone, and characterize the differentially 

expressed drought- responsive genes in some bread wheat genotypes. These genotypes 

were used in screening for genes that alter their expression levels by using a genomic 

tool called mRNA differential display. 
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2 OVERVIEW 

 

2.1  Wheat production and importance 

 

          Wheat is one of the most important cereal crops all over the world; it is the 

second important crop on the globe (Johari-Pireivatlou, et al., 2010). In 2007, the 

world production of wheat was nearly 606 million metric tons (FAO, 2007). On the 

other hand, Turkey ranked eighth among the world's wheat producers (Table 2.1) with 

17.2 million tons (FAO, 2007). 

 

Table 2.1: World wheat production 

 

Rank   Production (MT) 

1 China 109.3 

2 India 75.8 

3 USA 55.8 

4 Russia 49.4 

5 France 32.8 

6 Pakistan 23.3 

7 Canada 20.1 

8 Turkey 17.2 

9 Argentina 16.5 

 

Source: - http://faostat.fao.org/site/339/default.aspx 

 

          Wheat plays a significant role in human food and animal feed; moreover, it 

provides one-third of the world population with nearly half of their calorie and protein 

intakes (Sibel and Birol, 2007). Furthermore, it is an important source for many 

minerals such as iron and zinc (USDA, National Nutrient Database, 2006). Wheat 

could be divided into three types according to planting time: winter, spring, and 

facultative wheat.  In addition, it could be divided into 1) Diploid, with two sets of 

chromosomes, and 2) Polyploid: - (a) Tetraploid, with four sets of chromosomes 

(Triticum durum), represents nearly 4% of cultivars and is used for making macaroni 

and pizza. (Debasis and Paramjit, 2001), (b) Hexaploid, with six sets of chromosomes 

(Triticum aestivum), represents about 95% of the wheat grown worldwide (Shewry, 

2009), and used for making bread and baked products. 
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2.2 Climatic changes and its effects on crops productivity 

 

          Greenhouse gases result from human activities. The accumulation of these gases 

in the atmosphere leads to an increase in the planet temperature and causes changes in 

global climate (Nguyen, 2004). In the past century, the global temperature was 

increased by more than 0.6°C. It is expected by 2100, it will increase by between 1.4 

and 5.8°C (IPCC, 2001). As a result of that, the global precipitation could increase; 

meanwhile, the global evapotranspiration could also increase, but it will be greater than 

the precipitation, so there will a potential for drought in many parts of the world. On the 

other hand, agriculture is highly dependent on climatic conditions; therefore, any 

changes in these conditions negatively affect crops yield and causing a shortage in the 

world food supply (Maqsood and Ali, 2007). Many reports on crop productivity, 

suggest that the productivity of crops, especially tropical crops, will decrease because of 

increasing global temperature (Nguyen, 2004).  Peng, et al., (2004) reported that rice 

yield decreased by as much as 15% for each 1°C increase in the growing season. 

Similarly, Chipanshi, et al., (2003) concluded that climate changes might decrease the 

maize yield by between 10 -36 %. 

 

2.3  World population growth and global water resources situation  

 

          In 2007, the world population was nearly 6.7 billion, and it is expected to reach 

9.2 billion by 2050 (World population prospects, 2007). With continuous increasing 

of the population, the need for food and water will increase. However, the water 

resources are limited (Farooq, et al., 2009), especially freshwater resources. Less than 

3% of the world’s water is freshwater, while the rest is seawater and undrinkable. 2.5% 

of these freshwater resources are in a frozen form and not available for human use. 

Therefore, humanity must rely on only 0.5% for all needs. On the other hand, 

agriculture accounts for more than 70% of the total global consumption of water 

(Molden, 2007). Furthermore, about one third of the current world population lives in 

water-stressed locations and it is expected to increase to two thirds within the next 25 

years (Ortiz, et al., 2007). Therefore water saving and a development of new genotypes 

with drought resistance and highly yield to meet food demand of the growing world 
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population will be logical targets in the next future and the main challenge of wheat 

researchers. 

 

2.4 Drought definition 

 

          Drought is meteorological term; commonly defined as a period without a 

significant rainfall (Jaleel, et al., 2009), and includes all problems due to water shortage 

in the soil. However, agricultural drought could be defined as a climatic excursion 

involving deficiency of sufficient precipitation, which adversely affects crops 

productivity (Royo, et al., 2000). It occurs when the available water in the soil is 

decreased and at the same time, the atmospheric conditions (high temp. and low 

precipitation) cause continuous loss of water from plant by transpiration (Jaleel, et al., 

2009). 

 

2.5 Effects of drought 

 

 

2.5.1  Effects of drought on soil and microbial activity levels 

 

          Drought has many negative effects on the soil, especially the surface layer 

(topsoil), which is the most fertile layer. One of these effects is soil erosion, which 

enhanced during drought stress period. The potential for global climate changes to 

increase the risk of soil erosion is clear (Zhang and Nearing, 2005). Because of lack of 

water in the soil, topsoil becomes drier and soil aggregates decrease, which can be 

easily removed by wind. There are many microorganisms in plant rhizosphere. Some of 

them are useful for plants such as nitrogen fixation, micorhiza, and some of them are 

harmful and cause diseases to plants. That lack of moisture in the soil may limit or 

inhibit microbial activity levels. Borken, et al., (2006) reported that the low soil 

moisture inhibited microbial decay of soil organic matter (SOM). Streeter, (2003) 

found that drought stress conditions reduced the N2-fixing activity of legumes crops. On 

the other hand, there are some soil organisms, which can survive during this kind of dry 

conditions by the formation of cysts, capsules and spores (Borken, et al., 2006). 
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2.5.2  Effects of drought on nutrient availability 

 

          Plant resistance to drought stress depends on plants nutrient status (Marschner, 

1995). Drought has negative effects on the nutrient accumulation level in plant 

(Baligar, et al., 2001); it reduces nutrient uptake (Marschner, 1995), decreases nutrient 

diffusion rate in the soil to the root surfaces (Alam, 1999), and decreases the transport 

from roots to shoots (Hu and Schmidhalter, 2005). Brown, et al., (2006) found that 

soil drying significantly decreases nutrient uptake (Ca, Fe, Mg, N, P, and K). On the 

other hand, plant species may vary in their response to mineral uptake under water 

stress (Farooq, et al., 2009). The negative effects of drought could be due to stomatal 

closure, which reduces transpiration rates from leaves and impaired active transport 

from root to shoot (Alam, 1999). In addition, it may be due to effects on root growth 

(Fageria, et al., 2002) and root distribution in the soil. The mineral nutrients are divided 

into two groups: macronutrients and micronutrients. 

   

 

2.5.2.1  Effect of drought stress on macronutrients 

 

          Macronutrients are divided into two groups:  primary and secondary nutrients.  

The primary nutrients are - nitrogen (N), phosphorus (P), and potassium (K), while the 

secondary nutrients are - calcium (Ca), magnesium (Mg), and sulfur (S). These 

macronutrients play multiple essential roles in plant metabolism and plant growth.  

 

          Phosphorus (P) which is the key component of nucleic acids, phospholipids and 

phosphor-proteins (Hu and Schmidhalter, 2005); plays significant roles in 1) cellular 

energy transfer in form of adenosine triphosphate (ATP), 2) respiration and 

photosynthesis (Alam, 1999). Furthermore, it is important and required for root growth 

(Hopkins, 1999). Several reports have suggested that phosphorus has positive effects on 

plant growth under stress conditions. Garg, et al., (2004) found that phosphorus 

fertilization enhanced plant growth under stress. The positive effects of phosphorus 

could be due to it is role in increasing water-use efficiency, as well as the stomatal 

conductance (Bruck, et al., 2000), also it could be due to it is role in increasing cell-

membrane stability (Sawwan, et al., 2000). 

          

http://www.agr.state.nc.us/cyber/kidswrld/plant/nutrient.htm#Nitrogen
http://www.agr.state.nc.us/cyber/kidswrld/plant/nutrient.htm#Phosphorus
http://www.agr.state.nc.us/cyber/kidswrld/plant/nutrient.htm#Potassium
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         Like phosphorus, nitrogen (N) is also an essential nutrient for plant growth; it is an 

important constituent of plant cells components such as proteins, amino and nucleic 

acids (Hu and Schmidhalter, 2005). Nitrogen uptake and it is transport from roots to 

shoots is negatively affected by drought stress. Bloem, et al., (1992) found that drought 

stress reduced soil-N mineralization and reduced nitrogen availability. Thus, there was a 

nitrogen deficiency symptom, which significantly affects and inhibits plant growth. 

 

          Among all nutrients, potassium (K) helps in osmotic adjustment (Farooq, et al., 

2009). Drought also affects on K availability to plants, due to decreasing mobility under 

such conditions (Hu and Schmidhalter, 2005). McWilliams, (2003) found that drought 

stress reduced K uptake in cotton plants. The application of potassium fertilizers 

reduced the adverse effects of drought on mung bean growth (Sangakkara, et al., 

2001). The roles of potassium in improving plant resistance to drought may be due 1) 

stomatal regulation under stress conditions (Kant and Kafkafi, 2002), 2) increasing the 

retention of water in plants (Umar and Moinuddin, 2002), 3) osmoregulation and 

osmotic adjustment (Bajji, et al., 2000), 4) charge balance (Marschner, 1995), and 5) 

maintaining turgor pressure and reducing transpiration rate under stress conditions 

(Andersen, et al., 1992). Morgan, (1992) found that the wheat lines that accumulated 

more potassium in their shoot tissues, showed highly osmotic adjustments.              

Furthermore, the accumulation of potassium in Brassica napus leaves accounted for 

about 25% of drought-induced changes in osmotic adjustment (Ma, 2004). The 

application of potassium fertilizers enhanced the photosynthetic rate, plant growth and 

yield under stress conditions (Egila, et al., 2001; Umar and Moinuddin, 2002). 

 

          Calcium (Ca) is an essential nutrient for regulating many physiological processes 

within plant cells through it effects cell membrane structure, stomatal function, cell 

division and cell-wall synthesis (Mclaughlin and Wimmer, 1999). Similar to other 

macronutrients, also water stress conditions affect calcium uptake (Hu and 

Schmidhalter, 2005). Calcium plays significant roles under drought stress conditions 

through 1) osmoregulation (Bartels and Sunkar, 2005), 2) signaling in plant defense 

and repair of damage; it is a key signal messenger for regulating a plant
’
s resistance to 

drought (Hu and Schmidhalter, 2005), Sadiqov, et al., (2002) reported that calcium 

participates in the signaling mechanisms of drought-induced proline accumulation, 3) 

also it has an important role in ensuring membrane integrity (Hirschi, 2004). 
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2.5.2.2  Effect of drought stress on micronutrients 

 

          Micronutrients are those elements required for plant growth, which are needed in 

small amounts. These elements are sometimes called minor elements. The 

micronutrients are boron (B), copper (Cu), iron (Fe), chloride (Cl), manganese (Mn), 

molybdenum (Mo), and zinc (Zn).  

 

          Zinc (Zn), plays an important role in plant growth under stress conditions. It is 

protect plant cells from the damage effects that caused by reactive oxygen species 

(Cakmak, 2000), reduces free radicals production by superoxide radical producing 

enzymes. Zn also has a role in protection of chloroplasts from photo-oxidative damage 

that occur by ROS (Wang and Jin, 2005). Zinc has in functional, structural and 

regulatory roles in several enzymes (McCall, et al., 2000). Zn also, is involved in 

carbohydrate metabolism through its effects on photosynthesis and sugar 

transformations (Coruh, 2007). There are many negative effects of zinc deficiency, one 

of which is susceptibility to stress and decreased synthesis of carbohydrates (Singh, 

2005). Zn may probably play a crucial role in the metabolism of starch (Alloway, 

2004). Such as zinc, copper (Cu) is also a necessary element for plant growth, it acts as 

a structural element in regulatory proteins and participates in photosynthetic electron 

transport, mitochondrial respiration, oxidative stress responses, cell wall metabolism 

and hormone signaling (Marschner, 1995; Raven, et al., 1999). Cu ions act as 

cofactors in many enzymes such as Cu/Zn superoxide dismutase (Yruela, 2005).  

 

          Iron (Fe) is an important component, functions as a cofactor and catalytic site of   

important enzymes. Some of these enzymes are utilized in chlorophyll metabolism 

(Davenport, 1983), transfer of electrons (redox reactions such as cytochromes and iron-

sulfur proteins) (Salazar-Garcia, 1999); also it is involved in N2 fixation, and 

respiration (Taiz and Zeiger, 1991). Manganese (Mn) also is an essential nutrient to all 

plants.  It is involved in disease resistance (Graham and Webb, 1991), via production 

of lignin. Mn also is involved in photosynthesis, respiration, and amino acid 

biosynthesis (Todorovic, et al., 2009). It plays an essential role in activation of several 

enzymes, such as isoenzymes of superoxide dismutase (Campanella, et al., 2005). Mn 

also involved in scavenging of superoxide and hydrogen peroxide (Ducic and Polle, 

2005). 
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        The effects of drought stress on micronutrients availability are not great as for 

macronutrients because the plant requires only small quantities of these nutrients (Hu 

and Schmidhalter, 2005). Oktem, (2008) reported that water deficiency decreased 

micronutrients concentrations (Fe, Zn, and Cu) in Zea mays plants. The drought stress 

induces deficiencies in all micronutrients, but boron deficiency is the common one. The 

availability of Mn and Fe increased under well-watered conditions because of its 

presence in more soluble forms (Havlin, et al., 1999). Some reports referred that 

micronutrients application increased plant drought resistance (Rahimizadeh, et al., 

2008).  

 

 

2.5.3 Effects of drought on plant 

 

          Plants are made up of tissues and cells, which are filled with water in order to 

maintain their turgor. However, if the turgor not maintained, the plant begins to wilt 

(Unruh and Elliott, 1999). The plants absorb water from soil through the roots system; 

then water moved throughout the plant and eventually released via stomata through a 

process known as transpiration (Salisbury and Ross, 1992). Under drought stress plant 

reduces evaporation through stomata closing (Turner, 1986), which negatively affects 

plant growth, and all functions. In addition, the gas exchange and CO2 supply will be 

very limited (Jaleel, et al., 2009). As well as drought inhibiting seed germination 

(Kaya, et al., 2006). Okcu, et al., (2005) reported that drought stress impaired the 

germination of Pisum sativum. Furthermore, drought reduces development and 

distribution of roots in the soil (Pace, et al., 1999), decreases cell elongation and 

enlargement (Nonami, 1998). Moreover, drought reduces leaf size, and stem extension 

(Farooq, et al., 2009). 

 

 

2.5.3.1  Effect on photosynthesis process and photosynthetic rate 

 

          Plant growth requires energy, which comes from sun light through the 

photosynthesis process, where the chlorophyll absorbs this energy and uses it with water 

(H2O), and carbon dioxide (CO2) to produce oxygen (O2) and sugars. Under drought 

stress conditions, the plant reduces water loss through leaf transpiration via stomatal 
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closure (via ABA signaling) which in turn leads to reduce CO2 supply and its 

assimilation by leaves (Farooq, et al., 2009). Reduction in CO2 influx reduces 

carboxlation and indirectly affects photosynthesis process; moreover, drought also 

decreases photosynthetic rate (Fernandez, et al., 1999), reduces chlorophyll content 

through chlorophyll degradation (Anjum, et al., 2003; Nayyar and Gupta, 2006; 

Farooq, et al., 2009), inhibits the photochemical activities, decreases activities levels of 

enzymes that are related to CO2 fixation and Calvin Cycle such as Rubisco 

(Monakhova and  Chernyadev, 2002) , and accelerates leaf senescence (Rivero, et al., 

2007). 

 

 

2.5.3.2  Organic solutes accumulation 

 

          As a response to drought stress, the water potential in the soil and plant root zone 

decreases, at the same time the osmotic potential increases, so the plants synthesizes 

several organic solutes (sugars, proline, mannitol, and glycine betaine) to maintain cell 

volume and turgor against dehydration. These solutes classified into two categories: one 

is nitrogen-containing compounds such as proline and amino acids, and the other group 

is hydroxyl-containing compounds, such as oligosaccharides and sucrose (Mccue and 

Hanson, 1990). 

 

2.5.3.2.1  Proline accumulation (Pro) 

 

          Among all amino acids, the accumulation of proline under drought stress has been 

recognized by many researchers (Vendruscolo, et al., 2007; Tatar and Gevrek, 2008). 

Proline is a basic amino acid and one of 20 amino acids. It has highly hydrophilic 

characteristics, which accumulate at high amounts in plant cells without interfering with 

macromolecules or metabolism (Samaras, et al., 1995). This accumulation was 

recognized as beneficial drought tolerance indicator and plays a significant role in 

minimizing the damages that caused by drought within plant cells (Mohammadkhani 

and Heidari, 2008). Proline acts as a compatible solute in regulating and reducing water 

loss from cells prevents cell membrane damage and protein denaturation. Some stressed 

plants used proline as a source of storage for carbon and nitrogen (Samaras, et al., 

1995). It has been reported that proline accumulation could be only useful as a possible 
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drought injury sensor instead of its role in stress tolerance mechanism (Zlatev and 

Stoyanov, 2005). However, other reports suggest that proline is involved in tolerance 

mechanisms against oxidative stress, and it was the main strategy of plants to avoid the 

damage impacts of drought stress (Vendruscolo, et al., 2007). Yamada, et al., (2005) 

reported that the exogenous application of proline enhanced the endogenous 

accumulation of free proline and improved drought tolerance of petunia plants. The 

accumulation of proline in plant cells is a result of two pathways: first, increase 

expression of proline synthesis enzymes and thus increase the proline biosynthesis and 

the second, is inhibition of proline oxidation and proline degradation (Delauney and 

Verma, 1990; Peng, et al., 1996). 

 

2.5.3.2.2  Soluble carbohydrate accumulation (SC) 

 

          Soluble carbohydrate accumulation in the shoot and root parts of plant is 

enhanced by exposure to stresses (Prado, et al., 2000). It has a key role in drought 

tolerance (Johari-Pireivatlou, et al., 2010). High carbohydrate concentration, beside its 

role in maintaining protein structure and cell membrane stabilization (Hoekstra, et al., 

2001), plays a significant role in osmotic adjustment (Mohammadkhani and Heidari, 

2008).  It also serves as signal molecule (Smeekens, 2000) for sugar-responsive genes 

which enhancing the defense responses, as well as it acts as regulators for gene 

expression (Koch, 1996). 

 

2.5.3.2.3  Polyamine accumulation 

 

          Polyamines, mainly diamine putrescine (Put), triamine spermidine (Spd), and 

tetraamine spermine (Spm), are polycationic compounds of low molecular weight that 

are present in cells of all living organisms (Liu, et al., 2007). The positively charged 

polyamines plays a key role in responding to the drought stress, through the interaction 

with negatively charged macromolecules such as DNA, RNA, and proteins, which in 

turn leads to change the physical and chemical properties of the membranes (Galston 

and  Kaur, 1990; Bouchereau, et al., 1999; Alcazar, et al., 2006). Polyamines help to 

detoxify the ROS accumulation during a biotic stress (Groppa and Benavides, 2008; 

Rider, et al., 2007). Moreover, polyamines considered secondary messengers and are 
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important compounds for regulating stress response (Liu, et al., 2007). It is closely 

associated with the resistance of plants to drought stress (Aziz, et al., 1997). The 

exogenous application of polyamines enhanced stress tolerance of wheat seedlings (Liu, 

et al., 2004). The exogenous application to stressed plants could lead to injury 

alleviation and growth promotion (Liu, et al., 2007). 

 

2.5.3.2.4  Glycinebetaine 

 

          Glycinebetaine has important roles under drought stress via improving the growth 

and production of plants. The plants produce and accumulate glycinebetaine  but in a 

small quantity, and not enough to address the damage caused by the environmental 

stresses (Subbarao, et al., 2000), and thus the exogenous application of glycinebetaine 

perhaps improve drought tolerance. Hussain, et al., (2008) reported that the exogenous 

application of glycinebetaine improved drought tolerance of sunflower. Sakamoto and  

Murata, (2002) found that the foliar-application of glycinebetaine had a significant role 

in the protection of plants from stress by maintenance in leaf water status through 

osmotic adjustment and enhanced photosynthesis. Also the glycinebetaine application 

alleviates the negative effects of drought stress in tobacco plants via increasing anti-

oxidative enzyme activities (Ma, et al., 2007). 

 

 

2.5.3.3  Phytohormones accumulation 

  

          There are many hormones that play important roles in responding to drought 

stress; abscisic acid is one of these phytohormones. The drought stress induces ABA 

accumulation (Jiang and Zhang, 2002). ABA plays central roles under drought stress: 

1) it regulates plant response to drought (Davies and Zhang, 1991; Shinozaki and 

Yamaguchi, 1997), 2) it stimulates stomatal closure, also 3) it induces expression of 

some stress-related genes (Shinozaki and Yamaguchi, 2007). There are many genes 

that are induced as a result of exogenous treatments of ABA (Yamaguchi and 

Shinozaki, 2005). ABA is a stress signal (Jiang and Zhang, 2002), has a role in 

increasing antioxidant enzymes activities such as superoxide dismutase (SOD), catalase 

(CAT), and glutathione reductase (GR) in plant cells (Bellaire, et al., 2000; Jiang and  

Zhang, 2001).  Therefore, ABA referred to as a stress hormone (Taylor, et al., 2000). 
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2.5.3.4  Relative water content (RWC) 

  

           RWC is an appropriate measure and useful indicator for plant water status in 

terms of physiological consequence of cellular water stress. It is strongly affected by 

exposure to drought stress. The decrease in RWC content is an indication to decrease in 

turgor pressure in plant cells and plant growth; this decrease may be because of plant 

vigor reduction (Liu, et al., 2002). Blokhina, et al., (2003) reported that drought stress 

affect on cell membrane caused an increase in penetrability and decrease in 

sustainability. The maintenance of favorable plant water relations is vital for the 

development of drought resistance in crop plants (Passioura, 2002). The water-stressed 

wheat had lower relative water content than non-stressed (Farooq, et al., 2009).  

Schonfeld, et al., (1988) showed that the wheat cultivars that had high RWC were more 

resistant to drought stress. 

 

 

2.5.3.5  Reactive oxygen species (ROS) 

 

          ROS are reactive molecules that contain the oxygen atom. Under drought stress, 

the plant leaves receive sunlight much more than they can utilize in photosynthesis 

process, which causes the excessive accumulation of absorbed light, and activate 

molecular oxygen to ROS (superoxide O2, hydrogen peroxide H2O2 and hydroxyl OH). 

The ROS may react with proteins, membrane lipids and nucleic acids (DNA, RNA), 

causing oxidative damage and impairing the normal functions of cells, which in turn 

leads to cell death (Mittler, 2002; Mittler, et al., 2004). Furthermore, ROS inhibit plant 

growth (Kong, et al., 2005; Yao and Liu, 2007). It serves as a second messenger, which 

involves in stress signal transduction pathways (signaling molecules) and activates 

stress response (antioxidant enzymes and defense pathways) (Torres, et al., 2002). 

 

          Under non-stress conditions, ROS produced as byproducts of aerobic metabolic 

processes such as respiration and photosynthesis, but in low concentrations. However, 

under stress conditions, the level increases too much, as well as during senescence 

(Woo, et al., 2004). The ability to reduce the damaging effects of ROS in plants may be 

associated with drought tolerance. Plants use antioxidant defense mechanisms includes 

enzymatic and non-enzymatic systems, to prevent these damages (Agarwal and 

Pandey, 2003). The non-enzymatic systems include 1) β-carotenes, 2) ascorbic acid and 
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3) α-tocopherol (Tayebeh and Hassan, 2010), while the enzymatic systems include 1) 

superoxide dismutase, 2) ascorbate peroxidase, 3) catalase, and 4) glutathione reductase.  

The tolerant cells activate their enzymatic antioxidant system, which then starts to 

detoxify the ROS radicals and protecting the cell. Selote and Khanna-Chopra, (2004) 

found that the plant-water relations play role in activation of these defense mechanisms. 

Khanna-Chopra and Selote, (2007) reported that the activities of antioxidant enzymes 

generally, increases under a biotic stress. 

  

2.5.3.6  Effect of drought stress on yield and yield components 

 

          Among of all abiotic stresses, drought is the most damaging one, which affects all 

plant functions and leads to a sharp decrease in crop productivity. Yao, et al., (2009) 

reported that the growth of wheat has been seriously influenced by drought in many 

regions. The selection for high yield under drought stress is effective and very important 

in breeding for drought-tolerance. The high yield potential under drought conditions is 

the main target of crop breeders (Jaleel, et al., 2009). The wheat grain yield can be 

assessed in terms of three yield components, namely: 1) number of spikes per unit area, 

2) number of kernels per spike and 3) kernel weight (Moayedi, et al., 2010). A complex 

of different morphological, physiological and phenological traits of that genotype, 

which are in turn influenced by the drought stress (Nouri-Ganbalani, et al., 2009), 

influences the grain yield of any wheat genotype. 

 

          In arid and semi-arid regions, drought is one of the major a biotic environmental 

factors that caused a significant reduction in grain production of rained wheat (Bhutta, 

et al., 2006). In barley, drought stress reduced grain yield by 49–57% (Samarah, 2005), 

while in maize drought stress at grain filling reduced yield by 79–81% (Monneveux, et 

al., 2006). The world wide losses in yield caused by drought and salinity are greater 

than losses caused by all other environmental factors (Kramer,1980).The reduction in 

crop yield could be due to: 1) reducing harvest index, 2) decreasing radiation-use 

efficiency, and 3) reducing canopy absorption of photo-synthetically active radiation 

(Earl and Davis, 2003). Nouri-Ganbalani, et al., (2009) referred that the drought 

caused low harvest index, decreased 1000-grain weight and reduced grain yield. 

Edward and Wright, (2008) pointed to a decrease in yield components of wheat under 

stress conditions. 
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2.6 Plant strategies under drought stress conditions 

 

          To maintain growth and productivity under drought stress conditions, plants must 

adapt to these conditions and exercise specific tolerance mechanism (Wang, et al., 

2003). Plants adapt to drought at different levels: 1) molecular, 2) cellular, and 3) whole 

plant level, by using different morphological, physiological, biochemical and molecular 

mechanisms. These mechanisms are controlled by assortment and network of genes, 

which are activated or repressed as a response to drought (Bartels and Sunkar, 2005; 

Yamaguchi and Shinozaki, 2005).The drought resistance mechanisms could be divided 

into three categories, 1) drought escape, 2) drought avoidance and 3) drought tolerance 

(Mitra, 2001). 

 

 

2.6.1 Drought escape 

 

          It is defined as the ability of plants to complete their life cycles before serious soil 

water deficits develop with short life cycle and rapid growth during wet season. This 

mechanism involves a) rapid phonological development (early flowering and early 

maturity), and b) developmental plasticity (variation in duration of growth period 

depending on the extent of water-shortage). 

 

 

2.6.2 Drought avoidance  

 

          It is defined as the ability of plant to maintain relatively high tissue water 

potential despite shortage in soil water content (Mitra, 2001). 

 

 

Drought avoidance mechanisms  

 

          The major avoidance mechanisms include reduces water loss and increase water 

uptake:- 
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A- Mechanisms of reducing water loss from the plant leaves 

 

 1) decreasing canopy size, 2) producing thick cuticles and fleshy leaves, 3) stomata 

closing during the day or during the drought stress period, 4) reducing evaporation 

surface area (Turner, 1986) by producing smaller leaves (Farooq, et al., 2009), and 5) 

decreasing the amount of absorbed radiation via leaves rolling and folding (Begg, 

1980). 

 

 

B-Mechanisms of maintaining and enhancing water uptake 

 

           The ability to extract water from soil under water deficit conditions is a major 

attribute of drought adaptation (Olivares-Villegas, et al., 2007). Root depth plays a key 

role in drought resistance (Farooq, et al., 2009) and high biomass production. It is 

associated with high water and nutrients uptake. The genotypes that have a well-

developed root system have the ability to reach residual moisture depth in the soil, as 

well as improving nutrient uptake by increasing the surface area. Manske, et al., (2000) 

reported that the wheat genotypes that had higher root length density were able to take 

up more nutrients from soil especially phosphorus. The wheat genotypes that had grown 

under low moisture conditions used deeper root systems to reach soil moisture from the 

depths of soil (Mian, et al., 1993). In perennial plants, the drought avoidance 

mechanisms contribute to the survival of the plants and complete their life cycle. 

However, in annual crops such as wheat, these mechanisms reduce crops yield and 

productivity (Rivero, et al., 2007). 

 

 

2.6.3 Drought tolerance  

 

          Drought tolerance means the ability of plant to withstand water-deficit with low 

tissue water potential (Mitra, 2001). Tolerance to drought is a complex mechanism, 

because of the different interactions between drought stress and various physiological, 

biochemical and molecular processes, which affect plant growth (Razmjoo, et al., 

2008). 
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Drought tolerance mechanisms 

 

2.6.3.1 Osmotic adjustment 

 

          Among all adaptive mechanisms, the accumulation of compatible solutes 

(osmotic adjustment) has drawn much attention (Mohammadkhani and Heidari, 

2008).  Osmotic adjustment is one of the most effective physiology mechanisms, which 

helps plant to resist drought (Bhutta, et al., 2006). As a response to drought stress, the 

water potential in plant root zone decreases and the osmotic potential increases. In order 

to maintain cell volume and turgor against dehydration stress, the plant cells synthesizes 

organic solutes as osmoprotectants. The plant adaptation to drought is associated with 

metabolic adjustments, which lead to accumulate kind of solutes, such as carbohydrate, 

betaines and proline (Unyayar, et al., 2004). The osmoprotectants are involved in 

signaling and regulate the plant responses to drought stress (Farooq, et al., 2009). 

 

 

2.6.3.2 Molecular control mechanisms of drought stress tolerance 

 

          The drought tolerance mechanisms are based on expression of specific stress-

related genes, which activate or deactivate as a response to drought. These genes could 

be divided into three major categories:-  

 

A) Genes play role in signaling pathways and in transcriptional control, such as MAP 

kinases (Zhu, 2001), and phospholipases (Frank, et al., 2000). Transcription factors 

(TFs), which considered gene activators; binds to specific sequence of promoter region 

of the target genes which will be activated as a response to drought (Shinozaki and 

Yamaguchi, 2000). These promoter regions include dehydration responsive elements 

(DRE) and ABA responsive elements (ABRE’s) which are involved as a response to 

drought. Dehydration-responsive element binding (DREB) proteins constitute a large 

family of transcription factors that are involved in abiotic stress tolerance. DREBs 

regulate many functional genes related to drought stress (Ito, et al., 2006). DREB genes 

consist of two subclasses, 1) DREB gene1, which induced by cold stress, and 2) DREB 

gene2, which induced by dehydration stress (Choi, et al., 2002). It is possible to 

engineer stress tolerance in transgenic plants by manipulating the expression of these 
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genes (Agarwal, et al., 2006). Ito, et al., (2006) concluded that DREB1-type genes are 

useful for the improvement of stress tolerance to environmental stresses.  

 

B) Genes involved in cell membrane stabilization and protein protection. Drought 

causes the activation of many genes that leading to accumulation of stress-induced 

proteins. Most of these proteins are soluble in water, and therefore contribute to stress 

tolerance by hydration of cellular structures (Wahid, et al., 2007). These proteins play a 

major role in protection of other proteins from degradation (Farooq, et al., 2009); also, 

they prevent protein denaturation during environmental stresses (Gorantla, et al., 

2006). The stress-induced proteins could be divided into two groups (Wang, et al., 

2003): 1) late embryogenesis abundant (LEA) proteins, and 2) heat shock proteins 

(Hsps). Both types play a significant role in protection of plant cell from the harmful 

effects of stress (Wang, et al., 2003). Farooq, et al., (2009) reported that Hsps had 

significant roles in stabilizing structures of other proteins. The synthesis of these stress 

proteins associated with drought tolerance (Taiz and Zeiger, 2006). Mahajan and 

Tuteja, (2005) reported that drought stress changed the expression levels of LEA 

/dehydrin- genes. The Hsps induced by different stresses such as drought, as well as 

high temperature (Wahid and Close, 2007). Close, (1997) found that dehydrins, 

accumulated in response to dehydration stress.  

 

C) Genes function in water uptake and transport such as aquaporins and ion transporters 

(Blumwald, 2000). It is possible to improve the plant stress tolerance, through 

transformation of genes, which plays role in protection and maintenance the function of 

cellular components (Wang, et al., 2003). 

 

 

2.6.3.3 Canopy temperature (CT) 

 

          As a result of decreasing soil water content, there is a significant rise in the 

temperature of plant leaves (Shakya and Yamaguchi, 2007). There is a negative 

correlation between transpiration rate and leaf temperature. Leaf cooling is one of the 

important functions of transpiration process. Under drought conditions, the transpiration 

rate decrease due to stomatal closing and thus the leaf temperature increase. The change 

in leaf temperature can be important factor in controlling leaf water status under stress 
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conditions (Farooq, et al., 2009). Canopy temperature can be sensed remotely by using 

infrared thermometry. It has been associated well with the yield of wheat cultivars 

(Fischer, et al., 1998). The genotypes that maintain a lower canopy temperature as 

compared to other genotypes under drought stress conditions are probably able to resist 

drought.  Reynolds, et al., (2001) reported that the drought-susceptible genotypes 

showed warmer canopies than did the drought-tolerant genotypes. Furthermore, the CT 

showed a strong and reliable association with yield under drought stress conditions 

(Saint Pierre, et al., 2010). On the other hand, the canopy temperature utilized as a 

screening tool for predicting high -yielding wheat genotypes or as an important 

predictor of yield performance under drought (Olivares-Villegas, et al., 2007). The 

potential of CT as screening tool for wheat genotypes under drought-stress (Rashid, et 

al., 1999) based on its significant association with grain yield (Reynolds, et al., 2001). 

 

 

2.6.3.4 Green leaf retention and photosynthetic pigments 

 

          Drought stress inhibits photosynthesis and accelerates leaf senescence (Hafsi, et 

al., 2000). Senescence is a type of cell death program (Rivero, et al., 2007). The ability 

to maintain the functionality of the photosynthetic machinery under drought stress is an 

important mechanism in drought tolerance. It could be possible to enhance drought 

tolerance of plant by delaying leaves senescence (Rivero, et al., 2007). On the other 

hand, the carotenoids play also a vital role in drought tolerance via, light harvesting and 

protection from oxidative damage. Thus, increased pigment contents in plants 

specifically carotenoids is very important for stress tolerance (Jaleel, et al., 2009). 

 

 

2.6.3.5 Normalized differential vegetation index (NDVI) 

 

          NDVI basically based on the properties of the green leaf to absorb solar radiation 

in red (RED) spectrum through chlorophyll a, b and cell wall scatter (reflect and 

transmit) in near-infrared (NIR) spectrum through the spongy mesophyll. The NDVI is 

express as:   
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Where, RRED is the reflectance of red light at a wavelength of 670 nm, RNIR is the   

reflectance of infrared light at 800 nm wavelength.  NDVI is used widely as 1) standard 

vegetation index for estimating biomass (Barbosa, et al., 1999), 2) to estimate the 

plants under stress (Johnsen, et al., 2009), and 3) a stress indicator (Fitz-Rodriguez 

and  Choi, 2002). Bahrun, et al., (2003) used NDVI to assess turfgrass plants under 

stress conditions.  

 

          Because of the close relationship between vegetation vigor and soil moisture, 

NDVI used in assessment of vegetation drought stress in arid and semi-arid regions (Ji 

and Peters, 2003), also there is a positive correlation between NDVI and plant moisture 

content (Fenstemaker-Shaulis, et al., 1997). The NDVI was a better estimator of 

chlorophyll content in turfgrass (Bell, et al., 2004) but it was not a strong predictor of 

biomass (Fenstemaker-Shaulis, et al., 1997). Kruse, et al., (2005) found that there is 

no correlation between biomass and NDVI. On the other hand, Fenstemaker-Shaulis, 

et al., (1997) reported a negative correlation between NDVI and canopy temperature. In 

wheat, the measurements of NDVI at the milky-grain stage closely correlated to yield 

more than earlier measurements (Royo, et al., 2003). Babar, et al., (2006) found that 

there was a positive correlation between NDVI and yield, especially if measured during 

the last part of the crop cycle. The NDVI measurements that taken between anthesis and 

milky stage were the best estimates of yield and final biomass, compared with other 

developmental stages (Marti, et al., 2007). The healthy vegetation gives high NDVI 

values, while the unhealthy plant gives low values (Shakya and Yamaguchi, 2007). 

 

2.7 mRNA differential display 

 

          The differential display technique is an important tool used to identify the 

differentially expressed genes between two cells or within a single cell under different 

conditions (Liang and Pardee, 1992). In addition, it used to obtain gene expression 

profiles (Canli, 2007). This technology includes several steps. The first step is to isolate 

mRNAs from plant cells and convert it to first strand cDNAs by using oligo-dT primers 

(reverse transcription). Then the cDNAs amplified by using a set of primers that are 

short and arbitrary in sequence and recognize 50-100 mRNAs (Liang and Pardee, 

1992). Next, the PCR products are visualized using gel electrophoresis; the comparisons 
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of such cDNA patterns between relevant mRNA samples reveal the differences in gene 

expression profiles. The differentially expressed fragment bands excised from the gel, 

and cloned and sequenced. The obtained sequences compared with the known 

sequences from databanks. Cebeci, (2006) used this method to obtain and identify 

cadmium responsive genes in durum wheat. Also Isik, (2007) used same technique to 

study gene expression in a Zn deficiency tolerant wheat genotype grown in varying 

conditions of Zn. 
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3 MATERIALS AND METHODS 

 

           In this research, we studied effects of drought stress on morphological, 

physiological and molecular characters of some bread wheat genotypes at different 

levels. 

 

3.1 Materials 

 

 

3.1.1 Plant materials 

 

          The plant materials used in these studies kindly provided by Egyptian agricultural 

research centre and by Anatolian agricultural research institute, Eskisehir, Turkey 

(Tables 3.1, 3.2, and 3.3). 

 

 

Table 3.1: The bread wheat genotypes that were used in laboratory experiment. 
 

Egyptian genotypes Turkish genotypes 

Gimeza-7 BVD-22 

Giza-163 Bezosta 

Sahal- 1 Bolal 

Sakha-93 Ozcan 

Sids-1 Seval 

 

 

Table 3.2: The bread wheat genotypes that were used in greenhouse experiment. 

 

Egyptian genotypes Turkish genotypes 

Sahal- 1 BVD-22 

Giza-163 Ozcan 

 

 

 

3.1.2 Growth media, stock solutions and buffers 

 

         All growth media, stock solutions and buffers that used during this study were 

prepared according to Sambrook, et al., (2001). 
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3.2 Methods 

 

         Laboratory and greenhouse experiments were conducted at Sabanci University, 

Istanbul, Turkey, during two successive seasons 2008 and 2009, to evaluate the effect of 

drought stress on some bread wheat genotypes. 

