

MOTION ESTIMATION BASED

FRAME RATE CONVERSION HARDWARE DESIGNS

by

ÖZGÜR TAŞDİZEN

Submitted to the Graduate School of Engineering and Natural Sciences

 in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Sabancı University

June 2010

MOTION ESTIMATION BASED

FRAME RATE CONVERSION HARDWARE DESIGNS

APPROVED BY:

Assist. Prof. Dr. İlker Hamzaoğlu ………………………….

(Dissertation Supervisor)

Prof. Dr. Aytül Erçil ………………………….

Assoc. Prof. Dr. Erkay Savaş ………………………….

Assist. Prof. Dr. H. Fatih Uğurdağ ………………………….

Assist. Prof. Dr. Hakan Erdoğan ………………………….

DATE OF APPROVAL: ………………………….

To my Family

© Özgür Taşdizen 2010

All Rights Reserved

 IV

MOTION ESTIMATION BASED

FRAME RATE CONVERSION HARDWARE DESIGNS

Özgür Taşdizen

EECS, PhD Thesis, 2010

Thesis Supervisor: Assist. Prof. Dr. İlker Hamzaoğlu

Keywords: Frame Rate Up-Conversion, Hardware Implementation,

 Motion Estimation, Video Enhancement

ABSTRACT

Frame Rate Up-Conversion (FRC) is the conversion of a lower frame rate video

signal to a higher frame rate video signal. FRC algorithms using Motion Estimation

(ME) obtain better quality results. Among the block matching ME algorithms, Full

Search (FS) achieves the best performance since it searches all search locations in a

given search range. However, its computational complexity, especially for the recently

available High Definition (HD) video formats, is very high. Therefore, in this thesis, we

proposed new ME algorithms for real-time processing of HD video and designed

efficient hardware architectures for implementing these ME algorithms. These

algorithms perform very close to FS by searching much fewer search locations than FS

algorithm. We implemented the proposed hardware architectures in VHDL and mapped

them to a Xilinx FPGA.

ME for FRC requires finding the true motion among consecutive frames. In order

to find the true motion, Vector Median Filter (VMF) is used to smooth the motion

vector field obtained by block matching ME. However, VMFs are difficult to

implement in real-time due to their high computational complexity. Therefore, in this

thesis, we proposed several techniques to reduce the computational complexity of

VMFs by using data reuse methodology and by exploiting the spatial correlations in the

vector field. In addition, we designed an efficient VMF hardware including the

computation reduction techniques exploiting the spatial correlations in the motion

vector field. We implemented the proposed hardware architecture in Verilog and

mapped it to a Xilinx FPGA.

ME based FRC requires interpolation of frames using the motion vectors found by

ME. Frame interpolation algorithms also have high computational complexity.

Therefore, in this thesis, we proposed a low cost hardware architecture for real-time

implementation of frame interpolation algorithms. The proposed hardware architecture

is reconfigurable and it allows adaptive selection of frame interpolation algorithms for

each Macroblock. We implemented the proposed hardware architecture in VHDL and

mapped it to a low cost Xilinx FPGA.

 V

HAREKET TAHMİNİ TABANLI ÇERÇEVE HIZI YÜKSELTME DONANIMLARI

TASARIMI

Özgür Taşdizen

MDBF, Doktora Tezi, 2010

Tez Danışmanı: Yrd. Doç. Dr. İlker Hamzaoğlu

Anahtar Kelimeler: Çerçeve Hızı Yükseltme, Hareket Tahmini,

Donanım Gerçekleme, Video İyileştirme

ÖZET

Çerçeve hızı yükseltme, düşük çerçeve hızına sahip bir videonun daha yüksek

çerçeve hızına sahip bir videoya dönüştürülmesidir. Hareket tahmini tabanlı çerçeve hızı

yükseltme algoritmaları yüksek kaliteli sonuçlar elde etmektedirler. Arama alanındaki

bütün arama noktalarını aradığı icin blok eşleştirmeli hareket tahmini algoritmaları

arasında en iyi başarımı gösteren tam arama algoritmasıdır. Ancak, tam arama

algoritmasının gerektirdiği işlem miktarı özellikle günümüzde yaygınlaşan yüksek

tanımlı video çerçeveleri için çok yüksektir. Bu nedenle, bu tezde yüksek tanımlı video

çerçevelerinin gerçek zamanlı işlenebilmesi için hareket tahmini algoritmaları ve bu

hareket tahmini algoritmalarını etkin bir şekilde gerçekleştirebilecek donanım

mimarileri önerdik. Bu algoritmalar tam arama algoritmasından çok daha az arama

noktasını arayarak tam arama algoritmasına çok yakın sonuç elde etmektedirler.

Önerilen donanım mimarilerini VHDL ile sahada programlanabilen kapı dizilerinde

gerçekledik.

Çerçeve hızı yükseltme için yapılan hareket tahmininin ardışık çerçeveler

arasındaki gerçek hareketi bulması gereklidir. Ardışık çerçeveler arasındaki gerçek

hareketi bulabilmek için blok eşleştirmeli hareket tahmininin elde ettiği hareket vektörü

alanı vektör ortanca süzgeci kullanılarak düzeltilir. Ancak, vektör ortanca süzgeçlerinin

gerçek zamanda gerçeklenmeleri gerektirdikleri yüksek işlem miktarı nedeniyle zordur.

Bu yüzden, bu tezde veri tekrar kullanımı yöntemiyle ve vektör alanındaki

benzerliklerin incelenmesiyle vektör ortanca süzgeçlerinin gerektirdikleri işlem

miktarını azaltan teknikler önerdik. Ayrıca, vektör alanındaki benzerliklerin

incelenmesiyle işlem miktarını azaltan tekniği de gerçekleyen etkin bir vektör ortanca

süzgeci donanımı tasarlayıp sahada programlanabilen kapı dizilerinde gerçekledik.

Hareket tahmini tabanlı çerçeve hızı yükseltme hareket vektörlerini kullanarak

yeni çerçevelerin sentezlenmesini gerektirmektedir. Çerçeve sentezleme algoritmaları

da yüksek miktarda işlem gerektirmektedirler. Bu yüzden, bu tezde çerçeve sentezleme

algoritmalarının gerçek zamanda gerçeklenmelerini sağlayacak düşük maliyetli

uyarlanır bir donanım mimarisi önerdik. Önerilen donanım mimarisi her blok için farklı

bir çerçeve sentezleme algoritması kullanabilmektedir. Önerilen donanım mimarisini

VDHL ile düşük maliyetli sahada programlanabilen kapı dizilerinde gerçekledik.

 VI

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor Dr. İlker Hamzaoğlu. I appreciate his

guidance during this thesis.

I want to thank Dr. H. Fatih Ugurdağ as well for his help and valuable feedback

throughout the thesis.

I am grateful to Halil Kükner and Abdülkadir Akın for their significant

contributions. We worked together for almost one year and for the first time I had the

chance to lead a team.

I want to thank TÜBİTAK for their support to my thesis.

My special thanks go to Gülin Alkan.

Finally, I would like to thank to my family for their unlimited support and trust in

me, which made everything possible for me.

 VII

TABLE OF CONTENTS

INTRODUCTION .. 15

MOTION ESTIMATION ALGORITHMS .. 20

2.1 The Full Search Algorithm ... 23

2.2 Fast Search Motion Estimation Algorithms .. 24

2.3 The Three Dimensional Recursive Search Algorithm 32

HEXAGON BASED MOTION ESTIMATON ALGORITHM AND HARDWARE

ARHITECTURES FOR ITS IMPLEMENTATION .. 35

3.1. Hexagon Based Motion Estimation Algorithm .. 35

3.2. Generic Motion Estimation Hardware Architectures 44

3.3. Systolic Motion Estimation Hardware Architecture 54

DYNAMICALLY VARIABLE STEP SEARCH MOTION ESTIMATION

ALGORITHMS AND A HARDWARE ARCHITECTURE FOR THEIR

IMPLEMENTATION ... 59

4.1 Dynamically Variable Step Search Motion Estimation Algorithm 60

4.2 Reconfigurable Motion Estimation Hardware Architecture 65

4.3 Recursive Dynamically Variable Step Search Motion Estimation Algorithm74

COMPUTATION REDUCTIONS FOR VECTOR MEDIAN FILTERING 82

5.1 Computation Reductions for Vector Median Filtering 88

5.1.1 Data-Reuse Technique ... 88

5.1.2 Spatial Correlations Technique ... 91

5.2 Vector Median Filtering Hardware Architecture 100

FRAME INTERPOLATION HARDWARE .. 104

6.1 Frame Interpolation Algorithms ... 107

6.2 Reconfigurable Frame Interpolation Hardware Architecture 113

CONCLUSIONS .. 120

REFERENCES ... 123

 VIII

LIST OF FIGURES

Figure 1.1 The FRC process... 15

Figure 2.1 BM ME ... 21

Figure 2.2 A BM ME example and the resulting MVF ... 21

Figure 2.3 Search locations of the FS algorithm for (±4, ±4) search range 24

Figure 2.4 The TSS algorithm .. 25

Figure 2.5 The 2D-LOGS algorithm .. 25

Figure 2.6 Search locations of the first step of the NTSS algorithm 26

Figure 2.7 Search locations of the first and second steps of the NTSS algorithm 27

Figure 2.8 The FSS algorithm .. 28

Figure 2.9 The BBGDS algorithm ... 28

Figure 2.10 The DS algorithm (a) LDSP, (b) SDSP .. 29

Figure 2.11 Search locations of the DS algorithm for the next step 29

Figure 2.12 The HEXBS algorithm (a) coarse pattern, (b) fine pattern 30

Figure 2.13 Search locations of the HEXBS algorithm ... 30

Figure 2.14 The ARPS algorithm .. 31

Figure 2.15 The ADCS algorithm .. 31

Figure 2.16 The FTS algorithm .. 32

Figure 2.17 Spatial and temporal neighbors for the 3D-RS algorithm 33

Figure 2.18 Candidate MV set ... 34

Figure 3.1 Some of the search locations of 32x16 pattern ... 36

Figure 3.2 Search locations of 10x9 pattern... 37

Figure 3.3 Search locations of 12x12 pattern... 37

Figure 3.4 Search locations of 14x15 pattern... 38

Figure 3.5. Fine search patterns: (a) plus, (b) side, (c) double cross 38

Figure 3.6 Improvement of the 10x9 pattern over HEXBS (FD = 1) 41

Figure 3.7 Improvement of the 10x9 pattern over HEXBS (FD = 2) 42

Figure 3.8 Improvement of the 12x12 pattern over HEXBS (FD = 3) 43

Figure 3.9 Block diagram of processing elements: (a) PEI , (b) PEII 46

Figure 3.10 Block diagram of the implementation type I .. 46

Figure 3.11 Block diagram of the implementation type II ... 47

Figure 3.12 16x8 generic architecture .. 48

Figure 3.13 16x6 generic architecture .. 48

Figure 3.14 16x4 generic architecture .. 49

Figure 3.15 16x2 generic architecture .. 49

Figure 3.16 Data layout in BRAMs ... 51

Figure 3.17 Ten byte rotate left operation done by the horizontal shifter.................. 51

Figure 3.18 Six line rotate left operation done by the vertical shifter 52

 IX

Figure 3.19 Top-level block diagram of the systolic architecture 54

Figure 3.20 Datapath of the systolic architecture... 55

Figure 3.21 Search locations of the proposed HEXBS patterns 56

Figure 3.22 Pixel organization in BRAMs of the systolic architecture 57

Figure 3.23 Rotate amounts ... 58

Figure 4.1 Search pattern A1 ... 61

Figure 4.2 Search pattern A3 ... 62

Figure 4.3 The pseudo code of the DVSS algorithm ... 63

Figure 4.4 Top-level block diagram ... 65

Figure 4.5 Reconfigurable systolic PE array.. 67

Figure 4.6 Shifting in PE array (a) 1 pixel, (b) 2 pixels ... 67

Figure 4.7 Memory organization.. 69

Figure 4.8 Multiplexing unit .. 70

Figure 4.9 Main large pattern ... 75

Figure 4.10 Pseudo code of the RDVSS algorithm ... 77

Figure 4.11 Spatial neighboring MBs of MB(i,j,t) .. 78

Figure 4.12 Temporal correlation .. 78

Figure 5.1 Smoothing MVF ... 83

Figure 5.2 Current frame and its MVF .. 83

Figure 5.3 MVF (a) and smoothed MVF (b).. 83

Figure 5.4 M-Ordering based VMF (a) input, (b) output ... 84

Figure 5.5 3x3 Filtering windows .. 88

Figure 5.6 The distances between vector 3 and other vectors in three consecutive

filtering windows ... 89

Figure 5.7 Top-level block diagram of the VMF hardware 100

Figure 5.8 Block diagram of the VMF datapath .. 102

Figure 5.9 Block diagram of the weighting and minimum selector module 102

Figure 6.1 An example FRC system .. 105

Figure 6.2 MVs required to interpolate the current MB(i,j) 106

Figure 6.3 The block diagram of SMF ... 108

Figure 6.4 The block diagram of DMF .. 108

Figure 6.5 Frames at consecutive time instances (a) t-1, (b) t, (c) t+1..................... 110

Figure 6.6 Interpolated frames using MVs obtained by FS (a) LI, (b) MCA, (c) SMF,