 

3.2.1 Laboratory experiment  

 

          Ten bread wheat genotypes (Table 3.1) were used to study the effects of water 

stress, simulated by using polyethylene glycol (PEG) of molecular weight (MW) 6000 

(Fluka biochemika). For surface sterilization, hand selected seeds were initially treated 

with 70% ethanol for 5min. followed by 5% sodium hypochlorite (bleach) for 10min., 

the residual chlorine was eliminated by washing the seeds 3 times with sterilized 

distilled water. Ten seeds were transferred to Petri dishes, containing 20ml of MS 

medium (Murashige and Skoog, 1962). All Petri dishes were placed in a germination 

chamber at random to germinate in the dark condition for 72h., at 20
o
C ± 1

o
C. The 

seedlings were transferred to square Petri dishes, containing 20ml MS medium and 

30ml of PEG 15% (w/v), for one week. All treatments were replicated two times. 

 

3.2.1.1 Parameters 

 

- Root length (mm) 

- Shoot length (mm) 

- Fresh and dry weight of shoot (mg) 

- Fresh and dry weight of root (mg):- Dry weights were measured after drying 

samples at 70
o
C in oven until a constant weight was achieved. 

 

3.2.2 Greenhouse experiment  

 

          From the screening study, we selected four bread wheat genotypes (Table 3.2), 

for a greenhouse study. 
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Table 3.3: The bread wheat genotypes that were used in the open field experiment 

 

G1 Altay2000 G26 Kirac66 

G2 Aytin98 G27 Kirgiz95 

G3 Bayraktar G28 Kirkpinar79 

G4 Bezostaya1 G29 Krc/bez/3/1150-18/vgdwf/4/ye2453 

G5 Bolal2973 G30 Ks82w422/swm754308//ks831182/ks83w422 

G6 Ca8055/krc66 G31 Ktk/ye2453 

G7 Century G32 Kutluk94 

G8 Dagdas G33 Lov/bll//mir264/5/pnc/cm//nb61977 

G9 Ekg15//tast/sprw/3/2*id800994.w/vee G34 Mnch/5/br12*¾/ias55*4/ci14123/3/ias55*4/... 

G10 Es00-ke3 G35 Momtchill 

G11 Es84-24//ks82w409/spn G36 Momtchill/gun//gun 

G12 Es84-24/seri//seri G37 Mufitbey 

G13 F12.71/coc//kauz G38 Pastor 

G14 F12.71/coc//prl"s"/vee#6/4/c126-15/cofn"s"/3/n10b/p14//p101 G39 Pyn/bau 

G15 Flamura85 G40 Seval 

G16 Gerek gm G41 Sonmez01 

G17 Gerek79 G42 Soyer 

G18 Gun91 G43 Stk52/trumbull 

G19 Harmankaya99 G44 Suzen97 

G20 Hawk G45 Tosunbey 

G21 Ikizce96 G46 Vona//no57//probex/3/car/torım 

G22 Izgi01 G47 Vorona/kauz 

G23 Jagger G48 Weston 

G24 Karahan G49 Zitnica 

G25 Katia   
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3.2.2.1  Greenhouse conditions 

 

         The temperature was maintained at 23/15°C ± 2°C during day/night regimes 

respectively.  

 

 

3.2.2.2   Pot filling and soil fertilization 

 

          First, the plastic pots were washed with diluted HCl and rinsed in ddH2O for 

5min. After drying, 3000g of air-dried
 
soil (pH: 8.04, CaCO3 14.9%, organic matter 

0.69%, salt 0.08%, and clay 60.6%) was placed the pots. The wheat plants received 

fertilizers, the basal treatment was 200mg N/kg soil in the form of calcium nitrate Ca 

(NO3)2, 100mg P/kg soil as potassium diphosphate KH2PO4, 125mg K/kg soil in the 

form of potassium sulphate (K2 SO4), 2.5mg Fe/kg soil in the form of Fe-EDTA and 5 

mg Zn/kg soil as ZnSO4.7H2O. The fertilizers mixed well with the
 
soil. 

 

3.2.2.3   Seeds 

 

         About 10 seeds were sown in each pot, spaced about 3cm apart, and slightly 

pressed into the topsoil. Then the seeds were covered with 2cm soil layer leaving a 3cm 

space for water application. The sowing date was 6 January 2009, after 15 days of 

emergence; the seedlings were thinned to five plants per pot. 

 

3.2.2.4   Watering 

 

          In order to avoid the mineral content of tap water from influencing the results the 

plants were watered with distilled water throughout the growing period. The pots were 

shifted around randomly every 4 to 5 days in order to prevent exposure to different 

conditions that could have applied to different areas in the greenhouse. 

 

3.2.2.5  Treatments 

 

          The bread wheat genotypes were subjected to water deficit induced by 

withholding the water supply in the soil for 7 days, during plant growth stages:-  

- 40 Days after sowing (DAS) 

- 60 Days after sowing (DAS) 

- 80 Days after sowing (DAS) 
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3.2.2.6  Data measurement 

 

          Various parameters were used to measure the response of wheat grown under 

drought stress in greenhouse conditions. 

 

3.2.2.6.1  RWC 

 

           Fully expanded leaves were excised from control and stressed plants and the 

fresh weights (FW) were immediately recorded; the leaves were soaked for 4h., in 

distilled water at RT under a constant light, and the turgid weight (TW) was recorded. 

After drying for 24h., at 80°C total dry weights (DW) were recorded. RWC was 

calculated according to Barrs and Weatherley, (1962) using the formula given below. 

RWC = [(fresh weight – dry weight)/ (turgid weight- dry weight)] x 100. 

 

3.2.2.6.2  Soil water content (SWC) 

 

            SWC was measured according to (International Atomic Energy Agency, 

2008). At each growth stage, three soil samples (10g) were taken from each treatment, 

left in a previously dried and weighed metal cans with lid. Soil and cans were weighed 

(wet soil), then dried in oven at 105°C overnight. Soil and cans were weighed again (dry 

soil), after cooling them down for 30 minutes at room temperature. SWC was calculated 

as follows:- 

 

                                 Wet soil (g) – Dry soil (g) 

                SWC % =                                            x 100  

                                        Dry soil (g)   

  

3.2.2.6.3  Vegetative growth 

 

 

-Plant height (cm)  

 

          Plant height was recorded from the base of the stem to the tip of the longest leaf 

during the vegetative growth phase and to the tip of the spike on the main shoot, after 

anthesis, using a measuring tape. 
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- Shoot fresh mass (g) 

 

          At each growth stage the shoots (leaves and stems) were harvested using a sharp 

scissor, the fresh mass was determined by using a digital scale. 

 

- Shoot dry mass (g) 

 

           The shoots were placed in a paper bag and dried in an oven at 70ºC (±2ºC) for 72 

hours, and then the dry mass was determined by using a digital scale. 

 

- Number of leaves/plant 

 

          Three plants were taken from each plot, at each growth stage, the numbers of 

leaves were counted, and the average was taken. 

 

3.2.2.6.4  Macro and micro element concentration  

 

          At each growth stage, the shoots were harvested and dried at 70°C and the dried 

samples were grounded. Approximately 0.4g of the grounded samples were ashed in a 

microwave by using 2ml Hydrogen peroxide (H2O2) and 5ml Nitric acid (HNO3) for 

1h.; then the ashed samples were analyzed for macro and micro elements concentration 

(Ca, K, P, S, Mg, Fe, Mn, Cu, and Zn), by using inductively coupled plasma optical 

emission spectroscopy (ICP-OES, Varian, Australia) at 214.44nm emission 

wavelength. 

 

3.2.2.6.5  Proline determination 

 

          Approximately 0.5g from the second fully expanded leaves from of apices (to 

reduce sample variation) were harvested and immediately frozen in liquid nitrogen (N2)  

and kept at -80
o
C until they were analyzed. Extraction and determination of free proline 

were carried out according to Bates, et al., (1973).The leaves of the control and stressed 

plants were homogenized in 10ml of 3% aqueous sulfosalicylic acid (SSA) and filtered 

through Whatman's no.2 filter paper. 2ml from the filtrate was mixed with 2ml of acid–

ninhydrin and 2ml of glacial acetic acid (GAA) in falcon tubes. The mixture was placed 

in a water bath for 1h., at 100°C. After cooling, 4ml of toluene was added and strongly 
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shaken. The absorbance of the toluene phase was measured at 520nm. The appropriate 

proline standards (Sigma Chemical Co., USA) were included for calculation of proline 

in the sample. The content of proline was expressed as μg/g fresh weight. 

 

3.2.2.6.6  Soluble carbohydrates content (SC) determination 

 

          A sample of 0.1g of dried leaves was shaken in 10ml 80% (v/v) ethanol. The 

insoluble fraction was washed with 5ml of 80% ethanol. All soluble fractions were 

centrifuged at 5000g for 10min. The supernatants were collected and stored at +4°C. 

Glucose was analyzed by reacting 0.5ml extract with 2.5ml freshly prepared anthrone 

and placed in a boiling water bath for 5min. (Halhoul and Kleinberg, 1972). After 

cooling, the absorbance was determined at 625nm. 

 

3.2.2.6.7  Lipid peroxidation 

 

           Lipid peroxidation was measured according to Hodges, (1999), by determining 

the level of malondialdehyde as indictor of lipid peroxidation.  Approximately 0.5g of 

fresh leaf from control and stressed plants were grounded, using autoclaved mortars and 

pestles, under liquid nitrogen and homogenized with 10ml of 80% (v/v) ethanol. The 

homogenates were transferred to falcon tubes. The samples were centrifuged at 3000g at 

4
o
C for 15min., approximately 4ml from the aliquot, was transferred to two 10ml 

centrifuge tubes. 4ml of 20% TCA (w/v) + 0.01% BHT (w/v) solution (TCA: 

trichloroacetic acid, BHT: butylated hydroxytoluene) was added to the first tube, and 

4ml of 20% TCA (w/v) + 0.01% BHT (w/v) + 0.65% TBA (w/v) solution (TBA: 2-

thiobarbituric acid) was added to the second tube, all tubes were vortexed and incubated 

at 95
o
C in water bath for 25min., the samples were  immediately cool-down by using ice 

and centrifuged at 3000g at 4
o
C for 15min. The absorbance was measured at 532nm and 

600nm for the first tube and at 532, 600 and 440nm for the second tube. The results 

were calculated as follows: 

1. (ABS 532+TBA)-(ABS 600+TBA)]-[(ABS 532-TBA)-(ABS 600-TBA)=A 

2. (ABS 440+TBA-ABS 600+TBA) x 0.0571 = B 

3. MDA equivalents (nmol ml
-1

) = (A-B / 157 000) x 10
6
 

 

ABS: absorbance, MDA: malondialdehyde. 

http://en.wikipedia.org/wiki/Mu_%28letter%29
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3.2.2.6.8  Antioxidant enzymes  

 

Approximately, 1g of fresh leaf samples were homogenized using mortar and pestle, 

in 12ml of ice-cold 50mM phosphate extraction buffer (pH 7.6) containing 0.1mM 

Titriplex (Na-EDTA). The homogenized samples were transfered to falcon tubes 15ml 

and centrifuged at 4600g for 15min, the pellet were discarded and the supernatants were 

transfrered to anthoer falcon tubes and centrifuged again at 15000g for 15min. Resultant 

supernatant was used for enzyme analysis. All operations until analysis were carried out 

at +4°C except SOD enzyme, all enzyme activities were measured in a final volume of 

1 ml using various aliquots of the supernatants.  The Ascorbate peroxidase (AP) activity 

was determined as outlined by Cakmak, (1994), while the activity of other enzymes  

glutathione reductase, superoxide dismutase, and  catalase were measured according to 

Cakmak and  Marschner, (1992). 

 

 

3.2.2.6.9  mRNA differential display (mRNA DD) 

 

Total RNA Isolation  

 

          Trizol reagent (Invitrogen) has been used to isolate total RNA from wheat 

samples, approximately 0.3g of leaves samples were grounded with 1.7ml Trizol, using 

autoclaved mortars and pestles in liquid nitrogen. The homogenates were incubated for 

5min., at RT., and then 1ml of homogenate was transferred to eppendorf tube, which 

kept, on ice while the other samples were being homogenized with Trizol. 0.2ml of 

chloroform was added to each tube and the tubes were shaken and incubated at RT for 

5min. then, the samples were centrifuged at 12,000g for 15min. at 4°C. Approximately 

500μl of the upper aqueous phase containing RNA was transferred to a 1.5ml micro-

centrifuge tube. Then, 0.5ml of isopropanol was added to precipitate RNA. The tubes 

were mixed gently and then incubated at RT for 10min., and centrifuged at 12,000g for 

15min. at 4°C. The supernatants were discarded and the pellets were washed with 1ml 

ethanol (75%). Then the samples were vortexed and centrifuged at 7,500g for 5min., at 

4°C. The supernatants were discarded and the RNA pellets were air-dried for 15min. 

Then the pellets were dissolved in 50μl diethyl pyrocarbonate (DEPC)-treated H2O and 

incubated in water bath at 55°C for 1h.  
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          The qualities of the isolated RNAs were verified on a 2% agarose gel. The 

concentrations of RNAs were calculated by using Nanodrop spectrophotometer, at 

260nm wavelength. 

 

 

          The first strand of cDNA was synthesized from total RNA samples by using M-

MuLV Reverse Transcriptase (Fermentas). The reaction mix contained 1.5mg of total 

RNA, 1μl oligo(dT)18 primer (0.5µg/µl), 4μl reaction buffer (5X), 0.5μl RNase 

inhibitor, 2μl dNTP Mix (10mM), 1μl M-MuLV reverse transcriptase and completed the 

volume to 12.5μl by DEPC-treated water. The tubes were incubated at 37°C for 1h., 

followed by 10 min. at 70°C (to terminate the reaction). The cDNAs samples were kept 

and stored at -20°C until use. The ss-cDNAs samples were subjected to mRNA DD 

method by using 72 possible combinations of forward (P) and reverse (T) primer. The 

primers were purchased from Biogen. The sequences of these primers are listed in 

Table 3.4. 

 

Table 3.4: Primers that were used in mRNA differential display 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

Primer Sequence (5
, 
- 3

,
) 

P1 ATT AAC CCT CAC TAA ATG CTG GGG A 

P2 ATT AAC CCT CAC TAA ATC GGT CAT AG 

P3 ATT AAC CCT CAC TAA ATG CTG GTG G 

P4 ATT AAC CCT CAC TAA ATG CTG GTA G 

P5 ATT AAC CCT CAC TAA AGA TCT GAC TG 

P6 ATT AAC CCT CAC TAA ATG CTG GGT G 

P7 ATT AAC CCT CAC TAA ATG CTG TAT G 

P9 ATT AAC CCT CAC TAA ATG TGG CAG G 

T1 CAT TAT GCT GAG TGA TAT CTT TTT TTT TAA 

T2 CAT TAT GCT GAG TGA TAT CTT TTT TTT TAC 

T3 CAT TAT GCT GAG TGA TAT CTT TTT TTT TAG 

T4 CAT TAT GCT GAG TGA TAT CTT TTT TTT TCA 

T5 CAT TAT GCT GAG TGA TAT CTT TTT TTT TCC 

T6 CAT TAT GCT GAG TGA TAT CTT TTT TTT TCG 

T7 CAT TAT GCT GAG TGA TAT CTT TTT TTT TGA 

T8 CAT TAT GCT GAG TGA TAT CTT TTT TTT TGC 

T9 CAT TAT GCT GAG TGA TAT CTT TTT TTT TGG 
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          Amplification of cDNA fragments were performed in 50μl PCR reactions by 

using the ss-cDNAs as template and different combinations of P and T primers (72 

combinations). Each reaction contained; 37.8μl ddH2O, 1μl cDNA template, 5μl  Taq 

buffer 10X (with (NH4)2SO4), 3μl MgCl2 (25mM), 1μl dNTP mix (10mM), 1μl of P 

primer (10μM),1μl of T primer (10μM) and 0.2μl Taq DNA polymerase (Fermentas). 

All mRNA differential display PCR reactions were carried out in a DNA thermocycler 

GeneAmp PCR System 9700 (PE Applied Biosystems) with the conditions written in 

Table 3.5. 

 

                   Table 3.5: mRNA differential display PCR conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

DNA extraction from agarose gels  

 

          50μl from the PCR products of mRNA DD were separated on 2% agarose gel 

using 0.5X TEB buffer. The differentially expressed fragment bands were excised from 

the gel and extracted by using QIAquick Gel Extraction kit (Qiagen) according to 

manufacturer instructions. The absorbance of fragments was determined by using the 

Nanodrop. 

 

Re-amplification of the differentially expressed fragments  

 

          The eluted fragments were reamplified by using the same sets of primers and the 

same PCR conditions. The PCR products were run on 1% agarose gel for 40min. at 100 

mV. 

 

Temperature Time 

1. Heating Lid: 105ºC 

 2. Denaturation :  94ºC  4 min. 

3.Non-specific annealing:  40ºC  5 min. 

4. Extension:  72ºC  5 min. 

5. Denaturation:  94ºC  1 min. 

6.Non-specific annealing:  40ºC 1 min. 

7. Extension:  72ºC  5 min. 

8. Go to 5 Repeat cycle 1 time 

  9. Denaturation:  94ºC  40 s. 

10. Annealing:  58ºC 45 s. 

11. Extension:  72ºC  2 min. 

12.Go to 9 Repeat cycle 35 times 

  13. Final elongation  72ºC  7min. 
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Ligation and Transformation  

 

 

 Ligation 

 

          The extracted fragments were ligated into pGEM-T easy vector (Promega), 

according to the manufacturer’s protocol. The ligation reaction was contained 1μl 50ng 

diluted vector (1:5), 5μl ligation buffer (2X), 1μl T4 ligase enzyme (3unit), and 3μl 

cDNA insert. Then the reactions were incubated for 1 hr. at RT. 

 

 

Transformation 

 

          E.coli competent cells (DH5α strains), were used for transformation. 5μl from 

ligation reaction were mixed gently with  50μl of competent cells in 1.5ml eppendorf  

tubes and incubated for 20min. on ice, then the tubes were incubated for 50 second at 42 

ºC (for heat shocking ), after that the tubes were incubated for 2 min. on ice. Then 950μl 

of Luria Bertani (LB) medium were added to the tubes and incubated with shaking for 

1h. at 37ºC. After that the tubes centrifugated at 5,000rpm for 3min., 900μl from the 

supernatant was eliminated, and the pellet was re-suspended again and spread on LB 

plates using sterilized glass beads. Since the vector contains ampicillin resistance and 

LacZ genes, so the plates were contained ampicillin (100µg/ml), IPTG (100μl to each 

plate), and X-Gal (20μl to each plate). The plates were incubated at 37ºC for 16h. 

 

 

Colony selection and Colony PCR 

 

          Depending on blue-white selection property of the pGEM-T easy vector, the 

positive white clones from transformation plates were chosen in three replicates (A, B 

and C). To confirm whether these positive clones have the correct fragments, colony 

PCR reaction has been done with the same combination of primers that were used in 

mRNA differential display. 
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Plasmid isolation 

 

           One colony of the positive white clones was transferred to sterile culture tube 

containing 5ml of LB broth medium containing 100µg/ml ampicillin. The culture tubes 

were incubated with shaking at 270rpm and 37°C for 16h. Then the bacterial cells were 

transferred to eppendorf tubes 2ml (3 tubes to each culture tube) and centrifuged at 

8,500xg for 3min. The plasmids were isolated by using QIQprep spin minipreps kits and 

according to manufacturer instructions (Qiagen).The isolated plasmids concentrations 

were checked by using Nanodrop spectrophotometer at 260nm and 1% agarose gel for 

40min. at 100V. 

 

 

Restriction enzyme digestion 

 

          The pGEM-T easy vector has two EcoRI recognition sites, so to check if the 

plasmids containing the required fragments, the plasmids were digested with EcoRI 

restriction enzyme (Promega), and run on 1% agarose gel. The samples were kept at -

20°C until send for sequencing. 

 

 

Sequencing analysis 

 

          The differential expressed cDNA fragments were sequenced by using M13 

forward primer. The sequence analyses were commercially provided by RefGen 

Company (Ankara). To eliminate vector contamination; the sequences were exposed to 

VecScreen algorithm (www.ncbi.nlmn.nih.gov). Then the sequences were compared 

with nucleotide and protein sequence databases using BLASTN (EST database), and 

BLASTX algorithms (NCBI).The open reading frames of the sequences were detected 

by using ORF finder tool of NCBI, and the amino acid sequences of the corresponding 

proteins were obtained. The protein sequences were searched for known protein motifs 

using Motif Scan algorithm of SIB-Swiss Institute of Bioinformatics by searching 

against PROSITE patterns, PROSITE patterns (frequent match producers), PROSITE 

profiles, Prefile (more profiles), Pfam HMMs (local models), Pfam HMMs (global 

models) databases (http://myhits.isb-sib.ch/cgi-bin/motif_scan). For pair wise and 

multiple alignments, ClustalW and ClustalX (EBI) algorithms were used. 

 

http://www.ncbi.nlmn.nih.gov/
http://myhits.isb-sib.ch/cgi-bin/motif_scan
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Dreb 

 

          Dehydration-responsive element binding (DREB) proteins constitute a large 

family of transcription factors that are involved in a biotic stress tolerance. DREBs 

regulate many functional genes related to drought stress (Ito, et al., 2006). The cDNAs 

samples were performed in 50μl PCR reactions by using the ss-cDNAs as template and 

different dreb primers. Each reaction contained; 37.8μl ddH2O, 1μl cDNA template, 5μl  

Taq buffer 10X (with (NH4)2SO4), 3μl MgCl2 (25mM), 1μl dNTP mix (10mM), 1μl of F 

dreb primer (10μM),1μl of R dreb primer (10μM) and 0.2μl Taq DNA polymerase 

(Fermentas). All reactions were carried out in a DNA thermocycler GeneAmp PCR 

System 9700 (PE Applied Biosystems).The sequences of dreb primers are listed in 

Table 3.6. 

 

Table 3.6: Dreb primers sequences that were used in this study 

 

DREB primers Seq. 

DERB 1A R 5-ACG AAG GGC TAA AGC GGC AA-3 

 
F 5-TAT ACA GAG GAG TTC GTC GG-3 

DERB  2A R 5- CGG AGA AGG GTT TAG ATT CA-3 

 
F 5- ACC AAG AAG AGG AAA GTA CC-3 

DERB  3A R 5- CCA CGT ACA ACA CCT TCA AT-3 

 
F 5- GAA GTG AAC CAA CAA CTG GA-3 

DREB 2B R 5- GCT TCA CAC AAA CAT CAC CA-3 

 
F 5- GGC TGT TAA AGA AGG AGA GA-3 

DREB 1 R CTC GAG CTA ATA TGA GAA AAG ACT AAA CCC ATC ATC A 

 
F GTC GAC ATG GAG ACC GGG GGT AG 

DERB  3a R ACA ACC CTT CGA AGA ACT 

 
F ATG ACG GTA GAT CGG AAG 

 

3.2.2.6.10  Experimental design and Statistical analysis 

 

          The pots were arranged in completely randomized design (CRD) with three 

replicates. The data were statistically analyzed as completely randomized design; the 

results were expressed as means with standard deviation (±S.D.). The treatment means 

were compared using the least significant difference of the means; the significant 

difference (at P < 0.05) was evaluated by analysis of variance (ANOVA) by using 

GenStat Discovery Edition 3.  
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3.2.3 Open field experiment  

 

 

          This study was carried out at Anatolian agricultural research institute, Eskisehir, 

Turkey, during 2008/2009 season to evaluate the response of 49 bread wheat genotypes 

to drought stress under open field conditions. The experiment was conducted in a clay 

soil. The soil was analyzed in soil and water resources management institute, Eskisehir, 

Ministry of Agriculture and Rural, Turkey. Its chemical and physical characteristics 

presented in Table 3.7. 

 

Table 3.7: Physical and chemical properties of the experimental soil 

 

A. Mechanical analysis   

Texture Clay% Silt% Sand% Depth 

C 46.63 29.89 23.48 0 – 30cm 

C 51.44 29.93 18.63 30 - 60 

C 54.15 30.13 15.72 60 - 90 

 

B- Chemical properties 

CaCO3 

% 

Potassium 

K2O 

kg/da 

Phosphorus 

P2O5 

kg/da** 

O.M 

% 
Total Salt 

pH 

(1: 2.5)* 
Depth 

13.0 78.8 1.71 0.17 0.131 8.39 0 – 30cm 

13.4 43.6 0.52 0.15 0.134 8.67 30 - 60 

10.5 52.4 0.45 0.18 0.142 8.64 60 - 90 
 

     *Soil suspension      1: 2.5          Soil: water 

     **1 da =  0111 m2 = 0.1 hectare   

 

 

 

The field moisture capacity and wilting pointing were of 36.4% and 9.6% volume, 

respectively. 

 

3.2.3.1 Meteorological data 

 

           The average temperature and average rainfall during the growing season of the 

wheat crop are displayed in Tables 3.8 and 3.9. 
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Table 3.8: The rainfall measurement (mm/month) 

 

 

 

3.2.3.2 Cultivars 

 

          To evaluate the response of bread wheat cultivars to drought stress conditions, 

seeds of forty-nine bread wheat (Triticum aestivum) were used (Table 3.3). The seeds 

sown in 20 October 2008, the sown rate was 450-500 seeds/m
2
. 

 

Table 3.9: Meteorological data 

 

Month Air temp. 

(Cº) 

Humidity 

RH% 

Soil temp. 

(Cº) 

Soil Moi. Radiation Wind speed 

Km/h 

Sep. 2008 17.3 75.0 16.0 120.3 41.0 2.4 

Oct. 2008 11.2 86.6 11.4 193.4 27.6 1.9 

Nov. 2008 6.6 90.0 5.9 74.3 17.8 1.8 

Dec. 2008 2.9 96.2 2.5 32.6 13.4 2.0 

Jan. 2009 2.6 97.3 2.3 22.3 14.5 1.7 

Feb. 2009 2.8 94.0 2.4 22.5 16.5 2.3 

Mar. 2009 3.2 90.3 3.5 21.8 25.5 2.4 

Apr. 2009 8.9 82.6 9.0 117.4 37.2 2.0 

May.2009 13.4 79.3 14.7 58.8 39.3 1.9 

Jun. 2009 18.6 71.3 19.4 109.3 45.7 1.6 

Jul. 2009 20.9 72.0 21.9 195.3 56.2 2.1 

Aug. 2009 19.9 68.6 20.8 199.5 55.5 2.6 

 

*Meteorological Laboratory, Anatolian Agricultural Research Institute, Eskisehir 

 

 

3.2.3.3 Type of fertilizers and their application  

 

          The fertilizer management affects crop productivity under drought stress 

conditions and thus, the addition of nutrients can either enhance or decrease plants 

resistance to drought or have no effect, depending on the level of water availability (Hu 

and Schmidhalter, 2005).Wheat plants (Triticum aestivum) received different levels of 

N and P as ammonium nitrate (33% N) and Di-ammonium phosphate (DAP) 18-46-0. 

The nitrogen fertilizers were added in two equal doses. The first application was added 

Years Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Total 

Annual 

2007-08 0.0 19.2 92.4 49.9 15.7 1.0 42.4 38.5 11.7 9.3 0.0 5.5 285.6 

2008-09 30.7 6.4 49.6 34.5 66.3 82.0 40.9 28.0 15.4 10.2 19.4 2.0 385.4 
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at planting time, whereas the second one was applied in the early spring at 31 March 

2009 (Table 3.10). 

 

Table 3.10: Application of fertilizers 

 

 

Rainfall Supplement irrigation 

Ammonium nitrate  7 kg/da 9 kg/da 

DAP 6 kg/da 6 kg/da 

 

 

 

3.2.3.4  Herbicides control 

 

2.4-D being the principal chemical used on wheat, it was add in 9 April 2009. 

 

3.2.3.5  Treatments 

 

1- Supplement irrigation 1
st
 irrigation was at 1

st
 November 2008 for 3.5h. 

 

2
nd

 irrigation was at 20 May 2009 for 4h.  

2- Rainfall Without irrigation 

 

 

3.2.3.6  Harvesting 

 

The wheat plants were harvested in 17 July 2009.  

 

3.2.3.7  Experimental design 

 

          The experiment was in balanced lattice design with three replicates. The plot size 

was 1.2m width, 5m long (6m² plot areas), each plot contained six rows at 20cm apart, 

and each row contained 10 plants at 5cm apart. 

 

3.2.3.8  Parameters measured  

 

          None of the parameters and observations was taken on plants in the border rows.  

 

 

a- Plant height (cm) 

 

          Plant height was measured on ten randomly selected from the base of plant to the 

tip of the spike, by using a measuring tape.  
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b- Biomass and yield components  

 

          Total biomass and yield components were measured according to Hobbs and 

Sayre, 2001). All aboveground biomass in a specific area (50cm) were cut, the border 

effects were avoided by sampling away from edges of plot. The sub-sample of tillers 

was selected randomly from the plot sample (50 tillers) and the fresh weight was 

measured (sub-sample fresh weight). Then the fresh weight of remaining plot sample 

(plot fresh weight) was measured.  

 

          The sub-sample of tillers were put in closed bags to avoid loss of grains, and then 

dried at 70ºC. The dry weight was measured (sub-sample dry weight). The plot sample 

was threshed for fresh grain weight (plot grain weight). One hundred grain was 

randomly selected; the fresh and dry weights were recorded (100-grain fresh and dry 

weights, or 100fw/dw). The Harvest index (%), Yield, Biomass, 1000- GW (g), Number 

of spikes m
-2

, Number of grains m
-2

, and Number of grains spike
-1

, were measured 

according to Table 3.11. 

 

Table 3.11: Harvest index, Biomass and Yield components 

 PGW= plot grain weight, Pfw= plot fresh weight, SSdw= sub-sample dry weight, SSfw= sub-sample 

fresh weight, A = plot area harvested (50 cm). 

 

 

c- Heading date: The date when 50% of shoots had reached this stage recorded for 

each replicate. 

 

Harvest index (HI) PGW*(100dw/100fw)/Pfw*(SSdw/SSfw) 

Yield (g m
-2

) [(PGW*100dw/100fw) + (SSdw*HI)]/A 

Biomass (g m
-2

) [(Pfw+SSfw)*(SSdw/SSfw)]/A 

1000-GW (TGW) (g) 100dw*10 

Tillers  dw (g) SSdw/ 50 (no. of tillers) 

Number of spikes m
-2

 Biomass/ tillers
-dw

 

Number of grains  m
-2

 Yield/TGW*1000 

Number of grains spike
-1

 Grains m
-2

/spike m
-2
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d- Normalized difference vegetation index: NDVI was measured with a hand-held 

Green Seeker (NTech Industries Inc. 888-728-2436 Stillwater, Oklahoma, USA) on 

8 and 17 June. The Measurements were taken around midday on sunny days by 

passing the sensor over the plots at a height of approximately 40–50 cm above the 

canopy. 

 

e- Flag leaf stay green duration and chlorophyll content measurements: 

Chlorophyll contents (mean of six readings per leaf -10 plants per plot) measured 

using a Minolta SPAD-502 meter (Spectrum Technologies Inc., Plainfield, IL.) 

during 9 and 16 June. 

 

f- Canopy temperature 

 

           Canopy temperature was red using handheld infrared thermometer (Model no. 

39650-20, Cole-Parmer Instruments, Co., Chicago, Ill., USA) at sunny days. At least 

two readings were collected for each replicates, the thermometer was held so that the 

sensor viewed only the canopy at an oblique angle above the horizontal, and this 

position gave an elliptical canopy target (O
,
 Toole and Real, 1984) and prevented the 

thermometer from sensing the soil surface when the leaves were rolled. Cloudy or 

windy conditions were avoided because it had effects on leaf temperature. Canopy 

temperature measurements were taken at 2 and 8 June between noon and 2:00 p.m.  

 

g- Drought susceptibility index for each genotype (DSI) 

 

          It provides a measure of stress resistance based on minimization of yield loss 

under stress as compared to non-stress conditions (Fischer and Maurer, 1978) from the 

following formula: 

 

 

Where Yd (mean grain yield under drought stress conditions), Yw (mean grain yield 

under non-stress conditions), and D (stress intensity) = 1 - (mean Yd of all genotypes / 

mean Yw of all genotypes). 

 

 

 

  

1- (Yd /Yw ) 

DSI = 
 

  

D 
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h- Relative yield (RY) 

 

          The relative yield was calculated as the yield of a specific genotype under drought 

divided by that of the highest yielding genotype in the population. 

 

3.2.3.9 Statistical analyses 

 

          The results were expressed as means with standard deviation (±S.D.). The 

treatment means were compared using the least significant difference of the means; the 

significant difference (at P < 0.05) was evaluated by analysis of variance (ANOVA by 

using GenStat Discovery Edition 3. Phenotypic relationships among traits were 

investigated using regression /correlation analysis. 
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4 RESULTS 

 

 

          In this study, the response and growth of wheat genotypes to drought stress 

conditions has been evaluated, in laboratory, greenhouse and open field environments. 

The study covered morphological, physiological and molecular aspects of the drought 

response. 

 

 

4.1 Laboratory experiment 

 

          In laboratory experiment, water deficiency was simulated by polyethylene glycol 

(PEG) of MW 6000 in the following concentrations viz., 0, and 15 % (w/v).  

 

 

4.1.1 Effects of drought stress induced by polyethylene glycol on Egyptian and 

Turkish wheat genotypes 

 

          The response of ten wheat genotypes to chemical desiccation induced by PEG 

6000 during the seedling stage is shown in Table 4.1. Generally, the genotypes differed 

in their response to stress. The PEG treatment caused inhibition to all measured traits. 

The PEG treatment decreased, shoot and root length (Fig.4.1), shoot and root fresh 

weight (Fig.4.2), shoot and root dry weight, of all genotypes.  

 

          Among the Egyptian genotypes, Sahal-1 showed a good performance in all traits 

under stress conditions (Fig.4.3), while Giza-163 recorded the worst performance in all 

traits except shoot fresh weight and root dry weight. On the other hand, Ozcan recorded 

the greatest reduction in all traits among all Turkish genotypes, while the lowest 

reduction was observed in BVD-22 genotype. Bayoumi, et al., (2008) demonstrated 

similar results. 
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Fig. 4.1: Effect of drought stress induced by PEG 6000 on shoot and root length 

(cm) of ten Triticum aestivum genotypes. 
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Fig. 4.2: Effect of drought stress induced by PEG 6000 on shoot and root fresh 

weight (mg) of ten Triticum aestivum genotypes 
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Fig. 4.3: Effect of drought stress induced by PEG 6000 on shoot and root length of 

four Triticum aestivum genotypes. 
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Table 4.1: Effect of drought stress induced by PEG on some Egyptian and Turkish wheat seedling traits. 

 

Genotype 

Control PEG 0%  PEG 15% Differ. % 

SL RL SFW RFW SDW RDW SL RL SFW RFW SDW RDW SL RL SFW RFW SDW RDW 

(cm) (cm) (mg) (mg) (mg) (mg) (cm) (cm) (mg) (mg) (mg) (mg)       

Sahal-1 18.50 11.93 192.0 186.0 34.1 44.9 18.30 9.90 160.0 155.5 32.8 39.7 0.01 0.17 0.17 0.16 0.04 0.12 

Sids1 16.43 7.43 118.5 153.3 32.5 23.9 16.15 5.90 80.0 86.3 27.9 16.2 0.02 0.21 0.32 0.44 0.14 0.32 

Sakha-93 18.20 7.13 194.3 135.0 38.7 42.8 14.20 6.00 150.7 75.9 32.5 29.5 0.22 0.16 0.22 0.44 0.16 0.31 

Gemmza7 20.10 9.15 173.3 107.0 34.0 40.0 14.15 8.20 126.3 52.0 28.1 28.7 0.30 0.10 0.27 0.51 0.17 0.28 

Giza-163 18.90 10.35 167.3 109.0 30.2 30.8 12.50 5.35 80.2 32.3 23.9 19.1 0.34 0.48 0.52 0.70 0.21 0.38 

Bolal 20.60 10.70 127.3 38.0 28.2 18.2 14.95 7.40 97.3 26.0 25.0 14.7 0.27 0.31 0.24 0.32 0.11 0.20 

Bezosta 15.27 9.80 119.3 58.5 26.2 29.3 12.73 6.77 106.7 50.0 20.9 23.5 0.17 0.31 0.11 0.15 0.20 0.20 

BVD -22 15.45 8.10 103.7 61.0 31.7 25.2 14.65 6.10 97.5 54.5 31.3 24.7 0.05 0.25 0.06 0.11 0.01 0.02 

Ozcan 15.70 9.57 155.3 63.0 47.5 30.2 9.30 5.10 113.7 19.0 17.2 11.4 0.41 0.47 0.27 0.70 0.64 0.62 

Seval 17.90 9.20 140.0 52.3 36.0 26.7 11.57 5.83 120.0 40.6 23.0 16.6 0.35 0.37 0.14 0.22 0.36 0.38 

L.S.D. Genotype 0.95 1.44 37.34 59.33 8.89 9.07             

 Treatment 0.42 0.64 16.70 26.53 3.98 4.05             

 G X T 1.34 2.04 52.80 83.91 12.57 12.82             

* The data represent mean of two replicates, l.s.d.: least significant differences of means (5% level), SL = Shoot length, RL = Root length, SFW = Shoot fresh weight, 

RFW = Root fresh weight, SDW = Shoot dry weight, RDW = Root dry weight, Differ. = values represent decrease percent as compared to normal conditions.  
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4.2 Greenhouse experiment 

 

         From the laboratory experiment data, Sahal-1 and BVD-22 genotypes showed 

better performance under drought stress compared with other genotypes; in contrast, 

Giza-163 and Ozcan genotypes recorded the worst performance. These genotypes have 

been selected and grown in greenhouse under controlled environmental conditions. 

 

 

4.2.1 Effect of drought stress on wheat growth and development 

 

4.2.1.1 Effect of drought stress on wheat height (cm) 

 

       As described in Table 4.2, plant height increased with age under all conditions 

except BVD-22 genotype at 80 DAS under control conditions. Generally, drought stress 

significantly influenced the plant height of all wheat genotypes. Among all genotypes, 

Giza-163 was the tallest under both well watered and drought stress conditions (71.23 

and 64.78cm respectively); in contrast Ozcan was the shortest one (Fig.4.4). The results 

were in accordance with those reported by Mirbahar, et al., (2009). 

 

 

4.2.1.2 Effect of drought stress on relative water content (RWC) 

 

          The wheat genotypes differed in their response to drought stress for RWC; the 

RWC decreased with age in all genotypes (Table 4.2). Sairam and Saxena, (2000) 

reported that the relative water content under irrigated and stress conditions showed a 

decreasing trend with age in all wheat genotypes. Generally, exposure to drought 

resulted in decline in RWC in all wheat genotypes when compared to irrigated plants. 

Under drought stress conditions, Sahal-1 had the highest RWC value of 25.8%. In 

contrast, Ozcan recorded the lowest RWC value (19%). Similar results were obtained 

by Sibel and Birol, (2007). 
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         Table 4.2: Effect of drought stress on plant height (cm) and relative water content (%) of four T. aestivum genotypes,  

         the genotypes were exposed to drought stress at 40, 60, and 80 days after sowing (DAS). 

 

    Ph (cm) RWC (%) 

Genotype Variant 40 DAS 60 DAS 80 DAS 40 DAS 60 DAS 80 DAS 

Sahal-1 Irrigated 61.55 ± 2.8 71.49 ± 0.5 71.58 ± 1.4 68.89 ± 3.1 47.15 ± 2.4
 
 31.57 ± 4.9

 
 

Stress 52.18 ± 1.5 67.96 ± 1.9 69.39 ± 0.5 44.03 ± 2.2
 
 25.91 ± 9.2 7.53 ± 0.0 

Average 56.87     69.73     70.49     56.46    36.53    19.55    

Giza-163 Irrigated 67.83 ± 2.1 71.91 ± 2.0 73.95 ± 3.3 67.33 ± 4.3
 
 47.72 ± 4.2 37.47 ± 1.9

 
 

Stress 55.84 ± 0.9 68.79 ± 2.2 69.71 ± 1.6 38.08 ± 2.1
 
 21.47 ± 6.7

 
 6.67 ± 0.3

 
 

Average 61.84     70.35     71.83     52.71    34.60    22.07    

Ozcan Irrigated 53.08 ± 1.4 56.69 ± 2.4 56.98 ± 4.3 65.38 ± 0.4
 
 59.03 ± 3.1

 
 47.37 ± 1.4

 
 

Stress 50.88 ± 1.1 52.31 ± 2.9 52.48 ± 2.1 31.94 ± 1.4
 
 19.56 ± 2.3

 
 5.62 ± 0.4

 
 

Average 51.98     54.50     54.73     48.66    39.30    26.5    

BVD-22 Irrigated 59.91 ± 0.8 70.75 ± 0.6 66.78 ± 3.2 71.19 ± 3.1 68.26 ± 2.6
 
 57.37 ± 2.5 

Stress 51.15 ± 2.4 63.33 ± 1.2 64.55 ± 1.6 42.72 ± 2.6
 
 22.10 ± 1.2

 
 7.23 ± 0.1

 
 

Average 55.53     67.04     65.67     56.96    45.18    32.30    

Irrigated Average 60.59    67.71    67.32    68.20     55.54     43.44     

Stress Average 52.51     63.10     64.03     39.19    22.26    6.76    

Grand mean 56.55     65.41     65.68     53.70     38.90     25.10     

l.s.d. Genotype 1.21          2.76          

Stage 1.04         2.39         

Treatment 0.85               1.95               

 

 

 

 

*The data represent mean ± SD of three replicates, l.s.d.: least significant differences of means (5% level). 
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Ozcan                                                                 BVD-22 

Fig. 4.4: Effect of drought stress on plant height of four Triticum aestivum 

genotypes, the genotypes were exposed to drought stress at 40 days after sowing 

(DAS). 

 

 

 

4.2.1.3 Effect of drought stress on number of leaves per plant (NLP)  

 

          Drought stress significantly influenced the leaves number per plant of all wheat 

genotypes. Among all genotypes, Sahal-1 had the lowest number of leaves under 

drought stress conditions, with seven leaves, while Ozcan recorded the highest number 

with 17 leaves (Table 4.3). Similar results were obtained by Fuzhong, et al., (2008). 
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Table 4.3: Effect of drought stress on number of leaves per plant and soil water content (%) of four T. aestivum 

                   genotypes, the genotypes were exposed to drought stress at 40, 60, and 80 days after sowing (DAS). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          NLP           SWC (%) 

Genotype Variant 40 DAS 60 DAS 80 DAS 40 DAS 60 DAS 80 DAS 

Sahal-1 Irrigated 8.3 ± 1.0
 
 8.3 ± 0.3

 
 8.9 ± 1.5

 
 19.2 ± 0.6

 
 20.5 ± 0.4

 
 21.1 ± 2.0

 
 

Stress 6.8 ± 0.6
 
 6.8 ± 0.5

 
 7.6 ± 0.5

 
 10.0 ± 0.3 9.4 ± 0.2

 
 7.9 ± 0.7

 
 

Average 7.5    7.5    8.3    14.6    15.0    14.5    

Giza-163 Irrigated 9.4 ± 0.5
 
 10.5 ± 0.4

 
 12.5 ± 1.8

 
 18.3 ± 0.2  21.3 ± 1.5

 
 21.7 ± 0.3

 
 

Stress 7.5 ± 0.4
 
 8.3 ± 0.5

 
 9.4 ± 0.9

 
 11.2 ± 0.3

 
 9.3 ± 0.3

 
 10.5 ± 1.3

 
 

Average 8.4    9.4    10.9    14.7    15.3    16.1    

Ozcan Irrigated 25.5 ± 0.4
 
 30.9 ± 1.3

 
 37.0 ± 0.8

 
 18.1 ± 3.0

 
 18.7 ± 2.6

 
 19.0 ± 0.6  

Stress 14.3 ± 1.0
 
 18.7 ± 1.2

 
 20.0 ± 2.2

 
 10.8 ± 0.3

 
 8.2 ± 1.1

 
 10.2 ± 0.4

 
 

Average 19.9     24.8     28.5     14.5    13.4    14.6    

BVD-22 Irrigated 19.5 ± 0.7
 
 19.9 ± 1.4

 
 20.5 ± 2.5

 
 20.5 ± 0.5

 
 22.7 ± 0.7 21.6 ± 0.8

 
 

Stress 12.4 ± 0.2
 
 13.0 ± 0.8

 
 13.6 ± 0.5

 
 10.5 ± 0.3

 
 10.5 ± 0.3

 
 15.5 ± 3.2

 
 

Average 15.9    16.4    17.1    15.5    16.6    18.6    

Irrigated Average 15.7     17.4     19.7     19.0     20.8     20.9     

Stress Average 10.2    11.7    12.7    10.6    9.4    11.1    

Grand mean 13.0     14.6     16.2     14.8     15.1     16.0     

l.s.d. Genotype 0.6          0.7       

Stage 0.6         0.6    

Treatment 0.45               0.52         

*The data represent mean ± SD of three replicates, l.s.d.: least significant differences of means (5% level). 
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4.2.1.4 Effect of drought stress on soil water content (SWC) 

  

          The soil water content was more or less similar in all wheat genotypes under 

well-watered conditions for each growth stage. On the other hand, the SWC was 

decreased with drought stress in all cases. Under drought stress, Sahal-1 genotype 

recorded the lowest SWC (9.1%) compared with the other genotypes (Table 4.3).  

 

 

4.2.1.5  Effect of drought stress on shoot fresh mass (g)  

 

          The reduction in fresh and dry biomass production is one of the most common 

adverse effects of drought stress on plant (Farooq, et al., 2009). In general, the shoot 

fresh mass (SFM) increased with age under all conditions except Ozcan under drought 

stress conditions, which showed the opposite trend.  As shown in Table 4.4, increase of 

the shoot fresh mass of all four genotypes was inhibited by drought stress. The 

reduction in SFM of Giza-163, Sahal-1, BVD-22 and Ozcan compared to controls was 

41.93, 45.30, 51.50 and 72.84 % respectively. Under drought stress conditions, BVD-22 

had the greatest SFM (7.3g) when compared with other genotypes. In contrast, the 

lowest SFM of Ozcan (3.8g) showed its susceptibility to drought stress. The results 

were in accordance with those reported by Fuzhong, et al., (2008). 

 

 

 

4.2.1.6  Effect of drought stress on shoot dry mass (g) 

 

          As described in Table 4.4, imposition of drought stress had a significant 

reductive effect on shoot dry mass of the four wheat genotypes. Under controlled 

conditions, BVD-22 maintained the highest SDM (4.83g), while Ozcan had the lowest 

SDM (3.53g). Similarly, under drought stress, BVD-22 had the highest SDM (3.90g) 

and Ozcan had the lowest (3.17g). The results were in agreement with those found by 

Tatar and Gevrek, (2008). 
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                  Table 4.4: Effect of drought stress on shoot fresh mass (g) and shoot dry mass (g) of four T. aestivum genotypes, 

                  the genotypes were exposed to drought stress at 40, 60, and 80 days after sowing (DAS). 

 

    SFM (g) SDM (g) 

Genotype Variant 40 DAS 60 DAS 80 DAS 40 DAS 60 DAS 80 DAS 

Sahal- 1 Irrigated 9.3 ± 0.5 11.4 ± 0.5 11.5 ± 0.5 3.2 ± 0.1 4.2 ± 0.3 5.3 ± 0.5 

Stress 4.3 ± 0.2 6.2 ± 0.9 7.2 ± 2.1 2.7 ± 0.2 3.6 ± 0.4 4.5 ± 0.6 

Average 6.8    8.8    9.4    2.9    3.9    4.9    

Giza-163 Irrigated 8.5 ± 0.5 13.3 ± 2.5 13.4 ± 0.8 3.1 ± 0.1 4.1 ± 0.1 5.3 ± 0.5 

Stress 4.5 ± 0.2 6.6 ± 0.8 9.3 ± 1.3 2.7 ± 0.1 3.9 ± 0.3 5.0 ± 2.2 

Average 6.5    9.9    11.3    2.9    4.0    5.1    

Ozcan Irrigated 11.0 ± 1.1 14.9 ± 2.7 16.6 ± 4.3 3.1 ± 0.2 3.7 ± 0.2 3.8 ± 0.3 

Stress 5.2 ± 0.5 4.8 ± 0.1 1.5 ± 1.3
 
 2.8 ± 0.1 3.3 ± 0.1 3.4 ± 0.1 

Average 8.1    9.9    9.1    2.9    3.5    3.6    

BVD -22 Irrigated 11.1 ± 0.4 16.7 ± 3.8
 
 17.3 ± 3.1 3.2 ± 0.2 4.5 ± 0.6 6.8 ± 1.6 

Stress 4.6 ± 0.7 6.6 ± 0.3 10.6 ± 1.0 2.8 ± 0.2 3.8 ± 0.1 5.1 ± 1.1 

Average 7.9    11.7    14.0    3.0    4.2    5.9    

Irrigated Average 10.0 14.0 14.7 3.1 4.1 5.3 

Stress Average 4.7 6.1 7.2 2.7 3.7 4.5 

Grand mean 7.3 10.1 10.9 2.9 3.9 4.9 

l.s.d. Genotype 1.0   0.4   

  Stage 0.9 0.3 

  Treatment 0.7 0.3 

 

 
*The data represent mean ± SD of three replicates, l.s.d.: least significant differences of means (5% level). 
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4.2.2 Effect of drought stress on macro and micronutrients 

 

4.2.2.1  Effect of drought stress on macronutrients 

 

          The inorganic nutrients such as N, P, K
+
, Ca

2+
, and Mg

2+
 plays essential roles in 

metabolism and plant growth. Marschner, (1995) reported that the plant resistance to 

drought stress conditions depends on plants nutrient status. 

 

4.2.2.1.1  Effect of drought stress on calcium (Ca) concentration (%) 

 

        Calcium (Ca
2+

) ions play an essential role in osmoregulation under drought stress 

(Bartels and Sunkar, 2005). Furthermore, they are a key signal messenger in regulating 

plant resistance to drought (Hu and Schmidhalter, 2005). As described in Table 4.5, 

Ca
2+ 

concentration decreased with age in all wheat genotypes under both stress and non-

stress conditions (except Giza-163 genotype at 60 DAS). In addition, the Ca
2+

 

concentration was decreased under drought stress in comparison with control in all 

wheat genotypes. Under drought stress conditions, Sahal-1 had the highest Ca
2+

 

concentration at 40 DAS, while BVD-22 recorded the highest at 60 DAS. However, at 

80 DAS the highest concentration was observed in Giza-163 genotype. The results were 

in accordance with those reported by Brown, et al., (2006) and Gunes, et al., (2006). 

 

4.2.2.1.2  Effect of drought stress on potassium (K) concentration (%) 

 

          Potassium (K) plays a significant role in increasing the plant’s drought resistance 

through stomatal regulation (Kant and Kafkafi, 2002), osmoregulation and osmotic 

adjustment under stress conditions (Bajji, et al., 2000). Similar to calcium results, 

potassium concentrations were also decreased with age in all wheat genotypes under 

stress and non-stress conditions (Table 4.5). In addition, the availability of potassium 

was significantly affected by drought stress. Under drought and irrigated conditions, 

BVD-22 genotype had the highest K concentrations at 40 and 60 DAS growth stages; 

while at 80 DAS Ozcan recorded the highest concentration. Morgan, (1992) found that 

the water-stressed wheat plants that had accumulated more potassium in their tissues, 

showed large osmoregulation. The results presented here were in agreement with those 

obtained Elkholy, et al., (2005) and Gunes, et al., (2006). 
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Table 4.5: Effect of drought stress on calcium and potassium concentrations (%) of four T. aestivum genotypes, 

                  the genotypes were exposed to drought stress at 40, 60, and 80 days after sowing (DAS). 

 

    Ca (%) K (%) 

Genotype Variant 40 DAS 60 DAS 80 DAS 40 DAS 60 DAS 80 DAS 

Sahal- 1 Irrigated 0.69 ± 0.06 0.67 ± 0.06 0.47 ± 0.00 5.47 ± 0.0
 
 4.15 ± 0.1

 
 3.01 ± 0.1

 
 

  Stress 0.68 ± 0.02 0.56 ± 0.10 0.33 ± 0.00 5.16 ± 0.2 3.75 ± 0.0
 
 2.15 ± 0.0

 
 

  Average 0.69    0.62    0.40    5.32    3.95    2.58    

Giza-163 Irrigated 0.57 ± 0.01 0.61 ± 0.00 0.54 ± 0.01 4.90 ± 0.6
 
 4.60 ± 0.1

 
 3.00 ± 0.0

 
 

  Stress 0.52 ± 0.03 0.52 ± 0.07 0.42 ± 0.00 4.81 ± 0.1
 
 4.15 ± 0.3

 
 2.28 ± 0.0

 
 

  Average 0.55    0.57    0.48    4.86    4.38    2.64    

Ozcan Irrigated 0.67 ± 0.06 0.57 ± 0.01 0.48 ± 0.00 5.51 ± 0.1
 
 4.49 ± 0.1

 
 4.45 ± 0.1

 
 

  Stress 0.66 ± 0.02 0.56 ± 0.03 0.34 ± 0.01 5.07 ± 0.0
 
 4.46 ± 0.1

 
 3.13 ± 0.1

 
 

  Average 0.67    0.57    0.41    5.29    4.48    3.79    

BVD -22 Irrigated 0.66 ± 0.02 0.60 ± 0.04 0.46 ± 0.00 7.53 ± 0.3
 
 6.48 ± 0.4

 
 2.70 ± 0.0 

  Stress 0.63 ± 0.04 0.59 ± 0.03 0.32 ± 0.02 6.42 ± 0.2
 
 4.92 ± 0.1

 
 2.06 ± 0.0

 
 

  Average 0.65    0.60    0.39    6.98    5.70    2.38    

Irrigated Average 0.65     0.61     0.49     5.85     4.93     3.29     

Stress Average 0.62    0.56    0.35    5.37    4.32    2.41    

Grand mean 0.64     0.59     0.42     5.61     4.63     2.85     

l.s.d. Genotype 0.03       0.19          

  Stage 0.03    0.17         

  Treatment 0.02       0.14               

 

 
*The data represent mean ± SD of three replicates, l.s.d.: least significant differences of means (5% level). 
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4.2.2.1.3  Effect of drought stress on magnesium (Mg) concentration (%)  

 

          Magnesium (Mg) involved in many biological processes e.g. photosynthesis 

(Lesko, et al., 2002), through increasing the activity of enzymes, such as ATPases, 

RNA polymerase and protein kinases (Shaul, 2002). As shown in Table 4.6, the 

concentrations of Mg varied among wheat genotypes under different conditions, 

between 0.13% in Sahal-1 and BVD-22 genotypes at 80 DAS under stress conditions, 

and 0.30% in Sahal-1 at 40 and 60 DAS under irrigated conditions. Generally, Mg 

concentrations declined with age in all genotypes except Ozcan at 80 DAS under 

irrigated conditions, which showed the opposite trend. The imposition of water stress 

significantly reduced Mg concentrations in the shoots of all genotypes. The maximum 

increase of Mg concentrations were observed under stressed and non-stressed 

conditions in Sahal-1 genotype followed by BVD-22 at 40 and 60 DAS; while at 80 

DAS Ozcan recorded the highest concentrations. The results were in harmony with 

those achieved by Gunes, et al., (2006). 

 

4.2.2.1.4  Effect of drought stress on phosphorous (P) concentration (%) 

 

          Phosphorous (P) is a key component of nucleic acids, phospholipids and 

phosphoproteins (Hu and Schmidhalter, 2005). Generally, P concentration in plant 

tissues decreased with age in all wheat genotypes (Table 4.6). Likewise, P content 

diminished with imposition of water stress. The highest values of phosphorous 

concentration were observed in the shoots of BVD-22 genotype under drought and well 

watered conditions, while the minimum P concentrations were observed in Giza-163 at 

40, 60 DAS and in Ozcan at 80 DAS stage under both conditions. The results were in 

accordance with those obtained by Elkholy, et al., (2005) and Gunes, et al., (2006). 
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Table 4.6: Effect of drought stress on magnesium and phosphorous concentrations (%) of four T. aestivum genotypes, 

             the genotypes were exposed to drought stress at 40, 60, and 80 days after sowing (DAS). 

 

    Mg (%) P (%) 

Genotype Variant 40 DAS 60 DAS 80 DAS 40 DAS 60 DAS 80 DAS 

Sahal- 1 Irrigated 0.30 ± 0.00
 
 0.30 ± 0.01

 
 0.20 ± 0.01 0.45 ± 0.01 0.36 ± 0.02 0.17 ± 0.01 

  Stress 0.29 ± 0.02
 
 0.26 ± 0.03 0.13 ± 0.02

 
 0.40 ± 0.03 0.30 ± 0.03 0.13 ± 0.00 

  Average 0.30     0.28     0.17     0.43     0.33     0.15     

Giza-163 Irrigated 0.24 ± 0.01
 
 0.24 ± 0.01

 
 0.18 ± 0.01

 
 0.38 ± 0.03 0.31 ± 0.01 0.23 ± 0.02 

  Stress 0.23 ± 0.01
 
 0.23 ± 0.00

 
 0.15 ± 0.01

 
 0.37 ± 0.03 0.28 ± 0.02 0.14 ± 0.01 

  Average 0.24     0.24     0.17     0.38     0.30     0.19     

Ozcan Irrigated 0.26 ± 0.02 0.23 ± 0.00 0.25 ± 0.00 0.41 ± 0.01 0.32 ± 0.01 0.16 ± 0.00 

  Stress 0.25 ± 0.01 0.22 ± 0.01
 
 0.19 ± 0.01 0.38 ± 0.01 0.31 ± 0.02 0.12 ± 0.01 

  Average 0.26     0.23     0.22     0.40     0.32     0.14     

BVD -22 Irrigated 0.29 ± 0.01
 
 0.27 ± 0.01

 
 0.18 ± 0.02

 
 0.45 ± 0.08 0.44 ± 0.03 0.35 ± 0.01 

  Stress 0.27 ± 0.01
  
 0.26 ± 0.02

 
 0.13 ± 0.01

 
 0.41 ± 0.03 0.39 ± 0.04 0.35 ± 0.01 

  Average 0.28     0.27     0.16     0.43     0.42     0.35     

Irrigated Average 0.27    0.26    0.20    0.42    0.36    0.23    

Stress Average 0.26     0.24     0.15     0.39     0.32     0.19     

Grand mean 0.27     0.25     0.18     0.41     0.34     0.21     

l.s.d. Genotype 0.01          0.02          

  Stage 0.01         0.02          

  Treatment 0.01               0.01                 

 

 

 

*The data represent mean ± SD of three replicates, l.s.d.: least significant differences of means (5% level). 
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4.2.2.1.5  Effect of drought stress on sulphur (S) concentration (%)  

 

          Sulphur (S) it is a structural constituent of several coenzymes (Astolfi, et al., 

2004). Similar to phosphorous results, sulphur concentrations were also decreased with 

age in all wheat genotypes (Table 4.7). In addition, sulphur concentrations in the shoots 

of the four wheat genotypes were decreased with imposition of water stress. Under 

drought stress conditions, Sahal-1, BVD-22, and Ozcan genotypes recorded same S 

concentrations at 40 DAS (0.32%), while at 60 DAS the maximum concentration was 

found in BVD-22 (0.32%). However, at 80 DAS stage S concentration was the highest 

in Giza-163 and Ozcan genotypes (0.22%). The results were in accordance with those 

reported by (Nasri, et al., 2008). 

 

4.2.2.2  Effect of drought stress on micronutrients  

 

          Effects of drought stress on micronutrients availability are not as great as for 

macronutrients because plant requires only small quantities of these nutrients (Hu and 

Schmidhalter, 2005). 

 

4.2.2.2.1  Effect of drought stress on copper (Cu) concentration (mg kg
-1

) 

 

          Copper (Cu) is a structural element in regulatory proteins and participates in 

oxidative stress responses (Marschner, 1995). Cu ions act as cofactors in many 

enzymes such as Cu/Zn superoxide dismutase (Yruela, 2005). As shown in Table 4.7, 

Cu concentrations declined with age in all genotypes. Moreover, the drought stress 

reduced Cu concentrations in all wheat genotypes. The genotype Sahal-1 recorded the 

highest Cu concentrations at all growth stages and under all conditions.  

 

4.2.2.2.2  Effect of drought stress on iron (Fe) concentration (mg kg
-1

)  

 

          Iron (Fe), functions as a cofactor and catalytic site of important enzymes. Some of 

these enzymes utilized in chlorophyll metabolism (Davenport, 1983).   
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Table 4.7: Effect of drought stress on sulphur (%) and copper (ppm) concentrations of four T. aestivum genotypes, 

               the genotypes were exposed to drought stress at 40, 60, and 80 days after sowing (DAS). 

 

    S (%) Cu (ppm) 

Genotype Variant 40 DAS 60 DAS 80 DAS 40 DAS 60 DAS 80 DAS 

Sahal- 1 Irrigated 0.36 ± 0.01 0.30 ± 0.02
 
 0.25 ± 0.00 9.11 ± 0.5

 
 7.76 ± 0.2

 
 6.54 ± 0.1

 
 

  Stress 0.32 ± 0.02  0.27 ± 0.01
 
 0.17 ± 0.00

 
 8.80 ± 0.0

 
 7.67 ± 0.2

 
 5.91 ± 0.1

 
 

  Average 0.34     0.29     0.21     8.96     7.72     6.23     

Giza-163 Irrigated 0.32 ± 0.01
 
 0.29 ± 0.00

 
 0.24 ± 0.00

 
 8.65 ± 0.0

 
 7.15 ± 0.1

 
 5.03 ± 0.1

 
 

  Stress 0.28 ± 0.00
 
 0.28 ± 0.01

 
 0.22 ± 0.00

 
 7.84 ± 0.1

 
 6.90 ± 0.1 3.68 ± 0.0

 
 

  Average 0.30     0.29     0.23     8.25     7.03     4.36     

Ozcan Irrigated 0.33 ± 0.02
 
 0.32 ± 0.02

 
 0.26 ± 0.00

 
 8.70 ± 0.3 7.19 ± 0.1

 
 4.71 ± 0.1

 
 

  Stress 0.32 ± 0.02
 
 0.31 ± 0.01

 
 0.22 ± 0.01

 
 8.31 ± 0.8 6.81 ± 0.5  3.88 ± 0.0

 
 

  Average 0.33     0.32     0.24     8.51     7.00     4.30     

BVD- 22 Irrigated 0.37 ± 0.01
 
 0.33 ± 0.03

 
 0.25 ± 0.00

 
 8.82 ± 0.5

 
 7.41 ± 0.2

 
 4.91 ± 0.1

 
 

  Stress 0.32 ± 0.02
 
 0.32 ± 0.01 0.17 ± 0.00

 
 8.64 ± 0.1

 
 7.37 ± 0.1

 
 3.69 ± 0.1

 
 

  Average 0.35     0.33     0.21     8.73     7.39     4.30     

Irrigated Average 0.35    0.31    0.25    8.82    7.38    5.30    

Stress Average 0.31     0.30     0.20     8.40     7.19     4.29     

Grand mean 0.33     0.30     0.22     8.61     7.28     4.79     

l.s.d. Genotype 0.01          0.22          

  Stage 0.01          0.19          

  Treatment 0.01                 0.16                 

*The data represent mean ± SD of three replicates, l.s.d.: least significant differences of means (5% level). 



 

 

58 

 

          Fe concentrations were decreased with age in all wheat genotypes except Ozcan. 

Furthermore, Fe was decreased in the plants of all genotypes due to water stress. The 

highest Fe concentrations were noted in Sahal-1 at 40, 60 DAS stages and in Ozcan at 

80 DAS stage, under all conditions (Table 4.8). Fe concentrations were high under 

well-watered conditions because of its presence in more soluble forms (Havlin, et al., 

1999). Similar results were demonstrated by Gunes, et al., (2006). 

 

 

4.2.2.2.3  Effect of drought stress on manganese (Mn) concentration (mg kg
-1

)  

 

         Manganese (Mn) plays an essential role in activation of several enzymes, such as 

isoenzymes of superoxide dismutase (Campanella, et al., 2005).  It is also involved in 

scavenging of superoxide and hydrogen peroxide (Ducic and Polle, 2005). The drought 

stress significantly reduced Mn concentrations in all wheat genotypes (Table 4.8). 

Under drought stress conditions, Mn accumulations were the highest in BVD-22 at 40 

and 60 DAS, while at 80 DAS the highest concentration was observed in Giza-163 

genotype. The results were in harmony with those achieved by Gunes, et al., (2006) and 

Hussein, et al., (2009). 

 

 

4.2.2.2.4  Effect of drought stress on zinc (Zn) concentration (mg kg
-1

)  

 

          Zinc (Zn), protects plant cells from the damage effects that caused by ROS 

(Cakmak, 2000), Zn also has a role in protection of chloroplasts from the photo-

oxidation damages that occur by ROS (Wang and Jin, 2005).The concentrations of Zn 

varied among wheat genotypes between 21.9 mg kg
-1 

(in Sahal-1 at 80 DAS under 

stress) and 70.5 mg kg
-1 

(in Sahal-1 at 40 DAS under irrigated conditions). The Zn 

concentrations were decreased due to drought in all genotypes (Table 4.9). Under 

drought stress, Sahal-1 at 40 DAS, BVD-22 at 60 DAS, and Ozcan at 80 DAS stage 

recorded the highest Zn concentrations, while the lowest concentrations were observed 

in Ozcan at 40, 60 DAS stages and in Sahal-1 at 80 DAS stage. The results were in 

parallel with those achieved by Gunes, et al., (2006) and Nasri, et al., (2008).  
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                 Table 4.8: Effect of drought stress on iron and manganese concentrations (ppm) of four T. aestivum genotypes,  

                  the genotypes were exposed to drought stress at 40, 60, and 80 days after sowing (DAS). 

 

    Fe (ppm) Mn (ppm) 

Genotype Variant 40 DAS 60 DAS 80 DAS 40 DAS 60 DAS 80 DAS 

Sahal- 1 Irrigated 86.7 ± 11.6
 
 78.6 ± 6.6

 
 40.4 ± 0.2

 
 109.0 ± 2.8

 
 99.1 ± 2.4

 
 73.9 ± 0.1 

  Stress 71.3 ± 16.4
 
 71.1 ± 0.9

 
 30.6 ± 0.4

 
 97.1 ± 3.9

 
 92.1 ± 3.3

 
 59.5 ± 0.1

 
 

  Average 79.0     74.9     35.5     103.0     95.6     66.7     

Giza-163 Irrigated 67.9 ± 7.4
 
 62.5 ± 0.3

 
 58.5 ± 0.1

 
 106.0 ± 3.0  105.0 ± 12.7

 
 92.2 ± 2.0

 
 

  Stress 56.3 ± 5.3
 
 52.7 ± 7.0  50.4 ± 0.1

 
 97.5 ± 6.4  103.0 ± 5.9

 
 66.7 ± 0.7

 
 

 Average 62.1     57.6     54.5     102.0     104.0     79.4     

Ozcan Irrigated 66.7 ± 1.6
 
 67.0 ± 1.5

 
 59.8 ± 20.7

 
 99.3 ± 11.3 102.0 ± 3.2

 
 91.2 ± 0.3

 
 

  Stress 66.7 ± 1.4
 
 48.9 ± 1.5

 
 51.0 ± 7.7

 
 98.5 ± 9.5

 
 100.0 ± 9.7

 
 64.0 ± 1.4

 
 

  Average 66.7     58.0     55.4     98.9     101.0     77.6     

BVD- 22 Irrigated 70.4 ± 0.3
 
 68.5 ± 4.9

 
 37.0 ± 0.4

 
 109.0 ± 6.7

 
 105.0 ± 0.1

 
 69.1 ± 0.6

 
 

  Stress 68.4 ± 3.3
 
 67.3 ± 3.4

 
 30.5 ± 1.0

 
 103.0 ± 9.6

 
 105.0 ± 3.5

 
 46.1 ± 0.3

 
 

  Average 69.4     67.9     33.8     106.0     105.0     57.6     

Irrigated Average 72.9    69.2    48.9    106.0    103.0    81.6    

Stress Average 65.7     60.0     40.7     99.0     100.0     59.1     

Grand mean 69.3     64.6     44.8     102.0     102.0     70.3     

l.s.d. Genotype 5.8          4.8           

  Stage 5.0         4.1         

  Treatment 4.1               3.4               

*The data represent mean ± SD of three replicates, l.s.d.: least significant differences of means (5% level). 
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4.2.3 Effect of drought stress on proline content 

 

          Proline (Pro) acts as a compatible solute regulating and reducing water loss from 

plant cells, some stressed plants used it as a source of storage for carbon and nitrogen 

(Samaras, et al., 1995). There was a steep increase in proline content in all wheat 

genotypes when subjected to drought stress (Table 4.9). The proline contents in stressed 

plants were 17.34 times greater than irrigated plants. On the other hand, the proline 

content increased 29 fold in Sahal-1, 18.5 fold in Giza-163, 32.2 fold in Ozcan and 9.9 

fold in BVD-22 as compared to the control plants.  

 

          Among all wheat genotypes BVD-22 showed the highest proline content under 

both irrigated and stressed conditions and at all growth stages, the highest being at 40 

DAS stage (101.7 µ moles Pro/g FW) under irrigated conditions and at 60 DAS (599.4 

µ moles Pro/g FW) under drought conditions. In contrast, the lowest proline content 

was obtained from leaves of Giza-163 genotype under stress conditions at all growth 

stages. The low Pro content of Giza-163 genotype under stress shows its susceptibility 

to drought. The results were in harmony with those achieved by Yao, et al., (2009), and 

Johari-Pireivatlou, et al., (2010). 

 

 

 

4.2.4 Effect of drought stress on soluble carbohydrate content 

  

          High carbohydrate concentration, beside its role in maintaining protein structure 

and cell membrane stabilization (Hoekstra, et al., 2001), plays a significant role in 

osmotic adjustment (Mohammadkhani and Heidari, 2008), and serve as signal 

molecule for sugar-responsive genes which enhancing the defense responses 

(Smeekens, 2000). Generally, soluble carbohydrates showed a decrease with age in all 

genotypes under both drought and irrigated conditions, except BVD-22 genotype, which 

showed an increase with age under stress conditions (Table 4.10). Drought caused an 

increase in soluble carbohydrates content in all wheat genotypes. Among all genotypes, 

Sahal-1 maintained the highest SC content, under all conditions. Similar results were 

obtained by Johari-Pireivatlou, et al., (2010). 
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            Table 4.9: Effect of drought stress on zinc concentrations (ppm) and proline content (µ moles pro. / g FW), of four  

           T. aestivum genotypes, the genotypes were exposed to drought stress at 40, 60, and 80 days after sowing (DAS). 

 

    Zn (ppm) Pro (µ moles pro. /g FW) 

Genotype Variant 40 DAS 60 DAS 80 DAS 40 DAS 60 DAS 80 DAS 

Sahal- 1 Irrigated 70.5 ± 3.9 55.2 ± 3.5
 
 33.6 ± 0.5

 
 26.8 ± 1.6 14.6 ± 0.7

 
 4.2 ± 1.3

 
 

  Stress 67.5 ± 3.2 49.0 ± 3.4
 
 21.9 ± 0.1

 
 377.8 ± 66.9 489.9 ± 43.6

 
 459.0 ± 20.3

 
 

  Average 69.0    52.1    27.7    202.3    252.3    231.6    

Giza-163 Irrigated 62.4 ± 4.7
 
 53.6 ± 0.2

 
 33.3 ± 3.7

 
 30.3 ± 6.6

 
 21.9 ± 1.0

 
 5.4 ± 0.5 

  Stress 60.0 ± 2.9
 
 46.0 ± 1.8

 
 24.6 ± 0.0

 
 265.7 ± 11.3 468.5 ± 27.9

 
 331.4 ± 4.5

 
 

  Average 61.2    49.8    28.9    148.0    245.2    168.4    

Ozcan Irrigated 44.5 ± 5.5
 
 35.5 ± 4.5

 
 31.6 ± 0.7

 
 24.8 ± 1.0

 
 8.9 ± 1.3

 
 3.3 ± 1.0

 
 

  Stress 39.5 ± 7.3
 
 32.5 ± 3.1

 
 25.6 ± 0.4

 
 350.3 ± 7.2

 
 479.7 ± 19.5

 
 359.8 ± 62.1

 
 

  Average 42.0    34.0    28.6    187.5    244.3    181.5    

BVD- 22 Irrigated 65.6 ± 4.3
 
 56.6 ± 1.1

 
 35.3 ± 0.3

 
 101.7 ± 33.8

 
 47.1 ± 1.0 6.1 ± 0.5

 
 

  Stress 64.3 ± 0.8
 
 55.0 ± 0.9

 
 24.0 ± 1.7

 
 445.0 ± 4.9

 
 599.4 ± 78.2

 
 490.1 ± 68.0

 
 

  Average 65.0    55.8    29.7    273.7    323.3    248.1    

Irrigated Average 60.8     50.2     33.5     45.9     23.1     4.7     

Stress Average 57.8    45.6    24.0    359.9    509.4    410.1    

Grand mean 59.3     47.9     28.7     202.9     266.2     207.4     

l.s.d. Genotype 2.6          61.1          

  Stage 2.2         52.9         

  Treatment 1.9               43.2               

*The data represent mean ± SD of three replicates, l.s.d.: least significant differences of means (5% level). 
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4.2.5 Effect of drought stress on lipid peroxidation levels 

 

          Drought stress increases reactive oxygen species (ROS) accumulation, which 

cause oxidative damage to chloroplast membranes (Cai, et al., 2007) and lead to 

increase in the malondialdehyde level. As well as the generation of unsaturated fatty 

acids affects membrane structures, their properties, and leads to cellular damage to plant 

membranes (Quan, et al., 2004). Lipid peroxidation levels in wheat leaves were 

determined by measuring malondialdehyde (MDA) content (Table 4.10). All stressed 

genotypes showed high levels of MDA content when compared to the unstressed 

genotypes. The effect of drought stress was more pronounced in Giza-163 genotype at 

40 and 80 DAS and in Ozcan genotype at 60 DAS stage. However, BVD-22 recorded 

the lowest MDA contents at all stages. These results were in accordance with those 

obtained by Costa, et al., (2010). 

 

 

4.2.6 Effect of drought stress on antioxidant enzymes activities 

 

         The ROS may react with proteins, membrane lipids and nucleic acids, causing 

oxidative damage and impairing the normal functions of cells, which in turn leads to cell 

death (Mittler, 2002; Mittler, et al., 2004). The ability to reduce the damaging effects 

of ROS may be associated with drought tolerance. Plants use antioxidant defense 

mechanisms to prevent these damages (Agarwal and Pandey, 2003). In the present 

study, the activities of antioxidant enzymes (except CAT) were increased under drought 

stress, compared to the control (unstressed) plants. 
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          Table 4.10: Effect of drought stress on soluble carbohydrates content (mg/g DW), and malondialdehyde content (nmol ml
-1

)  

          of four T. aestivum genotypes, the genotypes were exposed to drought stress at 40, 60, and 80 days after sowing (DAS). 

 

    SC (mg/g DW) MDA (nmol ml
-1

) 

Genotype Variant 40 DAS 60 DAS 80 DAS 40 DAS 60 DAS 80 DAS 

Sahal- 1 Irrigated 5.95 ± 0.9 5.76 ± 0.8
 
 4.97 ± 0.8

 
 0.25 ± 0.01 0.62 ± 0.04

 
 0.86 ± 0.03

 
 

  Stress 7.40 ± 0.1 6.43 ± 0.8
 
 5.95 ± 0.4

 
 0.33 ± 0.02 1.73 ± 0.02

 
 4.80 ± 0.04

 
 

  Average 6.68    6.10    5.46    0.29    1.18    2.83    

Giza-163 Irrigated 5.47 ± 0.0
 
 5.01 ± 0.9

 
 4.76 ± 0.3

 
 0.25 ± 0.00

 
 0.29 ± 0.00

 
 1.76 ± 0.02

 
 

  Stress 7.39 ± 0.4
 
 5.30 ± 0.2 5.07 ± 1.0

 
 0.43 ± 0.02

 
 1.45 ± 0.01

 
 6.13 ± 0.00 

  Average 6.44    5.16    4.91    0.34    0.87    3.95    

Ozcan Irrigated 4.19 ± 0.0
 
 3.97 ± 0.3

 
 3.43 ± 0.3

 
 0.23 ± 0.03

 
 0.25 ± 0.02

 
 0.71 ± 0.04

 
 

  Stress 6.21 ± 0.8
 
 4.32 ± 0.1

 
 3.65 ± 0.6 0.29 ± 0.03

 
 1.89 ± 0.03

 
 2.92 ± 0.04

 
 

  Average 5.20    4.14    3.54    0.26    1.07    1.82    

BVD-22 Irrigated 4.46 ± 0.3
 
 3.19 ± 0.4

 
 4.29 ± 0.0 0.18 ± 0.02

 
 0.21 ± 0.02

 
 0.54 ± 0.03

 
 

  Stress 4.69 ± 1.4 5.15 ± 0.2
 
 5.70 ± 0.2

 
 0.25 ± 0.02

 
 1.31 ± 0.01 2.65 ± 0.01

 
 

  Average 4.58    4.17    5.00    0.22    0.76    1.60    

Irrigated Average 5.02     4.48     4.36     0.23     0.34     0.97     

Stress Average 6.42    5.30    5.09    0.33    1.60    4.13    

Grand mean 5.72     4.89     4.73     0.28     0.97     2.55     

l.s.d. Genotype 0.50          0.19          

  Stage 0.44         0.16         

  Treatment 0.36               0.13               

 
*The data represent mean ± SD of three replicates, l.s.d.: least significant differences of means (5% level). 
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4.2.6.1  Effect of drought stress on ascorbate peroxidase activity 

 

           Ascorbate peroxidase (AP) is an enzyme that catalyzes the conversion of H2O2 to 

water and O2 (Gratao, et al., 2005). AP activities of shoots (expressed per mg protein), 

were affected by drought stress (Table 4.11). There was an increase in AP activity in all 

wheat genotypes when subjected to drought stress, except Ozcan at 60 DAS and Giza-

163 at 40 and 80 DAS stages. The maximum increases in AP activities were observed in 

BVD-22 genotype at 40 DAS, and in Sahal-1 genotype at 60 and 80 DAS stages. These 

results were in parallel with those achieved by Khanna-Chopra and Selote, (2007). 