(d) DMF, (e) SS, (f) CMF .. 111

Figure 6.7 Interpolated frames using MVs obtained by DVSS (a) MCA, (b) SMF,

(c) DMF, (d) SS, (e) CMF .. 112

Figure 6.8 Top-level hardware architecture ... 113

Figure 6.9 On-chip memory and datapath.. 114

Figure 6.10 Data stored in the on-chip memory .. 114

Figure 6.11 MB schedule ... 115

 X

Figure 6.12 Processing element ... 116

Figure 6.13 Soft switching module .. 117

Figure 6.14 Median module ... 118

 XI

LIST OF TABLES

Table 3.1 MAD results for 32x16 pattern (FD = 1) ... 39

Table 3.2 MAD results for 32x16 pattern (FD = 2) ... 39

Table 3.3 MAD results for 32x16 pattern (FD = 3) ... 39

Table 3.4 MAD results for 10x9 pattern (FD = 1) ... 39

Table 3.5 MAD results for 10x9 pattern (FD = 2) ... 39

Table 3.6 MAD results comparison (FD = 1) .. 41

Table 3.7 MAD results comparison (FD = 2) .. 42

Table 3.8. MAD results comparison (FD = 3) ... 43

Table 3.9 Total number of search locations for hundred frames (FD = 1) 44

Table 3.10 Total number of search locations for hundred frames (FD = 2) 44

Table 3.11 Trade-off between implementation types I and II 47

Table 3.12 Comparison of generic architectures for various block sizes 49

Table 3.13 Comparison of horizontal shifters for various generic architectures 49

Table 3.14 Comparison of vertical shifters for various generic architectures 50

Table 3.15 Pipelining in the generic hardware architecture 53

Table 3.16 Search patterns ... 55

Table 3.17 Data flow through the systolic PE array .. 56

Table 4.1 Several search patterns ... 61

Table 4.2 MAD results for fast search algorithms ... 64

Table 4.3 MAD results for proposed search algorithms .. 64

Table 4.4 Dataflow through the reconfigurable systolic PE array 68

Table 4.5 Output of the multiplexing unit for different pixel locations 70

Table 4.6 Performance of the proposed hardware for several search patterns 72

Table 4.7 Performance of the proposed hardware for the DVSS algorithm 72

Table 4.8 Comparison of ME hardware architectures ... 74

Table 4.9 Search patterns used in the RDVSS algorithm .. 75

Table 4.10 MAD results ... 80

Table 4.11 Average number of search locations per MB... 80

Table 5.1 Comparison of distance metrics ... 85

Table 5.2 Required arithmetic operations without proposed technique 90

Table 5.3 Required arithmetic operations with proposed technique 91

Table 5.4 Comparison overhead of spatial correlation techniques 93

Table 5.5 Store overhead of spatial correlation techniques 93

Table 5.6 Computation reductions for 3x3 VMF ... 94

Table 5.7 Computation reductions by modified correlation techniques for 3x3 VMF

 .. 94

Table 5.8 Computation reductions for 3x3 VMF using “dif” 95

 XII

Table 5.9 Computation reductions by modified correlation techniques for 3x3 VMF

using “dif” .. 95

Table 5.10 Difference between the computation reductions achieved by the modified

and the original spatial correlations techniques ... 96

Table 5.11 Computation reductions for 5x5 VMF ... 97

Table 5.12 Computation reductions for 7x7 VMF ... 97

Table 5.13 Average computation reductions ... 98

Table 5.14 SAMND results .. 99

Table 5.15 SND results .. 99

Table 6.1 PSNR results of the FS algorithm .. 109

Table 6.2 PSNR results of DVSS algorithm .. 109

 XIII

ABBREVIATIONS

2D-LOGS Two Dimensional Logarithmic Search

3D-RS Three Dimensional Recursive Search

ADCS Adaptive Dual Cross Search

AMCI Adaptive Motion Compensated Interpolation

APDS Adaptive Predicted Direction Search

ARPS Adaptive Rood Pattern Search

ASIC Application Specific Integrated Circuit

ASIP Application Specific Instruction Set Processor

ASNMV Average Spatially Neighboring Motion Vector

BBGDS Block Based Gradient Descent Search

BDM Block Distortion Measure

BM Block Matching

BRAM Block Random Access Memory

CIF Common Intermediate Format

CLB Configurable Logic Block

CMF Cascaded Median Filtering

DCS Dual Cross Search

DMF Dynamic Median Filtering

DS Diamond Search

DVD Digital Versatile Disc

DVSS Dynamically Variable Step Search

FD Frame Distance

FPGA Field Programmable Gate Array

FPS Frames per Second

FRC Frame Rate Up-Conversion

FS Full Search

FSS Four Step Search

FTS Flexible Triangle Search

GOPS Giga Operations per Second

HD High Definition

HDTV High Definition Television

HEXBS Hexagon Based Search

 XIV

LCD Liquid Crystal Display

LDSP Large Diamond Search Pattern

LI Linear Interpolation

LNMV Left Neighboring Motion Vector

LUT Look-Up Table

MAD Mean Absolute Difference

MB Macroblock

MC Motion Compensation

MCA Motion Compensated Averaging

ME Motion Estimation

MPEG Motion Picture Experts Group

MSE Mean Square Error

MV Motion Vector

MVF Motion Vector Field

NTSS New Three Step Search

PE Processing Element

PSNR Peak Signal-to-Noise Ratio

RAM Random Access Memory

RDVSS Recursive Dynamically Variable Step Search

RGB Red Green Blue color space

RTL Register Transfer Level

TSS Three Step Search

SAD Sum of Absolute Differences

SAMND Sum of Minimum Neighboring Absolute Differences

SD Spatial Distance

SDSP Small Diamond Search Pattern

SMF Static Median Filtering

SND Sum of Neighboring Differences

SS Soft Switching

ST Sum of Absolute Differences Threshold

TD Spatial Distance

VHDL Very High Speed Integrated Circuit Hardware Description Language

VMF Vector Median Filter

WAMCI Weighted Adaptive Motion Compensated Interpolation

 15

CHAPTER 1

INTRODUCTION

Frame Rate Up-Conversion (FRC) is the conversion of a lower frame rate video

signal to a higher frame rate video signal. FRC is used in many devices like televisions,

Digital Versatile Disc (DVD) players, portable DVD players, and mobile phones [1].

Recent Liquid Crystal Display (LCD) panels have a frame rate up to 240 Hz, whereas

movies are usually recorded at 24 Hz, 25 Hz or 30 Hz and the broadcasted video

material is either 50 Hz or 60 Hz. Since the input source and the display have different

frame rates, conversion between the received input signal and the output signal sent to

the display is necessary. FRC can be done by interpolating a new frame between every

two consecutive original frames like in 25 Hz to 50 Hz conversion, and it can be done

by interpolating three new frames between every two consecutive original frames like in

25 Hz to 100 Hz conversion. FRC for 1:4 conversion ratio is illustrated in Figure 1.1. In

this figure, F(t-1), F(t), F(t+1) are the original frames and the dashed frames are the

interpolated frames.

Figure 1.1 The FRC process

 16

FRC can be implemented with simple interpolation techniques or it can be

implemented with Motion Estimation (ME) based techniques which require more

hardware resources [1]. The quality of the displayed video depends on the performance

of the FRC. FRC implemented by simple techniques degrades the quality by creating

motion judder and motion blur effects which are the results of the sample and hold

nature of the displays [2]. ME based FRC is necessary in order to overcome these

artifacts. ME is computationally the most intensive part of video compression and video

enhancement systems [3, 4]. Among the Block Matching (BM) ME algorithms, Full

Search (FS) achieves the best performance since it searches all search locations in a

given search range. However, its computational complexity, especially for the recently

available High Definition Television (HDTV) video formats (1920x1080 pixels), is

very high, while the Peak Signal-to-Noise-Ratio (PSNR) obtained by fast search

algorithms is low.

ME for FRC requires finding the true motion among consecutive frames. In order

to find the true motion, Vector Median Filter (VMF) is used to smooth the Motion

Vector Field (MVF) obtained by BM ME. The output of the VMF is chosen as the

vector that minimizes the sum of distances to all the other vectors [5]. If the current

MV, which is in the middle of the VMF window, is not correlated with its neighboring

MVs, then the current MV will be replaced with the output of the VMF. However,

VMFs are difficult to implement in real-time due to their high computational

complexity [6]. ME based FRC requires interpolation of frames using the motion

vectors found by ME. Frame interpolation algorithms also have high computational

complexity.

Therefore, in this thesis, we proposed new ME algorithms for real-time processing

of HD video and designed efficient hardware architectures for implementing these ME

algorithms. These algorithms perform very close to FS by searching much fewer search

locations than the FS algorithm. In addition, we proposed several techniques to reduce

the computational complexity of VMFs by using data reuse methodology and by

exploiting the spatial correlations in the vector field. In addition, we designed an

efficient VMF hardware including the computation reduction techniques exploiting the

spatial correlations in the motion vector field. Finally, we proposed a low cost hardware

 17

architecture for real-time implementation of frame interpolation algorithms. The

proposed hardware architecture is reconfigurable and it allows adaptive selection of

frame interpolation algorithms for each Macroblock (MB).

We first proposed a ME algorithm, which is a generalization of the Hexagon-

Based Search (HEXBS) algorithm, and two hardware architectures for its

implementation [7]. These architectures are named as the generic architecture and the

systolic architecture. The simulation results showed that the Mean Absolute Difference

(MAD) performances obtained by the proposed HEXBS algorithm are better than the

MAD performances obtained by other fast search algorithms. Both hardware

architectures are implemented in Very High Speed Integrated Circuit Hardware

Description Language (VHDL). They can run at 144 MHz on a Xilinx XC3S1200E-5

FPGA and process 25 1920x1080 frames per second (fps) for a (±32,±16) pixel search

range. Various fast search algorithms can be implemented using the generic hardware

architecture. The main disadvantage of the generic architecture is that it uses 80 Block

Random Access Memories (BRAMs). The systolic architecture is designed to

efficiently implement proposed HEXBS algorithm. The systolic architecture uses only

16 Block RAMs. A novel data-reuse method is used in this architecture to reduce the

number of internal memory accesses, and it has a low control overhead because of its

regular data flow.

We proposed Dynamically Variable Step Search (DVSS) ME algorithm and a

reconfigurable systolic ME hardware architecture for its implementation [8, 9]. This

architecture is implemented in VHDL and mapped to a Xilinx XC3S1200E-5 FPGA.

We then proposed Recursive Dynamically Variable Step Search (RDVSS) ME

algorithm [10]. The proposed DVSS and RDVSS algorithms work on a search range of

(±48, ±24) and (±64, ±64) pixels, respectively. An early search termination mechanism

based on a Sum of Absolute Differences (SAD) threshold is implemented in these

algorithms in order to trade off speed and quality. DVSS algorithm implemented by the

proposed reconfigurable systolic ME hardware architecture requires 467 clock cycles to

find the Motion Vector (MV) of a 16x16 MB on the average when the early search

termination threshold is set to 256. For this threshold value, the proposed hardware on

the average can process 34.3 HD fps. The FS algorithm checks 16641 search locations

in a search range of (±64, ±64) pixels, whereas the RDVSS algorithm on the average

 18

checks only 418 search locations when the early search termination threshold is set to

1024. On the other hand, MAD performance of the RDVSS algorithm on the average is

only 14.7% lower than MAD performance of the FS algorithm when the early search

termination threshold is set to 256. Performing that close to the FS algorithm for such a

large search range is very important.

We proposed two techniques to reduce the computational complexity of 1-norm

VMF for FRC by using data reuse methodology and by exploiting spatial correlations in

the MVF [11]. Since 3x3 window size is used in FRC papers in the literature, we also

used this window size. However, the proposed techniques are scalable to any window

size. Data reuse technique stores the sum of 1-norm distances between the vectors in a

filtering window and uses them for the next filtering window instead of computing them

again. The spatial correlations based techniques check the spatial correlations between

neighboring MVs and avoid calculating the previously calculated values again. In

addition, we proposed an efficient VMF hardware architecture implementing the

proposed computation reduction techniques exploiting the spatial correlations in the

MVF. To the best of our knowledge, a VMF hardware implementing these techniques is

not presented in the literature. The proposed hardware is implemented for a 3x3 window

size, but it is scalable to any window size. The proposed hardware is implemented in

Verilog HDL, and mapped to a low cost Xilinx XC3S400A-5 FPGA. It consumes 1426

slices and works at 145 MHz. It can process more than 94 HD fps.

We finally proposed a low cost reconfigurable hardware architecture for the

interpolation of HD frames [12]. The proposed hardware architecture implements

Linear Interpolation (LI), Static Median Filtering (SMF), Dynamic Median Filtering

(DMF), Soft Switching (SS) and Cascaded Median Filtering (CMF) frame interpolation

algorithms and it allows adaptive selection of these algorithms for each MB. This

hardware architecture is implemented in VHDL and mapped to a low cost Xilinx

XC3SD3400A-4 FPGA. The implementation results show that the proposed hardware

can run at 101 MHz on this FPGA and it consumes 32 BRAMs and 15592 slices.

The rest of this thesis is organized as follows. Chapter 2 explains FS ME

algorithm and various fast search ME algorithms. Chapter 3 explains proposed HEXBS

ME algorithm, and the generic and systolic hardware architectures proposed for its

 19

implementation. Chapter 4 explains proposed DVSS and RDVSS ME algorithms, and

the proposed reconfigurable systolic hardware architecture. Chapter 5 explains VMFs,

the proposed techniques to reduce their computational complexity, and the proposed

VMF hardware architecture. Chapter 6 presents the proposed hardware architecture for

frame interpolation. Chapter 7 concludes the thesis.