 

 

4.2.6.2  Effect of drought stress on glutathione reductase activity  

 

          Glutathione reductase (GR) is essential for maintenance high concentrations of 

reduced glutathione, and involved in H2O2 detoxification (Foyer, et al., 1994). Similar 

to ascorbate peroxidase results, also glutathione reductase activity was affected by 

drought (Table 4.11). The activity of GR was increased under drought stress conditions 

in comparison to control conditions in all wheat genotypes except Ozcan and BVD-22 

genotypes at 80 DAS stage, which showed the reverse trend. The increase in GR 

activities were pronounced in BVD-22 at 40 DAS, in Sahal-1 at 60 DAS, and in Giza-

163 at 80 DAS. These results were in agreement with those obtained by Renu and 

Devarshi, (2007).  

 

 

4.2.6.3 Effect of drought stress on superoxide dismutase content 

 

          Superoxide dismutase (SOD) plays a crucial role in antioxidant defense because it 

catalyzes conversion of the superoxide radical to molecular oxygen and H2O2 (Costa, et 

al., 2010). Also in the case of superoxide dismutase, drought increased the enzyme 

activity in all wheat genotypes, except Ozcan and Giza-163 genotypes at all growth 

stages, which showed the opposite trend (Table 4.12). The SOD contents were 9.62 and 

8.56 U mg
-1

 protein in irrigated and non-irrigated plants, respectively. The highest 

activities of SOD were observed in BVD-22 at 40 DAS, and in Sahal-1 at 60 and 80 

DAS stages. Renu and Devarshi, (2007), obtained similar results. 
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Table 4.11: Effect of drought stress on ascorbate peroxidase activity (µmol/mg protein/min.) and glutathione reductase activity 

(nmol/mg protein /min.) of four T. aestivum genotypes, the genotypes were exposed to drought stress at 40, 60, and 80 days after 

sowing (DAS). 

 

Genotype Variant 
AP (μmolmg

-1
 prt. min.

-1
) GR (nmol mg

-1
 prt. min.

-1
) 

40 DAS 60 DAS 80 DAS 40 DAS 60 DAS 80 DAS 

Sahal- 1 Irrigated 0.62 ± 0.04 0.13 ± 0.02 0.23 ± 0.03 96.9 ± 10.1 51.0 ± 7.7 86.9 ± 6.2 

 
Stress 0.62 ± 0.05 0.39 ± 0.04 0.46 ± 0.02 121.3 ± 10.9 99.6 ± 11.1 95.7 ± 7.7 

 
Average 0.62 

  
0.26 

  
0.34 

  
109.1 

  
75.3 

  
91.3 

  

 
Differ. % 0.00 

  
196.2 

  
97.65 

  
25.1 

  
95.3 

  
10.2 

  
Giza-163 Irrigated 0.33 ± 0.03 0.32 ± 0.03 0.23 ± 0.02 79.1 ± 8.8 98.1 ± 5.5 63.6 ± 6.2 

 
Stress 0.31 ± 0.02 0.36 ± 0.04 0.23 ± 0.02 84.6 ± 9.7 123.3 ± 13.0 73.8 ± 8.5 

 
Average 0.32 

  
0.34 

  
0.23 

  
81.8 

  
110.7 

  
68.7 

  

 
Differ. % -4.60 

  
13.33 

  
-1.20 

  
7.0 

  
25.7 

  
16.0 

  
Ozcan Irrigated 0.40 ± 0.02 0.71 ± 0.03 0.21 ± 0.02 71.4 ± 9.6 69.4 ± 9.6 131.2 ± 11.2 

 
Stress 0.45 ± 0.05 0.36 ± 0.05 0.37 ± 0.01 79.7 ± 9.2 109.3 ± 10.2 51.5 ± 5.0 

 
Average 0.43 

  
0.54 

  
0.29 

  
75.5 

  
89.3 

  
91.3 

  

 
Differ. % 13.94 

  
-49.64 76.82 

  
11.6 

  
57.6 

  
-60.8 

  
BVD -22 Irrigated 0.28 ± 0.03 0.29 ± 0.03 0.44 ± 0.03 78.7 ± 5.6 86.1 ± 3.2 108.0 ± 15.0 

 
Stress 0.36 ± 0.03 0.33 ± 0.04 0.46 ± 0.01 102.9 ± 4.4 135.6 ± 13.4 107.9 ± 16.0 

 
Average 0.32 

  
0.31 

  
0.45 

  
90.8 

  
110.8 

  
107.9 

  

 
Differ. % 26.31 

  
16.61 

  
5.63 

  
30.8 

  
57.5 

  
-0.2 

  
Irrigated Average 0.41 

  
0.36 

  
0.28 

  
81.5 

  
76.1 

  
97.4 

  
Stress Average 0.44 

  
0.36 

  
0.38 

  
97.1 

  
116.9 

  
82.2 

  

 
Differ. % 7.02 

  
-0.23 

  
36.66 

  
19.1 

  
53.6 

  
-15.6 

  
Grand mean 0.42 

  
0.36 

  
0.33 

  
89.3 

  
96.5 

  
89.8 

  
l.s.d. Genotype 0.17 

        
19.8 

        

 
Stage 0.15 

        
17.1 

        

 
Treatment 0.12 

        
13.9 

        
 

 
*The data represent mean ± SD of three replicates, l.s.d.: least significant differences of means (5% level), Differ.= values represent percent decrease (-) or 

increase (+) as compared to normal irrigated conditions. 
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Table 4.12: Effect of drought stress on superoxide dismutase content (Unit/mg protein), and catalase activity (nmol/mg protein 

/min.) of four Triticum aestivum genotypes, the genotypes were exposed to drought stress at 40, 60, and 80 days after sowing (DAS). 

 

Genotype Variant 
SOD (U mg

-1
 prt.) CAT (nmol mg

-1
 prt. min.

-1
) 

40 DAS 60 DAS 80 DAS 40 DAS 60 DAS 80 DAS 

Sahal- 1 Irrigated 8.50 ± 0.4 2.70 ± 0.2 11.50 ± 0.6 128.10 ± 8.7 114.30 ± 11.3 169.30 ± 8.2 

 
Stress 9.90 ± 0.8 7.20 ± 0.5 13.00 ± 0.1 104.40 ± 5.4 53.60 ± 5.7 125.10 ± 10.4 

 
Average 9.20 

  
4.94 

  
12.27 

  
116.25 

  
83.96 

  
147.19 

  

 
Differ. % 16.39 163.0 13.46 -18.50 -53.12 -26.10 

Giza-163 Irrigated 7.59 ± 0.6 6.10 ± 0.6 9.80 ± 0.2 111.40 ± 11.9 132.90 ± 11.0 134.0 ± 10.8 

 
Stress 6.26 ± 0.4 6.10 ± 0.3 8.40 ± 0.2 71.50 ± 3.7 110.70 ± 10.6 64.40 ± 3.3 

 
Average 6.92 

  
6.10 

  
9.09 

  
91.47 

  
121.78 

  
99.19 

  

 
Differ. % -17.60 0.51 -14.17 -35.78 -16.70 -51.96 

Ozcan Irrigated 8.00 ± 0.0 9.40 ± 0.3 26.20 ± 0.1 123.30 ± 10.8 151.10 ± 15.9 212.30 ± 17.5 

 
Stress 7.70 ± 0.5 5.30 ± 0.6 8.10 ± 0.0 61.20 ± 5.6 63.80 ± 4.0 38.60 ± 4.5 

 
Average 7.85 

  
7.35 

  
17.13 

  
92.26 

  
107.44 

  
125.47 

  

 
Differ. % -4.66 -43.08 -69.13 -50.32 -57.79 -81.83 

BVD -22 Irrigated 8.20 ± 1.2 5.20 ± 0.1 12.20 ± 0.9 137.70 ± 14.0 115.20 ± 8.6 169.90 ± 11.4 

 
Stress 10.10 ± 0.4 8.10 ± 0.6 12.70 ± 1.4 81.80 ± 8.5 109.40 ± 6.9 113.00 ± 17.0 

 
Average 9.14 

  
6.66 

  
12.44 

  
109.73 

  
112.29 

  
141.46 

  

 
Differ. % 22.41 54.78 3.62 -40.60 -5.00 -33.51 

Irrigated Average 8.09 
  

5.85 
  

14.92 
  

125.11 
  

128.37 
  

171.39 
  

Stress Average 8.47 
  

6.68 
  

10.54 
  

79.74 
  

84.37 
  

85.26 
  

 
Differ. % 8.28 6.26 

  
12.73 -36.26 

  
-34.28 

  
-50.25 

  
Grand mean 8.30 6.30 

  
12.70 

  
102.43 

  
106.37 

  
128.33 

  
l.s.d. Genotype 1.94 

        
27.11 

        

 
Stage 1.68 

        
23.48 

        

 
Treatment 1.37 

        
19.17 

        
 *The data represent mean ± SD of three replicates, l.s.d.: least significant differences of means (5% level), Differ.:=values represent percent decrease (-) or 

increase (+) as compared to normal irrigated conditions. 
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4.2.6.4 Effect of drought stress on catalase activity 

 

           The wheat genotypes responded to drought stress with a noticeable decrease in 

the activity of catalase with decreases of 36.3, 34.3, and 50.3% at 40, 60, and 80 DAS 

stages, respectively (Table 4.12). The lowest reduction in CAT activity was found in 

BVD-22 at 60 DAS, and in Sahal-1 at 40 and 80 DAS. The activity of CAT decreased 

from 115.2 to 109.4 nmol mg
-1

 prt.min.
-1

 in BVD-22 at 60 DAS and from 128.1, 169.3 

to 104.4, 125.1 nmol mg
-1

 prt.min.
-1

 in Sahal-1 40 and 80 DAS respectively. In contrast, 

the highest reduction was observed in Ozcan genotype at all growth stages. The results 

were in parallel with those achieved by Tayebeh and Hassan, (2010). 

 

 

 

4.2.7 Identification of drought responsive genes by mRNA differential display 

 

          The differential display technique is an important tool used to identify the 

differentially expressed genes (Liang and Pardee, 1992). In addition, it used to obtain 

gene expression profiles (Canli, 2007). From the greenhouse experiment data, Sahal-1 

and BVD-22 genotypes showed better performance under drought stress conditions 

compared with other genotypes (Ozcan and Giza-163). Therefore, the mRNA DD 

technique was used to isolate and identify the genes whose expression was changed in 

response to drought stress in both genotypes (Sahal-1 and BVD-22). Total RNA was 

isolated from plants that had been exposed to drought and irrigated conditions at 40 

DAS stage, and after isolation, 2% agarose gel electrophoresis was used to check the 

quality of RNA samples (Fig.4.5). The presence of sharp rRNA bands indicates that the 

RNA was not degraded. Furthermore, RNA content was measured at 260nm wavelength 

by using Nanodrop spectrophotometer. 

         

         

 

 

                                                       

                                                 

                         

Fig. 4.5: Quality of RNA samples on 2% agarose gel,  (+) = stress, (-) = irrigated. 

Sahal-1                         BVD-22 

 +        -               +          - 
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(c) 
 

Fig. 4.6: Agarose gel electrophoresis pictures of mRNA differential display PCR products of 

Sahal-1 genotype before gel extraction. The genotype was exposed to drought stress 40 days 

after sowing (DAS). (a) PCR products obtained via T8P1, T9P1, T8P2, T9P2, T1P3, T2P3, 

T3P3, T4P3, T5P3, T6P3, T7P3, and T9P3 primers. (b) PCR products obtained via T6P4, T9P4, 

T8P5, T9P5, T2P6, T3P6, T6P6, T7P6, T8P6, T9P6, T6P7 and T8P7 primers. (c) PCR product 

obtained via T6P9, T7P9, and T8P9 primers. The fragments displayed with arrows were 

extracted from the gel for sequencing analysis, (+) = stress, (-) = irrigated. 
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(c) 

Fig.  4.7: Agarose gel electrophoresis pictures of mRNA differential display PCR products of 

BVD-22 genotype before gel extraction. The genotype was exposed to drought stress 40 days 

after sowing (DAS). (a) PCR products obtained via T8P1, T9P1, T8P2, T9P2, T1P3, T2P3, 

T3P3, T4P3, T5P3, T6P3, T7P3 and T9P3 primers. (b) PCR products obtained via T6P4, T9P4, 

T8P5, T9P5, T2P6, T3P6, T6P6, T7P6, T8P6, T9P6, T6P7, and T8P7primers. (c) PCR product 

obtained via T6P9, T7P9 and T8P9 primers. The fragments displayed with arrows were 

extracted from the gel for sequencing analysis, (+) = stress, (-) = irrigated. 
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          After isolation from wheat genotypes, the total RNA samples were used as a 

template for cDNA synthesis. In order to detect the expression profile of tolerant 

genotypes in response to drought stress, the cDNAs obtained from Sahal-1 and BVD-22 

genotypes were subjected to mRNA differential display method with 72 different primer 

combinations were used in PCR reactions. The gel electrophoresis results of the 

fragments isolated from Sahal-1 and BVD-22 genotypes are shown in Fig.4.6 and 4.7. 

 

          A total of 30 cDNA fragments were found to be differentially expressed. Of 

these, 10 cDNAs whose levels of expression were significantly altered by drought stress 

were selected, identified and extracted from the agarose gel. Then these fragments were 

re-amplified with the same primer combinations for confirmation, and the products 

separated on a 1% agarose gel (Fig.4.8). The fragment bands are designated as Sah-1, 

Sah-2, Sah-3, Sah-4, BV-1, BV-2, BV-3, BV-4, BV-5, and BV-6.  

 

 

 

 

 

                              

         

    

Fig. 4.8: After gel extraction and confirmation with the same primers 

 

 

 

4.2.7.1  Sub cloning of drought genes in E.coli with pGEM-T Easy vector  

 

          After gel extraction and confirmation steps, the fragment bands were ligated into 

pGEM-T Easy vector, and then used to transform E.coli strain DH5α. The pGEM-T 

Easy vector contains a Lac-Z region, which encodes for the enzyme β-galactosidase, 

and is interrupted when the vector contains an insert. This allowed identification of 

positive colonies by blue-white selection, the white colonies being selected from the 

plates. To confirm whether the vectors in these white colonies contained the fragments 

of interest, colony PCR reactions were performed with the same primer combinations 

M      Sah1  Sah2   Sah3  Sah4    BV1 BV2   BV3    BV4    BV5   BV6 
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M 

and the PCR products were separated by 1% agarose gel electrophoresis (Fig.4.9 and 

4.10). 

 

 

 

 

                                          

                        M     A     B     C            A      B     C 

                                                  Sah-1                    Sah-2 

 

 

 

 

 

                                                

 

                                            

                                   M     A     B     C            A      B      C 

                                                Sah-3                       Sah-4 

 

Fig. 4.9: Colony PCR reaction of clones Sah1, Sah2, Sah3 and Sah4 from Sahal-1 

genotype. 

 

 

 

 
 

 

 

 

 

                                           A    B    C                 A    B    C 

                                                                       BV-1                    BV-2 

 

 

 

 

                          M     A    B    C      A    B    C      A    B    C        A    B    C 

                                        BV-3             BV-4             BV-5              BV-6 

 

Fig. 4.10: Colony PCR reaction of clones BV-1, BV-2, BV-3, BV-4, BV-5  and BV-6  

from BVD-22 genotype. 
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           After colony PCR reactions, the plasmids were isolated from E. coli DH5α cells 

and successful plasmid isolation checked using 1% agarose gel electrophoresis for 40 

min. at 100 V.  (Fig.4.11 and 4.12). 

 

 

 

 

 

 

 

 

                                        M       Sah-1     Sah-2     Sah-3     Sah-4      

 

Fig. 4.11: Agarose gel analysis of minipreps for Sah1, Sah2, Sah3 and Sah4 from 

Sahal-1 genotype. 

 

 

 

 
 

 

      

 

 

   

                 

                

                                      M      BV1   BV2    BV3     BV4    BV5 

 

Fig. 4.12: Agarose gel analysis of minipreps for Bv1, Bv2, Bv3, Bv4 and Bv5 from 

BVD-22 genotype. 

 

 

 

Isolation of differentially expressed cDNA fragments from the subcloning vector 

 

          The pGEM-T Easy vector has two EcoRI recognition sites, so to check whether 

the plasmids containing the required fragments, the plasmids were also digested with 
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EcoRI restriction enzyme. After digesting, the insert sizes were checked on 1% agarose 

gels (Fig.  4.13Fig.4.13 and 4.14). 

 

 

 

 

 

                                           

 

 

M   Sah1   Sah2  Sah3  Sah4 

Fig. 4.13: Agarose gel showing digests, for Sahal-1 genotype. 

 

 

 

 

 

 

 

 

                 

 

 

M     BV1    BV2    BV3  BV4  BV5 

Fig. 4.14: Agarose gel showing digests, for BVD-22 genotype. 

 

 

 

 

 

4.2.7.2  Sequencing and characterization of cDNA clones 

 

 

          The differentially expressed cDNA fragments were sequenced by using the M13 

forward primer. To remove vector regions, the sequences were submitted to the 

VecScreen algorithm (www.ncbi.nlmn.nih.gov). The sequences of the fragments 

obtained from the mRNA DD study are depicted in Tables 4.13 and 4.14. 

 

http://www.ncbi.nlmn.nih.gov/
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Table 4.13: Sequences of the isolated fragments from Sahal-1, sizes and the primer 

combinations that were used in mRNA DD. 

 

 

 

 

 Primers Size 

(bp) 

Sequence 

Sah-1 

 

T6P6 415 TAAGGAAAGTAGTTCCCCCGTTAAATATTTTGGCCAACGTT

TTTGCATTTGCTACACGACTCGGGGGGTACCCCCCCGCCTT

TGGGAAAGGCTTCATTACCTTCCGGTTTCCAAAGATAAAG

GGAAATTAAAAGATCCCCCAATGTTTGAAAAAAAAGGTTA

TCTCCTTCGGCCCCCAACTTTTGGCAAAATATTTTGGGGCC

CGTGTTTACTCCCTGGGGTTAGGGCCCTTGGAAATTTCTTT

ATTGGGTGCCCCCCCAAAAGGGTTTTTTGGTTGGGGGGAG

AACACAAATCCTTCAGAAAAGAGTGGGGGGCAACAGATTT

TTCTCGCGGCCAACAGAAGAAACCACCCCAAAAAAATATA

TTTTTTTACGAAGAACTTTGGGGCATATCATGTAATCATTC

TGACGATACC 

Sah-2  

 

T9P6 337 GCTTGCGGTCCATGGCCGCTTTCCCAGCCGGGAATTCGGTC

GGGCCAGTTGATTAATGGATCCGCCAAACGCGGGGGAAA

GGCCGTTTGGCGTATGGGCGCTCTTTCCGTTCCCCCCCTAA

TGAACCGCCGGCCCTGGTCGGTCGGGCGGCGCGGGGCGTA

TCAGGTCCCTTCAAGGGCGTAATTCGGGTATTCCCCGGATC

AGGGGATAACGGCAGGAAGGACCTGGGAAGAAAAGGGCC

GGCAAAGGGCAAGAACCCTAAAAAGGCGCCGTGGTGGCC

GTTTTTCCAAGGTCCGGCCCCCTGAACAAGCATTCCAAAA

TTCGCGGCTCAAGTAGA 

Sah-3  

 

T8P7 362 CCATTTCGTCATCCAAAGTGCCTGACTCCCGTCGGGAAAA

ACTACGAACGGGAGGCTTACCTCTGGCCCAGTGCTGAATG

AACCCGGAGACCACGCTCCCGGTCCCAATTTTCCGAATAA

ACCCCCCCCCGAAGGCCAAGCCAAAATGGCCCGAACTTAC

CGCCCCCCCGCCTATATTTGGCCGGAACCAAAAAAATTTC

CCCTTAAATTTGGCAATGTTGTCCTTTCAAAATCCGGGGGA

CCCCCTTTGGAGGGTCTTCCCCCGTCCCCAAATGGGGAATT

TTCCCCGTTGGGAAAAAAGATTCTCCTGCCCAATTGGAAA

AATGGCCGGGTTTCCCGGGGTGGGGCTGTTTTTTGGGTGC 

Sah-4 

 

T8P9 679 AAACCTGGCCCTTACCGTATCCCTGGCAGCTTTCTCCCTTC

GGGAAGGGTGCGACTTTGCCAAGTTCCGGATGAAGGACCC

CATTTCCGGTTAAGGACGTCCGTCCATTCTGGAATGTAAGC

CGAACCCACCGTTATTCCGAACGGTGGGTCCATTCAGGTA

AGATTTGCTTGAGAACCACCCGGTAAAACCAACTTTTCCC

CTTGGCAGAAACCTTGGTAAAGGTTAACCAAAGAAGGATA

GTATGCGGGCTCCAAAATTCCTAGGGGGGGGCAAACCCCG

GACCCTAGAAAACAGATTTTGATTTCGCCTTTTTGAACCAT

TTCCCTCCCAAAAAAAAGGATTCCTTTCCCGCCCAAAAAC

CCCGTGGTCCCGGTAATTTTTTGGCCCCCAATTTACCCAAA

CAAAAGGTGGACAATTTCTTTTTTTTCCCGGGGCGCCCCAA

CCGAAAAAACACAAATGTGTTTCTGGGTTAAAAAAGGCCC

CCACCCCCTTAAAAAATGTTATAACAAAACGCTACTTCCTC

TTACCTCGGACTTATGGGGCCGAAACCGTTTTTTCTATCCG

TTCACCCGAATCCACCCCCCCACCCTGTTCCCCCCCCCCGA

TCAAGCCCCTCCCGGGCTTCCCTGCCCCAGAACACCATAA

CACGCATTTCAAAATAGGGCGGTTCGACTTT 
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Table 4.14: Sequences of the isolated fragments from BVD-22, sizes and the primer 

combinations that were used in mRNA DD. 

 
 Primers Size 

(bp) 

Sequence 

BV-1  

 

T8P1 488 CAAAGATATATAGAGAAAACTGGGCTGAAAGTTACCATG

GTTAATCAGGGGGGCCCTTTTCACGGATTGGCTATTTCGT

TACCCAAATGGCCGAACCCCCGCGGGGAAAAACCCCAAC

CGGGGGGGTTACACTTGGGCCCAGGTGGAAAGAAACCCG

GAACACACTCCCCGGCCCAAATTTACCAAAAAAACCCCCC

GGGAGGGGCAGAGAAAAGTGTCCGCAATTTTCCCCCCCC

ACCCATAATTTGGCGGGAAAAAAAAATTTCCCCTATATTT

ACCACGGTTTCCTTCAAAACCTTGGGCCCCCCTTTTGGTTT

TTCCTCTCTCCCACAAAAGAAATAACCCCTTGGGAAAAAA

TACTCTCTCCCCCCAAAAAAAAGGGGGCTCCTTCAGGGGA

ATTAATTTCCCCCCCCAATTTTTGGGGAAACACAAAAAAA

GAGGGGCGCTCTCCGGAAGAAACCCAAAAATTTTATTTTA

AGAACAATCTT 

BV-2  

 

T8P1 391 ACTAAAGGAAATAAGTTCCCCAGTTAAAAGGTTTGGCCA

ACCGTTGTTGCCATTTGCCACACGGAATCTTGGGTGTCCA

CCCTCCCCCGTTTTGGAAATGGGTCCAATCCACCTTCCCG

GTTCCAAAAGGATAACGGGAAAGTTACTTAGATCCCCCA

ATGTTTGGGAAAAAAAACGGGTTATCCCTCTCGCGGCCTC

CCAAACTTTTTGGCAAAAAAAAATTTGGGGCCCCCGGGGT

TAAACCCCTCTTGGGTTTAGGGGGCCCCCGGAAAATTTTC

TCTCATTGTGGGGGCCCCCCCGAAAAAGGATTTTTTCGGG

GGGGGGGGGGAAACCCCACCAACCTTCTCAGAAAAATGG

GTGGGCGGCAAAAATTTCTTCTTCGCCGAGGGTT 

BV-3  

 

T9P1 1.119 CACCTGTGAACATAGCTCCCGCGCATGGCATGAATCGCTT

GACTGTTCTATTGCGGCACCTATTTCCCTTGTTTCCGCCCC

CCTGCCAACCTGCTTCCTGTGTGAAACTGTTATCCGCTCTG

AATACCTCCCACATACCTATAGGGATACAAAGAGTGTCCC

CCTGGCAGCGCCCACGGGCCCTCTTGTGTTCATTGTTGCC

GCTTAGCTGATTGCCGGCTTCCTTTCCGCCTTCCTGTCTCG

GCAGCTGTGTTATAGATCCCGCCGTCGCGCTGTCAGTTCC

GCGTTGCGCATTGGGTCCTCTTCGGCTTGCTCGCTCGATG

ACTCGATGCACTCGGTCGGCCGCATGCTATCAGCTAACTC

AGCTCATGCAAACGTGGTAATAAGACTATACTTATCATCA

TGGGATCACGCCAGTGAGAACATGATAACAAGAGGAAGG

TATGTAGGCGGAGCTGCAGAGATCCTGAGTTGCTGGCCTG

TTTCCATATACACTGCCACACTGAAAAATGTCAACTGCGC

TCTGCTGAAGTCAGAAGCGTCGTACCTTGAGTTGATGAGT

CTGTATCCCTTAATCACCCCATCGATGCTCCCTCGGGCGCT

GTGGTGTTGCATGCACTGCATCATGCCGATAAACCTGAGC

ATCTAACGATCATCCGTTAGATCCTTTTGATTTCTGCTAGA

TGATCCGAGGCACAACTCTCACGTTTGTAGGATTTATGGT

CTTTGAGATCATGATATGAGCTCAACCCCTCGTTCCTTTCA

TACTGCTGCTGCATTATTTGAATCATTCTCATCGTTCTATC

GAGCAACTAGGACCGACGTTTCGACATGTGTCATCAGCTG

ATGCACCGATGCATTCAGAATCAGGCGATTTGTTACTCAT

ATATCGCATGACTGCAGACTCGCCGTACACTACGATACGC

GAAGAGCATGACGACTGACATCTTGGCCTCGAGTGAGCA

GTAACCTCGAACAAAGCTCCAGTTCTGATCTAAACAAACA

CGCAGTCGGAGGCTATTGTTAGACCTTGAACTCTCCTCAT
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CATGATCGTACTCATTCGGATTCAATGCCGTACATTGACA

ATCTCGCATGGCCATGGTCAGGATACCGGAGACT 

BV-4 

 

T9P6 337 CTTTATGCTGAGTGATAGCTTTTTTTTTGGCAGCATTCATA

CAGGTTATTTTCTTTAATAACATCCATTCGGCTCGTCTTCC

ACGAAGAACATCCACACGGAACACATCTGCCGCGCATAC

ACACAGGTGGCAGGACAGGTATCTACAAGCGACTGCGGT

AGTAGAAAGGTAGCGGTTCGAAGTTTTCATAGTTGCATAT

ACTAATATCTAATACCATGCTGAGCAGAAGGCAAGGCCG

TACGACGACTGACGTCTCGCCGCATTACGCATATGGATCA

CGCAACCACGAACGACCCAATATGCATGCGAGACACCCA

TCATTTATGGAGGGTCAAT 

BV-5 

 

T6P7 415 CTTTATCCTCAGTGATTCTTTTTTTTTCGGGAATAAGTGGC

TCTTGGCCATATGTGTGTTTTACATGTCCCTACATCCCAAC

GATTTGGCCATATCCTGACCAATGTCTTGCCTACCGCATC

ATTTGAGGAGTTCCGGTCCAGTCTTTGTGTCAACCCCGGT

GCCCCTTCTCCTGAGGGGGGGGGGGTTGAGTACATGTGTT

GTGCACCGGAACTTATTGGGCCCCCCTCCAAGTTACACTG

TGGTCATGATGTCTGGGCCTTGTCGGGAACAACGGACATG

CAAAACACAAATATGGCCAAAAGCCACCTATTCCCGAAA

AAAAAAGATATCATTTAGCGAAGGGAAACAATCATGAAT

TCACTCCCGCCTGCCTGTCGACCATATGGAAGAGCTCCCT

CCCCGTTGGATGGAT 

BV-6  

 

T8P9 304 CATTATGCTGAGTGATATCTTTTTTTTTGCTGGTGTCGATG

CATGAGCAGGTGCACATGCAAAATTGATTTTATTTAGACT

GAACGGGTCACAAAGTGTGATATACTATGATACAGAAAC

GTGCCGGCCGGTCTGCTCCACCGCCGTCACTCTGTCTCTG

GCTGTGCATCCTCTCCGGCCGTCAATTGCCCCGAGACTGT

TTCTTCTTCTTCTTCCTCTTCTTCGTCCTTGGCGGGAAGGC

TCCTACAGCCGGCCTCCTCCATTATCAGCACCTGATGACC

TGCCACATTTAGTGAGGGTTAAT 

 

 

 

4.2.7.3  BLASTN results  

 

          The sequenced fragments were compared with nucleotide database using the 

BLASTN (EST database) algorithm at the NCBI (www.ncbi.nlm.nih.gov). The 

BLASTN results are shown in Tables 4.15 and 4.16. 

     

4.2.7.3.1  BLASTN results of Sahal-1 genotype 

 

          A 416 bp cDNA fragment (Sah-1) obtained by using T6P6 primer combination, 

was found to be similar to (Glycine max cDNA clone genome systems clone ID: Gm-

c1065-76685- similar to SW: Blat_Ecoli P00810 Beta-Lactamase Precursor; mRNA 

sequence), with an e-value of 3e
-16

, and to (Vitis vinifera cv. perlette LibB Vitis vinifera 

cDNA, mRNA sequence), with an e-value of 2e
-07

. 
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          The primer combination T9P6 gave 337 bp cDNA fragment (Sah-2), that was 

found to be similar to (Drought stress (leaf) Oryza sativa indica group cDNA clone 

NL53_B03 (3- ), mRNA sequence) with an e-value of 1e
-46

, and to (Coffee drought 

stressed leaf cDNA library Coffea canephora cDNA, mRNA sequence), with an e-value 

of 1e
-45

. A 362 bp cDNA fragment (Sah-3) obtained using primer combination T8P7 

displayed similarity to (EST-1654 Spartina alterniflora root salinity induced expressed 

sequence tag (EST) Spartina alterniflora cDNA, mRNA sequence) with e = 5e
-13

.  

 

           A 679 bp cDNA fragment (Sah-4) amplified by primer combination T8P9 was 

found to be similar to (field drought stressed root cDNA library) with an e-value of 4e
-

11
. It was also found to be similar to (Brassica seed development drought normalized 

FTYFDC Brassica napus cDNA 5', mRNA sequence) with the same e-value.  

 

Table 4.15: BLASTN search results of drought stress cDNAs that were isolated by 

differential display from Sahal-1. 

 

 

Fragment BlastN Hit NCBI 

Accession No. 

e-value Identity 

Sah- 1 Sai84h06.y1 Gm-c1065 Glycine max 

cDNA clone genome systems clone ID: 

Gm-c1065-7668 5- similar to SW: 

BLAT_ECOLI P00810 BETA-

LACTAMASE PRECURSOR, mRNA 

sequence. 

BI972926 3e-
16

 74% 

VV_PEb04h04.b1 Vitis vinifera cv. 

perlette LibB Vitis vinifera cDNA, 

mRNA sequence. 

EV232910.1 2e
-07

 70% 

Sah-2 

 

NL53_B03 Drought stress (leaf) Oryza 

sativa Indica Group cDNA clone 

NL53_B03 (3- ), mRNA sequence. 

GT284587 

 

1e
-46

 75% 

CC_09_UAS466 Coffee drought stressed 

leaf cDNA library Coffea canephora 

cDNA, mRNA sequence. 

GW397408 

 

1e
-45

 75% 

Sah-3 

 

EST-1654 Spartina alterniflora root 

salinity induced expressed sequence tag 

(EST) Spartina alterniflora cDNA, 

mRNA sequence. 

EH277618 5e
-13

 81% 

Sah-4 

 

ICC4958_CD104_A07 ICC4958 field 

drought stressed root cDNA library. 

GR398891.1 4e
-11

 69% 

FTYFDC_UP_001_F11_14JAN2004_08

5 Brassica seed development drought 

normalized FTYFDC Brassica napus 

cDNA 5', mRNA sequence. 

EE506138.1 4e
-11

 69% 
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4.2.7.3.2  BLASTN results of BVD-22 genotype 

 

          The primer combination T8P1 gave a 391 bp cDNA fragment (BV-2) that was 

found to be similar to (Brassica napus Ex 20-Lib9 Brassica napus cDNA 5-, mRNA 

sequence) and (Triticum aestivum cDNA clone wle1n.pk0086.e115- end, mRNA 

sequence) with e-values of 3e
-04 

and 2e
-05 

respectively. A 1.119 bp cDNA fragment 

(BV-3) obtained using the T9P1 primer combination displayed similarity to (Salt-

tolerant Dunaliella salina cDNA library Dunaliella salina cDNA, mRNA sequence), 

(field drought stressed root cDNA library Cicer arietinum cDNA clone 

ICC4958_CD104_A075-, mRNA sequence ), (dehydration stressed root cDNA library 

Cicer arietinum cDNA clone ICC1882_CD69_B065-, mRNA sequence), and 

(dehydration stressed root cDNA library Cicer arietinum cDNA clone 

ICC1882_CD66_E115', mRNA sequence) with 2e
-05

, 2e
-05

, 5e
-07

, and 2e
-05

 e-values 

respectively.  

 

           The primer combination  T9P6 gave a 337 bp cDNA fragment (BV-4) that was 

found to be similar to (Triticum aestivum developing seed heat stress reverse subtractive 

library Triticum aestivum cDNA clone Taw21-012-A07-A-049 3-, mRNA sequence), 

and similar to (Triticum aestivum flower heat stress forward subtractive library Triticum 

aestivum cDNA clone Tau21-004-G05-A-036 3-, mRNA sequence), with 4e
-58

 e-values 

for both, and also similar to (cDNA library of a compatible interaction between stripe 

rust (Puccinia striiformis) and wheat Triticum aestivum cDNA 5- similar to reticulon, 

mRNA sequence) with 1e
-128

 e-value. A 415 bp cDNA fragment (BV-5) provided by the 

T6P7 primer combination was found to be similar to  (Dactylis leaf DDRT-cDNA 

Dactylis glomerata cDNA clone 2s10-t7 similar to Leucine aminopeptidase, mRNA 

sequence), (dehydration stressed root cDNA library Cicer arietinum cDNA clone 

ICC1882_CD69_A055-, mRNA sequence), (Slow drought stressed root cDNA library 

Cicer arietinum cDNA clone ICC1882_CD73_E125-, mRNA sequence), and similar to 

(field drought stressed root cDNA library Cicer arietinum cDNA clone 

ICC1882_CD111_F105-, mRNA sequence) with e-values of 1e
-14

, 9e
-11

, 1e
-09

, and 4e
-09

 

respectively. 
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Table 4.16: BLASTN search results of drought stress cDNAs that were isolated by 

differential display from BVD-22. 

 
Fragment BlastN Hit NCBI 

Accession 

No. 

e-value Identity 

BV-2 EX20LIB9_UP_028_F08_25FEB2005_054 

Brassica napus Ex 20-Lib9 Brassica napus cDNA 

5-, mRNA sequence. 

EE500043.1 3e
-04

 73% 

wle1n.pk0086.e11 wle1n Triticum aestivum cDNA 

clone wle1n.pk0086.e11 5- end, mRNA sequence. 

CA634431.1 2e
-05

 71% 

BV-3 

 

Hust515T7 Salt-tolerant Dunaliella salina cDNA 

library Dunaliella salina cDNA, mRNA sequence. 

GH611964.1 

 

2e
-05

 74% 

ICC4958_CD104_A07 ICC4958 field drought 

stressed root cDNA library Cicer arietinum cDNA 

clone ICC4958_CD104_A07 5-, mRNA sequence. 

GR398891.1 

 

2e
-05

 74% 

ICC1882_CD69_B06 ICC1882 dehydration 

stressed root cDNA library Cicer arietinum cDNA 

clone ICC1882_CD69_B06 5-, mRNA sequence. 

GR391334.1 5e
-07

 

 

73% 

ICC1882_CD66_E11 ICC1882 dehydration 

stressed root cDNA library Cicer arietinum cDNA 

clone ICC1882_CD66_E11 5', mRNA sequence. 

GR391096.1 2e
-05

 72% 

BV-4 

 

Taw21-02-A07-A-049.g Triticum aestivum 

developing seed heat stress reverse subtractive 

library Triticum aestivum cDNA clone Taw21-

012-A07-A-049 3-, mRNA sequence. 

GD188088.1 4e
-58

 85% 

WRIC_123 cDNA library of a compatible 

interaction between stripe rust (Puccinia 

striiformis) and wheat Triticum aestivum cDNA 5- 

similar to reticulon, mRNA sequence. 

GR302507.1 1e
-128

 94% 

Tau21-004-G05-A-036.g Triticum aestivum flower 

heat stress forward subtractive library Triticum 

aestivum cDNA clone Tau21-004-G05-A-036 3-, 

mRNA sequence. 

GD188648.1 

 

 

4e-
58

 85% 

BV-5 

 

EST0001 Dactylis leaf DDRT-cDNA Dactylis 

glomerata cDNA clone 2s10-t7 similar to Leucine 

aminopeptidase, mRNA sequence. 

BG724444.1 1e
-14

 79% 

ICC1882_CD69_A05 ICC1882 dehydration 

stressed root cDNA library Cicer arietinum cDNA 

clone ICC1882_CD69_A05 5-, mRNA sequence. 

GR391321.1 

 

9e
-11

 86% 

ICC1882_CD73_E12 ICC1882 Slow drought 

stressed root cDNA library Cicer arietinum cDNA 

clone ICC1882_CD73_E12 5-, mRNA sequence. 

GR394676.1 1e
-09

 82% 

ICC1882_CD111_F10 ICC1882 field drought 

stressed root cDNA library Cicer arietinum cDNA 

clone ICC1882_CD111_F10 5-, mRNA sequence. 

GR408968.1 

 

4e
-09

 85% 

BV-6 

 

CJ643812 Y.Ogihara unpublished cDNA library 

Wh_EMI Triticum aestivum cDNA clone 

whei14n01 5-, mRNA sequence. 