 20

CHAPTER 2

MOTION ESTIMATION ALGORITHMS

ME is the part that has the highest computational complexity in video

compression and video enhancement systems. ME is used to reduce the bit-rate in video

compression systems by exploiting the temporal redundancy between successive

frames, and it is used to enhance the quality of displayed images in video enhancement

systems by extracting the true motion information. ME is used in video compression

standards such as ITU-T H.261/263/264 and ISO MPEG-1/2/4 [3,4], and in video

enhancement algorithms such as FRC, de-interlacing, de-noising and super resolution.

ME examines the movement of objects in an image sequence to obtain MVs

representing the estimated motion [3,4]. Many different ME techniques are proposed in

the literature. These techniques can be categorized as pixel based ME, object based ME,

and block based ME. Pixel based techniques require very high computational

complexity and they are not suitable for real-time applications. Object based techniques

reduce the computational complexity significantly but they cannot obtain high quality

results. Block based ME uses BM which is suitable for hardware implementation and

can obtain high quality results. Therefore, BM is the most preferred technique.

BM partitions current frame into non-overlapping NxN rectangular blocks and

tries to find a block from a reference frame in a given search range that best matches the

current block with respect to a Block Distortion Measure (BDM) [3,4]. SAD is the most

preferred BDM because of its suitability for hardware implementation. An SAD value is

computed with three operations; difference, absolute value, and addition. For NxN

block size, the SAD value of a search location defined by the MV d(dx,dy) is calculated

as in (2.1), where c(x,y) and r(x,y) represent current and reference frames, respectively.

 21

The coordinates (i,j) denote the offset locations of current and reference blocks. Since a

MV shows the relative motion of the current block in the reference frame, MVs are

specified in relative coordinates. If the location of the best matching block in the

reference frame is (x+u, y+v), then the corresponding MV is (u,v). Figure 2.1 shows the

BM ME process and Figure 2.2 shows a BM ME example and the resulting MVF.













1

0

1

0

),(),()(
N

x

N

y

yx djydixrjyixcdSAD (2.1)

Figure 2.1 BM ME

Figure 2.2 A BM ME example and the resulting MVF

In ME, there is a tradeoff between the number of search locations searched and

the resulting PSNR. The other two commonly used quality metrics are MAD and Mean

 22

Square Error (MSE). The formulas used to calculate the MAD, MSE, and PSNR are

given in (2.2), (2.3), and (2.4), respectively. In these equations, the coordinates (u,v)

denote the x and y components of the MV.

 MAD (u,v) = 









1

0

1

0
2

),(),(
1 N

y

N

x

vyuxRyxC
N

 (2.2)

MSE (u,v) =  
21

0

1

0
2

),(),(
1










N

y

N

x

vyuxRyxC
N

 (2.3)

PSNR (u,v) = 








MSE

2

10

255
log10 (2.4)

The FS algorithm gives the best PSNR results, because it finds the reference block

that best matches the current block by computing the SAD values for all search

locations in a given search range. The computational complexity of the FS algorithm is

very high, especially for the recently available consumer electronic devices such as HD

digital video broadcasting and high resolution & high frame rate flat panel displays.

Because of the large frame sizes in these applications, there are large motions between

successive frames and this requires a larger search range to find the best MV.

Several fast search ME algorithms are developed for low bit-rate applications like

video conferencing and video phone, which use small frame sizes and require small

search ranges. These algorithms try to approach the PSNR of the FS algorithm by

computing the SAD values for fewer search locations in a given search range. The most

successful fast search ME algorithms are Three Step Search (TSS) [13], Two

Dimensional Logarithmic Search (2D-LOGS) [14], New Three Step Search (NTSS)

[15], Four Step Search (FSS) [16], Block-Based Gradient Descent Search (BBGDS)

[17], Diamond Search (DS) [18], HEXBS [19], Adaptive Rood Pattern Search (ARPS)

[20], Adaptive Dual Cross Search (ADCS) [21] and Flexible Triangle Search (FTS)

[22].

 23

Fast search ME algorithms perform very well for low bit-rate applications such as

video phone and video conferencing [23]. In most of the low bit-rate videos, fast and

complex movements are seldom, and nearly 80% of the blocks can be regarded as

stationary or quasi-stationary, therefore most of the MVs can be found in a search range

of (±5,±5) pixels. However, fast search ME algorithms do not produce satisfactory

results for the recently available consumer electronic devices such as HD digital video

broadcasting and high resolution & high frame rate flat panel displays, because of the

larger movements between successive frames in these videos.

ME for FRC requires finding the true motion among consecutive frames. The true

motion is the projection of the physical three dimensional motion on to the two

dimensional image space. In order to minimize the amount of information to be

transmitted, block based video coding standards encode the displaced difference block

instead of the original block. Although BM ME algorithms finding the minimal residue

are good at removing temporal redundancies, they are not sufficient alone for finding

the true motion.

2.1 The Full Search Algorithm

Since the FS algorithm computes the SAD value for each search location in the

search range, it is computationally the most expensive BM ME algorithm. There are (2p

+ 1)
2
 search locations in a (±p, ±p) search window. Figure 2.3 shows the search

locations of the FS algorithm for (±4, ±4) search range. For this search range, there are

(2x4 + 1)
2
 = 81 search locations. Calculating the SAD value for a search location for an

MxN MB requires (2p+1)
2
 x MN x 3 operations. The operations per second required for

calculating the SAD values for an IxJ frame size and an F fps frame rate is given in

(2.5). For a 16x16 MB size, 1920x1080 pixels frame size, and 25 fps frame rate, the FS

algorithm requires 34.99 GOPS (Giga Operations Per Second) and 149.45 GOPS when

p is equal to 7 and 15, respectively.

 (2.5)

32)12(xNMxp
NM

FJI


 24

Figure 2.3 Search locations of the FS algorithm for (±4, ±4) search range

2.2 Fast Search Motion Estimation Algorithms

TSS is one of the oldest fast search ME algorithms [13]. As shown in Figure 2.4,

TSS searches the best MV in a coarse to fine search pattern. In the first step, nine search

locations including the origin are evaluated and the search location giving the minimum

SAD is selected as the center of the next search step. In the second step, the distance

between search locations is reduced by half. The third step searches the area centered at

the location giving the minimum SAD in the second step and the distance between

search locations is shortened by half again.

 25

Figure 2.4 The TSS algorithm

The 2D-LOGS [14] algorithm is similar to the TSS algorithm. As shown in Figure

2.5, the 2D-LOGS algorithm searches the MV by successively moving towards the

location giving the minimum SAD using a shrinking step size. This algorithm starts

with a pre-determined step size “s” and checks five search locations in the first step. If

the minimum SAD is found at the center search location, the step size is reduced to

“s/2”. Otherwise, the search center is set to the search location giving the minimum

SAD and the search continues with step size “s”. Whenever the step size becomes equal

to one, as the final search step, the 2D-LOGS algorithm checks the neighboring search

locations of the search location giving the minimum SAD in the previous step.

Figure 2.5 The 2D-LOGS algorithm

 26

The NTSS algorithm improves TSS by using a center biased search scheme and

reduces the computational complexity by using an early termination technique [15]. As

shown in Figure 2.6, NTSS uses eight additional search locations around the center

search location in the first step. Therefore, better results are obtained for quasi-

stationary blocks. In addition, an early termination technique is used for stationary and

quasi-stationary blocks. If the minimum SAD in the first step is found at the center

search location, the search is finished. This is called as the first step stop. If the

minimum SAD in the first step is found at one of the first tier neighbors of the search

center, then the second step is performed for the first tier neighbors of this search

location and the search is finished. This is called as the second step stop. The second

step stop technique uses three or five new search locations in the second step. Figure 2.7

(a) and (b) show example cases where three and five additional search locations are

used. If the minimum SAD after the first step is found at one of the original eight search

locations of the TSS algorithm, the search continues as the TSS algorithm.

Figure 2.6 Search locations of the first step of the NTSS algorithm

 27

Figure 2.7 Search locations of the first and second steps of the NTSS algorithm

The FSS algorithm also uses a center biased search scheme and an early

termination technique [16]. The FSS algorithm performs better than the TSS algorithm

and obtains similar results with the NTSS algorithm. When compared with the NTSS

algorithm, the FSS algorithm reduces the worst case computational complexity from 33

to 27 search locations. As shown in Figure 2.8, step sizes for the first, second, and third

steps of the FSS algorithm are two pixels and step size for the last step is one pixel. In

the first step, nine search locations are checked. If the minimum SAD is found at the

center search location, the FSS algorithm continues with the fourth step. If the

minimum SAD is found at one of the eight neighboring search locations of the center

search location, the FSS moves the search center to this location and continues with the

second step. If the minimum SAD in the second step is found at the center search

location, the FSS algorithm continues with the fourth step. Otherwise, it continues with

third step. After the third step, the FSS algorithm continues with the fourth step. In the

second and third steps, three or five new search locations are checked based on the

search location giving the minimum SAD in the previous step.

 28

Figure 2.8 The FSS algorithm

As shown in Figure 2.9, the BBGDS algorithm starts by performing FS in a

search range of (±1, ±1) pixels around the center search location [17]. If the minimum

SAD is found at the center search location, the search finishes. If the minimum SAD is

found at one of the other search locations, it moves the center search location to this

location and performs FS. Therefore, in each step, three or five new search locations are

checked depending on the search location giving the minimum SAD in the previous

step.

Figure 2.9 The BBGDS algorithm

 29

The DS algorithm is similar to the FSS algorithm. In the DS algorithm, the search

pattern is changed from a square to a diamond, and there is no limit on the number of

steps performed [18]. The DS algorithm obtains better PSNR results than TSS, 2D-

LOGS, NTSS and FSS algorithms. Figure 2.10 shows the two different search patterns,

the Large Diamond Search Pattern (LDSP) and the Small Diamond Search Pattern

(SDSP), used by the DS algorithm. LDSP is used in all the steps except the last step,

SDSP is used in the last step. As shown in Figure 2.11, the number of search locations

checked in the next step, which is either three or five, depends on the position of the

search location giving the minimum SAD in the current step. If in the current step the

minimum SAD is found at the center search location, then the DS algorithm performs

the last step.

Figure 2.10 The DS algorithm (a) LDSP, (b) SDSP

Figure 2.11 Search locations of the DS algorithm for the next step

The HEXBS algorithm uses two search patterns, coarse pattern and fine pattern

[19]. Figure 2.12 (a) and (b) show these coarse and fine search patterns. Coarse search

pattern is used in all the steps except the last step, fine search pattern is used in the last

step. If the search location giving the minimum SAD is found at the center of the

hexagon, the algorithm performs the fine search pattern. As shown in Figure 2.13, when

 30

the coarse search pattern is used in the next step, only three new search locations are

checked. When the fine search pattern is used in the next step, four neighboring search

locations of the center search location are checked.

Figure 2.12 The HEXBS algorithm (a) coarse pattern, (b) fine pattern

Figure 2.13 Search locations of the HEXBS algorithm

The ARPS algorithm uses a rood shaped search pattern and the MV of the left

neighboring MB which is called as predicted MV [20]. The predicted MV and the

search pattern of the ARPS algorithm are shown in Figure 2.14. The initial length of the

rood is determined as the maximum of the absolute values of x and y coordinates of the

predicted MV. The four arms of the rood have equal length. In the first step, the ARPS

algorithm checks the search location pointed by the predicted MV, search locations on

the rood pattern, and the center search location. The search continues by forming a new

rood pattern around the search location giving the minimum SAD in the current step,

and the length of the rood is reduced by half in each step. The ARPS algorithm finishes

if the minimum SAD obtained in a step is less than a pre-determined threshold or after

the step with rood length one.

 31

Figure 2.14 The ARPS algorithm

As shown in Figure 2.15, in the first search step, the ADCS algorithm checks the

search locations pointed by the MVs of the left neighboring MB and the upper

neighboring MB, and the center search location [21]. The search location giving the

minimum SAD is selected as the starting location for the dual cross search. If the

minimum SAD is below a threshold value, the search finishes. Otherwise, a 2x2 cross

pattern around the starting location is searched. If the minimum SAD is found at the

cross center, the search finishes and the cross center is selected as the MV. Otherwise, a

4x4 cross pattern around the search location giving the minimum SAD is searched. This

4x4 cross search pattern is repeated until the minimum SAD is found at the cross center.

In the last search step, the ADCS algorithm checks three intermediate search locations

between the search location on the current 4x4 cross pattern giving the minimum SAD

and the current 4x4 cross center.

Figure 2.15 The ADCS algorithm

 32

The FTS algorithm searches the search locations on different size triangles [22].

The triangles with larger sizes are used to perform coarse search and the ones with

smaller sizes are used to perform fine search. The level of a triangle shows its size, and

the FTS algorithm switches between triangles with different levels. Figure 2.16 shows

the search locations forming level 0, 1, and 2 triangles.

Figure 2.16 The FTS algorithm

2.3 The Three Dimensional Recursive Search Algorithm

The 3D-RS algorithm is one of the most popular true ME algorithms in the

literature [24]. The 3D-RS algorithm exploits the correlation of the MVs of neighboring

MBs to find the true motion of the current MB. Figure 2.17 shows the neighboring MBs

used by the 3D-RS algorithm.

 33

Figure 2.17 Spatial and temporal neighbors for the 3D-RS algorithm

The 3D-RS algorithm is based on two assumptions. The first assumption is that

objects are larger than MBs, and the second assumption is that objects have inertia.

Therefore, it uses a candidate set that contains the MVs of the spatial and temporal

neighboring MBs shown as “S” and “T” in Figure 2.17 [24]. When the spatial

neighboring MB is not available, temporal neighboring MB is used. At initialization, all

the MVs are set to zero. In addition to the MVs of the spatial and temporal neighboring

MBs, an additional update set is used for permitting small deviations from the original

candidate set [24]. A pseudo random update vector is added to the MV of one of the

spatial neighboring MBs, and this is used as an additional candidate [25]. The candidate

MV set of the 3D-RS algorithm is shown in Figure 2.18. The random update vector,

shown as U


(r,t), is used for obtaining the candidate MV C3, and it is selected from the

Update Set (SU


). The computational complexity of the 3D-RS algorithm is low,

because it checks a few search locations for each MB. The main drawback of the 3D-RS

algorithm is its recursive nature. It converges to the true motion a few frames after the

initialization.

 34





































































































































































































































































0

3
,

0

3
,

2

0
,

2

0
,

0

1
,

0

1
,

1

0
,

1

0
,

0

0

1,
2

2

1,
2

2

),(,),(,

,

,

0

0
0

5

4

3

2

1

SU

t
N

N
rdC

t
N

N
rdC

trUt
N

N
rdvtrUt

N

N
rdC

t
N

N
rdC

t
N

N
rdC















Figure 2.18 Candidate MV set

 35

CHAPTER 3

HEXAGON BASED MOTION ESTIMATON ALGORITHM AND

HARDWARE ARHITECTURES FOR ITS IMPLEMENTATION

Since the computational complexity of the FS algorithm is too high and the

performances of fast search algorithms are not enough for the recently available HD

video formats, we proposed an ME algorithm [7], which is a generalization of the

HEXBS algorithm [19], and two hardware architectures for its implementation [7].

These architectures are named as the generic architecture and the systolic architecture.

Many hardware architectures for the FS algorithm are proposed in the literature.

However, only a small number of hardware architectures for fast search ME algorithms

are proposed. To the best of our knowledge, no hardware architecture is presented for

the HEXBS ME algorithm in the literature.

3.1. Hexagon Based Motion Estimation Algorithm

The proposed HEXBS ME algorithm consists of main and fine search patterns [7].

The search location of the main search pattern giving the minimum SAD is selected as

the center for the fine search pattern. Main search patterns consist of all the search

locations that can be checked by the HEXBS algorithm during several iterations in

horizontal and vertical directions. For example, 32x16 main search pattern consists of

all the search locations that can be checked by the HEXBS algorithm during 16

iterations in the horizontal direction and 8 iterations in the vertical direction. Figure 3.1

shows some of the search locations of 32x16 pattern. The numbers in Figure 3.1

represent iterations in which these search locations would be checked by the HEXBS

algorithm.

 36

11 10 9 8 8 8 8 8 8 8 8 8 9 10 11

 10 9 8 7 7 7 7 7 7 7 7 8 9 10

10 9 8 7 6 6 6 6 6 6 6 7 8 9 10

 9 8 7 6 5 5 5 5 5 5 6 7 8 9

9 8 7 6 5 4 4 4 4 4 5 6 7 8 9

 8 7 6 5 4 3 3 3 3 4 5 6 7 8

8 7 6 5 4 3 2 2 2 3 4 5 6 7 8

 7 6 5 4 3 2 1 1 2 3 4 5 6 7

7 6 5 4 3 2 1 1 1 2 3 4 5 6 7

 7 6 5 4 3 2 1 1 2 3 4 5 6 7

8 7 6 5 4 3 2 2 2 3 4 5 6 7 8

 8 7 6 5 4 3 3 3 3 4 5 6 7 8

9 8 7 6 5 4 4 4 4 4 5 6 7 8 9

 9 8 7 6 5 5 5 5 5 5 6 7 8 9

10 9 8 7 6 6 6 6 6 6 6 7 8 9 10

 10 9 8 7 7 7 7 7 7 7 7 8 9 10

11 10 9 8 8 8 8 8 8 8 8 8 9 10 11

Figure 3.1 Some of the search locations of 32x16 pattern

We also proposed 10x9, 12x12 and 14x15 main search patterns. The difference

between these patterns and 32x16 pattern is that these patterns have a gap of two pixels

in the vertical direction compared to the one pixel gap of 32x16 pattern, and these

patterns have less computational complexity than 32x16 pattern. Figure 3.2 shows the

search locations of 10x9 pattern. 12x12 pattern adds one more line in the upper and

lower boundaries of the search range and two more pixels in the horizontal direction.

14x15 pattern enhances the search range to ±14 pixels in the horizontal direction and to

±15 pixels in the vertical direction. 12x12 and 14x15 search patterns are shown in

Figures 3.3 and 3.4, respectively. In these figures, “o” represents the center search

location, and “x” represents the other search locations. Search patterns 10x9, 12x12,

14x15, and 32x16 have 73, 113, 159, and 553 search locations, respectively. In order to

determine the trade-off between having one pixel gap and two pixels gap between

search locations in the vertical direction, we also implemented 32x16(Y) pattern which

has two pixels gap in the vertical direction.

We used the three fine search patterns shown in Figure 3.5. Tables 3.1, 3.2, 3.3,

3.4, and 3.5 show the performances of different combinations of fine search patterns

and main search patterns for various Frame Distances (FD). FD is the gap between the

 37

frames for which the ME is done. Since increasing FD is identical to lowering the frame

rate of the video, large movements between successive frames are introduced by

increasing FD. The results show that “Double Cross” fine search pattern improves the

performance up to 1% over other fine search patterns. Therefore, we used this fine

search pattern with our main search patterns in the rest of the thesis.

 x x x x x x x x x x

x x x x x x x x x x x

 x x x x x x x x x x

x x x x x O x x x x x

 x x x x x x x x x x

x x x x x x x x x x x

 x x x x x x x x x x

 Figure 3.2 Search locations of 10x9 pattern

x x x x x x x x x x x x x

 x x x x x x x x x x x x

x x x x x x x x x x x x x

 x x x x x x x x x x x x

x x x x x x O x x x x x x

 x x x x x x x x x x x x

x x x x x x x x x x x x x

 x x x x x x x x x x x x

x x x x x x x x x x x x x

Figure 3.3 Search locations of 12x12 pattern

 38

We compared the performance of our algorithm with the performances of FS,

DS [18], and HEXBS [19] algorithms based on the MAD metric. We used “Flowers”,

“Mobile Calendar”, “Table Tennis”, “Susie”, “Spider”, and “Irobot” videos for the

simulations. Each video has 100 frames. “Spider” and “Irobot” videos, which contain

large motion between frames, are taken from “Spiderman 2” and “Irobot” movies,

respectively. The resolution of these two videos is 720x576 pixels and their frame rate

is 25 fps. The other videos are the up-scaled versions of the widely used Common

Intermediate Format (CIF) resolution benchmark videos, and they have a resolution of

704x480 pixels and a frame rate of 29 fps. The simulations are done using 8 bit

luminance data for 16x16 MB size with Matlab.

 x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x

 x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x

 x x x x x x x x x x x x x x

x x x x x x x O x x x x x x x

 x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x

 x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x

 x x x x x x x x x x x x x x

Figure 3.4 Search locations of 14x15 pattern

 x x x x x x

x 1 x x 1 x x 1 x

 x x x x x x

 (a) (b) (c)

Figure 3.5. Fine search patterns: (a) plus, (b) side, (c) double cross

 39

Table 3.1 MAD results for 32x16 pattern (FD = 1)

Algorithm
Flowers Mobile

Calendar

Table

Tennis

Susie

Plus 6.8377 11.3642 4.0670 3.0709

Side 6.8780 11.5426 4.0690 3.0823

Double Cross 6.8295 11.3217 4.0650 3.0612

Imp. of Double Cross over Plus 0.12% 0.37% 0.05% 0.32%

Imp. of Double Cross over Side 0.71% 1.91% 0.10% 0.68%

Table 3.2 MAD results for 32x16 pattern (FD = 2)

Algorithm
Flowers Mobile

Calendar

Table

Tennis

Susie

Plus 8.5085 12.0274 4.4561 3.6617

Side 8.5108 12.1349 4.4513 3.6742

Double Cross 8.4789 11.9386 4.4449 3.6496

Imp. of Double Cross over Plus 0.38% 0.74% 0.25% 0.33%

Imp. of Double Cross over Side 0.37% 1.62% 0.14% 0.67%

Table 3.3 MAD results for 32x16 pattern (FD = 3)

Algorithm
Flowers Mobile

Calendar

Table

Tennis

Susie

Plus 9.6198 12.7159 4.8755 4.3242

Side 9.6147 12.8476 4.8701 4.3348

Double Cross 9.5820 12.6338 4.8633 4.3112

Imp. of Double Cross over Plus 0.39% 0.65% 0.25% 0.30%

Imp. of Double Cross over Side 0.34% 1.66% 0.14% 0.54%

Table 3.4 MAD results for 10x9 pattern (FD = 1)

Algorithm
Flowers Mobile

Calendar

Table

Tennis

Susie

Plus 6.7892 11.5170 4.2255 3.5101

Side 6.8510 11.6879 4.2188 3.5070

Double Cross 6.7747 11.4531 4.2101 3.4742

Imp. of Double Cross over Plus 0.21% 0.55% 0.36% 1.02%

Imp. of Double Cross over Side 1.11% 2.00% 0.21% 0.94%

Table 3.5 MAD results for 10x9 pattern (FD = 2)

Algorithm
Flowers Mobile

Calendar

Table

Tennis

Susie

Plus 8.8149 13.1091 4.7517 4.6164

Side 8.8111 13.2902 4.7455 4.5996

Double Cross 8.7374 12.8067 4.7380 4.5742

Imp. of Double Cross over Plus 0.88% 2.31% 0.29% 0.91%

Imp. of Double Cross over Side 0.84% 3.64% 0.16% 0.55%

 40

The simulation results show that proposed search patterns outperform the DS and

the HEXBS algorithms. The reason for this is that our patterns are able to find the

search location giving the globally minimum SAD by checking more search locations in

the search range than the DS and the HEXBS algorithms. The performance difference

between proposed patterns and fast search algorithms increases with increased

amplitude of motion in the benchmark videos. In order to show this, the performances

of the proposed patterns are analyzed for different FDs. The simulation results of 10x9,

12x12, 14x15, 32x16 and 32x16(Y) patterns for different FDs are shown in Tables 3.6,

3.7, and 3.8. As shown in Table 3.6, when the FD is one, 10x9, 12x12, 14x15,

32x16(Y), and 32x16 patterns improve the performance of the HEXBS algorithm on the

average by 2.76%, 3.35%, 4.21%, 8.27%, and 10.11%, respectively. For videos having

almost no motion in the vertical direction, DS and HEXBS algorithms obtain 1% better

results, because DS and HEXBS algorithms have only one pixel gap between search

locations in the vertical direction, whereas proposed patterns, except 32x16 pattern,

have two pixels gap between search locations in the vertical direction. As shown in

Table 3.7, when the FD is two, 10x9, 12x12, 14x15, 32x16(Y), and 32x16 patterns

improve the performance of the HEXBS algorithm on the average by 7.46%, 8.12%,

9.19%, 8.20%, and 9.89%, respectively. When the FD is three, 12x12, 14x15,

32x16(Y), and 32x16 patterns improve the performance of the HEXBS algorithm by

11.61%, 12.94%, 14.44%, 19.72%, and 22.43%, respectively. The performance

improvements for different FDs are also shown in Figures 3.6, 3.7, and 3.8. Figure 3.6

and Figure 3.7 show the improvements of 10x9 pattern over the HEXBS algorithm

frame by frame for “Flowers” video sequence when the FD is one and two, respectively.

Figure 3.8 shows the improvement of 12x12 pattern over the HEXBS algorithm for the

“Flowers” video sequence when the FD is three.