CJ643812.1 1e
-134

 100% 

CJ863865 Y. Ogihara unpublished cDNA library, 

whsctal Triticum aestivum cDNA clone 

whsctal20n07 3-, mRNA sequence. 

CJ863865.1 4e
-127

 99% 

 

          The primer combination T8P9 gave a 304 bp cDNA fragment (BV-6) was found 

to be similar to (cDNA library Wh_EMI Triticum aestivum cDNA clone whei14n01 5-, 
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mRNA sequence) and (cDNA library, whsctal Triticum aestivum cDNA clone 

whsctal20n07 3-, mRNA sequence) with e-values of 1e
-134 

and 4e
-127

 respectively. 

 

 

4.2.7.4  BLASTX results  

 

         The sequenced fragments that were isolated from Sahal-1 and BVD-22 genotypes 

were analyzed and compared with protein databases (nr, swissprot, refseq_protein, and 

pdb) using BLASTX algorithm at the NCBI (www.ncbi.nlm.nih.gov).The BLASTX 

results indicated similarity to many different proteins identified in various organisms 

such as the proteins shown in Tables 4.17 and 4.18. 

 

4.2.7.4.1  BLASTX results of Sahal-1 genotype 

 

          According to the results in Table 4.17, the fragment that was amplified with T6P6 

primers in Sahal-1 (Sah-1) was found to have 42% similarity to plastid high chlorophyll 

fluorescence 136 precursor from Zea mays and Photosystem II stability/assembly factor 

HCF136, chloroplastic in Oryza sativa. The fragment amplified with T9P6 primers 

(Sah-2) showed 32% similarity to retrotransposon protein, putative, unclassified isolated 

from Oryza sativa. The fragment amplified with T8P7 primers (Sah-3) had 50% 

similarity to ATP binding / protein kinase/ protein serine/threonine kinase from 

Arabidopsis thaliana and the crystal structure of superoxide dismutase from Potentilla 

atrosanguinea. The fragment amplified with T8P9 primers (Sah-4) was found to have 

51% similarity to proline-rich extensin-like receptor kinase 10 of Arabidopsis thaliana. 

 

 

4.2.7.4.2  BLASTX results of BVD-22 genotype 

 

          For the six fragments that were isolated from BVD-22 genotype, BLASTX results 

are shown in Table 4.18. The fragment that was amplified with T8P1 primers (BV-1) 

showed 50% similarity to Glucose-6-phosphate 1-dehydrogenase from Medicago sativa. 

The other fragment that was amplified by the same primer combination (BV-2) was 

found to have 57% identity to Formin-like protein 20(AtFH20) in Arabidopsis thaliana. 
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Table 4.17: BLASTX search results of drought stress cDNAs that were isolated by 

differential display from Sahal-1. 

 

 

                  

Table 4.18: BLASTX search results of drought stress cDNAs that were isolated by 

differential display from BVD-22. 

 

Fragment 

No. 

Primers Database BLASTX hit Identity 

Bv-1 T8P1 swissprot Q42919. Glucose-6-phosphate 1-

dehydrogenase, cytoplasmic 

isoform; Short=G6PD from 

Medicago sativa. 

50% 

Bv-2 T8P1 swissprot Q9FLQ7. Formin-like protein 20; 

Short=AtFH20 in Arabidopsis 

thaliana. 

57% 

Bv-3 T9P1 pdb 1ULK_A.Chain A, crystal structure 

of pokeweed lectin-C from 

Phytolacca americana. 

40% 

Bv-4 T9P6 swissprot P48495. Trios phosphate 

isomerase, cytosolic; Short=TPI; 

Short=Trios-phosphate isomerase. 

46% 

Bv-5 

 

T6P7 nr ABA94365.retrotransposon 

protein, putative, unclassified in 

Oryza sativa (japonica cultivar-

group). 

54% 

Bv-6 T8P9 refseq_protein NP_001151147. Transferase family 

protein from Zea mays. 

40% 

Fragment 

No. 

Primers Database BLASTX hit Identity 

Sah-1 T6P6 nr ABQ53629. Plastid high 

chlorophyll fluorescence 136 

precursor Zea mays. 

42% 

swissprot Q5Z5A8. Photosystem II 

stability/assembly factor HCF136, 

chloroplastic in Oryza sativa. 

42% 

Sah-2 

 

T9P6 nr ABA99784.retrotransposon protein, 

putative, unclassified from Oryza 

sativa (japonica cultivar-group). 

32% 

Sah-3 T8P7 refseq_protein NP_177036.ATP binding / protein 

kinase/ protein serine/threonine 

kinase from Arabidopsis thaliana. 

50% 

pdb 2Q2L_A.Chain A, crystal structure 

of superoxide dismutase from 

Potentilla atrosanguinea. 

50% 

Sah-4 T8P9 nr NP_173940.2.PERK10(proline-rich 

extensin-like receptor kinase 10); 

ATP binding / protein kinase/ 

protein serine/threonine kinase/ 

protein tyrosine kinase in 

Arabidopsis thaliana 

51% 
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          The fragment that was amplified with T9P1 primers (BV-3) was found to be 

similar to crystal structure of pokeweed lectin-C from Phytolacca americana, with 40% 

identity. Meanwhile, the fragment that was amplified with T9P6 primers (BV-4) showed 

46% similarity to Trios phosphate isomerase (TPI). Whereas the fragment that was 

amplified with T6P7 primers (BV-5) had 54% similarity to a retrotransposon protein, 

putative, unclassified from Oryza sativa. The fragment that was amplified with T8P9 

primers (BV-6) showed 40% identity to a transferase family protein of Zea mays.  

 

 

 

4.2.7.5  ORF regions of the obtained sequences 

 

           The open reading frames of the obtained sequences from Sahal-1 and BVD-22 

were detected using ORF Finder algorithm of NCBI. 

 

4.2.7.5.1  ORF regions of the obtained sequences from Sahal-1 

 

           The ORFs found for the fragments isolated from Sahal-1 were shown in Table 

4.19. The fragment amplified with T6P6 primers (Sah-1) had a ninety amino acids long 

ORF in the frame two, a forty-two amino acids long ORF in the frame +3, and eighty-

nine amino acids long ORF in the frame +3. The fragment amplified with T9P6 primers 

(Sah-2) had two ORFs in the frames -1 and -3 of 86 and 44 amino acids in length, 

respectively. The fragment amplified with T8P7 primers (Sah-3) had three ORFs in the 

frames +2, +3 and -1 of 95, 94 and 52 amino acids in length, respectively. However, the 

fragment amplified with T8P9 primers (Sah-4) had three ORFs in the frame +1, +3, and 

-2 of 62,41and 46 amino acids in length, respectively. 

 

 

4.2.7.5.2  ORF regions of the obtained sequences from BVD-22 

 

           The ORFs found for the fragments isolated from BVD-22 were listed in Table 

4.20. The fragment amplified with T8P1 primers (Bv-1) had two long ORFs in the 

frames +1 and +3 of 101 and 133 amino acids in length, respectively. The second 

fragment that amplified with the same primers (Bv-2) had a 77 amino acid long ORF in 

the frame +3, and 52 amino acids long ORF in the frame -2.  
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Table 4.19: ORFs of the sequences of Sahal-1 genotype. 

 

 
 Primers 

 

Frame 

 

Sequence 

 

Length 

(aa) 

 

Sah-1 

 

T6P6 +2 M  F  E  K  K  G  Y  L  L  R  P  P  T  F  G K  I  F  W  G  P  

C  L  L  P  G  V  R  A  L G  N  F  F  I  G  C  P  P  K  R  V  F  

W  L G  G  E  H  K  S  F  R  K  E  W  G  A  T  D F  S  R  G  

Q  Q  K  K  P  P  Q  K  N  I  F F  Y  E  E  L  W  G  I  S  C  

N  H  S  D  DT 

90 

+3 R  K  V  V  P  P  L  N  I  L  A  N  V  F  A F  A  T  R  L  G  

G  Y  P  P  A  F  G  K  G F  I  T  F  R  F  P  K  I  K  G  N  * 

42 

+3 L  K  K  K  V  I  S  F  G  P  Q  L  L  A  K Y  F  G  A  R  V  

Y  S  L  G  L  G  P  L  E I  S  L  L  G  A  P  P  K  G  F  F  G  

W  G E  N  T  N  P  S  E  K  S  G  G  Q  Q  I  F L  A  A  N  

R  R  N  H  P  K  K  I  Y  F  F T  K  N  F  G  A  Y  H  V  I  I  

L  T  I 

89 

Sah-2 

 

T9P6 -1 M  L  V  Q  G  A  G  P  W  K  N  G  H  H  G A  F  L  G  F  

L  P  F  A  G  P  F  L  P  R  S  F  L  P  L  S  P  D  P  G  N  T  

R  I  T P  L  K  G  P  D  T  P  R  A  A  R  P  T  R A  G  G  S  

L  G  G  E  R  K  E  R  P  Y  A  K  R  P  F  P  R  V  W  R  I  

H  * 

86 

-3 Y  L  S  R  E  F  W  N  A  C  S  G  G  R  T L  E  K  R  P  P  

R  R  L  F  R  V  L  A  L C  R  P  F  S  S  Q  V  L  P  A  V  I  

P  * 

44 

Sah-3 

 

T8P7 +2 L  N  E  P  G  D  H  A  P  G  P  N  F  P  N K  P  P  P  E  G  

Q  A  K  M  A  R  T  Y  R P  P  A  Y  I  W  P  E  P  K  K  F  

P  L  K F  G  N  V  V  L  S  K  S  G  G  P  P  L  E  G  L  P  P  

S  P  N  G  E  F  S  P  L  G  K K  I  L  L  P  N  W  K  N  G  

R  V  S  R  G G  A  V  F  W  V 

95 

+3 M  N  P  E  T  T  L  P  V  P  I  F  R  I  N P  P  P  K  A  K  P  

K  W  P  E  L  T  A  P P  P  I  F  G  R  N  Q  K  N  F  P  L  N  

L  A  M  L  S  F  Q  N  P  G  D  P  L  W  R  V  F  P  R  P  Q  

M  G  N  F  P  R  W  E  K  R F  S  C  P  I  G  K  M  A  G  F  

P  G  V  G L  F  F  G  C 

94 

-1 A  P  K  K  Q  P  H  P  G  K  P  G  H  F  S N  W  A  G  E  S  

F  F  P  T  G  K  I  P  H  L  G  T  G  E  D  P  P  K  G  V  P  

R  I  L K  G  Q  H  C  Q  I  * 

52 

Sah-4 

 

T8P9 +1 M  C  F  W  V  K  K  G  P  H  P  L  K  K  C Y  N  K  T  L  L  

P  L  T  S  D  L  W  G  R  N  R  F  F  Y  P  F  T  R  I  H  P  P  

T  L  F  P  P  P  D  Q  A  P  P  G  L  P  C  P  R T  P  *  

62 

+3 M  G  P  K  P  F  F  L  S  V  H  P  N  P  P  P  H  P  V  P  P  P  

R  S  S  P  S  R  A  S L  P  Q  N  T  I  T  R  I  S  K  *  

41 

-2 K  S  N  R  P  I  L  K  C  V  L  W  C  S  G A  G  K  P  G  R  

G  L  I  G  G  G  E  Q  G G  G  V  D  S  G  E  R  I  E  K  T  

V  S A P  *  

46 

 

           

          The fragment that was amplified with T9P1 primers (Bv-3) had two ORFs in the 

frames +3 and -1 that were 60 and 78 amino acids in length, respectively. In addition, 

the fragment that was amplified with T9P6 primers (Bv-4) had two ORFs in the frames 

+1 and -3 of 47 and 38 amino acids in length, respectively. The fragment amplified with 

T6P7 primers (Bv-5) had two ORFs in the frames +1 and +2 of 95 and 84 amino acids 
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in length, respectively. However, the fragment amplified with T8P9 primers (Bv-6) had 

two ORFs in the frame +2, and +3 of 79 and 61 amino acids in length, respectively. 

 

 

Table 4.20: ORFs of the sequences of BVD-22 genotype. 

 

 
 Primers Frame Sequence 

 

Length 

(aa) 

Bv-1 

 

T8P1 +1 M  V  N  Q  G  G  P  F  H  G  L  A  I  S  L P  K  W  P  N  P  R  G  

E  K  P  Q  P  G  G L  H  L  G  P  G  G  K  K  P  G  T  H  S  P A  

Q  I  Y  Q  K  N  P  P  G  G  A  E  K S V  R  N  F  P  P  P  P  I  I  

W  R  E  K  K I  S  P  I  F  T  T  V  S  F  K  T  L  G  P P  F  G  F  

S  S  L  P  Q  K  K  *  

101 

+3 M  A  E  P  P  R  G  K  T  P  T  G  G  V  T L  G  P  R  W  K  E  T  

R  N  T  L  P  G  P N  L  P  K  K  P  P  G  R  G  R  E  K  C  P Q  

F  S  P  P  T  H  N  L  A  G  K  K  N  F P  Y  I  Y  H  G  F  L  Q  

N  L  G  P  P  F W  F  F  L  S  P  T  K  E  I  T  P  W  E  K I  L  S  

P  P  K  K  K  G  A  P  S  G  E  L  I  S  P  P  N  F  W  G  N  T  K  

K  E  G  R S  P  E  E  T  Q  K  F  Y  F  K  N  N  L 

133 

Bv-2 

 

T8P1 +3 M  F  G  K  K  N  G  L  S  L  S  R  P  P  K  L  F  G  K  K  K  F  

G  A  P  G  V  K  P  L L  G  L  G  G  P  R  K  I  F  S  H  C  G  G  

P  P  E  K  G  F  F  R  G  G  G  G  N  P  T  N  L  L  R  K  M  G  

G  R  Q  K  F  L  L  R R  G  

77 

-2 L  G  D  L  S  N  F  P  V  I  L  L  E  P  G R  W  I  G  P  I  S  K  T  

G  E  G  G  H  P R  F  R  V  A  N  G  N  N  G  W  P  N  L L T  G  

E  L  I  S  F  S  

52 

Bv-3 

 

T9P1 +3 M  N  R  L  T  V  L  L  R  H  L  F  P  L  F P  P  P  C  Q  P  A  S  

C  V  K  L  L  S  A  L  N  T  S  H  I  P  I  G  I  Q  R  V  S  P  W  

Q  R  P  R  A  L  L  C  S  L  L  P  L  S *  

60 

-1 M  L  R  F  I  G  M  M  Q  C  M  Q  H  H  S A  R  G  S  I  D  G  

V  I  K  G  Y  R  L  I  N  S  R  Y  D  A  S  D  F  S  R  A  Q  L  T 

F  F  S  V  A  V  Y  M  E  T  G  Q  Q  L  R I  S  A  A  P  P  T  Y  

L  P  L  V  I  M  F S  L  A  * 

78 

Bv-4 

 

T9P6 +1 L  H  I  L  I  S  N  T  M  L  S  R  R  Q  G  R  T  T  T  D  V  S  P  

H  Y  A  Y  G  S  R N  H  E  R  P  N  M  H  A  R  H  P  S  F  M 

E  G  Q  

47 

-3 M  R  G  R  C  V  P  C  G  C  S  S  W  K  T S  R  M  D  V  I  K  

E  N  N  L  Y  E  C  C  Q  K  K  S  Y  H  S  A  *  

38 

Bv-5 

 

T6P7 +1 M  C  V  L  H  V  P  T  S  Q  R  F  G  H  I  L  T  N  V  L  P  T  A  

S  F  E  E  F  R  S S  L  C  V  N  P  G  A  P  S  P  E  G  G  G V  E  

Y  M  C  C  A  P  E  L  I  G  P  P S K  L  H  C  G  H  D  V  W  A  

L  S  G  T  T D  M  Q  N  T  N  M  A  K  S  H  L  F  P  K  K  K  

D  I  I  *  

95 

+2 M  S  C  L  P  H  H  L  R  S  S  G  P  V  F  V  S  T  P  V  P  L  L  

L  R  G  G  G  L  S T  C  V  V  H  R  N  L  L  G  P  P  P  S  Y  

T  V  V  M  M  S  G  P  C  R  E  Q  R  T  C  K  T  Q  I  W  P  K  

A  T  Y  S  R  K  K  K I  S  F  S  E  G  K  Q  S  *  

84 

Bv-6 

 

T8P9 +2 L  I  L  F  R  L  N  G  S  Q  S  V  I  Y  Y D  T  E  T  C  R  P  V  

C  S  T  A  V  T  L S  L  A  V  H  P  L  R  P  S  I  A  P  R  L  F  L  

L  L  L  P  L  L  R  P  W  R  E  G  S Y  S  R  P  P  P  L  S  A  P  

D  D  L  P  H L  V  R  V  N  

79 

+3 M  I  Q  K  R  A  G  R  S  A  P  P  P  S  L  C  L  W  L  C  I  L  S  

G  R  Q  L  P  R  D C  F  F  F  F  F  L  F  F  V  L  G  G  K  A P  

T  A  G  L  L  H  Y  Q  H  L  M  T  C  H I  * 

61 

 

 



 

 

85 

 

4.2.7.6   The known protein motifs of the obtained sequences from Sahal-1 and 

BVD-22 

 

          The protein sequences were searched for known protein motifs using the Motif 

Scan algorithm by searching against PROSITE patterns, PROSITE patterns (frequent 

match producers), PROSITE profiles, Prefile (more profiles), Pfam HMMs (local 

models), and Pfam HMMs (global models) databases.  

 

          The longest amino acid sequence found for Sahal-1 was that obtained by T8P7 

primers (Sah-3), which had 95 amino acids (Table 4.19). The sequence was searched 

for conserved motifs using Motif Scan algorithm and was found to have a putative 

Amidation site in the region 73-76 (LGKK), Protein kinase C phosphorylation site in 

the region 28-30 (TYR). Interestingly, it also showed a proline-rich region profile in the 

region 4-66 (Fig.4.15). 

 

 

 

Fig. 4.15: The motif predicted for the ninety-five amino acids long ORF sequence 

of the fragmentamplifiedwithT8P7primers in theSahal- 1 genotype found by 

Motif Scan algorithm 

 

 

         

          On the other hand, the longest amino acid sequence found for BVD-22, obtained 

using T8P1 primers (Bv-1) had 133 amino acids (Table 4.20). The sequence was 

searched for conserved motifs and was found to have a putative Amidation site in the 

region 55-58 (AGKK),  ATP/GTP-binding site in the region 2-9  (AEPPRGKT), Casein 

kinase II phosphorylation site in the region 121-124 (SPEE), and  Protein kinase C 

phosphorylation site in the region 125-127 (TQK). 
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4.2.7.7   Pairwisealignmentofthefragmentsthatwereamplifiedwiththesame

primer sets 

 

          There were two primer sets that amplified a fragment both for Sahal-1 and BVD-

22 genotypes. These fragments aligned using ClustalW algorithm of EBI. The pairwise 

alignments of the fragments were shown in Fig.4.16 and 4.17. 

 

 

 

Fig. 4.16: PairwisealignmentofthefragmentsamplifiedwithT9P6primersboth

in Sahal-1 and BVD-22 genotypes 
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Fig. 4.17: PairwisealignmentofthefragmentsamplifiedwithT8P9primersboth

in Sahal-1 and BVD-22 genotypes 
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4.2.7.8  DREB genes 

 

          The transcription factors are binds to specific sequence of promoter region of the 

target genes, which will be, activate as a response to drought. Dehydration-responsive 

element binding (DREB) proteins constitute a large family of transcription factors that 

are involved in a biotic stress tolerance. DREBs regulate many functional genes related 

to drought stress (Ito, et al., 2006). 

 

                    +         -                   +       -                     +       -                     +      - 

                      Sahal-1                 Giza-163                   Ozcan                  BVD-22 

 

 

 

 

(a) 

                         +        -                   +       -                    +       -                   +      - 

                         Sahal-1               Giza-163                 Ozcan                   BVD-22 

 

 

 

 

 

(b) 

                      +       -                  +       -                 +        -                  +       - 

Sahal-1                Giza-163             Ozcan                  BVD-22 

 

 

 

 

(c) 

 

Fig.  4.18: Agarose gel electrophoresis pictures of PCR products of Sahal-1,Giza-163, Ozcan 

and BVD-22 genotypes. The genotypes were exposed to drought stress 40 days after sowing 

(DAS). (a) PCR products obtained via Dreb 1 primer (annealing temp. was 56.5 °C). (b) PCR 

products obtained via Dreb R13A primer (annealing temp. was 51.8 °C). (c) PCR products 

obtained via Dreb 3a primer (annealing temp. was 52 °C), (+) =Stress, (-) =Irrigated. 
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          DREB genes consist of two subclasses, 1) DREB gene1, which induced by cold 

stress, and 2) DREB gene2, which induced by dehydration stress (Choi, et al., 2002). 

As shown in Fig.4.18, Dreb-1s and Dreb 3a were expressed in all genotypes under all 

conditions. Although Dreb R1-3A expressed in all genotypes under drought and 

irrigated conditions, the level of expression under drought stress was higher than 

control. 

 

                       +        -                   +       -                   +       -                       +       - 

                       Sahal-1                Giza-163                 Ozcan                    BVD-22 

 

 

 

 

(a) 

                        +       -                  +       -                 +       -                   +       - 

                        Sahal-1               Giza-163              Ozcan                  BVD-22 

 

 

 

 

 

(b) 

                      +        -                 +        -                 +      -                   +       - 

Sahal-1                Giza-163              Ozcan                BVD-22 

 

 

 

 

 

(c) 

 

Fig.  4.19: Agarose gel electrophoresis pictures of PCR products of Sahal-1, Giza-163, Ozcan 

and BVD-22 genotypes. The genotypes were exposed to drought stress 40 days after sowing 

(DAS). (a) PCR products obtained via Dreb R2 1A (annealing temp. was 51 °C). (b) PCR 

products obtained via Dreb R12B primer (annealing temp. was 47.7 °C). (c) PCR products 

obtained via Dreb R1 2A primer (annealing temp. was 46°C), (+) =Stress, (-) =Irrigated. 
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          As shown in Fig.4.19, Dreb R2 1A was expressed in both Sahal-1 and BVD-22 

genotypes only under drought stress conditions. Dreb R1 2B was expressed only in 

Ozcan genotype under drought stress conditions. Dreb R1 2A expression was not 

detected in any genotype under all conditions. 

 

 

4.3 Field experiment  

 

          For a study closer to agricultural conditions, we evaluated the response of forty-

nine bread wheat genotypes to drought stress in the open field. 

 

4.3.1 Effect of irrigation system on growth and morphological characteristics 
 

4.3.1.1  Effect on plant height (cm)  

 

          Plant height was measured on 26 June 2009, before harvesting. The effect of 

water stress on plant height was clear (Table 4.21). Almost all genotypes had produced 

good plant height under well-watered conditions, while the plant height was 

significantly reduced under water stress, except Katia, Momtchill, and Seval genotypes, 

which showed equal values under both drought and well-watered conditions.   

 

          The plant height of Hawk, Kirgiz95, Zitnica, Es84-24/seri//seri and Kutluk94 

genotypes was the most affected by drought stress with percentage decreases of 25, 

23.8, 21.2, 20.8, and 16.3%, while Bolal2973, Mufitbey, Pastor, Flamura85, Weston, 

Es00-ke3, Dagdas, Jagger, Kirkpinar79, Ks82w422, Ktk/ye2453, Gerek gm, 

F12.71/coc//prl"s", Izgi01, Pyn/bau, Bayraktar, and Gerek79 genotypes showed the 

lowest reduction. These results were in accordance with those reported by Mirakhori, 

et al., (2009) and Moayedi, et al., (2010). 

 

 

4.3.1.2  Effect on heading date 

 

          Generally, drought stress delayed the heading date in most genotypes compared 

to the well-watered conditions except Flamura85 and Stk52/trumbull, genotypes which 

showed the opposite trend (Table 4.22), while Bayraktar, F12.71/coc//prl"s", Izgi01, 
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Katia, Momtchill, Pastor, and Suzen97 genotypes recorded the same heading date under 

both drought and well watered conditions. Under drought stress, the delay of heading 

date ranged from 1 days (Kirkpinar79, Century, Ekg15//tast, Es00-ke3, Gerek gm, 

Seval, Soyer, Tosunbey, and Jagger genotypes) to 4 days (Es84-24/seri//seri, Aytin98, 

Ca8055/krc66, Es84-24//ks82w409, and Gerek79 genotypes).The results were in 

parallel with those achieved by Bayoumi, et al., (2008). 

 

Table 4.21: The effect of irrigation systems on plant height (cm) of forty-nine 

wheat (Triticum aestivum) genotypes. 

 

 

Genotypes 

Plant height (cm) 

Water 

stressed 

Well 

watered 

Differ.  

% 
Genotypes 

Water 

stressed 

Well 

watered 

Differ.  

% 

Altay2000 113.0 ± 2.0 124.0 ± 8.5 -8.9 Kirgiz95 99.0 ± 5.6 130.0 ± 3.1 -23.8 

Aytin98 91.0 ± 6.6 98.0 ± 9.6 -7.1 Kirkpinar79 89.0 ± 3.6 92.0 ± 4.4 -3.3 

Bayraktar 109.0 ± 1.2 110.0 ± 9.5 -0.9 Krc/bez 117.0 ± 2.5 135.0 ± 1.0 -13.3 

Bezostaya1 105.0 ± 3.0 114.0 ± 9.1 -7.9 Ks82w422 87.0 ± 1.5 90.0 ± 3.5 -3.3 

Bolal2973 109.0 ± 3.2 116.0 ± 9.3 -6.0 Ktk/ye2453 124.0 ± 4.4 128.0 ± 6.5 -3.1 

Ca8055/krc66 111.0 ± 5.5 121.0 ± 5.6 -8.3 Kutluk94 113.0 ± 3.1 135.0 ± 3.0 -16.3 

Century 91.0 ± 2.5 105.0 ± 8.4 -13.3 Lov/bll/ 92.0 ± 9.8 105.0 ± 6.4 -12.4 

Dagdas 123.0 ± 0.6 129.0 ± 2.3 -4.7 Mnch/5/ 93.0 ± 4.2 110.0 ± 8.7 -15.5 

Ekg15//tast 100.0 ± 5.0 116.0 ± 7.4 -13.8 Momtchill 101.0 ± 3.8 101.0 ± 0.0 0.0 

Es00-ke3 113.0 ± 2.6 119.0 ± 2.0 -5.0 Momtchill/gun 107.0 ± 4.6 119.0 ± 6.8 -10.1 

Es84-24//ks82w409 79.0 ± 5.1 91.0 ± 3.1 -13.2 Mufitbey 112.0 ± 7.5 119.0 ± 1.5 -5.9 

Es84-24/seri//seri 84.0 ± 3.2 106.0 ± 4.0 -20.8 Pastor 95.0 ± 4.7 101.0 ± 4.0 -5.9 

F12.71/coc//kauz 91.0 ± 2.1 106.0 ± 2.3 -14.2 Pyn/bau 98.0 ± 5.2 99.0 ± 2.0 -1.0 

F12.71/coc//prl"s" 115.0 ± 6.4 118.0 ± 3.0 -2.5 Seval 102.0 ± 7.8 102.0 ± 3.5 0.0 

Flamura85 86.0 ± 9.0 91.0 ± 6.6 -5.5 Sonmez01 94.0 ± 4.0 106.0 ± 3.6 -11.3 

Gerek gm 98.0 ± 2.6 101.0 ± 3.8 -3.0 Soyer 90.0 ± 4.2 98.0 ± 1.2 -8.2 

Gerek79 110.0 ± 6.2 111.0 ± 0.6 -0.9 Stk52/trumbull 86.0 ± 6.0 95.0 ± 4.5 -9.5 

Gun91 102.0 ± 5.3 116.0 ± 10.7 -12.1 Suzen97 113.0 ± 1.5 121.0 ± 1.7 -6.6 

Harmankaya99 84.0 ± 1.2 95.0 ± 4.6 -11.6 Tosunbey 92.0 ± 6.2 105.0 ± 3.6 -12.4 

Hawk 75.0 ± 2.1 100.0 ± 6.6 -25.0 Vona//no57 98.0 ± 2.0 105.0 ± 5.7 -6.7 

Ikizce96 113.0 ± 5.6 121.0 ± 5.5 -6.6 Vorona/kauz 99.0 ± 4.7 107.0 ± 2.5 -7.5 

Izgi01 92.0 ± 5.7 94.0 ± 6.7 -2.1 Weston 110.0 ± 4.0 116.0 ± 6.0 -5.2 

Jagger 96.0 ± 4.0 100.0 ± 2.9 -4.0 Zitnica 82.0 ± 2.5 104.0 ± 6.0 -21.2 

Karahan 108.0 ± 2.1 122.0 ± 3.5 -11.5 Grand mean 100.0 
  

110.0 
  

-9.1 

Katia 102.0 ± 2.9 102.0 ± 2.6 0.0 l.s.d   Genotype 5.7 
      

Kirac66 102.0 ± 3.2 119.0 ± 3.2 -14.3         Treatment 1.2 
      

        
         G x T 8.0 

      
*The data represent mean ± SD of three replicates, **Differ = values represent percent decrease (-) or 

increase (+) as compared to normal irrigated conditions.  
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Table 4.22: The effect of irrigation systems on heading date of forty-nine wheat 

(Triticum aestivum) genotypes. 

 

 

Genotypes 

Heading date 

Water 

stressed 

Well 

watered 

Differ.  

% 
Genotypes 

Water 

stressed 

Well 

watered 

Differ. 

 % 

Altay2000 27 ± 1.0 25 ± 1.0 8.0 Kirgiz95 24 ± 0.6 21 ± 1.7 14.0 

Aytin98 24 ± 1.7 20 ± 0.6 20.0 Kirkpinar79 30 ± 0.6 29 ± 0.0 3.0 

Bayraktar 16 ± 0.6 16 ± 0.6 0.0 Krc/bez 26 ± 0.6 24 ± 0.6 8.0 

Bezostaya1 27 ± 1.2 24 ± 0.0 13.0 Ks82w422 23 ± 0.6 20 ± 0.6 15.0 

Bolal2973 24 ± 1.0 21 ± 0.0 14.0 Ktk/ye2453 25 ± 0.0 22 ± 1.2 14.0 

Ca8055/krc66 24 ± 2.6 20 ± 1.2 20.0 Kutluk94 30 ± 1.0 27 ± 1.5 11.0 

Century 24 ± 1.0 23 ± 1.2 4.0 Lov/bll/ 31 ± 0.0 29 ± 0.0 7.0 

Dagdas 26 ± 1.5 24 ± 0.6 8.0 Mnch/5/ 23 ± 0.6 21 ± 1.7 10.0 

Ekg15//tast 25 ± 0.0 24 ± 0.6 4.0 Momtchill 20 ± 1.5 20 ± 0.6 0.0 

Es00-ke3 24 ± 0.6 23 ± 0.6 4.0 Momtchill/gun 25 ± 2.3 22 ± 1.2 14.0 

Es84-24//ks82w409 24 ± 1.2 20 ± 1.0 20.0 Mufitbey 27 ± 1.0 25 ± 1.5 8.0 

Es84-24/seri//seri 28 ± 0.0 24 ± 0.0 17.0 Pastor 19 ± 0.0 19 ± 1.5 0.0 

F12.71/coc//kauz 28 ± 1.7 26 ± 0.0 8.0 Pyn/bau 26 ± 1.2 24 ± 1.2 8.0 

F12.71/coc//prl"s" 23 ± 0.6 23 ± 1.2 0.0 Seval 22 ± 1.7 21 ± 0.0 5.0 

Flamura85 19 ± 0.6 20 ± 0.6 -5.0 Sonmez01 23 ± 1.0 20 ± 0.0 15.0 

Gerek gm 21 ± 1.5 20 ± 0.6 5.0 Soyer 22 ± 2.1 21 ± 0.6 5.0 

Gerek79 24 ± 1.0 20 ± 0.6 20.0 Stk52/trumbull 23 ± 1.2 24 ± 0.0 -4.0 

Gun91 29 ± 0.6 26 ± 0.6 12.0 Suzen97 25 ± 0.0 25 ± 0.6 0.0 

Harmankaya99 22 ± 3.8 20 ± 1.0 10.0 Tosunbey 20 ± 1.2 19 ± 1.0 5.0 

Hawk 22 ± 1.7 20 ± 0.6 10.0 Vona//no57 21 ± 1.7 19 ± 0.6 11.0 

Ikizce96 21 ± 0.6 19 ± 0.6 11.0 Vorona/kauz 24 ± 0.0 21 ± 0.0 14.0 

Izgi01 18 ± 1.5 18 ± 1.2 0.0 Weston 28 ± 0.6 25 ± 1.2 12.0 

Jagger 19 ± 0.6 18 ± 0.6 6.0 Zitnica 23 ± 0.6 20 ± 1.2 15.0 

Karahan 25 ± 0.0 22 ± 1.7 14.0 Grand mean 24 
  

22 
  

9 

Katia 20 ± 0.6 20 ± 0.6 0.0 l.s.d   Genotype 1.2 
      

Kirac66 26 ± 0.0 24 ± 0.0 8.0          Treatment 0.3 
      

        
         G x T 1.7 

      
       *The data represent mean ± SD of three replicates, **Differ = values represent percent decrease (-)  

          or increase (+) as compared to normal irrigated conditions. ** The heading was at May 2009. 

 

 

4.3.1.3  Effect on biomass (kg m
−2

) 

 

          Total biomass of all genotypes were suppressed by drought stress except Lov/bll 

and Flamura85 genotypes which showed the opposite of that with percentage increases 

of 6 and 10.4% (Table 4.23). Biomass under rain fed conditions, ranged between 0.9 

kg m
−2

 (Es84-24//ks82w409, Seval, Vona//no57) and 1.5 kg m
−2

 (Momtchill/gun).     

The biomasses of Vona//no57, Hawk, Harmankaya99, F12.71/coc//kauz, and Soyer 
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genotypes were the  most affected with percentage decreases of 42.5, 41.2,  37.9, 37.3, 

and 37.1%, while Altay2000, Kutluk94, Gun91, Ekg15//tast, Century, Ikizce96, 

Suzen97, Weston, Katia, Aytin98, Momtchill, Vorona/kauz, Ks82w422, Momtchill/gun, 

Krc/bez, Bayraktar, Mnch/5/ and Pastor, genotypes showed the lowest reduction under 

drought stress. Similar results were demonstrated by Sangtarash, (2010). 

 

Table 4.23: The effect of irrigation systems on biomass (kg m
-2

) of forty-nine wheat 

(Triticum aestivum) genotypes. 

 

 

Genotypes 

Biomass (kg m
-2

) 

Water 

stressed 

Well 

watered 

Differ.  

% 
Genotypes 

Water 

stressed 

Well 

watered 

Differ.  

% 

Altay2000 1.1 ± 0.2 1.5 ± 0.2 -23.3 Kirgiz95 1.1 ± 0.2 1.5 ± 0.1 -25.2 

Aytin98 1.1 ± 0.1 1.3 ± 0.3 -15.0 Kirkpinar79 1.1 ± 0.2 1.6 ± 0.1 -31.7 

Bayraktar 1.3 ± 0.1 1.5 ± 0.1 -10.7 Krc/bez 1.4 ± 0.1 1.5 ± 0.0 -11.1 

Bezostaya1 1.0 ± 0.1 1.3 ± 0.1 -28.4 Ks82w422 1.2 ± 0.1 1.3 ± 0.3 -12.2 

Bolal2973 1.2 ± 0.2 1.8 ± 0.2 -32.6 Ktk/ye2453 1.0 ± 0.2 1.5 ± 0.2 -28.8 

Ca8055/krc66 1.1 ± 0.0 1.6 ± 0.2 -30.6 Kutluk94 1.2 ± 0.1 1.5 ± 0.0 -21.9 

Century 1.2 ± 0.1 1.5 ± 0.2 -18.4 Lov/bll/ 1.2 ± 0.1 1.2 ± 0.1 6.0 

Dagdas 1.3 ± 0.1 1.8 ± 0.1 -31.5 Mnch/5/ 1.2 ± 0.1 1.3 ± 0.3 -7.5 

Ekg15//tast 1.2 ± 0.0 1.5 ± 0.3 -20.8 Momtchill 1.4 ± 0.2 1.6 ± 0.0 -13.4 

Es00-ke3 1.3 ± 0.1 1.7 ± 0.1 -24.4 Momtchill/gun 1.5 ± 0.2 1.7 ± 0.2 -11.4 

Es84-24//ks82w409 0.9 ± 0.1 1.5 ± 0.1 -35.9 Mufitbey 1.2 ± 0.2 1.8 ± 0.1 -33.9 

Es84-24/seri//seri 1.1 ± 0.0 1.5 ± 0.0 -24.0 Pastor 1.1 ± 0.0 1.2 ± 0.1 -1.7 

F12.71/coc//kauz 1.0 ± 0.1 1.6 ± 0.1 -37.3 Pyn/bau 1.2 ± 0.1 1.8 ± 0.2 -33.5 

F12.71/coc//prl"s" 1.0 ± 0.2 1.3 ± 0.0 -23.7 Seval 0.9 ± 0.2 1.3 ± 0.2 -28.3 

Flamura85 1.4 ± 0.1 1.3 ± 0.1 10.4 Sonmez01 1.2 ± 0.2 1.6 ± 0.2 -28.2 

Gerek gm 1.2 ± 0.1 1.5 ± 0.1 -24.3 Soyer 1.1 ± 0.2 1.7 ± 0.1 -37.1 

Gerek79 1.1 ± 0.0 1.4 ± 0.2 -23.7 Stk52/trumbull 1.0 ± 0.1 1.3 ± 0.1 -24.6 

Gun91 1.3 ± 0.1 1.6 ± 0.1 -21.5 Suzen97 1.3 ± 0.0 1.5 ± 0.1 -15.8 

Harmankaya99 1.1 ± 0.1 1.7 ± 0.4 -37.9 Tosunbey 1.2 ± 0.1 1.7 ± 0.2 -33.3 

Hawk 1.0 ± 0.0 1.7 ± 0.2 -41.2 Vona//no57 0.9 ± 0.0 1.6 ± 0.0 -42.5 

Ikizce96 1.2 ± 0.1 1.5 ± 0.1 -16.3 Vorona/kauz 1.3 ± 0.0 1.5 ± 0.2 -12.8 

Izgi01 1.0 ± 0.2 1.4 ± 0.1 -27.1 Weston 1.1 ± 0.1 1.3 ± 0.3 -15.8 

Jagger 1.0 ± 0.2 1.4 ± 0.1 -29.8 Zitnica 1.0 ± 0.0 1.4 ± 0.1 -26.2 

Karahan 1.3 ± 0.1 1.9 ± 0.3 -32.3 Grand mean 1.2 
  

1.5 
  

-23.8 

Katia 1.3 ± 0.1 1.5 ± 0.1 -15.4 l.s.d    Genotype 0.2 
      

Kirac66 1.0 ± 0.0 1.4 ± 0.0 -27.5           Treatment 0.0 
      

        
           G x T 0.2 

      
        *The data represent mean ± SD of three replicates, **Differ = values represent percent decrease (-)  

           or increase (+) as compared to normal irrigated conditions. 
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4.3.1.4  Effect on harvest index (%) 

          Harvest index is the proportion of the biological yield, which forms the economic 

yield. As shown in Table 4.24, the controls had the highest HI and water stressed plants 

had the lowest. The harvest index was affected by drought stress; a mean reduction of 

2.4% was recorded in HI for all genotypes. Zitnica, Pyn/bau, Izgi01, Gerek gm, 

Ikizce96, and Mufitbey genotypes recorded the minimum reductions of 2.2, 2.3, 2.3, 

2.4, 2.5, and 2.7%. 