 41

Table 3.6 MAD results comparison (FD = 1)

Algorithm Search

Range

Flowers Mobile

Calendar

Table

Tennis

Susie Spiderman Irobot

FS ±10,±9 6.59 10.95 4.07 3.17 9.29 7.58

DS ±10,±9 6.68 11.05 4.16 3.33 9.72 8.12

HEXBS ±10,±9 6.87 11.40 4.17 3.43 10.24 8.45

10x9 ±10,±9 6.77 11.45 4.21 3.47 9.34 7.69

Improvement

over HEXBS

1.39% -0.45% -0.78% -1.26% 8.73% 8.90%

FS ±12,±12 6.59 10.94 4.05 3.07 8.27 7.14

DS ±12,±12 6.68 11.05 4.15 3.26 8.98 7.79

HEXBS ±12,±12 6.86 11.40 4.16 3.32 9.33 8.04

12x12 ±12,±12 6.77 11.46 4.19 3.35 8.30 7.24

Improvement

over HEXBS

1.33% -0.54% -0.66% -0.95% 11.04% 9.90%

FS ±14,±15 6.58 10.94 4.04 3.02 7.43 6.82

DS ±14,±15 6.68 11.05 4.15 3.23 8.46 7.57

HEXBS ±14,±15 6.86 11.40 4.15 3.28 8.80 7.82

14x15 ±14,±15 6.77 11.46 4.18 3.32 7.48 6.93

Improvement

over HEXBS

1.32% -0.59% -0.61% -1.25% 14.99% 11.42%

FS ±32,±16 6.58 10.86 4.03 2.96 5.43 5.66

DS ±32,±16 6.68 11.05 4.14 3.20 7.65 6.97

HEXBS ±32,±16 6.86 11.40 4.15 3.23 7.95 7.21

32x16 ±32,±16 6.82 11.32 4.06 3.06 5.47 5.72

32x16(Y) ±32,±16 6.78 11.44 4.17 3.26 5.53 5.79

32x16’s

Improvement

over HEXBS

0.58% 0.7% 2.09% 5.43% 31.23% 20.62%

32x16(Y)’s

Improvement

over HEXBS

1.27% -0.42% -0.54% -0.82% 30.46% 19.67%

Figure 3.6 Improvement of the 10x9 pattern over HEXBS (FD = 1)

 42

Table 3.7 MAD results comparison (FD = 2)

Algorithm Search

Range

Flowers Mobile

Calendar

Table

Tennis

Susie Spiderman Irobot

FS ±10,±9 8.41 11.29 4.64 4.33 13.22 12.05

DS ±10,±9 9.82 12.64 4.82 4.62 13.62 12.80

HEXBS ±10,±9 10.36 13.45 4.89 4.84 14.26 13.30

10x9 ±10,±9 8.73 12.80 4.73 4.57 13.27 12.18

Improvement

over HEXBS

15.72% 4.82% 3.22% 5.60% 6.94% 8.43%

FS ±12,±12 8.33 11.26 4.54 4.08 12.07 11.14

DS ±12,±12 9.79 12.64 4.77 4.43 12.74 12.20

HEXBS ±12,±12 10.33 13.44 4.81 4.59 13.16 12.55

12x12 ±12,±12 8.67 12.86 4.63 4.31 12.10 11.25

Improvement

over HEXBS

16.10% 4.31% 3.78% 6.12% 8.09% 10.34%

FS ±14,±15 8.32 11.24 4.49 3.91 11.12 10.41

DS ±14,±15 9.79 12.63 4.75 4.31 12.10 11.80

HEXBS ±14,±15 10.33 13.44 4.78 4.46 12.56 12.14

14x15 ±14,±15 8.66 12.90 4.59 4.17 11.16 10.55

Improvement

over HEXBS

16.11% 4.04% 4.06% 6.62% 11.16% 13.12%

FS ±32,±16 8.31 11.12 4.41 3.55 8.71 8.41

DS ±32,±16 9.79 12.62 4.73 4.14 11.07 10.97

HEXBS ±32,±16 10.33 13.43 4.76 4.27 11.47 11.26

32x16 ±32,±16 8.47 11.93 4.44 3.64 8.72 8.49

32x16(Y) ±32,±16 8.67 12.94 4.53 3.83 8.79 8.57

32x16’s

Improvement

over HEXBS

17.94% 11.17% 6.66% 14.64% 23.97% 24.56%

32x16(Y)’s

Improvement

over HEXBS

16.06% 3.71% 4.76% 10.22% 23.38% 23.82%

Figure 3.7 Improvement of the 10x9 pattern over HEXBS (FD = 2)

 43

Table 3.8. MAD results comparison (FD = 3)

Algorithm Search

Range

Flowers Mobile

Calendar

Table

Tennis

Susie Spiderman Irobot

FS ±10,±9 10.62 12.23 5.25 5.44 16.45 14.98

DS ±10,±9 14.49 15.69 5.48 5.86 16.84 15.80

HEXBS ±10,±9 15.16 16.57 5.57 6.15 17.54 16.36

10x9 ±10,±9 11.03 13.92 5.32 5.63 16.49 15.10

Improvement

over HEXBS

27.23% 15.96% 4.51% 8.30% 5.94% 7.71%

FS ±12,±12 9.88 12.18 5.10 5.07 15.20 13.93

DS ±12,±12 14.32 15.68 5.40 5.59 15.88 15.09

HEXBS ±12,±12 15.00 16.54 5.46 5.79 16.33 15.46

12x12 ±12,±12 10.30 13.94 5.17 5.25 15.22 14.03

Improvement

over HEXBS

31.30% 15.76% 5.30% 9.21% 6.79% 9.27%

FS ±14,±15 9.55 12.14 5.01 4.81 14.15 13.08

DS ±14,±15 14.27 15.67 5.37 5.41 15.16 14.61

HEXBS ±14,±15 14.96 16.54 5.41 5.60 15.67 14.98

14x15 ±14,±15 9.99 13.95 5.09 5.01 14.18 13.20

Improvement

over HEXBS

33.21% 15.67% 5.93% 10.51% 9.46% 11.84%

FS ±32,±16 9.36 12.01 4.83 4.23 11.40 10.22

DS ±32,±16 14.26 15.67 5.33 5.11 13.94 13.58

HEXBS ±32,±16 14.94 16.53 5.36 5.31 14.43 13.88

32x16 ±32,±16 9.58 12.63 4.86 4.31 11.40 10.29

32x16(Y) ±32,±16 9.85 13.97 4.93 4.45 11.48 10.55

32x16’s

Improvement

over HEXBS

 35.90% 23.59% 9.41% 18.81% 20.98% 25.87%

32x16(Y)’s

Improvement

over HEXBS

 34.05% 15.51% 8.16% 16.14% 20.43% 24.03%

Figure 3.8 Improvement of the 12x12 pattern over HEXBS (FD = 3)

 44

Table 3.9 Total number of search locations for hundred frames (FD = 1)

Algorithm Search

Range

Flowers Mobile

Calendar

Table

Tennis

Susie Spider Irobot

DS ±10,±9 2368828 2210984 1794202 2551537 5474507 4954167

HEXBS ±10,±9 1819199 1723104 1480132 1890779 3228507 2687300

DS ±12,±12 2376538 2212459 1797994 2587820 6127956 5521728

HEXBS ±12,±12 1822081 1725384 1481011 1932625 3705149 2868489

DS ±14,±15 2382128 2213137 1799742 2612773 6640820 6004468

HEXBS ±14,±15 1823014 1725592 1482769 1953086 4014340 2975468

DS ±32,±16 2389644 2213295 1801483 2639287 7443832 7494935

HEXBS ±32,±16 1823591 1725714 1484750 1979635 4556908 3253332

Table 3.10 Total number of search locations for hundred frames (FD = 2)

Algorithm Search

Range

Flowers Mobile

Calendar

Table

Tennis

Susie Spiderman Irobot

DS ±10,±9 2839416 2707125 1870785 2972983 5674083 5379456

HEXBS ±10,±9 2081194 2025332 1507523 2073247 3270665 2847186

DS ±12,±12 2857585 2713436 1886509 3071880 6431147 6074068

HEXBS ±12,±12 2094245 2031730 1522287 2159607 3800457 3120219

DS ±14,±15 2866216 2716244 1896276 3145417 7049596 6652328

HEXBS ±14,±15 2097620 2034001 1529376 2206610 4160162 3288727

DS ±32,±16 2875455 2718188 1905789 3256697 8061850 8289404

HEXBS ±32,±16 2099428 2036426 1538257 2287782 4813062 3686533

Table 3.9 and Table 3.10 show the total number of search locations checked by

DS and HEXBS algorithms for various benchmark videos for different FDs. For

example, the HEXBS algorithm checks 4556908 search locations for 100 frames of the

“Spider” video, when the search range is (±32,±16) pixels and FD is one. On the

average, 28.1 search calculations are checked to find a MV.

3.2. Generic Motion Estimation Hardware Architectures

We proposed the generic hardware architecture for implementing various fast

search algorithms. We proposed two different implementations of the generic hardware

architecture, named as the implementation Type I and the implementation Type II, for

calculating an SAD value, and we designed two different PE architectures for these

implementations. Figure 3.9 shows the block diagrams of PEI and PEII. In both PEs, the

 45

absolute difference between the current pixel and the reference pixel is calculated and

stored in the SAD register. The difference between PEI and PEII is the multiplexer in the

PEII. This multiplexer allows zeros to be feed into the adder tree, which is needed for

the implementation type II.

The block diagrams of the implementation type I and type II for a MB size of

16x16 pixels are shown in Figure 3.10 and Figure 3.11, respectively. In both

implementations, the outputs of PEs are added with an adder tree. Implementation type

I has a 16x16 PEI array, and horizontal shifters are used to align the reference MB read

from BRAMs with the current MB in the PEI array. In this implementation, the current

MB is loaded into the current registers of the PEI array only once. In implementation

type II, smaller horizontal shifters are used to align the current MB, but a 20x16 PEII

array is used. The advantage of using a larger PE array, which is capable of feeding

zeros into the adder tree, is that there is no need for shifting the reference data read from

BRAMs. On the other hand, the current MB has to be aligned and loaded into the

current registers of the PEII array as many times as the number of search locations. The

trade-off between these implementation types is shown in Table 3.11. Based on this

analysis, implementation type I is determined to be better than implementation type II.

Therefore, it is called as the “16x16 Generic Architecture” and used in the rest of this

thesis.

 46

Figure 3.9 Block diagram of processing elements: (a) PEI , (b) PEII

Figure 3.10 Block diagram of the implementation type I

 47

Figure 3.11 Block diagram of the implementation type II

Table 3.11 Trade-off between implementation types I and II

Modules
Implementation

Type I

Implementation

Type II

PE 256 PEI 320 PEII

Horizontal Shifter 128 20:16 128 16:16

Vertical Shifter 128 16:16 128 16:16

Adder Tree N 1.25 N

The generic architecture has seven pipeline stages. In order to calculate the SAD

of a search location for a 16x16 MB in one clock cycle, 256 PEs are used and their

outputs are added with an adder tree. If MBs are divided into blocks, and a block is

processed in one clock cycle, smaller number of PEs, adders and shifters can be used.

The generic architectures for the block sizes of 16x8, 16x6, 16x4, and 16x2, are shown

in Figures 3.12, 3.13, 3.14, and 3.15 respectively. Area and performance comparison of

these generic architectures on a Xilinx Spartan 3E FPGA is given in Table 3.12. Area

comparisons of horizontal and vertical shifters for these generic architectures are given

in Tables 3.13 and 3.14, respectively.

 48

Figure 3.12 16x8 generic architecture

Figure 3.13 16x6 generic architecture

 49

Figure 3.14 16x4 generic architecture

Figure 3.15 16x2 generic architecture

Table 3.12 Comparison of generic architectures for various block sizes

Block Size

Number

of

BRAMs

Number of

PEs

SAD of a

16x16 MB

(Cycles)

Total PE Array

Area with Adder

Tree (LUTs)

Total

Area

(LUTs)

16x16 80 256 1 6940 31416

16x8 40 128 2 3463 14675

16x6 30 96 3 2580 9447

16x4 20 64 4 1726 6304

16x2 10 32 8 857 2889

Table 3.13 Comparison of horizontal shifters for various generic architectures

Block Size

Number of

Horizontal

Shifters

Number of 20 to 16

Shifters in a Horizontal

Shifter

Total Number of

20 to 16 Shifters

Total Area

(LUTs)

16x16 16 8 128 14208

16x8 8 8 64 7104

16x6 6 8 48 5328

16x4 4 8 32 3552

16x2 2 8 16 1776

 50

Table 3.14 Comparison of vertical shifters for various generic architectures

Block Size

Number of 128bit

lines in a Vertical

Shifter

Type of

Shifters

Number of

Shifters

Total Area

(LUTs)

16x16 16 16 to16 128 10268

16x8 8 8 to 8 128 4108

16x6 6 6 to 6 128 1539

16x4 4 4 to 4 128 1026

16x2 2 2 to 2 128 256

The data layout in BRAMs is shown in Figure 3.16. Five BRAMs are used to

store one line of the search window. This is done to avoid data collisions that can occur

while accessing the reference MB for a search location. Since the maximum word

length of BRAMs in the state of the art FPGAs is 32 bits, each memory location stores

four pixels. In Figure 3.16, each box represents a pixel and the number in the box

indicates the BRAM storing that pixel. Dark shaded area shows the reference MB for an

example search location for 16x16 MB size. In order to access the reference MB for an

arbitrary search location, outputs of the BRAMs should be aligned. This is done by

horizontal and vertical shifters. For the example shown in Figure 3.16, in order to align

the reference MB with the current MB, horizontal shifters should rotate their 160 bit

input ten bytes to left and clip the least significant four bytes, and the vertical shifter

should rotate its inputs to left by six lines. Figure 3.17 and Figure 3.18 show these

horizontal and vertical rotate operations.

 51

Figure 3.16 Data layout in BRAMs

Figure 3.17 Ten byte rotate left operation done by the horizontal shifter

 52

Figure 3.18 Six line rotate left operation done by the vertical shifter

In the proposed generic hardware architecture, there are three pipeline stages

named as SHFT, SAD, ADD. Reference MB is read from the BRAMs and aligned by

shifters in the SHFT stage. The absolute differences between corresponding current and

reference pixels are calculated in the SAD stage. The SAD for a 16x16 MB is calculated

by adding these absolute differences in the ADD stage. The pipelining in the proposed

generic hardware architecture is shown in Table 3.15. “a1” to “a7” represent the seven

search locations in the first iteration of the HEXBS algorithm. Similarly, “b1”, “b2”,

and “b3” represent the three search locations in the next iteration. The pipeline has to

stall between iterations, because the next iteration is dependent on the data obtained

from the previous iteration. The number of stall cycles is equal to the number of

pipeline stages minus one. Therefore, the three stage pipelined datapath must be stalled

for two cycles between iterations. In the HEXBS algorithm, the number of search

iterations is limited by the search window size. For a search window of (±32,±16)

pixels, if the search continues horizontally, the datapath will be stalled 16 times, i.e. 32

cycles.

 53

Table 3.15 Pipelining in the generic hardware architecture

Clock

cycles

SAD

a1

SAD

a2

SAD

a3

SAD

a4

SAD

a5

SAD

a6

SAD

a7

SAD

b1

SAD

b2

SAD

b3

SAD

c1

1 SHFT

2 SAD SHFT

3 ADD SAD SHFT

4 ADD SAD SHFT

5 ADD SAD SHFT

6 ADD SAD SHFT

7 ADD SAD SHFT

8 ADD SAD stall

9 ADD stall

10 SHFT

11 SAD SHFT

12 ADD SAD SHFT

13 ADD SAD stall

14 ADD stall

15 SHFT

16 SAD

17 ADD

The proposed generic hardware architecture is implemented in VHDL, verified

with Register Transfer Level (RTL) simulations using Mentor Graphics Modelsim 6.3c

and mapped to Xilinx XC3S1200-5 FPGA using Xilinx ISE 9.2.04. The proposed

hardware can work at 144 MHz on this FPGA. Therefore, for the largest search window

size of (±32,±16) pixels, it can process 206743 MBs per second. Therefore, it is capable

of processing 127 fps, 57 fps, and 25 fps for 720x576, 1280x720 and 1920x1080

resolutions, respectively. The disadvantage of the generic architecture is that it uses 80

BRAMs.

Since 16x16 and 16x8 generic hardware architectures use large number of

BRAMs, it is not possible to implement them on current low cost FPGAs. Although

16x4 and 16x2 generic hardware architectures can be implemented on a low cost FPGA,

they are not suitable for real-time implementation of high frame size and high frame

rate applications, because they require large number of clock cycles to calculate an SAD

value. Therefore, in the next section, we propose a systolic ME hardware architecture

for real-time implementation of high frame size and high frame rate applications on a

low cost FPGA.

 54

3.3. Systolic Motion Estimation Hardware Architecture

The systolic ME hardware architecture proposed to efficiently implement the

proposed HEXBS ME algorithm and its datapath are shown in Figures 3.19 and 3.20.

This systolic architecture is designed to reduce the internal memory bandwidth by

applying data-reuse [7]. It has six pipeline stages. It has 256 PEs and accumulates their

results with an adder tree. The main difference between the systolic architecture and the

generic architecture is it that not all of the PEs receive their reference data directly from

BRAMs. 16 BRAMs, configured for 16 bit port width, are connected to 32 PEs. The

remaining 224 PEs receive their reference data from their neighboring PEs. Reference

data is shifted to right in the PE array. Loading the reference data of a search location

has a start-up cost of 8 cycles. After the PE array is loaded, SAD values of the search

locations in the same line is obtained in each clock cycle.

Figure 3.19 Top-level block diagram of the systolic architecture

 55

Figure 3.20 Datapath of the systolic architecture

Table 3.16 shows the total number of search locations in different search patterns

and the number of clock cycles required to check these search locations on the systolic

architecture. “Double Cross” fine search pattern has an overhead of four clock cycles

compared to “Plus” fine search pattern.

Table 3.16 Search patterns

Search Range
Number of Search

Locations

Required

Clock Cycles

±10, ±9 73 122

±12, ±12 113 176

±14, ±15 159 236

±32, ±16 553 672

Fine Search Pattern
Number of Search

Locations

Required

Clock Cycles

Plus 4 25

Side 6 27

Double Cross 8 29

Table 3.17 shows the data flow through the proposed systolic architecture. Let A1

– L2 shown in Figure 3.21 denote the pixels in these columns. In this figure, search

locations of the proposed HEXBS patterns are shown as bold. A1 denotes the pixels in

the column A1 and A2 denotes the pixels in the right neighboring column. Assuming

that D1 is the first search location in the line, in the first clock cycle, the PE array is

 56

filled with the pixels in columns L1 and L2. In the second clock cycle, these pixels are

shifted to the right in the PE array by two pixels and the pixels in columns K1 and K2

are loaded into two left end columns of the PE array. Therefore, in the 8th clock cycle,

the SAD value of search location D1 is obtained. In the 9th, 10th and 11th clock cycles,

SAD values of search locations C1, B1 and A1 are obtained.

 X x x x x x x x x x x

A1 A2 B1 B2 C1 C2 D1 D2 E1 E2 F1 F2 G1 G2 H1 H2 J1 J2 K1 K2 L1 L2

 X x x x x x x x x x x

x x x x x X x x x x x

Figure 3.21 Search locations of the proposed HEXBS patterns

Table 3.17 Data flow through the systolic PE array

Clock

Cycles

Processing Elements

Col

 0

Col

1

Col

2

Col

3

Col

4

Col

5

Col

6

Col

7

Col

8

Col

9

Col

10

Col

11

Col

12

Col

13

Col

14

Col

15

1 L1 L2

2 K1 K2 L1 L2

3 J1 J2 K1 K2 L1 L2

4 H1 H2 J1 J2 K1 K2 L1 L2

5 G1 G2 H1 H2 J1 J2 K1 K2 L1 L2

6 F1 F2 G1 G2 H1 H2 J1 J2 K1 K2 L1 L2

7 E1 E2 F1 F2 G1 G2 H1 H2 J1 J2 K1 K2 L1 L2

8 D1 D2 E1 E2 F1 F2 G1 G2 H1 H2 J1 J2 K1 K2 L1 L2

9 C1 C2 D1 D2 E1 E2 F1 F2 G1 G2 H1 H2 J1 J2 K1 K2

10 B1 B2 C1 C2 D1 D2 E1 E2 F1 F2 G1 G2 H1 H2 J1 J2

11 A1 A2 B1 B2 C1 C2 D1 D2 E1 E2 F1 F2 G1 G2 H1 H2

 57

Pixel organization in BRAMs is shown in Figure 3.22. Each BRAM has three

regions (0, 1, 2) for storing three different lines of the search window. For example,

BRAM 0 stores 0th, 16th, and 32th lines of the search window. The outputs of BRAMs

are aligned with vertical rotator. The vertical rotator consists of 16 16-bit rotators.

Rotate amount signal generated by the control unit determines how many lines the

outputs of the BRAMs will be rotated by the vertical rotator. The rotate amounts for

different search locations are shown in Figure 3.23. For the search locations in the first

line of the search window, the rotate amount is zero and it increases by two for the

search locations in the following lines of the search window. After 16, the rotate amount

repeats itself. For the search location shown as “X0” in Figure 3.23, the rotate amount is

zero and the required reference data is in the first region (region 0) of all the BRAMs.

For rotate amounts other than 0, 16, and 32, two different address values are sent to

BRAMs. For the search location shown as “X6” in Figure 3.23, the rotate amount is six

and the required reference data is in the first region (region 0) of BRAMs 6-15 and in

the second region (region 1) of BRAMs 0-5.

Figure 3.22 Pixel organization in BRAMs of the systolic architecture

 58

 0 X0 0 0 0 0 0 0 0 0 0

2 2 2 2 2 2 2 2 2 2 2 2

 4 4 4 4 4 4 4 4 4 4 4

6 6 X6 6 6 6 6 6 6 6 6 6

 8 8 8 8 8 8 8 8 8 8 8

10 10 10 10 O 10 10 10 10 10 10 10

 12 12 12 12 12 12 12 12 12 12 12

14 14 14 14 14 14 14 14 14 14 14 14

 0 0 0 0 0 0 0 0 0 0 0

2 2 2 2 2 2 2 2 2 2 2 2

 4 4 4 4 4 4 4 4 4 4 4

6 6 6 6 6 6 6 6 6 6 6 6

Figure 3.23 Rotate amounts

The systolic hardware architecture is implemented in VHDL, verified with RTL

simulations using Mentor Graphics Modelsim 6.3c and mapped to Xilinx XC3S1200-5

FPGA using Xilinx ISE 9.2.04. It can work at 144 MHz on this FPGA. Same as the

generic architecture, for the largest search window size of (±32, ±16) pixels, it can

process 206743 MBs per second. Therefore, it is capable of processing 127 fps, 57 fps,

and 25 fps for 720x576, 1280x720, and 1920x1080 resolutions, respectively. The

proposed systolic architecture consumes 6648 LUTs and 16 BRAMs. Because of the

regular data flow, control unit consumes only 265 LUTs. Therefore, the systolic

hardware fits into a state of the art low cost Xilinx Spartan-3E FPGA. Compared to the

generic architecture, the systolic architecture uses smaller number of BRAMs and no

horizontal rotators, and the input data width of the vertical rotator is reduced to 16 bits.

 59

CHAPTER 4

DYNAMICALLY VARIABLE STEP SEARCH MOTION ESTIMATION

ALGORITHMS AND A HARDWARE ARCHITECTURE FOR THEIR

IMPLEMENTATION

We propose the DVSS and RDVSS ME algorithms for processing HD video

formats [9, 10]. The proposed ME algorithms exploit MV correlations between

neighboring MBs. We also propose a dynamically reconfigurable systolic ME hardware

architecture for efficiently implementing these algorithms [9]. The proposed ME

hardware is compared with several ME hardware implementations presented in the

literature [26-31].

Several ME algorithms exploiting MV correlations between spatial and temporal

neighboring MBs are proposed in the literature [32-38]. However, to the best of our

knowledge, no ME algorithm utilizing the difference of the MVs of the temporal

neighboring MBs as proposed in the RDVSS algorithm is presented in the literature.

ARPS [20] and ADCS [21] algorithms adapt their initial search locations based on the

MV of the previous MB. Adaptive Predicted Direction Search (APDS) [32] algorithm

finds the initial search location by calculating the angles of the MVs of spatial and

temporal neighboring MBs.

In [33], some of the candidate search locations are eliminated adaptively if their

partial SAD value exceeds a dynamically determined threshold. In [34], the size and

SAD values of the MVs of the previous blocks are used to adaptively change the search

window size of the FS algorithm for the current block. The techniques proposed in [35,

36] are developed for fast ME algorithms which are not suitable for processing HD

video. The dynamic adjustment of search window is a modification to the TSS

algorithm and it adapts the search window size of the next step based on the result of

 60

the previous step [35]. The dynamic adjustment of search window with variable size of

block technique adaptively adjusts the search window and can be used with fast ME

algorithms like NTSS and FSS [36]. In [36,37], MVs of upper, left, upper-left, and

upper-right spatial neighboring MBs are used to determine the initial search location. In

[37], in addition to MVs of these spatial neighboring MBs, MV of the temporal

neighboring MB is also used for determining the initial search location. The algorithm

proposed in [37] performs 7% close to the FS algorithm for low resolution videos where

the search range is (±15, ±15) pixels. Since this ME algorithm performs hierarchical

four levels of multi-resolution search with variable block size for each level and

implements the FS algorithm for MBs where neighboring correlations are not available,

its hardware implementation will be quite complex and it will perform significant

number of memory accesses. In [38], if the spatial neighboring MBs of the current MB

have identical MVs, this MV is used for the current MB as well without any search.

This technique achieves good results only for low bit-rate video where search is

performed in a very small search range, e.g. (±7, ±7) pixels, and therefore the MVs are

similar.

4.1 Dynamically Variable Step Search Motion Estimation Algorithm

We propose the DVSS algorithm [9] in order to obtain a performance very close

to the FS algorithm by searching even fewer search locations than the ME algorithms

proposed in [7, 8]. The DVSS algorithm has a maximum of three different granularity

search steps. First, the entire search window is searched with a coarse granularity search

step. Then, two finer granularity search steps are performed around the search locations

from previous steps with minimum SAD. The number of steps and the search range of

each step are determined for the current block based on the size and the SAD value of

the previously found MV for the left neighboring block. It is possible to use one of

many different search patterns for a given block. Some of these search patterns, named

as A1 [8], A2, A3, B and C, and the search patterns used in [7] are shown in Table 4.1.

As shown in this table, skipping the coarse and medium steps and doing the fine step on

the entire search range is identical to the FS algorithm. The search pattern A1, as shown

in Figure 4.1, has 3 steps and the search ranges of coarse, medium, and fine steps are

 61

(±48,±24), (±6,±6), (±3,±3) pixels, respectively. The search pattern A2 is the same as

A1 except that the search range of its first step is (±24, ±12) pixels. The search pattern

A3, as shown in Figure 4.2, has only medium and fine steps. In Figures 4.1 and 4.2,

numbers represent the steps and shaded numbers show the search locations with

minimum SAD for these steps.

Table 4.1 Several search patterns

Search

Pattern

Search

Range of

First Step

Search

Range of

Second Step

Search

Range of

Third Step

Number of

Search

Locations

10x9 [7] - ±10, ±9 ±3, ±3 73

14x15 [7] - ±14, ±15 ±3, ±3 159

A1 [8] ±48, ±24 ±6, ±6 ±3, ±3 405

A2 ±24, ±12 ±6, ±6 ±3, ±3 161

A3 - ±18, ±10 ±3, ±3 249

32x16 [7] - ±32, ±16 ±3, ±3 553

B ±48, ±24 ±12, ±12 ±6, ±6 565

C ±48, ±24 ±24, ±12 ±12, ±6 793

48x24 [7] - ±48, ±24 ±3, ±3 1221

FS - - ±48, ±24 4753

Figure 4.1 Search pattern A1

 62

Figure 4.2 Search pattern A3

The number of steps and sizes of search ranges for each step determine the

computational complexity of a search pattern and the MAD performance obtained by it.

The DVSS algorithm decreases the computational complexity by adaptively changing

between search patterns A1, A2, A3 for each block based on the size and SAD value of

the previously found MV for the left neighboring block, which is called as Left

Neighboring Motion Vector (LNMV). It uses FS, A3, A2, and A1 search patterns for

small, medium, medium-to-large and large motions, respectively.

The pseudo code of the DVSS algorithm is shown in Figure 4.3. If LNMV falls

within a smaller search range, it decreases the search granularity and the search range

size, because for small motions doing the search in a smaller search range is sufficient

and doing a finer granularity search in a smaller search range can give better MAD

results. If the SAD value for LNMV is higher than a pre-determined threshold level (τ),

it increases the search granularity and the search range size. The threshold level τ is set

to 256 and 1024 in our simulations. By setting τ to a higher value, many search

locations can be skipped and higher processing speeds can be achieved with a slight

decrease in the MAD performance.