 

Table 4.24: The effect of irrigation systems on harvest index (%) of forty-nine 

wheat (Triticum aestivum) genotypes. 

 

Genotypes 

Harvest index (%) 

Water 

stressed 

Well 

watered 

Differ.  

% 
Genotypes 

Water 

stressed 

Well 

watered 

Differ.  

% 

Altay2000 0.41 ± 0.01 0.40 ± 0.00 2.5 Kirgiz95 0.38 ± 0.02 0.42 ± 0.01 -9.5 

Aytin98 0.42 ± 0.01 0.44 ± 0.04 -4.5 Kirkpinar79 0.42 ± 0.00 0.46 ± 0.02 -8.7 

Bayraktar 0.40 ± 0.02 0.43 ± 0.01 -7.0 Krc/bez 0.37 ± 0.00 0.36 ± 0.03 2.8 

Bezostaya1 0.42 ± 0.01 0.41 ± 0.01 2.4 Ks82w422 0.38 ± 0.03 0.41 ± 0.02 -7.3 

Bolal2973 0.38 ± 0.01 0.38 ± 0.02 0.0 Ktk/ye2453 0.38 ± 0.03 0.37 ± 0.02 2.7 

Ca8055/krc66 0.42 ± 0.01 0.42 ± 0.00 0.0 Kutluk94 0.39 ± 0.01 0.39 ± 0.01 0.0 

Century 0.46 ± 0.02 0.46 ± 0.01 0.0 Lov/bll/ 0.37 ± 0.01 0.40 ± 0.05 -7.5 

Dagdas 0.37 ± 0.03 0.36 ± 0.00 2.8 Mnch/5/ 0.43 ± 0.01 0.43 ± 0.01 0.0 

Ekg15//tast 0.37 ± 0.00 0.37 ± 0.02 0.0 Momtchill 0.43 ± 0.02 0.42 ± 0.01 2.4 

Es00-ke3 0.45 ± 0.00 0.42 ± 0.02 7.1 Momtchill/gun 0.40 ± 0.02 0.42 ± 0.02 -4.8 

Es84-24//ks82w409 0.43 ± 0.03 0.45 ± 0.02 -4.4 Mufitbey 0.36 ± 0.01 0.37 ± 0.01 -2.7 

Es84-24/seri//seri 0.43 ± 0.00 0.45 ± 0.00 -4.4 Pastor 0.47 ± 0.03 0.43 ± 0.01 9.3 

F12.71/coc//kauz 0.40 ± 0.00 0.43 ± 0.03 -7.0 Pyn/bau 0.42 ± 0.01 0.43 ± 0.02 -2.3 

F12.71/coc//prl"s" 0.40 ± 0.04 0.43 ± 0.02 -7.0 Seval 0.46 ± 0.00 0.45 ± 0.03 2.2 

Flamura85 0.41 ± 0.01 0.46 ± 0.01 -10.9 Sonmez01 0.44 ± 0.01 0.42 ± 0.01 4.8 

Gerek gm 0.40 ± 0.05 0.41 ± 0.00 -2.4 Soyer 0.47 ± 0.03 0.45 ± 0.00 4.4 

Gerek79 0.38 ± 0.01 0.38 ± 0.02 0.0 Stk52/trumbull 0.33 ± 0.04 0.43 ± 0.02 -23.3 

Gun91 0.38 ± 0.01 0.42 ± 0.02 -9.5 Suzen97 0.42 ± 0.01 0.42 ± 0.02 0.0 

Harmankaya99 0.46 ± 0.03 0.48 ± 0.01 -4.2 Tosunbey 0.46 ± 0.03 0.43 ± 0.01 7.0 

Hawk 0.44 ± 0.01 0.44 ± 0.03 0.0 Vona//no57 0.49 ± 0.01 0.40 ± 0.01 22.5 

Ikizce96 0.39 ± 0.03 0.40 ± 0.02 -2.5 Vorona/kauz 0.43 ± 0.00 0.46 ± 0.04 -6.5 

Izgi01 0.43 ± 0.03 0.44 ± 0.01 -2.3 Weston 0.38 ± 0.01 0.40 ± 0.02 -5.0 

Jagger 0.46 ± 0.01 0.46 ± 0.02 0.0 Zitnica 0.45 ± 0.05 0.46 ± 0.02 -2.2 

Karahan 0.40 ± 0.04 0.39 ± 0.03 2.6 Grand mean 0.41 
  

0.42 
  

-2.4 

Katia 0.40 ± 0.04 0.47 ± 0.00 -14.9 l.s.d   Genotype 0.02 
      

Kirac66 0.37 ± 0.02 0.36 ± 0.03 2.8          Treatment 0.01 
      

        
          G x T 0.03 

      
*The data represent mean ± SD of three replicates, **Differ = values represent percent decrease (-) or 

increase (+) as compared to normal irrigated conditions. 

 



 

 

95 

 

            On the other hand, the genotypes, Bolal2973, Ca8055/krc66, Century, 

Ekg15//tast, Gerek79, Hawk, Jagger, Kutluk94, Mnch/5/, and Suzen97 recorded equal 

HI values under both drought and well watered conditions. In contrast, a maximum 

increase in HI of 22.5% was in Vona//no57 followed by Pastor, Es00-ke3, Tosunbey, 

Sonmez01, Soyer, Krc/bez, Kirac66, Dagdas, Ktk/ye2453, Karahan, Altay2000, 

Momtchill, Bezostaya1, and Seval genotypes with maximum increases of 9.3, 7.1, 7, 

4.8, 4.4, 2.8, 2.8, 2.8, 2.7, 2.6, 2.5, 2.4, 2.4, and 2.2% respectively. The reduction in 

harvest index in wheat genotypes under drought stress was reported by Nouri-

Ganbalani, et al., (2009), and Moayedi, et al., (2010). 

 

 

4.3.1.5  Effect of irrigation on normalized difference vegetation index (NDVI) 

 

          Plant stress can be quantified with NDVI (Johnsen, et al., 2009). Generally, 

values of NDVI were greater under irrigated than under rain fed conditions except 

Momtchill (NDVI value was similar to control), and also except Es84-24//ks82w409, 

Es84-24/seri//seri, Gerek gm, Harmankaya99, Ikizce96, Izgi01, Jagger, Karahan, Katia, 

Ks82w422, Pyn/bau, Seval, Sonmez01, Suzen97, and Vorona/kauz genotypes  (NDVI 

values were higher than controls (Table 4.25).  

 

          Under rain fed conditions, the NDVI values ranged from 0.37 in Stk52/trumbull 

to 0.64 in Gun91. The lowest reduction of NDVI following water stress was found in 

Bayraktar, Mnch/5, Hawk, Gun91, and Ktk/ye2453 genotypes. However, Kirac66, 

Weston, Soyer, Aytin98, and Century genotypes recorded the highest reduction. Similar 

results were demonstrated by Baghzouz, et al., (2006) who found that the NDVI was 

decreased with decreasing tissue water content in tall fescue and annual ryegrass.  
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Table 4.25: The effect of irrigation systems on NDVI values of forty-nine wheat 

(Triticum aestivum) genotypes. 

 

 

Genotypes 

NDVI 

Water 

stressed 

Well 

watered 

Differ. 

% 
Genotypes 

Water 

stressed 

Well 

watered 

Differ. 

% 

Altay2000 0.54 ± 0.03 0.60 ± 0.00 -10.3 Kirgiz95 0.55 ± 0.01 0.60 ± 0.04 -8.2 

Aytin98 0.48 ± 0.02 0.59 ± 0.04 -18.5 Kirkpinar79 0.52 ± 0.02 0.56 ± 0.03 -7.0 

Bayraktar 0.44 ± 0.00 0.45 ± 0.03 -2.5 Krc/bez 0.50 ± 0.02 0.53 ± 0.01 -6.6 

Bezostaya1 0.52 ± 0.01 0.56 ± 0.02 -8.0 Ks82w422 0.46 ± 0.00 0.38 ± 0.02 20.7 

Bolal2973 0.45 ± 0.02 0.51 ± 0.05 -12.2 Ktk/ye2453 0.54 ± 0.01 0.55 ± 0.01 -1.3 

Ca8055/krc66 0.53 ± 0.01 0.57 ± 0.05 -5.9 Kutluk94 0.53 ± 0.01 0.59 ± 0.02 -9.4 

Century 0.48 ± 0.04 0.58 ± 0.03 -16.9 Lov/bll/ 0.57 ± 0.01 0.59 ± 0.04 -4.0 

Dagdas 0.56 ± 0.03 0.62 ± 0.04 -9.6 Mnch/5/ 0.43 ± 0.01 0.44 ± 0.05 -2.1 

Ekg15//tast 0.50 ± 0.01 0.52 ± 0.07 -3.3 Momtchill 0.53 ± 0.05 0.53 ± 0.04 0.0 

Es00-ke3 0.55 ± 0.01 0.58 ± 0.03 -5.4 Momtchill/gun 0.53 ± 0.01 0.59 ± 0.05 -10.2 

Es84-24//ks82w409 0.51 ± 0.02 0.49 ± 0.03 4.8 Mufitbey 0.57 ± 0.02 0.63 ± 0.00 -8.3 

Es84-24/seri//seri 0.55 ± 0.01 0.51 ± 0.04 7.6 Pastor 0.40 ± 0.01 0.46 ± 0.03 -11.6 

F12.71/coc//kauz 0.49 ± 0.03 0.54 ± 0.01 -10.3 Pyn/bau 0.55 ± 0.04 0.54 ± 0.02 0.2 

F12.71/coc//prl"s" 0.44 ± 0.03 0.50 ± 0.04 -11.2 Seval 0.41 ± 0.05 0.38 ± 0.01 7.5 

Flamura85 0.41 ± 0.04 0.44 ± 0.03 -6.4 Sonmez01 0.51 ± 0.02 0.49 ± 0.00 4.8 

Gerek gm 0.47 ± 0.06 0.44 ± 0.03 7.8 Soyer 0.51 ± 0.01 0.63 ± 0.04 -18.7 

Gerek79 0.50 ± 0.02 0.55 ± 0.03 -9.5 Stk52/trumbull 0.37 ± 0.04 0.43 ± 0.03 -15.3 

Gun91 0.64 ± 0.01 0.65 ± 0.05 -1.5 Suzen97 0.52 ± 0.01 0.51 ± 0.04 2.3 

Harmankaya99 0.57 ± 0.01 0.57 ± 0.05 0.5 Tosunbey 0.47 ± 0.01 0.53 ± 0.02 -11.9 

Hawk 0.45 ± 0.01 0.46 ± 0.05 -2.1 Vona//no57 0.45 ± 0.03 0.50 ± 0.04 -11.2 

Ikizce96 0.53 ± 0.04 0.51 ± 0.06 3.3 Vorona/kauz 0.50 ± 0.03 0.46 ± 0.05 8.8 

Izgi01 0.48 ± 0.02 0.43 ± 0.00 11.6 Weston 0.53 ± 0.04 0.66 ± 0.02 -18.8 

Jagger 0.48 ± 0.01 0.46 ± 0.04 4.5 Zitnica 0.51 ± 0.01 0.61 ± 0.06 -15.9 

Karahan 0.56 ± 0.03 0.55 ± 0.02 0.3 Grand mean 0.50 
  

0.53 
  

-4.19 

Katia 0.47 ± 0.01 0.44 ± 0.02 6.1 l.s.d    Genotype 0.03 
      

Kirac66 0.48 ± 0.03 0.61 ± 0.02 -22.1           Treatment 0.01 
      

        
           G x T 0.05 

      
*The data represent mean ± SD of three replicates, **Differ = values represent percent decrease (-) or 

increase (+) as compared to normal irrigated conditions, *** NDVI was measured at different dates 

during 8 and 17 June, and the average was taken. 

 

 

4.3.1.6  Effect of irrigation systems on flag leaf chlorophyll content 

 

      The soil plant analysis development (SPAD) meter was used to measure chlorophyll 

content of flag leaves. Generally, drought had significant negative effects on 

chlorophyll content of flag leaves of all wheat genotypes except Bayraktar, Bolal2973, 

Ca8055/krc66, Dagdas, Es00-ke3, F12.71/coc//kauz, F12.71/coc//prl"s"/ Gerek gm, 
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Gerek79, Gun91, Harmankaya99, Jagger, Katia, Kutluk94, Sonmez01, Suzen97, and 

Zitnica genotypes, which showed high SPAD values under drought (Table 4.26). Under 

drought stress, the lowest reduction in SPAD values were observed in Es84-

24//ks82w409, Izgi01, Lov/bll/, Kirgiz95, Pastor, Pyn/bau, Kirkpinar79, Mufitbey, 

Krc/bez, Ks82w422, Ktk/ye2453, Hawk, Ekg15//tast, and Weston genotypes. The 

obtained results are in agreement with those obtained by Balouchi, et al., (2009). 

 

Table 4.26: The effect of irrigation systems on SPAD values of forty-nine wheat 

(Triticum aestivum) genotypes. 
 

 
SPAD 

Genotypes 
Water 

stressed 

Well 

watered 

Differ. 

% 
Genotypes 

Water 

stressed 

Well 

watered 

Differ. 

% 

Altay2000 45.55 ± 3.1 50.65 ± 2.7 -10.1 Kirgiz95 41.40 ± 0.6 42.93 ± 0.2 -3.6 

Aytin98 27.63 ± 2.3 35.98 ± 4.6 -23.2 Kirkpinar79 46.65 ± 0.8 48.08 ± 1.0 -3.0 

Bayraktar 29.80 ± 2.2 29.43 ± 2.9 1.3 Krc/bez 44.35 ± 2.5 45.50 ± 1.0 -2.5 

Bezostaya1 42.00 ± 1.8 47.03 ± 2.1 -10.7 Ks82w422 33.13 ± 0.6 33.88 ± 1.9 -2.2 

Bolal2973 39.35 ± 2.6 39.35 ± 1.2 0.0 Ktk/ye2453 34.55 ± 0.5 34.93 ± 0.4 -1.1 

Ca8055/krc66 48.75 ± 2.0 40.05 ± 3.1 21.7 Kutluk94 38.55 ± 1.5 37.55 ± 1.7 2.7 

Century 36.83 ± 1.5 46.13 ± 3.1 -20.2 Lov/bll/ 45.80 ± 2.3 48.45 ± 0.7 -5.5 

Dagdas 47.05 ± 1.3 44.88 ± 1.5 4.8 Mnch/5/ 38.30 ± 3.0 48.15 ± 4.0 -20.5 

Ekg15//tast 42.35 ± 1.7 42.65 ± 1.2 -0.7 Momtchill 39.40 ± 4.2 44.63 ± 1.4 -11.7 

Es00-ke3 43.65 ± 0.9 42.25 ± 4.1 3.3 Momtchill/gun 41.15 ± 3.4 44.93 ± 1.5 -8.4 

Es84-24//ks82w409 50.15 ± 0.9 54.28 ± 2.4 -7.6 Mufitbey 47.50 ± 1.7 48.75 ± 0.7 -2.6 

Es84-24/seri//seri 44.90 ± 3.5 51.23 ± 1.4 -12.3 Pastor 36.60 ± 0.6 37.88 ± 2.9 -3.4 

F12.71/coc//kauz 46.18 ± 3.4 43.25 ± 2.3 6.8 Pyn/bau 48.43 ± 1.6 49.95 ± 0.3 -3.1 

F12.71/coc//prl"s" 43.48 ± 1.7 40.78 ± 1.1 6.6 Seval 26.95 ± 2.9 41.03 ± 1.2 -34.3 

Flamura85 29.83 ± 1.7 32.85 ± 2.4 -9.2 Sonmez01 45.35 ± 3.0 44.15 ± 5.0 2.7 

Gerek gm 38.93 ± 0.5 24.03 ± 2.4 62.0 Soyer 40.63 ± 1.7 47.18 ± 3.4 -13.9 

Gerek79 27.38 ± 4.0 25.43 ± 0.4 7.7 Stk52/trumbull 20.98 ± 2.8 42.88 ± 0.4 -51.1 

Gun91 46.48 ± 2.2 43.38 ± 1.8 7.1 Suzen97 53.50 ± 1.6 50.58 ± 1.3 5.8 

Harmankaya99 52.60 ± 1.3 50.15 ± 4.9 4.9 Tosunbey 39.63 ± 1.2 43.73 ± 4.0 -9.4 

Hawk 28.78 ± 3.0 29.03 ± 0.6 -0.9 Vona//no57 37.70 ± 2.1 42.75 ± 0.4 -11.8 

Ikizce96 29.23 ± 3.8 36.78 ± 1.6 -20.5 Vorona/kauz 37.35 ± 1.8 45.60 ± 3.7 -18.1 

Izgi01 29.95 ± 1.5 32.03 ± 0.3 -6.5 Weston 46.05 ± 1.4 46.28 ± 0.4 -0.5 

Jagger 30.95 ± 3.6 26.10 ± 0.6 18.6 Zitnica 37.95 ± 0.9 37.08 ± 3.6 2.4 

Karahan 37.20 ± 2.1 42.00 ± 2.8 -11.4 Grand mean 39.51 
  

41.59 
  

-1.6 

Katia 37.53 ± 1.2 34.53 ± 0.9 8.7 l.s.d    Genotype 2.37 
      

Kirac66 37.68 ± 3.8 46.73 ± 1.1 -19.4          Treatment 0.48 
      

        
         G x T 3.35 

      
*The data represent mean ± SD of three replicates, **Differ = values represent percent decrease (-) or 

increase (+) as compared to normal irrigated conditions, *** SPAD was measured at different dates 

during 9 and 16 June and the average was taken. 
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          Sairam and Saxena, (2000) reported that the total chlorophyll contents decreased 

with age, under stress and non-stress conditions. Water stress resulted in an accelerated 

chlorophyll breakdown starting in the wheat leaves (Fig.4.20). Meanwhile, the leaf 

senescence was delayed in Pyn/bau, Ca8055/krc66, Dagdas, Kirkpinar79, 

F12.71/coc//kauz, Es84-24//, Harmankaya99, and Suzen97 genotypes (Table 4.27). The 

ability to maintain the functionality of the photosynthetic machinery under drought 

stress is important in drought tolerance mechanisms. It may be possible to enhance 

drought tolerance by delaying senescence induced by drought (Rivero, et al., 2007). 

 

Table 4.27: The effect of irrigation systems on SPAD (stay green) of forty-nine 

wheat (Triticum aestivum) genotypes. 

 

 
SPAD values under  water stressed 

Genotypes 9-Jun 16-Jun 
Grand  

mean 
Genotypes 9-Jun 16-Jun 

Grand  

mean 

Altay2000 48.1 ± 3.8 43.0 ± 2.5 45.6 Kirac66 46.2 ± 4.7 29.2 ± 2.9 37.7 

Aytin98 43.3 ± 3.9 12.0 ± 0.7 27.6 Kirgiz95 46.4 ± 0.4 36.4 ± 0.8 41.4 

Bayraktar 44.1 ± 0.9 15.6 ± 3.6 29.8 Kirkpinar79 46.7 ± 0.1 46.6 ± 1.6 46.7 

Bezostaya1 47.2 ± 1.8 36.9 ± 1.8 42.0 Krc/bez 45.9 ± 2.2 42.8 ± 2.8 44.4 

Bolal2973 47.9 ± 1.8 30.8 ± 3.5 39.4 Ks82w422 50.2 ± 0.5 16.1 ± 0.6 33.1 

Ca8055/krc66 51.1 ± 1.6 46.5 ± 2.5 48.8 Ktk/ye2453 41.1 ± 0.5 28.0 ± 0.5 34.6 

Century 46.7 ± 0.3 27.0 ± 2.8 36.8 Kutluk94 46.7 ± 0.3 30.4 ± 2.7 38.6 

Dagdas 48.7 ± 0.7 45.4 ± 1.9 47.1 Lov/bll/ 48.3 ± 1.3 43.4 ± 3.3 45.8 

Ekg15//tast 47.8 ± 0.1 36.9 ± 3.4 42.4 Mnch/5/ 50.4 ± 3.3 26.3 ± 2.7 38.3 

Es00-ke3 47.5 ± 0.0 39.8 ± 1.8 43.7 Momtchill 49.0 ± 0.5 29.9 ± 7.9 39.4 

Es84-24//ks82w409 53.4 ± 0.6 47.0 ± 1.2 50.2 Momtchill/gun 48.9 ± 0.4 33.4 ± 6.5 41.2 

Es84-24/seri//seri 50.1 ± 0.5 39.8 ± 6.6 44.9 Mufitbey 51.5 ± 0.3 43.5 ± 3.1 47.5 

F12.71/coc//kauz 45.4 ± 6.5 47.0 ± 0.2 46.2 Pastor 47.2 ± 1.0 26.0 ± 0.2 36.6 

F12.71/coc//prl"s" 50.3 ± 0.7 36.7 ± 2.7 43.5 Pyn/bau 51.3 ± 2.6 45.6 ± 0.7 48.4 

Flamura85 49.1 ± 1.3 10.6 ± 2.2 29.8 Seval 35.9 ± 0.0 18.0 ± 5.9 27.0 

Gerek gm 44.2 ± 0.8 33.7 ± 0.3 38.9 Sonmez01 50.2 ± 0.8 40.5 ± 5.3 45.4 

Gerek79 38.4 ± 3.1 16.4 ± 4.9 27.4 Soyer 47.6 ± 1.8 33.7 ± 1.7 40.6 

Gun91 49.5 ± 0.6 43.5 ± 3.7 46.5 Stk52/trumbull 31.6 ± 4.5 10.4 ± 1.0 21.0 

Harmankaya99 58.9 ± 0.1 46.3 ± 2.5 52.6 Suzen97 54.8 ± 0.3 52.3 ± 3.0 53.5 

Hawk 42.7 ± 1.7 14.9 ± 4.4 28.8 Tosunbey 49.6 ± 0.3 29.7 ± 2.2 39.6 

Ikizce96 39.1 ± 6.9 19.4 ± 0.8 29.2 Vona//no57 42.5 ± 1.4 32.9 ± 2.9 37.7 

Izgi01 47.4 ± 2.0 12.5 ± 1.1 30.0 Vorona/kauz 45.8 ± 1.8 29.0 ± 1.8 37.4 

Jagger 48.7 ± 1.8 13.3 ± 5.5 31.0 Weston 49.0 ± 0.6 43.2 ± 2.3 46.1 

Karahan 49.4 ± 1.1 25.0 ± 3.2 37.2 Zitnica 45.4 ± 0.8 30.6 ± 1.0 38.0 

Katia 49.7 ± 0.9 25.4 ± 1.4 37.5 Grand mean 47.2 
  

31.9 
  

39.5 

  *The data represent mean ± SD of three replicates. *** SPAD measured at different dates during 9 and 

16 June and the average was taken. 
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Fig. 4.20: Chlorophyll breakdown  in the wheat leaves
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4.3.1.7  Effect of irrigation systems on canopy temperature (CT) 

 

          Canopy temperature was measured using handheld infrared thermometer on 

sunny days. The results are presented in Table 4.28. 

 

Table 4.28: The effect of irrigation systems on canopy temperature (°C) of forty-

nine wheat (Triticum aestivum) genotypes. 
 

 
CT 

Genotypes 
Water 

stressed 

Well 

watered 

Differ. 

% 
Genotypes 

Water 

stressed 

Well 

watered 

Differ. 

% 

Altay2000 28.1 ± 0.9 26.9 ± 1.3 4.5 Kirgiz95 28.6 ± 0.5 27.8 ± 0.8 2.6 

Aytin98 28.5 ± 1.2 26.3 ± 1.3 8.4 Kirkpinar79 28.3 ± 0.9 27.2 ± 0.3 3.8 

Bayraktar 27.9 ± 0.6 27.8 ± 1.0 0.6 Krc/bez 27.5 ± 0.8 27.1 ± 0.8 1.5 

Bezostaya1 28.6 ± 0.8 26.8 ± 0.5 6.7 Ks82w422 30.0 ± 0.9 28.1 ± 0.6 6.9 

Bolal2973 28.1 ± 1.1 27.8 ± 0.6 1.1 Ktk/ye2453 27.1 ± 0.6 27.1 ± 0.8 0.0 

Ca8055/krc66 27.0 ± 0.3 28.4 ± 1.5 -5.0 Kutluk94 27.1 ± 0.5 26.2 ± 0.6 3.3 

Century 28.3 ± 0.6 26.8 ± 1.2 5.6 Lov/bll/ 27.1 ± 0.6 27.2 ± 0.6 -0.2 

Dagdas 26.9 ± 0.3 26.7 ± 0.5 0.9 Mnch/5/ 27.8 ± 0.4 27.4 ± 0.7 1.6 

Ekg15//tast 27.2 ± 0.6 27.1 ± 0.7 0.5 Momtchill 28.0 ± 0.4 27.3 ± 0.6 2.8 

Es00-ke3 27.1 ± 0.4 27.3 ± 0.7 -0.6 Momtchill/gun 27.6 ± 0.9 27.3 ± 0.7 1.1 

Es84-24//ks82w409 28.2 ± 0.4 27.7 ± 1.3 1.7 Mufitbey 27.9 ± 0.6 26.9 ± 0.4 3.7 

Es84-24/seri//seri 28.5 ± 0.5 27.2 ± 0.3 5.0 Pastor 28.2 ± 0.6 28.8 ± 0.5 -2.1 

F12.71/coc//kauz 28.8 ± 0.6 27.8 ± 0.4 3.6 Pyn/bau 27.7 ± 1.2 27.1 ± 0.2 2.3 

F12.71/coc//prl"s" 27.7 ± 0.6 27.3 ± 0.4 1.7 Seval 27.7 ± 0.9 27.7 ± 0.5 0.1 

Flamura85 29.1 ± 0.7 29.0 ± 0.6 0.3 Sonmez01 27.6 ± 0.6 27.6 ± 0.4 0.1 

Gerek gm 27.7 ± 0.3 28.6 ± 0.4 -3.3 Soyer 28.3 ± 1.0 27.0 ± 1.2 4.9 

Gerek79 28.3 ± 0.7 27.0 ± 0.3 4.8 Stk52/trumbull 29.1 ± 0.7 27.7 ± 0.7 4.9 

Gun91 26.8 ± 0.8 27.8 ± 0.5 -3.6 Suzen97 27.8 ± 0.2 27.7 ± 0.5 0.1 

Harmankaya99 28.8 ± 0.3 28.7 ± 1.2 0.5 Tosunbey 28.9 ± 0.7 27.0 ± 0.6 7.0 

Hawk 28.7 ± 0.6 29.3 ± 0.7 -1.8 Vona//no57 28.4 ± 0.3 27.1 ± 1.0 4.9 

Ikizce96 27.4 ± 1.1 27.7 ± 0.3 -1.1 Vorona/kauz 27.7 ± 0.4 27.5 ± 0.6 0.7 

Izgi01 27.8 ± 0.4 27.4 ± 0.9 1.3 Weston 27.4 ± 0.5 27.8 ± 0.8 -1.3 

Jagger 29.2 ± 0.7 28.7 ± 0.6 1.5 Zitnica 28.0 ± 0.5 26.5 ± 0.3 5.4 

Karahan 27.1 ± 0.9 26.8 ± 0.4 1.2 Grand mean 28.0 
  

27.5 
  

1.9 

Katia 28.0 ± 0.8 27.9 ± 1.2 0.2 l.s.d     Genotype 0.66 
      

Kirac66 28.9 ± 0.9 27.6 ± 0.6 4.6           Treatment 0.13 
      

        
           G x T 0.93 

      
*The data represent mean ± SD of three replicates, **Differ = values represent percent decrease (-) or 

increase (+) as compared to normal irrigated conditions, *** Canopy temperature was measured at 2 and 

8 June and the average was taken. 
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          Generally, drought stressed plants displayed higher canopy temperature compared 

to well water plants, although some genotypes recorded the opposite trend, with the 

temperature under drought stress less than under well-watered conditions 

(Ca8055/krc66, Es00-ke3, Gerek gm, Gun91, Hawk, Ikizce96, Lov/bll, Pastor, and 

Weston). Meanwhile, Ktk/ye2453 genotype recorded equal canopy temperature under 

both conditions.  

 

          The genotypes, Seval, Sonmez01, Suzen97, Katia, Flamura85, Ekg15//tast, 

Harmankaya99, Bayraktar, Vorona/kauz, Dagdas, Bolal2973, Momtchill/gun, Karahan, 

and Izgi01 recorded a slight increase in canopy temperature under drought stress 

conditions. On the other hand, Ca8055/krc66, Dagdas, Ekg15//tast, Es00-ke3, Gun91, 

Ikizce96, Karahan, Ktk/ye2453, Kutluk94, Lov/bll//, and Weston were the coldest 

genotypes under rain fed conditions. The results were in accordance with those reported 

by Siddique, et al., (2000) and Olivares-Villegas, et al., (2007). 

 

 

 

4.3.2 Effect of irrigation system on yield and its components 

 

          The wheat grain yield can be assessed in terms of three yield components, 

namely: 1) number of spikes per unit area, 2) number of kernels per spike and 3) kernel 

weight (Moayedi, et al., 2010). 

 

 

4.3.2.1 Effect on number of spikes per m
2
 (NSM) 

 

          Drought caused reduction in number of spikes m
-2

 (Table 4.29), of all wheat 

genotypes except Altay2000, Ekg15//tast, Flamura85, Ikizce96, Katia, Ks82w422, 

Soyer, Stk52/trumbull, Suzen97, and Weston genotypes which showed the opposite 

trend. The lowest reduction was found in Kirkpinar79, Tosunbey, Ca8055/krc66, 

Century, Es00-ke3, Lov/bll/, Bolal2973, Kirac66, Sonmez01, and Vorona/kauz 

genotypes. The results were in harmony with those achieved by Sangtarash, (2010) and 

Moayedi, et al., (2010). 
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Table 4.29: The effect of irrigation systems on number of spikes m
-2

 of forty-nine 

wheat (Triticum aestivum) genotypes. 

 

 

Genotypes 

Number of spikes m
-2

 

Water 

stressed 

Well 

watered 

Differ. 

% 
Genotypes 

Water 

stressed 

Well 

watered 

Differ. 

% 

Altay2000 475.2 ± 24 430.1 ± 21 10.5 Kirgiz95 427.7 ± 92 626.4 ± 18 -31.7 

Aytin98 603.2 ± 45 678.9 ± 99 -11.2 Kirkpinar79 429.1 ± 33 461.6 ± 10 -7.0 

Bayraktar 609.0 ± 54 692.6 ± 35 -12.1 Krc/bez 424.6 ± 62 561.0 ± 14 -24.3 

Bezostaya1 417.8 ± 11 454.1 ± 8 -8.0 Ks82w422 605.3 ± 48 502.9 ± 52 20.4 

Bolal2973 646.3 ± 61 670.1 ± 24 -3.6 Ktk/ye2453 401.4 ± 75 502.2 ± 67 -20.1 

Ca8055/krc66 451.1 ± 19 483.7 ± 78 -6.7 Kutluk94 474.5 ± 73 563.3 ± 48 -15.8 

Century 703.2 ± 74 753.5 ± 7 -6.7 Lov/bll/ 423.4 ± 17 443.6 ± 13 -4.6 

Dagdas 394.3 ± 8 508.1 ± 26 -22.4 Mnch/5/ 489.0 ± 58 526.6 ± 18 -7.1 

Ekg15//tast 528.6 ± 40 470.2 ± 50 12.4 Momtchill 421.8 ± 99 496.2 ± 37 -15.0 

Es00-ke3 527.3 ± 14 562.1 ± 55 -6.2 Momtchill/gun 451.9 ± 69 622.4 ± 82 -27.4 

Es84-24//ks82w409 358.5 ± 43 492.1 ± 34 -27.1 Mufitbey 430.4 ± 36 565.1 ± 67 -23.8 

Es84-24/seri//seri 452.8 ± 20 510.7 ± 23 -11.3 Pastor 427.2 ± 65 576.6 ± 61 -25.9 

F12.71/coc//kauz 465.1 ± 41 640.0 ± 32 -27.3 Pyn/bau 444.6 ± 44 571.8 ± 53 -22.2 

F12.71/coc//prl"s" 411.9 ± 48 484.4 ± 41 -15.0 Seval 385.3 ± 17 477.3 ± 39 -19.3 

Flamura85 664.8 ± 71 464.4 ± 18 43.2 Sonmez01 484.2 ± 25 498.9 ± 73 -2.9 

Gerek gm 524.8 ± 64 737.3 ± 8 -28.8 Soyer 509.9 ± 54 424.2 ± 14 20.2 

Gerek79 651.5 ± 64 769.0 ± 59 -15.3 Stk52/trumbull 558.4 ± 47 542.5 ± 34 2.9 

Gun91 500.0 ± 25 546.0 ± 61 -8.4 Suzen97 485.6 ± 75 453.7 ± 25 7.0 

Harmankaya99 444.7 ± 40 539.0 ± 9 -17.5 Tosunbey 493.5 ± 44 529.3 ± 68 -6.8 

Hawk 583.8 ± 5 656.4 ± 30 -11.1 Vona//no57 449.3 ± 37 550.9 ± 25 -18.4 

Ikizce96 658.1 ± 52 603.5 ± 1 9.0 Vorona/kauz 715.6 ± 8 729.5 ± 12 -1.9 

Izgi01 430.8 ± 57 472.6 ± 52 -8.8 Weston 450.3 ± 69 413.0 ± 57 9.0 

Jagger 371.5 ± 8 601.1 ± 56 -38.2 Zitnica 401.7 ± 18 434.2 ± 6 -7.5 

Karahan 511.9 ± 5 787.6 ± 49 -35.0 Grand mean 496.1 
  

554.5 
  

-10.5 

Katia 545.9 ± 29 482.5 ± 54 13.1 l.s.d     Genotype 53.3 
      

Kirac66 590.9 ± 62 609.9 ± 38 -3.1           Treatment 10.8 
      

        
           G x T 75.4 

      
*The data represent mean ± SD of three replicates, **Differ = values represent percent decrease (-) or 

increase (+) as compared to normal irrigated conditions. 

 

 

4.3.2.2 Effect on number of grains per spike (NGS) 

 

         All wheat genotypes showed a mean decrease of 1.6% for number of grains spike
-1

 

under rain fed conditions (Table 4.30). Generally, drought stress decreased the NGS in 

most genotypes compared to the well-watered conditions except Vorona/kauz, 

Bezostaya1, Flamura85, Kirgiz95, Kutluk94, Momtchill, Ca8055/krc66, Pastor, Es84-
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24/seri//seri, Hawk, Mufitbey, Dagdas, Gerek gm, Bayraktar, Bolal2973, Vona//no57, 

Jagger, and Harmankaya99 genotypes, which showed an increase in the grains number 

per spike under rain fed conditions. And except also Ekg15//tast and Karahan genotypes 

which recorded the same number of grains spike
-1

 under both conditions. 

 

Table 4.30: The effect of irrigation systems on number of grains spike
-1

 of forty-

nine wheat (Triticum aestivum) genotypes. 

 

 

Genotypes 

Number of grains spike
-1

 

Water 

stressed 

Well 

watered 

Differ. 

% 
Genotypes 

Water 

stressed 

Well 

watered 

Differ. 

% 

Altay2000 32.6 ± 0.8 36.3 ± 1.9 -10.2 Kirgiz95 26.5 ± 2.6 25.5 ± 1.3 3.9 

Aytin98 27.4 ± 2.3 28.2 ± 2.2 -2.8 Kirkpinar79 40.6 ± 1.2 42.9 ± 0.1 -5.4 

Bayraktar 26.9 ± 0.9 22.1 ± 1.9 21.7 Krc/bez 22.4 ± 1.2 26.3 ± 0.7 -14.8 

Bezostaya1 30.7 ± 1.8 29.8 ± 0.1 3.0 Ks82w422 26.5 ± 1.0 29.6 ± 2.3 -10.5 

Bolal2973 29.3 ± 3.3 23.5 ± 0.6 24.7 Ktk/ye2453 28.2 ± 3.0 28.8 ± 3.2 -2.1 

Ca8055/krc66 29.0 ± 2.7 26.7 ± 3.0 8.6 Kutluk94 27.2 ± 0.6 25.8 ± 1.2 5.4 

Century 28.7 ± 1.2 33.5 ± 3.8 -14.3 Lov/bll/ 28.4 ± 0.6 35.3 ± 2.1 -19.5 

Dagdas 32.8 ± 2.9 29.2 ± 1.6 12.3 Mnch/5/ 33.0 ± 2.1 37.6 ± 2.3 -12.2 

Ekg15//tast 28.1 ± 0.7 28.1 ± 2.7 0.0 Momtchill 29.3 ± 1.1 27.0 ± 0.2 8.5 

Es00-ke3 28.6 ± 0.4 30.4 ± 1.6 -5.9 Momtchill/gun 33.6 ± 2.1 34.5 ± 2.0 -2.6 

Es84-24//ks82w409 37.2 ± 1.3 39.3 ± 1.5 -5.3 Mufitbey 29.5 ± 0.6 26.5 ± 3.2 11.3 

Es84-24/seri//seri 38.0 ± 1.0 34.7 ± 1.8 9.5 Pastor 34.8 ± 1.9 31.9 ± 1.6 9.1 

F12.71/coc//kauz 30.6 ± 0.9 31.5 ± 0.6 -2.9 Pyn/bau 32.6 ± 1.8 38.1 ± 0.9 -14.4 

F12.71/coc//prl"s" 28.1 ± 1.6 28.4 ± 0.5 -1.1 Seval 31.3 ± 0.3 32.3 ± 2.7 -3.1 

Flamura85 30.7 ± 0.4 29.8 ± 0.2 3.0 Sonmez01 29.7 ± 0.8 32.9 ± 0.6 -9.7 

Gerek gm 27.8 ± 0.5 23.8 ± 1.0 16.8 Soyer 33.5 ± 2.1 39.3 ± 3.7 -14.8 

Gerek79 22.4 ± 0.7 28.1 ± 2.8 -20.3 Stk52/trumbull 28.7 ± 3.3 35.3 ± 2.5 -18.7 

Gun91 30.0 ± 1.1 30.8 ± 1.0 -2.6 Suzen97 29.0 ± 2.2 33.8 ± 0.2 -14.2 

Harmankaya99 45.2 ± 2.0 32.9 ± 1.4 37.4 Tosunbey 32.1 ± 1.4 36.7 ± 1.4 -12.5 

Hawk 28.4 ± 0.7 25.9 ± 2.4 9.7 Vona//no57 36.9 ± 2.1 29.6 ± 1.9 24.7 

Ikizce96 25.6 ± 2.4 27.7 ± 1.6 -7.6 Vorona/kauz 32.1 ± 1.9 31.7 ± 1.4 1.3 

Izgi01 27.1 ± 1.0 36.5 ± 2.9 -25.8 Weston 27.8 ± 1.1 28.1 ± 1.6 -1.1 

Jagger 40.1 ± 3.8 31.2 ± 0.9 28.5 Zitnica 31.8 ± 2.9 33.4 ± 2.9 -4.8 

Karahan 24.5 ± 1.3 24.5 ± 2.4 0.0 Grand mean 30.5 
  

31.0 
  

-1.6 

Katia 36.8 ± 0.7 37.3 ± 0.8 -1.3 l.s.d    Genotype 2.1 
      

Kirac66 23.8 ± 0.3 25.6 ± 0.4 -7.0           Treatment 0.4 
      

        
           G x T 3.0 

      
*The data represent mean ± SD of three replicates, **Differ = values represent percent decrease (-) or 

increase (+) as compared to normal irrigated conditions. 
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          The genotypes Izgi01, Gerek79, Lov/bll/, and Stk52/trumbull recorded the highest 

reduction in number of grains spike
-1

, while Gun91, Momtchill/gun, Ktk/ye2453, Katia, 

F12.71/coc//prl"s", and Weston genotypes maintained the lowest reduction under stress 

conditions. The results were in harmony with those achieved by Mirbahar, et al., 

(2009), and Moayedi, et al., (2010). 

 

 

 

4.3.2.3 Effect on thousand-grain weight (TGW) 

 

          Effect of irrigation systems on thousand-grain weight of forty-nine wheat 

genotypes are presented in Table 4.31. In general, drought resulted in reduction of 

TGW for all genotypes. A mean average decrease of 15.3% was recorded for TGW 

across all genotypes. Among all genotypes, the highest 1000 grains weight was recorded 

in Momtchill under both well-watered (46g) and water stressed (41.2g) and the lowest 

was observed in Stk52/trumbull under both irrigated (28g) and rain fed (19.5g). The 

minimum decreases of 1.3, 3.6, 3.7, 3.9, 4.6, 6.5, 6.6, 6.6, and 6.9% were recorded for 

Kirkpinar79, Aytin98, Izgi01, Dagdas, Bezostaya1,  Es84-24//ks82w409, Sonmez01, 

Ktk/ye2453, and Momtchill/gun respectively, while the maximum decrease of 33.7, 

30.4, 30.4, 29.6, and 29.2% was observed in Vorona/kauz, Stk52/trumbull, Hawk, 

Jagger, and Ks82w422 genotypes. The results were in harmony with those achieved by 

Johari-Pireivatlou, et al., (2010) and Moayedi, et al., (2010). 

 

 

 

 

 

4.3.2.4 Effect on grain yield (t/ha) 

 

          Selection for yield under drought stress is effective and very important in 

breeding for drought-tolerance. Drought stress causes a great reduction in grain 

production of rained wheat in arid and semi-arid regions (Bhutta, et al., 2006). As 

expected, maximum yield was achieved under well-watered conditions in almost all 

wheat genotypes (Table 4.32), but Flamura85 and Pastor showed the opposite of that 

with percentage increases of 1.4 and 3.8%. 
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Table 4.31: The effect of irrigation systems on 1000-grain weight (g) of forty-nine 

wheat (Triticum aestivum) genotypes. 

 

 

Genotypes 

Thousand-grain weight (g) 

Water 

stressed 

Well 

watered 

Differ. 
Genotypes 

Water 

stressed 

Well 

watered 

Differ. 

% % 

Altay2000 35.5 ± 1.2 41.1 ± 0.8 -13.6 Kirgiz95 32.3 ± 1.0 35.9 ± 3.2 -10.0 

Aytin98 29.4 ± 1.6 30.5 ± 3.8 -3.6 Kirkpinar79 30.0 ± 1.1 30.4 ± 3.6 -1.3 

Bayraktar 30.4 ± 2.1 39.5 ± 3.0 -23.0 Krc/bez 34.8 ± 1.1 38.0 ± 2.5 -8.4 

Bezostaya1 37.7 ± 0.2 39.5 ± 2.0 -4.6 Ks82w422 22.1 ± 2.9 31.2 ± 3.0 -29.2 

Bolal2973 30.5 ± 1.2 34.8 ± 1.4 -12.4 Ktk/ye2453 33.9 ± 0.9 36.3 ± 1.0 -6.6 

Ca8055/krc66 30.2 ± 2.3 37.3 ± 1.5 -19.0 Kutluk94 34.6 ± 2.5 40.5 ± 1.2 -14.6 

Century 27.2 ± 1.1 29.6 ± 1.7 -8.1 Lov/bll/ 33.0 ± 0.5 37.9 ± 1.3 -12.9 

Dagdas 39.3 ± 1.8 40.9 ± 1.6 -3.9 Mnch/5/ 27.2 ± 0.7 30.4 ± 0.4 -10.5 

Ekg15//tast 30.9 ± 2.2 34.0 ± 0.4 -9.1 Momtchill 41.2 ± 0.7 46.0 ± 0.8 -10.4 

Es00-ke3 38.4 ± 2.1 41.9 ± 1.8 -8.4 Momtchill/gun 36.2 ± 0.3 38.9 ± 0.5 -6.9 

Es84-24//ks82w409 31.5 ± 1.8 33.7 ± 1.9 -6.5 Mufitbey 33.2 ± 0.8 44.9 ± 1.5 -26.1 

Es84-24/seri//seri 29.2 ± 1.4 34.7 ± 1.6 -15.9 Pastor 29.7 ± 3.1 33.3 ± 2.1 -10.8 

F12.71/coc//kauz 23.4 ± 0.9 29.6 ± 1.2 -20.9 Pyn/bau 30.9 ± 1.2 34.7 ± 3.6 -11.0 

F12.71/coc//prl"s" 27.0 ± 1.6 35.3 ± 1.0 -23.5 Seval 28.7 ± 2.0 34.3 ± 0.2 -16.3 

Flamura85 32.7 ± 2.0 42.9 ± 1.2 -23.8 Sonmez01 35.2 ± 0.8 37.7 ± 3.1 -6.6 

Gerek gm 28.9 ± 3.2 34.7 ± 3.5 -16.7 Soyer 35.0 ± 0.6 42.8 ± 0.7 -18.2 

Gerek79 25.4 ± 0.5 31.6 ± 4.2 -19.6 Stk52/trumbull 19.5 ± 2.0 28.0 ± 2.1 -30.4 

Gun91 33.2 ± 2.2 36.8 ± 0.8 -9.8 Suzen97 35.2 ± 3.5 38.0 ± 1.4 -7.4 

Harmankaya99 32.1 ± 0.2 41.9 ± 2.1 -23.4 Tosunbey 29.5 ± 1.6 37.3 ± 1.0 -20.9 

Hawk 27.0 ± 1.6 38.8 ± 1.1 -30.4 Vona//no57 28.7 ± 1.1 39.6 ± 0.4 -27.5 

Ikizce96 25.7 ± 2.3 34.4 ± 3.1 -25.3 Vorona/kauz 25.2 ± 1.2 38.0 ± 3.5 -33.7 

Izgi01 33.9 ± 2.4 35.2 ± 2.1 -3.7 Weston 33.6 ± 3.7 37.6 ± 1.1 -10.6 

Jagger 26.1 ± 0.8 37.1 ± 2.0 -29.6 Zitnica 39.4 ± 0.6 44.9 ± 1.6 -12.2 

Karahan 25.4 ± 1.7 33.6 ± 1.1 -24.4 Grand mean 30.9 
  

36.5 
  

-15.3 

Katia 27.9 ± 1.6 30.1 ± 3.7 -7.3 l.s.d    Genotype 2.2 
      

Kirac66 28.0 ± 1.6 34.8 ± 2.6 -19.5          Treatment 0.5 
      

        
         G x T 3.2 

      
*The data represent mean ± SD of three replicates, **Differ = values represent percent decrease (-) or 

increase (+) as compared to normal irrigated conditions 

 

 

          Yields (calculated as ton ha
-1

) in well-watered plants varied from, 5.01 in 

Stk52/trumbull to 7.36 ton ha
-1

 in Pyn/bau and Tosunbey genotypes. In contrast, under 

drought stress conditions they varied from 3.11 in Stk52/trumbull to 6 ton ha
-1

 in 

Momtchill genotype. Under rain fed conditions, the poorest yields were recorded in 

Stk52/trumbull, F12.71/coc//kauz, Kirac66, Izgi01, and Seval genotypes, with yield 

values of   3.11, 3.49, 3.72, 3.74, and 4.03 t/ha, respectively.  
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          On the other hand, Pastor, Zitnica, Harmankaya99, Krc/bez, Vorona/kauz, 

Pyn/bau, Tosunbey, Katia, Momtchill/gun, Flamura85, Es00-ke3, and Momtchill 

genotypes showed the highest yield with yield values of  5.25, 5.26, 5.27, 5.36, 5.38, 

5.41, 5.43, 5.59, 5.86, 5.88, 5.95, and 6 t/ha, respectively.  

 

Table 4.32: The effect of irrigation systems on grain yield (t/ha) of forty-nine wheat 

(Triticum aestivum) genotypes. 

 

 

Genotypes 

Grain yield (t/ha) 

Water 

stressed 

Well 

watered 

Differ. 
Genotypes 

Water 

stressed 

Well 

watered 

Differ. 

% % 

Altay2000 4.79 ± 0.7 5.74 ± 0.6 -16.6 Kirgiz95 4.49 ± 0.5 5.26 ± 0.5 -14.6 

Aytin98 4.71 ± 0.4 6.67 ± 0.6 -29.4 Kirkpinar79 4.75 ± 0.4 6.57 ± 0.4 -27.7 

Bayraktar 4.83 ± 0.4 6.23 ± 0.1 -22.5 Krc/bez 5.36 ± 0.1 5.6 ± 0.1 -4.3 

Bezostaya1 4.14 ± 0.3 5.5 ± 0.1 -24.7 Ks82w422 4.36 ± 0.1 5.05 ± 0.5 -13.7 

Bolal2973 5.15 ± 0.5 6.32 ± 0.3 -18.5 Ktk/ye2453 4.58 ± 0.3 5.44 ± 0.4 -15.8 

Ca8055/krc66 4.73 ± 0.1 6.63 ± 0.4 -28.7 Kutluk94 4.71 ± 0.3 5.94 ± 0.2 -20.7 

Century 4.89 ± 0.2 7.07 ± 0.4 -30.8 Lov/bll/ 4.5 ± 0.4 5.44 ± 0.5 -17.3 

Dagdas 4.7 ± 0.1 6.37 ± 0.2 -26.2 Mnch/5/ 4.95 ± 0.3 5.99 ± 0.1 -17.4 

Ekg15//tast 4.41 ± 0.2 5.52 ± 1 -20.1 Momtchill 6 ± 0.5 6.52 ± 0.1 -8 

Es00-ke3 5.95 ± 0.2 6.79 ± 0.8 -12.4 Momtchill/gun 5.86 ± 0.4 6.87 ± 0.5 -14.7 

Es84-24//ks82w409 4.33 ± 0.3 5.94 ± 0.1 -27.1 Mufitbey 4.39 ± 0.5 6.72 ± 0.6 -34.7 

Es84-24/seri//seri 4.68 ± 0 6.51 ± 0.1 -28.1 Pastor 5.25 ± 0.4 5.06 ± 0.4 3.8 

F12.71/coc//kauz 3.49 ± 0.4 6.04 ± 0.3 -42.2 Pyn/bau 5.41 ± 0.2 7.36 ± 0.5 -26.5 

F12.71/coc//prl"s" 4.1 ± 0.3 5.8 ± 0.3 -29.3 Seval 4.03 ± 0.9 5.47 ± 0.2 -26.3 

Flamura85 5.88 ± 0.3 5.8 ± 0.5 1.4 Sonmez01 5.19 ± 0.6 6.66 ± 0.2 -22.1 

Gerek gm 4.16 ± 0.4 6.37 ± 0.2 -34.7 Soyer 4.7 ± 0.5 7.04 ± 0.3 -33.2 

Gerek79 4.12 ± 0.3 6.05 ± 0.5 -31.9 Stk52/trumbull 3.11 ± 0.5 5.01 ± 0.5 -37.9 

Gun91 5.06 ± 0.4 5.75 ± 0.4 -12 Suzen97 4.75 ± 0.4 5.95 ± 0.1 -20.2 

Harmankaya99 5.27 ± 0.2 7.32 ± 0.2 -28 Tosunbey 5.43 ± 0.2 7.36 ± 0.1 -26.2 

Hawk 4.29 ± 0.3 6.66 ± 0.4 -35.6 Vona//no57 4.34 ± 0.2 6.39 ± 0.2 -32.1 

Ikizce96 4.79 ± 0 5.49 ± 0.3 -12.8 Vorona/kauz 5.38 ± 0.2 6.71 ± 0.3 -19.8 

Izgi01 3.74 ± 0.2 6.09 ± 0.2 -38.6 Weston 4.25 ± 0.4 5.16 ± 0.8 -17.6 

Jagger 4.76 ± 0.8 6.31 ± 0.2 -24.6 Zitnica 5.26 ± 0.1 6.98 ± 0.6 -24.6 

Karahan 4.87 ± 0.7 6.52 ± 0.3 -25.3 Grand mean 4.74 
  

6.17 
  

-23.2 

Katia 5.59 ± 0.2 6.71 ± 0.2 -16.7 l.s.d     Genotype 0.45 
      

Kirac66 3.72 ± 0.1 5.38 ± 0.3 -30.9            Treatment 0.09 
      

        
            G x T 0.63 

      
*The data represent mean ± SD of three replicates, **Differ = values represent percent decrease (-) or    

increase (+) as compared to normal irrigated conditions.  

 

          



 

 

107 

 

           The maximum reduction in yield was found in F12.71/coc//kauz, Izgi01, 

Stk52/trumbull, and Hawk genotypes. However, the genotypes Katia, Altay2000, 

Ktk/ye2453, Momtchill/gun, Kirgiz95, Ks82w422, Ikizce96, Es00-ke3, Gun91, 

Momtchill, and Krc/bez recorded the minimum reduction in grain yield. The results 

were in parallel with those achieved by Sangtarash, (2010) and Moayedi, et al., 

(2010). 

 

 

 

 

4.3.2.5 Drought susceptibility index (DSI) 

 

          The results indicated that DSI ranged from –0.16 in Pastor to 1.82 in 

F12.71/coc//kauz. The wheat genotypes Pastor, Flamura85, Krc/bez, Momtchill, Gun91, 

Es00-ke3, Ikizce96, Ks82w422, Kirgiz95, Momtchill/gun, Ktk/ye2453, Altay2000, 

Katia, Lov/bll/, Mnch/5/, Weston, Bolal2973, Ekg15//tast, Vorona/kauz, Suzen97, 

Kutluk94, Sonmez01, and Bayraktar expressed the lowest DSI, while the genotypes 

Soyer, Gerek gm,  Mufitbey, Hawk, Stk52/trumbull, Izgi01 and F12.71/coc//kauz had 

highest DSI values (Table 4.33). The obtained results are in agreement with those 

obtained by Bayoumi, et al., (2008). 

 

 

 

4.3.2.6 Relative grain yield (RY) 

 

          The mean relative yield in case of water stress was less than that of well watered. 

The mean relative grain yields values under water stress and well-watered conditions 

were 0.79 and 0.84, respectively (Table 4.33). Altay2000, Bayraktar, Ikizce96, Century, 

Karahan, Mnch/5, Gun91, Bolal2973, Pastor, Sonmez01, Harmankaya99, Zitnica, 

Krc/bez, Pyn/bau, Tosunbey, Vorona/kauz, Katia, Flamura85, Momtchill/gun, Es00-

ke3, and Momtchill genotypes, were relatively high yielding under water stress (RY > 

mean RY), while other genotypes were relatively low yielding (RY < mean RY). The 

results were in agreement with those obtained Ahmad, et al., (2003).  
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Table 4.33: Drought susceptibility index (DSI) and relative grain yield (RY) of 

forty-nine wheat (Triticum aestivum) genotypes. 

 

Genotypes Yd Yw DSI RYS RYw Genotypes Yd Yw DSI RYS RYw 

            
Altay2000 479.3 573.6 0.71 0.80 0.78 Kirac66 372.4 537.8 1.33 0.62 0.73 

Aytin98 470.7 666.5 1.27 0.78 0.91 Kirgiz95 448.6 526.3 0.64 0.75 0.71 

Bayraktar 482.8 622.9 0.97 0.80 0.85 Kirkpinar79 474.9 657.3 1.20 0.79 0.89 

Bezostaya1 414.4 550.2 1.07 0.69 0.75 Krc/bez 535.7 560.1 0.19 0.89 0.76 

Bolal2973 515.2 632.3 0.80 0.86 0.86 Ks82w422 435.6 505.3 0.60 0.73 0.69 

Ca8055/krc66 473.1 662.9 1.24 0.79 0.90 Ktk/ye2453 458.1 543.6 0.68 0.76 0.74 

Century 488.9 707.3 1.33 0.81 0.96 Kutluk94 471.3 594.3 0.89 0.79 0.81 

Dagdas 469.7 636.9 1.13 0.78 0.87 Lov/bll/ 449.6 544.0 0.75 0.75 0.74 

Ekg15//tast 441.2 551.6 0.86 0.74 0.75 Mnch/5/ 494.9 599.3 0.75 0.82 0.81 

Es00-ke3 594.7 678.8 0.53 0.99 0.92 Momtchill 599.9 652.4 0.35 1.00 0.89 

Es84-24//ks82w409 433.2 594.0 1.17 0.72 0.81 Momtchill/gun 585.6 687.3 0.64 0.98 0.93 

Es84-24/seri//seri 467.6 651.2 1.22 0.78 0.88 Mufitbey 438.9 672.4 1.50 0.73 0.91 

F12.71/coc//kauz 349.4 604.3 1.82 0.58 0.82 Pastor 524.5 505.5 -0.16 0.87 0.69 

F12.71/coc//prl"s" 409.9 580.2 1.27 0.68 0.79 Pyn/bau 540.8 736.1 1.15 0.90 1.00 

Flamura85 588.2 579.7 -0.06 0.98 0.79 Seval 402.6 547.2 1.14 0.67 0.74 

Gerek gm 416.1 637.2 1.50 0.69 0.87 Sonmez01 519.3 665.8 0.95 0.87 0.90 

Gerek79 411.6 604.8 1.38 0.69 0.82 Soyer 470.1 703.8 1.43 0.78 0.96 

Gun91 505.7 574.7 0.52 0.84 0.78 Stk52/trumbull 311.2 500.9 1.64 0.52 0.68 

Harmankaya99 527.0 732.3 1.21 0.88 0.99 Suzen97 474.8 595.4 0.87 0.79 0.81 

Hawk 428.8 665.9 1.54 0.71 0.90 Tosunbey 542.8 735.8 1.13 0.90 1.00 

Ikizce96 479.2 548.9 0.55 0.80 0.75 Vona//no57 433.9 639.4 1.39 0.72 0.87 

Izgi01 373.6 609.2 1.67 0.62 0.83 Vorona/kauz 537.7 670.9 0.86 0.90 0.91 

Jagger 476.1 631.1 1.06 0.79 0.86 Weston 424.6 515.6 0.76 0.71 0.70 

Karahan 486.8 651.7 1.09 0.81 0.89 Zitnica 526.3 698.1 1.06 0.88 0.95 

Katia 559.2 671.4 0.72 0.93 0.91 Grand mean 473.8 616.6 0.99 0.79 0.84 

* RYW = Relative grain yield under well water; RYS = Relative grain yield under water stress condition. 

** DSI= Drought susceptibility index. 

 

 

 

4.3.3 Correlation coefficient analysis under drought stress conditions 

 

          The correlation coefficient analysis indicated that, there was significant positive 

correlations between grain yield and (biomass, 1000-grain weight) (r = 0.70, P ≤ 0.0001 

for biomass; r = 0.46, P ≤ 0.001 for TGW). In addition, grain yield was significant 

positively correlated, but to a lesser extent, with harvest index (Table 4.34Table  4.34).  
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          In our studies, we found weak positive correlations between plant height and 

(NDVI, biomass, 1000-grain weight). On the other hand, it had significant negative 

correlations with (harvest index, canopy temperature, number of grains spike
-1

). The 

heading date was negatively associated with (harvest index, canopy temperature, 

number of grains spike
-1

, number of spikes m
-2

, and grain yield). These results were in 

parallel with those achieved by Kilic and Yagbasanlar, (2010) who found a negative 

correlation between grain yield and number of days to heading.  

 

Table 4.34: Correlation coefficients between all traits of examined forty-nine wheat 

(Triticum aestivum) genotypes under drought stress. 

 

 
HD BM HI NDVI SPAD CT NGS NSM TGW GY 

Ph 0.19 0.31 -0.40 0.29 0.16 -0.61 -0.40 -0.08 0.29 0.09 

 
(0.184) (0.029) (0.004) (0.043) (0.264) (0.000) (0.004) (0.566) (0.042) (0.545) 

HD 
 

0.01 -0.42 0.59 0.53 -0.31 -0.08 -0.20 0.15 -0.18 

  
(0.947) (0.003) (0.000) (0.000) (0.029) (0.607) (0.160) (0.290) (0.222) 

BM 
  

-0.25 0.26 0.17 -0.32 -0.19 0.31 0.29 0.70 

   
(0.088) (0.072) (0.250) (0.025) (0.185) (0.031) (0.043) (0.000) 

HI 
   

-0.16 0.03 0.19 0.54 -0.14 0.12 0.32 

    
(0.258) (0.859) (0.187) (0.000) (0.334) (0.412) (0.024) 

NDVI 
    

0.64 -0.48 0.04 -0.28 0.49 0.23 

     
(0.000) (0.000) (0.763) (0.049) (0.000) (0.105) 

SPAD 
     

-0.33 0.32 -0.46 0.46 0.22 

      
(0.021) (0.026) (0.001) (0.001) (0.121) 

CT 
      

0.24 0.21 -0.43 -0.21 

       
(0.093) (0.145) (0.002) (0.144) 

NGS 
       

-0.37 0.06 0.24 

        
(0.009) (0.689) (0.090) 

NSM 
        

-0.45 0.09 

         
(0.001) (0.559) 

TGW 
         

0.46 

          
(0.001) 

* Numbers in parentheses indicate probability levels. Ph= plant height, HD= heading date, BM= biomass, 

HI= harvest index, NDVI= normalized difference vegetation index, CT= canopy temperature, NGS= 

number of grains spike
-1

, NSM= number of spikes m
-2

, TGW= thousand-grain weight, GY=grain yield. 

          

 

          Biomass showed significant positive correlations with number of spikes m
-2

, and 

1000-grain weight. On the other hand, there were no significant correlations between 

biomass and (heading date, harvest index, NDVI, SPAD, and number of grains spike
-1

).  

These obtained results are in agreement with those obtained by Kruse, et al., (2005).    
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          Canopy temperature was positively associated with (harvest index, number 

of grains spike
-1

, and number of spikes m
-2

), while other characters (1000-grain weight, 

plant height, heading date, biomass, NDVI, and SPAD showed significant negative 

correlations with canopy temperature. Similar results were demonstrated by 

Fenstemaker-Shaulis, et al., (1997) who reported that there was a negative correlation 

between NDVI and canopy temperature.  

 

         In our studies we found significant positive correlations between NDVI and 

(heading date, SPAD, and 1000-grain weight) (r = 0.59, P ≤ 0.000 for heading date; r = 

0.64, P ≤ 0.000 for SPAD; r = 0.49, P ≤ 0.000 for TGW). In addition, NDVI was 

significant negatively associated with canopy temperature and number of spikes m
-2

.  

 

          SPAD observed positive significant correlations with (heading date, NDVI, 

number of grains spike
-1

, and 1000-grain weight), whereas canopy temperature and 

number of spikes m
-2

 were negatively associated with SPAD. Among the existing yield 

components, the number of grains spike
-1 

showed the strongest significant positive 

correlation with harvest index. There was significant negative correlation between 

number of grains spike
-1

 and number of spike m
-2

. In addition, number of spike m
-2

 was 

negatively associated with 1000-grain weight. 

        

 

4.3.4 Dendrogram cluster analysis under drought stress conditions 

 

          The hierarchical cluster analysis grouped based on all traits the wheat genotypes  

into 30 groups at the 60% level. Group 1: Bezostaya1 and Altay2000; group 2: 

Kirgiz95; group 3: Kutluk94; group 4: Mufitbey and Weston; group 5: Ca8055/krc66 

and Suzen97; group 6: Pyn/bau and Sonmez01; group 7: Gun91 and Lov/bll; group 8: 

Dagdas and Krc/bez; group 9: F12.71/coc//prl"s" and Ktk/ye2453; group 10: Es00-ke3; 

group 11: Momtchill and Momtchill/gun; group 12: Aytin98 and Hawk; group 13: 

Century and Vorona/kauz;group 14: Bayraktar; group 15: Bolal2973; group 16: 

Ekg15//tast and Gerek gm; group 17: Karahan; group 18: Gerek79 and Ikizce96; group 

19: F12.71/coc//kauz and Kirac66; group 20: Ks82w422 and Es84-24//ks82w409; group 

21: Kirkpinar79 and Es84-24/seri; group 22: Harmankaya99; group 23: Izgi01 and 

Seval; group 24: Jagger and Vona//no57; group 25: Katia; group 26: Mnch/5; group 27: 
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Pastor and Tosunbey; group 28: Soyer and Zitnica; group 29: Flamura85; group 30: 

Stk52/trumbull (Fig.4.21). 
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Cophenetic Correlation 0.658 
Delta(0.5) 0.163 
Delta(1.0) 0.205 

 

 

Fig. 0.1: The hierarchical cluster analysis grouped the wheat genotypes into 31 

groups of 49  Turkish genotypes. 
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5 DISCUSSION 

 

 

          Drought stress is the most damaging of a biotic stresses, which has a severe 

effects on plant functions, and leads to sharp decrease in productivity (Tian and Lei, 

2007). Wheat responds to drought stress in the form of changes to various 

morphological, physiological and biochemical processes. These changes could be 

attributed to the deleterious effects of drought stress on important metabolic processes. 

In this study, the growth of some wheat genotypes under drought stress was assessed by 

studying the effects of drought on morphological, physiological and molecular 

characteristics of some bread wheat genotypes at different levels:- laboratory, 

greenhouse, and open field levels. 

 

 

5.1 Laboratory experiment 

 

The suppressive effects of PEG6000 on ten wheat seeds development were recorded.        

The polyethylene glycol substance was used by other researchers to create osmotic 

shock in wheat plants (Landjeva, et al., 2008). The wheat genotypes differed in their 

response to drought stress induced by PEG 6000. PEG decreased shoot and root length, 

shoot and root weight (fresh and dry). Among all Egyptian genotypes, Sahal-1 showed 

the best performance; in contrast, Giza-163 recorded the worst performance under stress 

conditions. Among the Turkish genotypes, Ozcan recorded the greatest reduction in all 

traits, while BVD-22 recorded the lowest reduction. The reduction in shoot and the root 

length could be due to inhibition of cell division and elongation as a response to drought 

(Bayoumi, et al., 2008). 

 

 

5.2 Greenhouse experiment 

 

          Sahal-1, Giza-163, Ozcan and BVD-22 have been selected from the laboratory 

experiment and were grown in greenhouse under controlled environmental conditions. 
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5.2.1   Effect of drought stress on plant height 

 

          Plant height plays an important role in photosynthesis (Mirbahar, et al., 2009). 

In the present study drought dramatically decreased, plant height of all wheat genotypes 

at all growth stages. Sahal-1 and Giza-163 were the tallest plants under drought stress; 

in contrast, Ozcan was the shortest one. The decrease in plant height probably related to 

inhibition of cell division, cell elongation, and expansion, which is a result of 

interruption of water flow from the xylem to the surrounding elongating cells (Nonami, 

1998). These results were in agreement with those obtained by Nouri-Ganbalani, et al., 

(2009).  

 

 

5.2.2 Effect of drought stress on relative water content  

 

          Maintenance of favorable plant water levels is vital for the development of 

drought resistance (Passioura, 2002). Obviously, water-stressed genotypes had lower 

relative water content than non-stressed ones. Similar results were demonstrated by 

Tambussi, et al., (2000) who reported that the water stressed wheat plants showed a 

significant decrease in RWC, with percentage decreases of 85 and 55% after 6 and 8 

days of withholding water, respectively. The genotypes Sahal-1 and BVD-22, 

maintained better leaf water levels in terms of RWC compared to the other genotypes. 

The variation in RWC may be due to differences in the ability to absorb water from the 

soil or the ability to control water loss through the stomata. It may also be due to 

differences in the ability to accumulate and adjust osmotically to maintain tissue turgor 

and hence physiological activities (Bayoumi, et al., 2008). Schonfeld, et al., (1988) 

showed that the wheat cultivars that had high RWC were more resistant to drought. The 

results are in agreement with the findings of Tatar and Gevrek, (2008).  

 

 

5.2.3  Effect of drought stress on number of leaves per plant 

 

          Among all wheat genotypes, Sahal-1 had the lowest number of leaves per plant 

under drought stress conditions, with seven leaves. This could suggest that Sahal-1 tried 
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to decrease transpiration by decreasing the surface area as a drought avoidance 

mechanism. Similar results were obtained by Fuzhong, et al., (2008). 

 

 

5.2.4 Effect of drought stress on shoot fresh and dry mass 

 

          When wheat genotypes were subjected to drought, the shoot fresh and dry mass 

were significantly reduced. The reduction in SFM and DFM was more pronounced in 

Ozcan than in other genotypes, this lowest biomass of Ozcan shows its susceptibility to 

drought stress. The reduction in biomass might be due to negative effects of drought on 

important metabolic processes and photosynthesis, which decreased dry matter 

accumulation (Nagarajan, et al., 1999). Drought stress negatively affects net 

photosynthesis by decreasing photosynthetic rate. Mirakhori, et al., (2009) reported 

that 90% of plant dry weight is resulted from CO2 assimilation during photosynthesis. 

The drought-tolerant genotype (BVD-22) showed lesser reduction of both traits than 

those of drought-sensitive genotype (Ozcan). This could suggest that BVD-22 may have 

better adaptive mechanisms such as the control of stomata and stability of organelles 

within plant cell (Setter and Flannigan, 2001). The results were in agreement with 

those found by Tatar and Gevrek, (2008). 

 

 

5.2.5 Effect of drought stress on soil water content  

 

           In this study, Sahal1 recorded the lowest SWC compared with other genotypes 

under stress condition. This could suggest that Sahal1 has a deep root system as a 

drought avoidance mechanism, maintaining water uptake to sustain high tissue water 

potential. It is possible to improve the plant stress tolerance, through genes 

transformation, by transfer genes that function in water uptake and transport such as 

aquaporins and ion transporters (Blumwald, 2000; Wang, et al., 2003). 
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5.2.6 Effect of drought stress on nutrient accumulation 

 

          Plant resistance to drought depends on plants-nutrient status (Marschner, 1995). 

The present study clearly indicates that drought significantly reduced nutrient uptake 

and thus nutrient accumulation in all wheat genotypes. This reduction could be due to 

reduction in transpiration rate and stomatal closure, which impairs active transport from 

roots to shoots and reduces membrane permeability (Alam, 1999). Also, it may be due 

to decreased diffusion rate of nutrients in the soil to be absorbed by root surface (Alam, 

1999) and decreased water availability which results in reduced total nutrient uptake 

(Baligar, et al., 2001). 

 

          Under stress treatment the genotypes Sahal-1 and BVD-22 at vegetative growth 

stages (i.e. 40 and 60 DAS) accumulated more P, K, Ca, Mg, S, Cu, Fe, Mn, and Zn in 

shoots than other genotypes. This could suggest that both genotypes have good 

mechanisms to absorb nutrients from soil, also could be due to activation of genes that 

function in water uptake and ion transporters (Blumwald, 2000). Gunes, et al., (2006) 

concluded that the drought tolerant genotypes translocate nutrients from roots into 

shoots more than the susceptible genotypes. While at 80 DAS (i.e. seed development 

stage), the nutrient concentrations in shoots of both genotypes (Sahal-1 and BVD-22) 

were lower than other genotypes, it may be due to translocation from senescing leaves 

to the seeds being sped up at that stage (Sangtarash, 2010). The results were in 

accordance with those reported by Brown, et al., (2006).  

 

 

5.2.7 Effect of drought stress on proline content 

 

          Among all amino acids, the accumulation of proline after drought was recognized 

as a beneficial drought tolerance indicator, it plays a significant role in minimizing the 

damages in plants subjected to drought (Mohammadkhani and Heidari, 2008). In this 

study, the increases in the concentration of proline in all genotypes were found to be 

remarkable during drought stress; this increase was in accordance with the findings of 

Johari-Pireivatlou, et al., (2010). Proline accumulation was 17 times higher in plants 

subjected to drought than in control plants. This accumulation might be attributed to two 

pathways: first, increased expression of proline synthetic enzymes and thus increase in 
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proline biosynthesis, and secondly, inhibition of proline oxidation and proline 

degradation (Delauney and Verma, 1990; Peng, et al., 1996) thus increases Pro 

accumulation. Vendruscolo, et al., (2007) stated that proline might confer drought 

stress tolerance to wheat plants by increasing the antioxidant system rather than as an 

osmotic adjustment. 

 

         The genotype BVD-22 showed maximum accumulation of proline content under 

drought stress among the four genotypes studied which is in line with observations of 

Chandrasekar, et al., (2000) in wheat who observed that the highest proline content 

was in drought resistant genotype and the lowest was in sensitive genotype. The high 

Pro content of BVD-22 may be a result from calcium accumulation. BVD-22 recorded 

the highest Ca
2+

 concentration at 60 DAS stage. Sadiqov, et al., (2002) reported that Ca 

participates in the signalling mechanisms of drought-induced proline accumulation. In 

contrast, the low Pro content of Ozcan and Giza-163 genotypes under drought stress 

conditions shows its susceptibility to drought.  The results were in harmony with those 

achieved by Yao, et al., (2009). 

 

 

5.2.8   Effect of drought stress on soluble carbohydrate content 

 

          Carbohydrate synthesis under drought stress can be considered as a promising 

sign for drought tolerance. The accumulation of carbohydrate in response to drought is 

quite well documented (Mohammadkhani and Heidari, 2008). It has a key role in 

drought tolerance (Johari-Pireivatlou, et al., 2010). The present work indicates that, 

the concentration of soluble carbohydrate increased as a response to drought in the four 

wheat genotypes. On the other hand, Sahal-1 maintained the highest SC content, under 

both drought and control conditions. This may be a result from Zinc accumulation. 

Sahal-1 at 40 DAS, recorded the highest Zn concentration. Zn is involved in 

carbohydrate metabolism through its effects on photosynthesis and sugar 

transformations (Coruh, 2007). The sharp increase in SC under drought conditions may 

be a result from starch degradation and conversion of it into soluble sugars (Fischer and 

Holl, 1991). Starch depletion was noted by (Patakas and Noitsakis, 2001) in response 

to drought. It may be also due to low sugar utilization under stress conditions.  
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5.2.9 Effect of drought stress on lipid peroxidation level 

 

          Lipid peroxidation level was measured as the concentration of malondialdehyde 

(MDA). In the present study, a significant increase was observed in MDA level of all 

genotypes under drought stress. The lowest MDA contents at all growth stages, was 

observed in BVD-22 genotype, while Giza-163 and Ozcan recorded the highest contents 

under stress conditions. Drought increases reactive oxygen species accumulation, which 

cause oxidative damage to chloroplast membranes (Cai, et al., 2007) and lead to 

increases in MDA level. As well as the generation of unsaturated fatty acids affects 

membrane structures their properties, and leads to cellular damage to plant membranes 

(Quan, et al., 2004). 

 

           The increasing of MDA content in Giza-163 and Ozcan genotypes indicates that 

detoxification by their antioxidant systems was insufficient to prevent this damage. 

However, the reduction in MDA production in BVD-22 suggests more protection from 

oxidative damage to the cell membrane integrity of this genotype and a more efficient 

anti-oxidative system. Furthermore, the lowest MDA contents in BVD-22 may be a 

result from phosphorus accumulation. P is the key component of phospholipids and 

phosphor-proteins (Hu and Schmidhalter, 2005). BVD-22, showed the highest values 

of P in the shoots under stressed conditions. Several reports have suggested that P has 

positive effects on plant growth under stress conditions, these positive effects could be 

due to it is role in increasing cell-membrane stability (Sawwan, et al., 2000). 

 

 

5.2.10  Effect of drought stress on antioxidant enzymes activities 

 

          Drought stress increases accumulation of ROS within plant cells, which may react 

with proteins, lipids and nucleic acids, causing oxidative damages to plant cells (Yao 

and Liu, 2007). The ability to reduce such damages may correlate with drought 

tolerance (Tsugane, et al., 1999). The tolerant cells activate their enzymatic antioxidant 

system, in order to protect from such damages. According to the result of the present 

study, antioxidant enzymes activities except catalase were positively affected by 

drought stress.  
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          An enhancement of AP and SOD was observed in Sahal-1 genotype at 60 and 80 

DAS stages. While, at 40 DAS stage the activities of both enzymes (AP and SOD) were 

the highest in BVD-22. Conversely, in BVD-22 an enhancement of GR was noticed at 

40 DAS stage. While in Sahal-1, the maximum increase of GR activities was observed 

at 60 DAS stage. This could suggest that the plant response to drought may vary and 

depending on growth stage and genotype in terms of the types of enzyme that used in 

the antioxidant defense mechanism. Jung, (2004) concluded that the developmental 

stages of leaves might contribute to the differential prevention of oxidative damage in 

plants exposed to drought. 

 

          The enhancement of SOD enzyme in Sahal-1 at 60 and 80 DAS stages may be a 

result from cupper accumulation. Sahal-1 recorded the highest Cu accumulation under 

well-watered and stressed conditions. Cu ions act as cofactors in many enzymes such as 

Cu/Zn superoxide dismutase (Yruela, 2005). On the other hand, BVD-22 recorded the 

highest SOD activity at 40 DAS stage. This may be a result from manganese 

accumulation. BVD-22 at 40 DAS, recorded the highest Mn accumulation. Mn plays an 

essential role in activation of several enzymes, such as isoenzymes of superoxide 

dismutase (Campanella, et al., 2005). Mn also involved in scavenging of superoxide 

and hydrogen peroxide (Ducic and Polle, 2005).  

 

          The increase in the activity of APO, GR and SOD, as a response to drought may 

be due to increases in gene expression (Costa, et al., 2010). In contrast, CAT activity 

was particularly decreased in all genotypes and this is consistent with previous work by 

Tayebeh and Hassan, (2010). This decrease in CAT activity could be attributed to 

inhibition of enzyme synthesis or change in the assembly of enzyme subunits under 

drought stress. It may also due to the photo-inactivation of this enzyme (Jung, 2004). 