 63

If there is no left neighboring block

 Do pattern A1

Else if SAD value of LNMV exceeds the threshold (τ)

 Switch to next coarser pattern

Else

If LNMV is within (±8, ±4) pixels

 Do FS in a search range of (±10, ±5) pixels

 Else if LNMV is within (±16, ±8) pixels

 Do pattern A3

Else if LNMV is within (±24, ±12) pixels

 Do pattern A2

 Else

 Do pattern A1

Figure 4.3 The pseudo code of the DVSS algorithm

The performances of the DVSS algorithm and its search patterns are compared

with the performances of successful fast ME algorithms with respect to the MAD

criterion and the results are shown in Table 4.2 and Table 4.3. Seven 100 frame video

sequences are used for comparison, which are also used in Chapter 3.1 except the

“Gladiator” video sequence. The “Gladiator” video is taken from the movie with the

same name and it contains large motions. The frame size and rate of these benchmark

videos are given in Tables 4.2 and 4.3. In the simulations, among the previously

proposed fast search algorithms only the NTSS and the FSS algorithms have a search

range of (±16, ±16) pixels. The other fast search algorithms have a search range of

(±48, ±24) pixels. The FS is performed for both search ranges.

The simulation results showed that DVSS algorithm performs very close to the FS

algorithm by searching much fewer search locations than the FS algorithm and it

outperforms successful fast search ME algorithms by searching more search locations

than these algorithms. The DVSS algorithm obtains similar performance results by

searching fewer search locations than the search patterns proposed in Chapter 3.1. Even

though, the FS algorithm with (±48, ±24) search range checks 4753 search locations in

comparison to 405 search locations checked by the search pattern A1, its MAD

performance is on the average only 7.5% better than the performance of the search

 64

pattern A1. The performance of the FS algorithm with (±16, ±16) search range is very

low for videos with large motion content.

Table 4.2 MAD results for fast search algorithms

Video Sequence

(Frame Size &

Rate)

FS

±48,±24

FS

±16,±16

NTSS

[15]

FSS

[16]

BBGDS

[17]

DS

[18]

HEXBS

[19]

ARPS

[20]

ADCS

[21]

FTS

[22]

Spiderman

(720x576, 25fps)
4.20 6.96 10.71 10.81 7.47 7.20 7.37 6.07 6.24 6.87

Gladiator
(720x576, 25fps)

2.83 5.38 8.68 8.79 5.68 5.43 5.61 3.93 3.73 6.00

IRobot

(720x576, 25fps)
2.92 3.71 5.48 5.55 4.53 4.39 4.51 3.88 4.03 4.87

Susie
(704x480, 15fps)

3.22 3.42 4.05 4.08 3.81 3.6 3.71 3.62 3.62 3.92

Flowers

(704x480, 15fps)
8.39 8.41 10.47 11.12 10.6 10.31 10.9 8.70 8.95 13.11

Table Tennis
(704x480, 15fps)

3.48 3.58 3.97 4.01 3.86 3.80 3.83 3.73 3.74 3.88

Foreman

(352x288, 15fps)
4.17 4.23 4.81 4.86 4.51 4.56 5.08 4.54 4.69 5.69

Table 4.3 MAD results for proposed search algorithms

Video Sequence

(Frame Size & Rate)

10x9

[7]

14x15

[7]

32x16

[7]

48x24

[7]

A1

[8]
B C

DVSS

τ = 256

DVSS

τ = 1024

Spiderman

(720x576, 25fps)
9.34 7.48 5.53 4.22 4.27 4.26 4.25 4.39 4.54

Gladiator
(720x576, 25fps)

7,29 5,84 3,32 2.88 2.97 2.93 2.92 3.14 3.26

IRobot

(720x576, 25fps)
7.69 6.93 5.72 3.08 3.23 3.15 3.10 3.29 3.33

Susie
(704x480, 15fps)

3.92 3.72 3.40 3.33 3.41 3.34 3.32 3.29 3.29

Flowers

(704x480, 15fps)
8.89 8.79 8.62 8.61 9.26 9.06 8.95 8.51 8.48

Table Tennis
(704x480, 15fps)

3.79 3.66 3.56 3.51 3.57 3.55 3.54 3.55 3.57

Foreman

(352x288, 15fps)
5.02 4.95 4.67 4.66 4.87 4.70 4.60 4.51 4.39

The performance gap between fast search algorithms and the proposed search

patterns increase with increased video resolution and motion between consecutive

frames. On the other hand, as it can be seen from “Foreman” benchmark video, when

the resolution is very low and the motion can be detected in a search range of (±16,

±16) pixels, the performance gap decreases. The DVSS algorithm decreases the

computational complexity significantly with a small decrease in the MAD performance.

It even sometimes gives better MAD results than the pattern A1. The reason for this

improvement is that search patterns with finer granularities perform better for small

motions and the DVSS algorithm dynamically decreases its granularity when small

MVs are found for the previous blocks.

 65

4.2 Reconfigurable Motion Estimation Hardware Architecture

The reconfigurable systolic ME hardware architecture is based on the ME

hardware presented in Chapter 3.3. The major differences between them are the

proposed hardware is dynamically reconfigurable and it implements the DVSS

algorithm. For each MB, the proposed ME hardware can be dynamically reconfigured

to execute different number of steps and different search ranges for each step. Top-

level block diagram of the proposed ME hardware architecture is shown in Figure 4.4.

The hardware is highly pipelined and its latency is eight clock cycles; one cycle for

synchronous read from memory, one cycle for shift registers, two cycles for the

reconfigurable systolic PE array and four cycles for the adder tree.

Figure 4.4 Top-level block diagram

The proposed ME hardware finds an MV for a 16x16 MB based on the minimum

SAD criterion in a maximum search range of (±48, ±24) pixels using the luminance

data. The “top-level controller” takes the threshold level (τ) as an input and determines

the number of search steps and their search ranges for each block adaptively. The

“control unit” finds the MV for each block by generating required address and control

 66

signals to compute the SAD values of the search locations in the search window

determined by the top-level controller for each step.

The search locations in a search window are searched line by line. First, SAD

values of the search locations in the top line of the search window are calculated starting

from the right most search location in the top line. Then, SAD values of the search

locations in the next line of the search window are calculated starting from the right

most search location in the next line. The first step ends after SAD values of the search

locations in the bottom line of the search window are calculated. The next step around

the search location with the minimum SAD is done in the same way.

16 BRAMs in the FPGA are used to store the search window. BRAMs are

configured as dual port memories for overlapping the ME of the current MB with the

loading of the search window of the next MB. The vertical rotator is used to align the

outputs of the BRAMs and it has 32 identical rotators each 16 bits long. The reference

MB data read from BRAMs must be matched with the current MB data, which is loaded

into the PE array previously, by rotating the data lines. For example, for the search

locations in the fourth line of the search window, the rotate amount will be equal to four

so that first line of the reference data will be read from the fourth BRAM.

The SAD value for a search location is calculated by summing the outputs of all

256 PEs in the reconfigurable PE array by an adder tree. The adder tree has four

pipeline stages; SAD values of 4x4 blocks are calculated in the first two clock cycles, in

the third clock cycle SAD values of 8x8 blocks are calculated and in the fourth clock

cycle SAD value of 16x16 MB is calculated.

The reconfigurable systolic PE array is shown in Figure 4.5. 256 PEs are used to

calculate the SAD of a 16x16 MB. A PE is used to calculate the absolute difference

between a current pixel and the corresponding reference pixel. The latency of the PE

array is two clock cycles, because reference and current pixel inputs and the absolute

difference output are registered. The reconfiguration of the PE array is achieved with

the multiplexers placed between the PEs that process the same line in a MB. Since the

PE array explained in Chapter 3.3 is not reconfigurable, these multiplexers bring a

slight area overhead in comparison to the PE array proposed in Chapter 3.3. But, they

 67

do not affect the clock frequency since they are not placed on the critical path. In Figure

4.5, interconnects used for implementing 4, 2 and 1 shift amounts are illustrated with

dashed, thin and bold lines respectively. Interconnects marked with “m” are connected

to BRAMs.

Figure 4.5 Reconfigurable systolic PE array

The reference pixels for the first search location in a line of the search window are

loaded in four clock cycles. After the SAD value of the first search location is

calculated, the SAD value of the next search location is calculated in one cycle. After

the SAD value of the first search location is calculated, reference data is shifted to the

right in the PE array in each consecutive clock cycle and shift amount can be 4, 2 or 1

pixels depending on the type of the step; coarse, medium or fine, respectively. Figure

4.6 demonstrates the shifting in the PE array when the shift amount is equal to 1 and 2

pixels. For example, when the shift amount is equal to 2 pixels, PE0 shifts its content to

PE2, PE1 shifts its content to PE3, and PE2 shifts its content to PE4.

(a)

(b)

Figure 4.6 Shifting in PE array (a) 1 pixel, (b) 2 pixels

 68

The data flow through the reconfigurable systolic PE array is shown in Table 4.4.

Let capital letters “A” to “Z” shown in Figure 4.1 denote all pixels in these columns

respectively. Assuming that “P” is the first search location, four clock cycles will be

required to feed the reference data for this search location to the PE array, because

regardless of the search pattern during the loading of reference pixels for the first search

location the multiplexing unit feeds first four columns of the PE array. Assuming that

after “P”, the search pattern continues with search locations “R, T and V” (two pixel

gap between consecutive search locations), multiplexing unit will feed only first two

columns of the PE array. Therefore, reference pixels for these search locations will be in

the PE array in 5th, 6th and 7th clock cycles, respectively.

Table 4.4 Dataflow through the reconfigurable systolic PE array

Clock

Cycle

Processing Elements

Col

 0

Col

1

Col

2

Col

3

Col

4

Col

5

Col

6

Col

7

Col

8

Col

9

Col

10

Col

11

Col

12

Col

13

Col

14

Col

15

1 D C B A

2 H G F E D C B A

3 L K J I H G F E D C B A

4 P O N M L K J I H G F E D C B A

5 R Q P O N M L K J I H G F E D C

6 T S R Q P O N M L K J I H G F E

7 V U T S R Q P O N M L K J I H G

In order to calculate the SAD values of search locations at the rate of one SAD

value per clock cycle, pixels for a particular search location must be brought to the PE

array in one clock cycle, and this requires many accesses to the memory in the same

clock cycle. This memory requirement cannot be satisfied by an FPGA without data-

reuse. The systolic hardware architecture proposed in Chapter 3.3 reduces the internal

memory bandwidth by applying data-reuse and it uses only 16 BRAMs for storing the

reference pixels of a search window for a search range of (±32, ±16) pixels. BRAMs are

configured as 16 bits wide because of the two pixel distance between consecutive search

locations.

The ME hardware proposed in this chapter also applies data-reuse. However, it

uses only 16 BRAMs for storing the reference pixels of a search window for a search

range of (±48, ±24) pixels. The proposed ME hardware further reduces the internal

memory bandwidth by feeding only 64 PEs from BRAMs, the remaining PEs receive

 69

reference pixels from neighboring PEs. BRAMs are configured as 32 bits wide and they

are connected to the four left end columns of the PE array. Therefore, loading the

reference pixels for the first search location into the PE array takes four clock cycles.

Each BRAM stores four lines of reference pixels. Storing a line of reference

pixels uses 28 address locations. Therefore, addresses 0-111 are occupied to store four

lines of reference pixels. Figure 4.7 shows the layout of the reference pixels in the first

BRAM, which stores 0th, 16th, 32th and 48th lines of the reference pixels in four

distinct regions. The remaining BRAMs have the same organization.

Figure 4.7 Memory organization

The “multiplexing unit”, shown in Figure 4.8, is used to feed the correct data to

the PE array. The data received from the vertical rotator is captured in a 56 bit long shift

register, which stores 7 pixels. If the enable signal of the shift register is high, it shifts

its content 32 bits to right. In order to support horizontal distances of one, two, and four

between consecutive search locations, multiplexing unit is designed to feed first one,

two, or four left end columns of the PE array. Independent from the search pattern,

 70

reference pixels for the first search location are loaded by feeding the four columns.

Therefore, four clock cycles are required to fill the PE array with the reference pixels

for the first search location. The reference pixels for the next search location will be

available in the next clock cycle. If the distance between two search locations is four

pixels, “4 select” multiplexers otherwise “2 select” multiplexers are used to select the

corresponding reference pixels from the shift register. Table 4.5 shows the output of the

multiplexing unit for different pixel locations. The content of the shift register, which is

shown with capital letters in Figure 4.8, is also given in Table 4.5. If the search location

is aligned with the memory content, the most significant four bytes (G, F, E, D in Figure

4.8) will be selected as the output. Otherwise 1, 2, or 3 pixel shift will be performed.

Figure 4.8 Multiplexing unit

Table 4.5 Output of the multiplexing unit for different pixel locations

Clock

Cycle

Shift Register

Content
Aligned Out

1 Pixel

Shifted Out

2 Pixel

Shifted Out

3 Pixel

Shifted Out

1 D C B A - - - D C B A

2 H G F E D C B H G F E E D C B F E D C G F E D

3 L K J I H G F L K J I I H G F J I H G K J I H

4 P O N M L K J P O N M M L K J N M L K O N M L

 71

The proposed hardware architecture is implemented in VHDL, verified by RTL

simulation using Modelsim 6.3c, and mapped to an XC3S1500-5 FPGA using Synplify

Pro 8.9 and ISE 10.1. The proposed hardware works at 130MHz and consumes 9128

slices (2282 CLBs) and 16 BRAMs. The reconfigurable systolic PE array with the adder

tree consumes 7510 slices.