These results indicate that CAT is highly sensitive enzyme to drought stress. 

 

 

5.2.11  mRNA differential display 

 

          From the greenhouse experiment data, Sahal-1 and BVD-22 genotypes showed 

better performance under drought stress conditions compared with other genotypes. 

Therefore, the mRNA DD technique was used to isolate and identify the genes whose 
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expression was changed in response to drought stress in both genotypes.  By using 

mRNA DD technique, we identified ten differentially expressed drought responsive 

transcripts, four in Sahal-1 and six in BVD-22. Except for a few sequences, the 

transcripts displayed similarity to previously identified proteins from NCBI protein 

database. The BLASTN results indicated that, the fragments identified in this study 

were important transcripts due to their similarity to different nucleotide sequences that 

were related to drought stressed leaf in Oryza sativa, drought stressed leaf cDNA library 

from Coffea canephora, dehydration stressed root cDNA library from Cicer arietinum, 

Spartina alterniflora root salinity induced expressed sequence tag, field drought 

stressed root cDNA library, Brassica seed development drought normalized, Triticum 

aestivum developing seed heat stress reverse subtractive library, and  similar to Triticum 

aestivum flower heat stress forward subtractive library.  

 

 

          According to the BLASTX results, the fragment Sah-1 was found to have 42% 

similarity to photo-system II stability/assembly factor HCF136, chloroplastic in Oryza 

sativa. During oxygenic photosynthesis, the solar energy is converted into chemical 

energy. The photochemical functions are performed by two photo systems: Photosystem 

I and II (Iwata and Barber, 2004). Light-stimulated steps of photosynthesis are 

facilitated by the PSI together with PSII. These photo systems are multisubunit 

complexes consist of protein and non-protein components, and drive light-dependent 

electron transfer reactions, resulting in the formation of high-energy products such as 

ATP and NADPH. On the other hand, the fragment Sah-2 showed 32% similarity to a 

putative retrotransposon protein isolated from Oryza sativa. Plant retrotransposons have 

been found to be activated by abiotic and biotic stresses (Wessler, 1996; Grandbastien, 

1998). Retrotransposons are a class of mobile genetic elements that are ubiquitous in the 

genomes of many eukaryotic organisms (Bennetzen, 2000). They function by allowing 

their sequence to be transcribed into RNA. The fragment Sah-3 had 50% similarity to 

crystal structure of superoxide dismutase from Potentilla atrosanguinea. SOD is an 

enzyme that plays a crucial role in antioxidant defense because it catalyzes the 

conversion of the superoxide radical to molecular oxygen and H2O2 (Costa, et al., 

2010). Superoxide dismutases (SODs), a group of metalloenzymes, considered the first 

defense against ROS.  
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          The fragment Sah-4 was found to have 51% similarity to proline-rich extensin-

like receptor kinase 10 (PERK 10) of Arabidopsis thaliana. The diverse group of cell 

surface receptor-like protein kinases (RLKs), in plant, plays an important role in signal 

transduction mechanisms (Stone and Walker, 1995; Lease, et al., 1998). These 

membrane-spanning proteins perceive the initial stimulus and transmit the information 

intra-cellularly through a signaling cascade, which ultimately results in the appropriate 

cellular responses (Silva and Goring, 2002). The plasma membrane-associated proline-

rich extensin-like receptor kinase 4, is a novel regulator of Ca
+
 signaling, and plays 

fundamental role in ABA responses in Arabidopsis thaliana (Bai, et al., 2009). 

 

          The fragment BV-1 showed 50% similarity to glucose-6-phosphate 

dehydrogenase from Medicago sativa. G6PDH, is a cytosolic enzyme, present in 

different parts of plant tissues, it is mainly found in the cytosol and plastids (Corpas, et 

al., 1998; Esposito, et al., 2001; Knight, et al., 2001). G6PDH determines NADPH 

level via oxidative pentose phosphate pathway (Williams, 1980; Copeland and 

Turner, 1987). The main function of OPPP is production of reducing power (as 

NADPH) for fatty acid synthesis. One of the uses of NADPH in the cell is to prevent 

oxidative damages by reducing glutathione via glutathione reductase, which converts 

reactive H2O2 into H2O.  Therefore, plant defense could benefit from improved NADPH 

availability due to increased G6PD activity (Scharte, et al., 2009). Liu, et al., (2007) 

reported that the over-expression of G6PDH could decrease ROS accumulation.  

 

           The fragment BV-2 was found to have 57% identity to formin-like protein 20 in 

Arabidopsis thaliana. Formins are large multidomain proteins that have been found in 

all eukaryotes examined and are required for multiple actin-related processes, such as 

cytokinesis (Wasserman, 1998). The actin cytoskeleton is required for many cellular 

processes in plant cells (Yi, et al., 2005), like cytoplasmic streaming, and tip growth 

(Volkmann and Baluska, 1999; Staiger, et al., 2000). The fragment BV-3 was found 

to be similar to the crystal structure of pokeweed lectin-C, with 40% identity. Lectins 

are class of carbohydrate-binding proteins (Jiang and Ramachandran, 2010). The 

lectin genes are involved in biotic/abiotic stress regulation. Each member of this gene 

super family may play specialized roles in a specific stress condition and function as a 

regulator of various environmental factors such as drought.  
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          The fragment BV-4 showed 46% similarity to trios-phosphate isomerase. TPI is a 

cytoplasmic enzyme of carbohydrate metabolism that catalyzes the interconversion of 

dihydroxyacetone phosphate (DHAP) and D-glyceraldehyde 3-phosphate (GAP) 

(Henze, et al., 1994; Dorion, et al., 2005). It is a key enzyme in the Calvin cycle.  

Umeda, et al., (1994) demonstrated that TPIs were induced by water stress in rice cells; 

a coordinated induction of these enzymes for the production of energy to maintain the 

homeostasis in stressed cells was supposed. TPI was induced by drought in rice and 

maize (Salekdeh, et al., 2002; Riccardi, et al., 1998). The fragment BV-5 had 54% 

similarity to a retrotransposon protein, putative, unclassified from Oryza sativa, while 

fragment BV-6 showed 40 % identity to a transferase family protein of Zea mays. The 

molecular control mechanisms of drought stress tolerance based on expression of 

specific stress-related genes, which involved in water uptake and transport such as 

aquaporins and ion transporters (Blumwald, 2000). The result of mRNADD method 

clearly indicated that, mRNA DD is an efficient approach to identify drought responsive 

genes in Sahal-1 and BVD-22 genotypes. 

 

 

5.2.12 DREB genes 

 

         Dehydration-responsive element binding (DREB) proteins constitute a large 

family of transcription factors that are involved in a biotic stress tolerance.  DREBs 

regulate many functional genes related to drought stress (Ito, et al., 2006). In the present 

study, the Dreb R1-3A was expressed in all genotypes under all conditions, but the 

expression under drought was higher than under control. On the other hand, Dreb R2 1A 

was expressed in Sahal-1 and BVD-22 genotypes only under drought stress conditions. 

DREB genes consist of two subclasses, 1) DREB gene1, which induced by cold stress, 

and 2) DREB gene2, which induced by dehydration stress (Choi, et al., 2002). It is 

possible to engineer stress tolerance in transgenic plants by manipulating the expression 

of these genes (Agarwal, et al., 2006). Ito, et al., (2006) concluded that DREB1-type 

genes are useful to improvement the stress tolerance. 
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5.3 Open field experiment 

 

          For a study closer to agricultural conditions, we evaluated the response of forty-

nine bread wheat genotypes to drought stress in the open field. The effects of drought 

stress on all the traits measured across the wheat genotypes were clear. Almost all the 

wheat genotypes had produced good plant height, biomass, harvest index and yield 

components under well-watered conditions, while all these parameters were 

significantly reduced under stress conditions.  

 

 

5.3.1 Effect of irrigation systems on plant height (cm) 

 

           Results from the field experiment showed that the drought stress significantly 

reduced plant height of all genotypes except Katia, Momtchill, and Seval, which 

showed equal values under all conditions. The plant height of Bolal2973, Mufitbey, 

Pastor, Flamura85, Weston, Es00-ke3, Dagdas, Jagger, Kirkpinar79, Ks82w422, 

Ktk/ye2453, Gerek gm, F12.71/coc//prl"s", Izgi01, Pyn/bau, Bayraktar, and Gerek79 

genotypes were the lowest affected by drought stress. The reduction in plant height 

could be due to inhibition of cell division or length of cells by drought stress 

(Sarvestani, et al., 2008). In addition, it may be due to decrease in relative turgidity and 

dehydration of protoplasm, which is associated with a loss of turgor and reduced 

expansion of cells and cell division. Daneshian and Jonobi, (2001) introduced plant 

height as a drought tolerance index in soybean plants. These results were in agreement 

with those obtained by Moayedi, et al., (2010). 

          

 

5.3.2 Effect of irrigation systems on heading date 

 

           Drought stress delayed the heading date of most genotypes compared to control 

conditions except Flamura85 and Stk52/trumbull genotypes, which showed the opposite 

trend and flowered earlier. They exhibited drought escape as a drought tolerance 

mechanism, and so have the ability to complete their life earlier (Bayoumi, et al., 

2008). Drought escape is highly heritable but it is associated with lower yields 

(Wortmann, 1998). Bayraktar, F12.71/coc//prl"s", Izgi01, Katia, Momtchill, Pastor, 
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and Suzen97 genotypes recorded the same heading date under both conditions. On the 

other hand, Es84-24/seri//seri, Aytin98, Ca8055/krc66, Es84-24//ks82w409, and 

Gerek79 genotypes recorded the longest delay in heading date (4 days). The delay in 

heading date may be associated with internal plant water status. Sarvestani, et al., 

(2008) reported that genotypes with a longer delay had tried to extract more water 

during the drought period, and consequently had higher water deficits. The results were 

in parallel with those achieved by Bayoumi, et al., (2008) who reported that drought 

stress caused increases in days to 50% heading of all wheat genotypes. 

 

 

5.3.3 Effect of irrigation systems on biomass (kg m
−2

) 

 

          Drought stress reduced total biomass of all genotypes except Lov/bll and 

Flamura85, which showed an increase in biomass under stress conditions; this may be a 

consequence of heading date, as Flamura85 genotype did not record any delay in 

heading date. The reduction in biomass might be due to the negative effects of drought 

on important metabolic processes, photosynthesis, and decreasing dry matter 

accumulation (Nagarajan, et al., 1999). In addition, the total biomass was reduced 

considerably due to reduction of plant height (Mirakhori, et al., 2009).  The genotypes 

Altay2000, Kutluk94, Gun91, Ekg15//tast, Century, Ikizce96, Suzen97, Weston, Katia, 

Aytin98, Momtchill, Vorona/kauz, Ks82w422, Momtchill/gun, Krc/bez, Bayraktar, 

Mnch/5/ and Pastor, showed lesser reduction of biomass than Vona//no57, Hawk, 

Harmankaya99, F12.71/coc//kauz, and Soyer. This could suggest that the former 

genotypes have better adaptive responses such as the controlling stomatal closure and 

stability of organelles within the cell (Setter and Flannigan, 2001). The results were in 

parallel with those achieved by Sangtarash, (2010). 

 

 

5.3.4 Effect of irrigation systems on harvest index  

 

          Water stress had significant negative effects on harvest index of almost wheat 

genotypes. Harvest index is the proportion of the biological yield, which forms the 

economic yield. A mean reduction of 2.4% was recorded in HI for all genotypes.  

Zitnica, Pyn/bau, Izgi01, Gerek gm, Ikizce96, and Mufitbey recorded the minimum 
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reductions in HI, while Bolal2973, Ca8055/krc66, Century, Ekg15//tast, Gerek79, 

Hawk, Jagger, Kutluk94, Mnch/5/, and Suzen97 genotypes recorded equal HI values 

under both drought and well-watered conditions. The reduction in harvest index under 

drought may be due to effects of water shortage on seed weight (Seghatoleslami, et al., 

2008). It may be also a result of reduction in yield and biomass (Mirakhori, et al., 

2009). The drought conditions forces plant to complete its grain formation in a 

relatively short time (Riaz and Chowdhrv, 2003). The genotypes which had the lowest 

reduction in plant height (i.e. Gerek gm, Izgi01, and Pyn/bau), and had a short or no 

delay in heading date (Izgi01, and Pastor) were associated with a small decrease or 

slight increase in harvest index. The reduction in harvest index in wheat genotypes 

under drought stress was reported by Sangtarash, (2010) and Moayedi, et al., (2010). 

A maximum increase of 22.5% in HI was observed in Vona//no57 followed by Pastor, 

Es00-ke3, Tosunbey, Sonmez01, Soyer, Krc/bez, Kirac66, Dagdas, Ktk/ye2453, 

Karahan, Altay2000, Momtchill, Bezostaya1, and Seval. Austin, (1994) suggested that 

high harvest index might be due to improved resistance to drought, making the plants 

much shorter along with enhancing the supply of nutrient substances to young kernels. 

 

 

5.3.5 Effect of irrigation systems on NDVI values 

 

          Normalized difference vegetation index (NDVI) is widely used for crop stress 

detection because of its high correlated with vegetation parameters such as biomass and 

green leaf area (Curran, 1980).  Johnsen, et al., (2009) reported that the plant stress 

could be quantified with NDVI. In our study, values of NDVI were much lower under 

drought stress than under irrigated conditions except Momtchill (NDVI value was 

similar to control), and Es84-24//ks82w409, Es84-24/seri//seri, Gerek gm, 

Harmankaya99, Ikizce96, Izgi01, Jagger, Karahan, Katia, Ks82w422, Pyn/bau, Seval, 

Sonmez01, Suzen97, and Vorona/kauz genotypes  (NDVI values were higher than 

controls). The reduction in NDVI values under drought stress may be due to the 

irrigated plants tending to have chlorophyll content higher than non-irrigated plants. 

Water stress produced changes in the chlorophyll contents in barley (Anjum, et al., 

2003). Lawlor and Cornic, (2002) concluded that the photosynthetic rate decrease as 

the relative water content and leaf water potential decreases in higher plants. Farooq, et 

al., (2009) reported that the drought stress mainly limits and reduced the photosynthesis 
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process through stomatal closure and non-stomatal limitation (metabolic 

impairment).The genotypes Bayraktar, Hawk, Mnch/5, Gun91, and Ktk/ye2453 

recorded the lowest reduction in NDVI. Shakya and Yamaguchi, (2007) reported that 

the healthy vegetation gives high NDVI values, while the unhealthy plants give low 

values. Higher index values, being associated with greater green leaf area and biomass. 

Baghzouz, et al., (2006) found that the NDVI decreased as the tissue water content 

decreases in in tall fescue and annual ryegrass. Xiong, et al., (2007) concluded that 

NDVI was increased with increasing irrigation and nitrogen rate.  

 

 

5.3.6 Effect of irrigation systems on SPAD values 

 

          Photosynthetic pigments are important to plants mainly for harvesting light 

(Jaleel, et al., 2009). In the present study, there was a genetic variation for SPAD values 

among wheat genotypes that were studied under drought stress in the field. The result 

show that drought decreased chlorophyll content (measured as SPAD value) of flag 

leaves of all wheat genotypes except Bayraktar, Bolal2973, Ca8055/krc66, Dagdas, 

Es00-ke3, F12.71/coc//kauz, F12.71/coc//prl"s"/ Gerek gm, Gerek79, Gun91, 

Harmankaya99, Jagger, Katia, Kutluk94, Sonmez01, Suzen97, and Zitnica genotypes, 

which showed high SPAD values under drought. Rong-hua, et al., (2006) reported that 

the values of chlorophyll content in drought tolerance genotypes were significantly 

higher than in drought sensitive genotypes. The negative effects of drought stress on 

chlorophyll content may be consequences of inhibited photosynthesis (Farooq, et al., 

2009), reduced synthesis of the main chlorophyll pigment complexes encoded by the 

cab gene family (Allakhverdiev, et al., 2000), and oxidative damage of chloroplast 

lipids (Tambussi, et al., 2000). Under drought stress, the lowest reduction in SPAD 

values were observed in Es84-24//ks82w409, Izgi01, Lov/bll/, Kirgiz95, Pastor, 

Pyn/bau, Kirkpinar79, Mufitbey, Krc/bez, Ks82w422, Ktk/ye2453, Hawk, Ekg15//tast, 

and Weston genotypes.  

 

          Water stress resulted in an accelerated chlorophyll breakdown starting in the 

wheat leaves. Meanwhile, the leaf senescence was delayed in Pyn/bau, Ca8055/krc66, 

Dagdas, Kirkpinar79, F12.71/coc//kauz, Es84-24//, Harmankaya99, and Suzen97 

genotypes. The results suggest that the former genotypes are drought tolerant and are 
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able to retain green leaves longer than other genotypes under drought conditions. Wheat 

genotypes with green leaf retention may process drought-tolerance mechanism, which 

allow the plants to maintain metabolic activity, despite of low leaf water potential 

(Fukai and Cooper, 1995). The ability to maintain the functionality of the 

photosynthetic machinery under drought stress is important in drought tolerance 

mechanisms. It may be possible to enhance drought tolerance by delaying senescence 

induced by drought (Rivero, et al., 2007). The obtained results are in agreement with 

those obtained by Balouchi, et al., (2009). 

 

 

5.3.7 Effect of irrigation systems on canopy temperature  

 

          Canopy temperature (CT) used in wheat breeding and selection for yield (Saint 

Pierre, et al., 2010). Generally, canopy temperature increased due to drought compared 

to well-watered conditions. Ca8055/krc66, Es00-ke3, Gerek gm, Gun91, Hawk, 

Ikizce96, Lov/bll, Pastor, Weston, Ktk/ye2453 genotypes recorded the opposite trend; 

with the temperature under stress was less than or equal to the temperature under well-

watered conditions. The canopy temperature increased due to increased respiration and 

decreased transpiration rate resulting from stomatal closure (Siddique, et al., 2000). 

Under rain fed conditions Gun91, Dagdas, Ca8055/krc66, Es00-ke3, Karahan, 

Ktk/ye2453, Kutluk94, Lov/bll//, and Ekg15//tast were the coldest plants. For breeding 

and selection to drought resistance, it is very important to find genotypes that maintain 

lower canopy temperature as compared with other genotypes under drought stress 

conditions. These genotypes will use more of the available water in the soil, thus 

limiting the negative effect of water stress on plant functions (Blum, 1988). These 

results were in accordance with those reported by Olivares-Villegas, et al., (2007). 
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5.3.8 Effect of irrigation systems on yield and its components 

 

 

 

Effect of irrigation systems on number of spikes m
-2

 

 

          Number of spikes per m
2
 is an important character in wheat breeding 

programmers (Olgun, et al., 2006).  Most spikes were produced with well-watered 

conditions, while fewest spikes were produced when the drought stress was applied. 

Kirkpinar79, Tosunbey, Ca8055/krc66, Century, Es00-ke3, Lov/bll/, Bolal2973, 

Kirac66, Sonmez01, and Vorona/kauz genotypes recorded the lowest reduction in 

number of spikes m
-2

 under drought stress conditions. Similar results were demonstrated 

by Moayedi, et al., (2010). 

 

 

Effect of irrigation systems on number of grains spike
-1

 

 

          Number of grains spike
-1

 is an important trait of wheat contributing to yield. 

Generally, drought stress caused a significant reduction in NGS in most genotypes 

compared to the well-watered conditions except Vorona/kauz, Bezostaya1, Flamura85, 

Kirgiz95, Kutluk94, Momtchill, Ca8055/krc66, Pastor, Es84-24/seri//seri, Hawk, 

Mufitbey, Dagdas, Gerek gm, Bayraktar, Bolal2973, Vona//no57, Jagger, and 

Harmankaya99, which showed an increase in the grains number per spike under rain fed 

conditions. The genotypes Katia, F12.71/coc//prl"s", and Weston genotypes maintained 

the lowest reduction under stress conditions. This reduction could be a result from effect 

of drought on pollination (Elhafid, et al., 1998). Drought stress is associated with 

infertility and caused decrease in grains number spike
-1

. Sarvestani, et al., (2008) 

reported that stress might decrease translocation of assimilates to the grains, which 

increased the number of empty grains. Results were in harmony with those achieved by 

Mirbahar, et al., (2009), and Moayedi, et al., (2010). 
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Effect of irrigation systems on thousand grain weight  

 

          Sharp decrease in TGW was recorded under drought stress in all genotypes. The 

lowest of TGW was recorded in Stk52/trumbull (which flowered earlier). On the other 

hand, the highest TGW was observed in Momtchill at control as well as at drought. 

Under rain fed conditions, the minimum decreases in TGW recorded in Kirkpinar79, 

Aytin98, Izgi01, Dagdas, Bezostaya1, Es84-24//ks82w409, Sonmez01, Ktk/ye2453, 

Momtchill/gun, Katia, Suzen97, Century, Krc/bez, and Es00-ke3 genotypes. This 

reduction in TGW may be a result of disturbed nutrient uptake efficiency and 

photosynthetic translocation within the plant (Iqbal, et al., 1999). The drought 

conditions forces plant to complete its grain formation in a relatively short time (Riaz 

and Chowdhrv, 2003). Amount and quality of storage material in wheat kernels 

depends on the accessibility of nutrients in soil (Konopka, et al., 2007). Sarvestani, et 

al., (2008) reported that stress might decrease translocation of assimilates to the grains, 

which lowered grain weight and increased the number of empty grains. These results are 

in agreement with those of Johari-Pireivatlou, et al., (2010) who observed that TGW 

of wheat was reduced due to drought stress. 

 

 

  Effect of irrigation systems on grain yield  

 

          Drought is one of the major abiotic factors that reduces grain yield of wheat 

(Bhutta, et al., 2006). In the present study, the GY was greater in well-watered plants 

than in the drought plants, a consequence of more spikes per m
2
, and heavier grains 

(Kilic and Yagbasanlar, 2010). Pastor and Flamura85 showed a reverse trend as the 

grain yield under drought conditions were more than under well-watered conditions. 

The yield of the forty-nine selected wheat genotypes varied in the range of 5.01 - 7.36 

ton ha
-1

 and 3.11 - 6 ton ha
-1

 in irrigated and non-irrigated conditions, respectively. 

Under rain fed conditions, the highest yield reduction was observed in 

F12.71/coc//kauz, Izgi01, Stk52/trumbull, Hawk, and Gerek gm genotypes and the 

lowest yield reduction was in Suzen97, Ekg15//tast, Vorona/kauz, Bolal2973, Weston, 

Mnch/5/, Lov/bll/, Katia, Altay2000, Ktk/ye2453, Momtchill/gun, Kirgiz95, Ks82w422, 

Ikizce96, Es00-ke3, Gun91, Momtchill, and Krc/bez genotypes. Sarvestani, et al., 

(2008) reported reduction in yield, which resulted from reduction in fertile panicle 
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number and filled grain percentage. GY depends on number of effective tillers and 

1000-grain weight. Chowdhry, et al., (2000) concluded that yield components like, 

grains per spike and TGW are main contributors to grain yield of wheat. Bolal2973, 

Sonmez01, Pastor, Zitnica, Harmankaya99, Krc/bez, Vorona/kauz, Pyn/bau, Tosunbey, 

Katia, Momtchill/gun, Flamura85, Es00-ke3, and Momtchill genotypes showed the best 

yielding in rain fed conditions, mainly due to higher grain filling period-no delay in 

heading date (Kilic and Yagbasanlar, 2010). The results were in parallel with those 

achieved by Sangtarash, (2010). 

 

 

Drought susceptibility index  

 

           DSI is independent of yield potential and drought intensity, and is potentially 

useful for comparisons of drought susceptibility of genotypes, since larger values of 

DSI indicate greater drought susceptibility. The results indicated that the wheat 

genotypes Pastor, Flamura85, Krc/bez, Momtchill, Gun91, Es00-ke3, Ikizce96, 

Ks82w422, Kirgiz95, Momtchill/gun, Ktk/ye2453, Altay2000, Katia, Lov/bll/, Mnch/5/, 

Weston, Bolal2973, Ekg15//tast, Vorona/kauz, Suzen97, Kutluk94, Sonmez01, and 

Bayraktar expressed lowest DSI.  Moreover, the genotypes Gerek gm, Mufitbey, Hawk, 

Stk52/trumbull, Izgi01 and F12.71/coc//kauz had highest DSI values. The large values 

of DSI indicate greater drought susceptibility, while, the genotypes with low DSI values 

can be considered drought resistant, because they exhibited smaller yield reductions 

under drought stress compared with well-watered conditions than the mean of all 

genotypes. The results are in agreement with those obtained by Bayoumi, et al., (2008). 

 

 

Relative grain yield  

 

           Selection for drought tolerance typically involves evaluating genotypes for either 

high yield potential or stable performance under stress conditions (Ahmad, et al., 

2003).  High yield potential under drought conditions is an important target of wheat 

breeders (Jaleel, et al., 2009). The results showed that, Altay2000, Bayraktar, Ikizce96, 

Century, Karahan, Mnch/5, Gun91, Bolal2973, Pastor, Sonmez01, Harmankaya99, 

Zitnica, Krc/bez, Pyn/bau, Tosunbey, Vorona/kauz, Katia, Flamura85, Momtchill/gun, 



 

 

130 

 

Es00-ke3, and Momtchill genotypes, were relatively high yielding under water stress 

(RY > mean RY).This could suggest that these genotypes have better adaptive 

mechanisms such as controlling stomatal closure and stability of organelles within the 

cell (Setter and Flannigan, 2001). 

 

 

5.3.9 Correlation coefficient analysis under drought stress 

 

          The correlation coefficient analysis indicated that, there was significant positive 

correlations between grain yield and (biomass, 1000-grain, harvest index).These 

correlations suggested that increase in biomass would result in increasing of grain yield. 

Plant height had highly significant negative correlations with (canopy temperature, 

number of grains spike
-1

).  Negative correlation of plant height with number of grains 

was also reported by Patil and Jain, (2002). This suggested that increase in plant height 

would result in reduction of canopy temperature and number of grains. Heading date 

was negatively associated with, (number of grains spike
-1

, number of spikes m
-2

, and 

grain yield).These results were in parallel with those achieved by Kilic and  

Yagbasanlar, (2010) who found a negative correlation between grain yield and number 

of days to heading. Sarvestani, et al., (2008) reported that the genotypes with longer 

delay in heading time had higher water deficits and were consistently associated with a 

larger yield reduction under drought.  

 

       There was a negative correlation between NDVI and canopy temperature. This 

suggested that increase in chlorophyll content would result in reduction of CT. The 

present findings are similar to those of Fenstemaker-Shaulis, et al., (1997) who found 

a negative correlation between NDVI and canopy temperature. Saint Pierre et al., 

(2010) reported that CT showed a strong negative phenotypic correlation with grain 

yield under drought conditions. On the other hand, Olivares-Villegas et al., (2007) 

found that CT negatively associated with yield and it was highly associated with 

biomass at booting, and plant height. The potential of CT as screening tool for wheat 

genotypes under drought-stress based on its significant association with grain yield 

(Reynolds, et al., 2001).  
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          In our studies, we found positive correlations between NDVI and plant height, 

heading date, SPAD, 1000-grain weight. NDVI is widely used as standard vegetation 

index for estimating biomass (Barbosa, et al., 1999). Because of the close relationship 

between vegetation vigor and soil moisture, NDVI be used in assessment of vegetation 

drought stress in arid and semi-arid regions (Ji and Peters, 2003), also there is a 

positive correlation between NDVI and plant moisture content (Fenstemaker-Shaulis, 

et al., 1997). The NDVI was a better estimator of chlorophyll content in turfgrass (Bell, 

et al., 2004). Kruse, et al., (2005) found that there is no correlation between biomass 

and NDVI. The healthy vegetation gives high NDVI values, while the unhealthy plant 

gives low values (Shakya and Yamaguchi, 2007). SPAD observed positive significant 

correlations with heading date, NDVI, number of grains spike
-1

, and 1000-grain weight, 

whereas canopy temperature and  number of spikes m
-2

 were negatively associated with 

SPAD. These correlations suggested that increase in chlorophyll content would result in 

increasing of 1000-grain weight and Number of grains spike
-1

. Kilic and Yagbasanlar, 

(2010) reported a positive significant correlation between the grain yield and 

chlorophyll content. 

 

          There was a significant positive correlation between TGW and Grain yield. 

Nouri-Ganbalani, et al., (2009) reported a positive significant correlation between the 

grain yield and TGW. The high significant correlation of 1000-grain weight with grain 

yield implies that 1000-grain weight plays important role in the possible increase of the 

grain yield of the wheat genotypes. It was evident from the results that TGW had 

pronounced influence upon wheat grain yield in all genotypes. The present findings are 

similar to those of Inamullah, et al., (2006) who observed positive association of TGW 

with grain yield. Aycecik and Yildirim, (2006) also reported positive correlations 

between grain yield with number of grains per spike, plant height and TGW. Number of 

grains spike
-1

 had positive and non-significant association with grain yield. Kilic and 

Yagbasanlar, (2010) reported a positive significant correlation between the grain yield 

and Number of grains spike
-1

. The perusal of these correlation coefficient results 

suggested that number of grains per spike should given prime importance regarding its 

contribution to yield (Akram, et al., 2008).  
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6 CONCLUSION 

 

 

          Wheat is an attractive study system because of it is wide natural genetic variation 

in traits related to drought resistance. For a successful development of drought resistant 

genotypes, it is necessary to study the influence of drought on growth and the 

physiological characteristics of different wheat genotypes and compare between tolerant 

and susceptible genotypes under stress and non-stress conditions. In the present study, 

the effects of drought stress on morphological, physiological and molecular 

characteristics of some wheat genotypes were investigated. The differential response of 

wheat genotypes to imposed water stress condition indicates the drought tolerance 

ability. Since, all parameters like plant height, biomass, harvest index, 1000-grain 

weight, yield and yield components, were found to be influenced by drought stress.  

 

          Four important findings were obtained from this research. Firstly, the genotypes  

Altay2000, Bayraktar, Bolal2973, Es00-ke3, Flamura85, Gun91, Ikizce96, Katia, 

Krc/bez, Mnch/5/, Momtchill, Momtchill/gun, Pastor, Sonmez01, and Vorona/kauz 

showed high yield potential (RY) and high yield stability (DSI) under stress conditions, 

so these genotypes could be further tested for their other drought conferring 

characteristics. Secondly, based on the results of this research, the decreases in nutrient 

uptake were small in tolerant (BVD-22 and Sahal-1), but huge in susceptible genotypes 

(Giza-163 and Ozcan), which suggest that the nutrients uptake in wheat grown under 

drought conditions may have a role in drought tolerance.  Calcium  (participated in 

signaling mechanisms of drought induced proline accumulation), Potassium (had a key 

role in osmotic adjustments), Phosphorus (increased the water use efficiency and cell 

membrane stability), Zinc (protected plant cells from damage effects caused by ROS 

and inhibited NADPH oxidase), Cupper (had a key role in hormone signaling, oxidative 

stress response, co-factor for Cu-SOD enzyme), Manganese (amino acids biosynthesis, 

activated Mn-SOD enzyme which had a crucial role in antioxidant defense). 
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          Thirdly, although drought tolerance mechanisms were seen in Sahal-1 and BVD-

22, but its extent varies from genotype to other genotype and even within genotype from 

growth stage to other stage. For example, both genotypes used osmotic adjustment as a 

drought tolerance mechanism, but they used different organic solutes. Sahal-1 used 

soluble carbohydrate, however BVD-22 depend on proline accumulation. Furthermore, 

the plant response to drought may vary and depending on growth stage and genotype in 

terms of the types of enzyme that used in the antioxidant defense mechanism, which 

suggest that the developmental stages of wheat leaves might contribute to the 

differential prevention of oxidative damage in plants exposed to drought stress. 

Fourthly, the result of mRNA differential display clearly indicated that, mRNA-DD is 

an efficient approach to identify drought responsive genes and obtain gene expression 

profiles of Sahal-1 and BVD-22 genotypes which exposed to drought stress.                                                                                            

 

          Finally, it is necessary to develop new wheat genotypes, which characterized by 

1) maintaining lower canopy temperature as compared to other genotypes, 2) healthy 

vegetation and high NDVI values, 3) able to retain green leaves longer than other, and  

4) characterized by high yield potential under drought conditions. The combination of 

molecular and morpho-physiological approaches is the key of a better understanding of 

drought resistance mechanisms in wheat. Thus, further work is required to identify and 

manipulated the genes controlling the physiological and molecular traits.  
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Appendix: A  

Supplies 

Disposable Labware: 

 

Centrifuge Tubes 2ml: Axygen Scientific, USA (MCT-200-C). 

Clickfit Cap Microtubes: Trefflab, Switzerland (96.8185.9.03, 96.7811.9.03). 

Clickfit Cap Microtubes: Trefflab, Switzerland (96.9329.9.01). 

Diamond® Tips: Gilson, USA (D10, D200, D1000). 

PCR-Tubes: Trefflab, Switzerland (96.9852.9.01). 

Petri Dishes: ISOLAB Laborgeräte Gmbh, Germany (113.02.002). 

Screw Cap Tubes 15ml:  Axygen Scientific, USA (SCT-15ML-25-S). 

Screw Cap Tubes 50ml: Axygen Scientific, USA (SCT-15ML-25-S). 

Tips For Pipettes: Axygen Scientific, USA (T-200-Y, T-1000-B, T-300). 

 

Chemical Supplies and Kits: 

 

2-Propanol Extra Pure: Merck Kgaa, Germany (1.00995) 

2-Propanol Puriss., ≥99.5% (GC): Riedel-De Haën®, Germany (24137) 

6x  Dna Loading Dye : Fermentas, Canada (R0611) 

Acetic Acid: Riedel-De Haen, Germany (27225) 

Acetone: Merckkgaa, Germany (100013) 

Acrylamide 30%-0.8% Bi-Acrylamide: Sigma, Germany (A3699) 

Agar Type A, Plant Cell Culture Tested: Sigma-Aldrich Co., USA (A4550) 

Agarose: Prona Basica LE Agarose, E.U. 

Ampicillin Sodium Salt: Applichem Gmbh, Germany (A0839) 

Taq DNA Polymerase (Recombinant): Fermentas, Canada (EP0402) 

Boric Acid:  Sigma-Aldrich Co., USA (B6768) 

Chloroform Biotechnology Grade: Amresco® Inc., USA (0757) 

Coomassie Brilliant Blue: Fluka, Switzerland (27816) 

D-(+)-Glucose Monohydrate: Fluka, Switzerland (49158) 

Datp, Molecular Biology Grade: Fermentas, Canada (R0141) 

Deoxyribonuclease I, Rnase-Free: Fermentas, Canada (EN0521) 

Diethyl Pyrocarbonate, ≥97% (NMR): Sigma-Aldrich Co., USA (D5758) 
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Dnasei: Fermentas, Canada (EN0521) 

Dntp Mix 10mm: Fermentas., Canada (#R0193) 

Dntp Mix 25mm: Fermentas., Canada (#R1121) 

Ethanol Absolute Puriss: Riedel-De Haen, Germany (32221) 

Ethidium Bromide Solution:  Merck Kgaa, Germany (1.11608) 

Generulertm 100bp DNA Ladder Plus: Fermentas, Canada (SM0321) 

Hydrochloric Acid 37%: Merckkgaa, Germany (100314) 

IPTG, Dioxane-Free: Fermentas, Canada (R0393) 

Lb Broth: Sigma-Aldrich Co., USA (L3022) 

Magnesium Chloride: Riedel-De Haen, Germany (13152) 

Magnesium Sulphate: Riedel-De Haen, Germany (13246) 

Methanol: Riedel-De Haen, Germany (24229) 

MS Medium ( Salt Mixture): Sigma, Germany (M5524) 

Oligo(dT) Primer: Invitrogen, USA (L3147) 

Omniscript Rt Kit: Qiagen Inc., USA(205111) 

Pgem®-T Vector System II: Promega, USA (A3610) 

Qiaprep Spin Miniprep Kit: Qiagen Inc., USA (27106) 

Qiaquick Gel Extraction Kit: Qiagen Inc., USA (28706) 

Qiaquick PCR Purification Kit: Qiagen Inc., USA (28104) 

Sodium Chloride: Riedel-De Haen, Germany (13423) 

Sodium Hydroxide Pellets Pure: Merck Kgaa, Germany (1.06462) 

Sucrose Grade I, Plant Cell Culture Tested: Sigma-Aldrich Co., USA (S5390) 

Sodium Chloride EMPROVE®: Merck Kgaa, Germany (1.06400) 

Tris: Fluka, Switzerland (93349) 

Trizol® Reagent: Invitrogen, USA (15596-018) 

Tryptone: Applichem Gmbh, Germany (A1553) 

X-Gal: Promega, USA (V3941) 
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Appendix B:  

Equipment 

Autoclaves: Hirayama, Japan (Hiclave HV-110) 

 
CERTOCCLAV® A-4050 TRAUN/AUSTRIA 

Automatic Pipette: Pipettus® -Akku, Hirshmann Laborgerate 

Centrifuges: Eppendorf, (Centrifuge 5415C, 5415D, 5415R), Germany. 

Cold Room: Alarko Carrier, Turkey. 

Deep Freezer: HERAEUS ® HERA FREEZE 

Electronic Balances: Sartorius, BP610, BP221S, BP221D, Germany. 

Gel Documentation System: Bio-Rad Laboratories, (Universal Hood II), USA. 

Heating Block: Fisher,(Bioblock Scientifictm), France . 

Heating Magnetic Stirrer: VELP Scientifica, Italy. 

Ice Machine: Scotsman Inc., Af20, USA 

Incubator Shaker: New Brunswick Scientific, (Innova 4330), USA. 

Incubator: Memmert, (D06059 Modell 300), Germany. 

Laminar Flow Cabinets: HERAEUS® HERA SAFE, Germany. 

Magnetic Stirrer: Velp Scientifica, Are Heating Magnetic Stirrer, Italy. 

Micropipettes: Gilson, Pipetman, France. 

Microwave: Vestel, Turkey. 

Ph Meters: WTW, Ph540glp Multical, Germany. 

 
Windaus Labortechnik,(Titroline Alpha), Germany. 

Power Supply: Biorad, Powerpac 300, Usa; Wealtec, Elite 300, USA. 

Refrigerators: Bosch, -20±C, +4±C, Turkey. 

Spectrophotometer: Schimadzu, UV3150, Japan; Nanodrop Tech, ND-1000, USA. 

Thermal Cycler: GMI, (MJ Research PTC-100), USA. 

Thermo-mixer: Eppendorf, Thermomixer Comfort, Germany. 

Vortex Mixer: VELP Scientifica, EU. 

Water Baths: Techne, (Refrigerated Bath RB-5A), UK. 

 
Huber Polystat Cc1 

Water Purification System: Millipore, (Milli-Q Academic), USA. 

Liquid Nitrogen Tank: DEWAR, Flask And Container, England. 
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Appendix C: 

pGEM®-T Easy Vector Map and Sequence Reference Points 

 

  

 

 

 

 