The number of clock cycles per MB required by the proposed hardware depends

on the search pattern. Starting a step has a start-up cost of 15 clock cycles, which is

called as the step latency, and starting the search on a line has a start-up cost of 8 clock

cycles, which is called as the line latency. The total number of clock cycles per MB

required to complete a search pattern is given by (4.1). The performance of proposed

ME hardware for several search patterns are calculated based on (4.1) and given in

Table 4.6.

     
sn

linelinelinesads nnn
1

11  (4.1)

 In (4.1), “ns, nsad, nline” are the number of steps, search locations per line, and

lines per step, respectively. “τs” and “τline” are step and line latencies, respectively.

Based on this equation, for the coarse, medium and fine steps the start-up latency is 45

clock cycles. For these three steps, there is 192 clock cycles of line latency and 396

clock cycles are required for remaining search locations. Therefore, pattern A1 requires

633 clock cycles to find the MV of a MB. Patterns A2 and A3 requires 357 and 380

clock cycles, respectively. FS with a search range of (±10, ±5) pixels requires 304 clock

cycles.

The performance of the DVSS algorithm on the proposed ME hardware for

different threshold values is shown in Table 4.7. The DVSS algorithm achieves much

better real-time performance, with a small decrease in the MAD performance, since it

adaptively changes the search patterns and uses the pattern A1 only for large motions,

patterns A2 and A3 for medium motions and FS only for small motions. As it can be

seen in Table 4.7, increasing the threshold value increases the supported frame rate.

 72

Table 4.6 Performance of the proposed hardware for several search patterns

Search

Pattern

Required

Clock Cycles

per MB

Processed

MBs per

Second

Supported Frame Size &

Rate

A1 [8] 633 205371 1920x1080, 25.3 fps

B 957 135841 1366x768, 33.1 fps

C 1221 106470 1366x768, 25.9 fps

10x9 [7] 122 1180327 1920x1080, 145.7 fps

14x15 [7] 236 610169 1920x1080, 75.3 fps

32x16 [7] 672 214285 1920x1080, 26.4 fps

48x24 [7] 1425 101052 1366x768, 24.6 fps

FS 5103 25475 720x576, 15.7 fps

Table 4.7 Performance of the proposed hardware for the DVSS algorithm

Video

Sequence

Threshold

(τ)

Required

Cycles for 100

Frames

MBs per

Frame

Average

Cycles per

MB

Supported

1920x1080

fps

Spider 256 96094246 1620 594 27.0

Spider 1024 90284377 1620 558 28.7

Gladiator 256 87299334 1620 539 29.7

Gladiator 1024 80952068 1620 500 32.1

Irobot 256 77966499 1620 482 33.3

Irobot 1024 74177157 1620 458 35.0

Susie 256 59212520 1320 449 35.7

Susie 1024 51666864 1320 392 41.0

Flowers 256 52181938 1320 396 40.5

Flowers 1024 49586582 1320 376 42.7

TableTennis 256 53382291 1320 405 39.6

TableTennis 1024 47136775 1320 358 44.9

Foreman 256 15926153 396 403 39.9

Foreman 1024 14250681 396 360 44.5

 The proposed ME hardware is compared with several ME hardware

implementations presented in the literature in Table 4.8. The proposed ME hardware

consumes less area than the implementation of one of the best performing fast search

ME algorithms in the same FPGA [22]. The MAD performance of this hardware is

lower than the MAD performance of the proposed ME hardware, since it implements

the FTS algorithm. In [26], a hybrid architecture supporting both FS and DS is

presented. This architecture speeds up FS by successively eliminating some of the

search locations. In addition, it is suitable for the irregular data flow of fast search

algorithms and it consumes less area than the dedicated FS systolic array

 73

implementations. However, it has lower throughput than the proposed ME hardware.

Because of the overhead of the reconfigurability and additional complexity of the

control unit, the proposed ME hardware consumes 2363 slices more than the ME

hardware proposed in [7] in the same FPGA. 1136 slices are used by the multiplexing

unit, 836 additional slices are used by the multiplexers in the PE array and the

remaining additional slices are used by the additional complexity of the control unit.

Because of the overhead of the dynamic reconfigurability, which is implemented in the

top-level controller, the proposed ME hardware consumes slightly more area than the

ME hardware proposed in [8] in the same FPGA.

The throughput of the proposed ME hardware is much higher than the FS

hardware implementations in [27,28]. An Application Specific Integrated Circuit

(ASIC) implementation of the FS algorithm utilizing 256 PEs in 0.25μm CMOS

technology is given in [27]. This architecture is a modified version of the AB2 type

systolic array [29]. Another ASIC implementation of the FS algorithm is given in [28].

The throughput of this architecture is low, because it has only 64 PEs, it is optimized for

low power consumption and it is implemented in an older technology. A real-time ME

hardware implementing the FS algorithm for HD video is given in [30]. However, since

this hardware is implemented on a high-end FPGA, it is not suitable for consumer

electronics products. The FPGA implementations of the systolic architectures AS1,

AB2, AS2 are presented in [31]. Despite using large number of PEs, the throughputs of

these ME hardware are much lower than the throughput of the proposed ME hardware,

because they are implementing the FS algorithm. The area results presented in [31]

include only the datapath and do not include the control unit and the memory.

 74

Table 4.8 Comparison of ME hardware architectures

HW Algorithm Technology
MB

size
of PEs

Search

Range

Area

Speed

[MHz]

Cycles

per 16x16

MB

Supported

1920x1080

[fps]

[9] DVSS
XC3S1500-5

FPGA
16x16 256 (±48, ±24)

2282

CLBs
130

467

(τ = 256)

34.3

(τ = 256)

[22] FTS
XC3S5000

FPGA
16x16 16 (±16, ±16)

6142
CLBs

74 202 45.2

[26] FS & DS Unknown
8x8,

16x16

Dedicated

HW

(-16, +15) in

both axis

9K

gates
50

2879

(average)
2.1

[7] 32x16 [7]
XC3E1200E-

5 FPGA
16x16 256 (±32, ±16)

1692
CLBs

144 672 26.4

[8] A1 [8]
XC3S1500-5

FPGA
16x16 256 (±48, ±24)

2271

CLBs
130 633 25.3

[27] FS
0.25μm

CMOS 1P5M
16x16 256

(-16, +15) in
both axis

16.07
mm2

36 1421 3.1

[28] FS
0.6μm SPTM

CMOS

8x8,

16x16,

32x32

64 (±32, ±32)
267K
gates

60 4209 1.7

[30] FS
XC4VLX100

FPGA
16x16

Dedicated

HW
(±16, ±16)

380

LUTs
221 1111 24.5

AS1

[31]
FS

XC40250

FPGA
16x16 33 (±16, ±16)

1214

CLBs
24 25344 0.1

AB2

[31]
FS

XC40250

FPGA
16x16 256 (±16, ±16)

948

CLBs
30 1584 2.3

AS2
[31]

FS
XC40250

FPGA
16x16 528 (±16, ±16)

3732
CLBs

22 768 3.5

4.3 Recursive Dynamically Variable Step Search Motion Estimation Algorithm

The proposed RDVSS [10] algorithm searches fewer search locations than the

DVSS algorithm for the same size search window. RDVSS dynamically determines the

search patterns that will be used for each MB based on the MVs of its spatial and

temporal neighboring MBs assuming that objects are bigger than a MB and motion

between consecutive frames is continuous. By using a larger search range, the RDVSS

algorithm gives better PSNR results than the DVSS algorithm for the benchmark videos

with large motions. For the benchmark videos with smaller motions, the DVSS

algorithm gives slightly better PSNR results by checking more search locations in the

same search range. The RDVSS algorithm gives much better PSNR results than fast

search ME algorithms. In addition, the RDVSS algorithm has a regular data flow and it

can be efficiently implemented using the reconfigurable ME hardware architecture

proposed in this chapter.

The search patterns used in the RDVSS algorithm are listed with their search

ranges and total number of search locations in Table 4.9. Similar to the DVSS

algorithm, each search pattern has a maximum of three different granularity search steps

with different size search ranges. In the first, second, and third steps, horizontal and

 75

vertical distances between search locations are 4, 2, and 1 pixels, respectively. Figure

4.9 shows a portion of main large search pattern. In this figure, numbers represent the

steps and dark shaded numbers show the search locations with minimum SAD for these

steps. Main large search pattern, first, searches the given (±64, ±64) search window

with a coarse granularity search step. It, then, performs a finer granularity search step in

the (±4, ±4) search window around the search location that has the minimum SAD in

the previous step. It, finally, performs an even finer granularity search step in the (±1,

±1) search window around the search location that has the minimum SAD in the

previous step.

Table 4.9 Search patterns used in the RDVSS algorithm

Search Pattern

Search

Range of

First Step

Search

Range of

Second Step

Search

Range of

Third Step

Number of

Search

Locations

Main Large ±64, ±64 ±4, ±4 ±1, ±1 1113

A1 [8] ±48, ±24 ±6, ±6 ±3, ±3 405

Main Medium ±32 ±32 ±4, ±4 ±1, ±1 313

Main Small ±16, ±16 ±4, ±4 ±1, ±1 161

Recursive Large ±16, ±16 ±2, ±2 ±1, ±1 97

Recursive Medium ±8, ±8 ±2, ±2 ±1, ±1 41

Recursive Small - ±4, ±4 ±1, ±1 33

3x3 Full Search - - ±3, ±3 49

1x1 Full Search - - ±1, ±1 9

1 1 1 1 1 1 1

1 1 1 2 1 2 1 1 1

 2 2 2 2 2

 3 3 3

1 1 1 3 2 3 1 2 1 1 1

 3 3 3

 2 2 2 2 2

1 1 1 2 1 2 1 1 1

1 1 1 1 1 1 1

Figure 4.9 Main large pattern

 76

The pseudo code of the RDVSS algorithm is given in Figure 4.10. The RDVSS

algorithm performs three search iterations for each MB. The first iteration is used for

tracking global motions like camera movement assuming that motion between

consecutive frames is continuous. The second iteration is used for tracking complex

motions of objects assuming that objects are larger than a MB. If the first and second

iterations do not find a satisfactory MV, main search patterns with large search ranges

are used around (0,0) location for finding a better MV.

The RDVSS algorithm determines the search patterns that will be used in each

iteration for the current MB dynamically based on the MVs of its spatial and temporal

neighboring MBs. After performing each search pattern for the current MB, the RDVSS

algorithm compares the minimum SAD obtained so far with the SAD threshold

determined for this MB and it terminates the ME for this MB if the SAD is less than the

SAD threshold. Therefore, for each MB, the RDVSS algorithm calculates Spatial

Difference (SD), Average Spatial Neighboring MV (ASNMV), Temporal Distance

(TD) and SAD Threshold (ST) by using the MVs of its available spatial neighboring

MBs. Figure 4.11 shows the spatial neighboring MBs of MB(i,j,t), where “i” and “j”

denote the x and y coordinates of the MB in a frame and “t” denotes the frame

containing this MB. Therefore, for example, only the left spatial neighboring MB is

available for the MBs in the first row of a frame.

SD is the maximum absolute difference in the x and y coordinates of MVs of four

spatial neighboring MBs; MB(i-1,j-1,t), MB(i,j-1,t), MB(i+1,j-1,t), and MB(i-1,j,t). As

shown in (4.2), ASNMV is the average of the MVs of these four spatial neighboring

MBs. As shown in (4.3), ST is determined by comparing the minimum SAD value of

these four spatial neighboring MBs with the pre-determined SAD threshold for the

video frame (τ) and selecting the larger one.

 ),,1(),1,1(),1,(),1,1(
4

1
tjiMVtjiMVtjiMVtjiMVASNMV  (4.2)

 ),,1(),,1,1(),,1,(),,1,1(, tjiSADtjiSADtjiSADtjiSADMINMAXST   (4.3)

 77

Iteration 1:

 If (TD is equal or less than (±4,±4) pixels)

 Do Recursive Small Pattern around MV(i,j,t-1)

 Else if (TD is equal or less than (±8,±8) pixels)

 Do Recursive Medium Pattern around MV(i,j,t-1)

 Else if (TD is equal or less than (±16,±16) pixels)

 Do Recursive Large Pattern around MV(i,j,t-1)

 Else

Do 1x1 Full Search Pattern around MV(i,j,t-1)

Iteration 2:

 If (SD is equal or less than (±3,±3) pixels)

Do 3x3 Full Search Pattern around ASNMV

 Else

Do 1x1 Full Search Pattern around MV(i-1,j-1,t), MV(i,j-1,t), MV(i+1,j-

1,t), and MV(i-1,j,t)

Iteration 3:

 If (SD is equal or less than (±16,±16) pixels)

 Do Main Small Pattern around (0,0)

 Else if (SD is equal or less than (±32,±32) pixels)

 Do Main Medium Pattern around (0,0)

Else

Do Main Large Pattern around (0,0)

Until (Main Large Pattern is used)

Do next larger Main Pattern around (0,0)

Figure 4.10 Pseudo code of the RDVSS algorithm

 78

Figure 4.11 Spatial neighboring MBs of MB(i,j,t)

Figure 4.12 Temporal correlation

Figure 4.12 shows three consecutive frames and their MVFs. “MVF t-2 : t-3” is

obtained by performing ME between the frames at the time instances “t-2” and “t-3”,

and “MVF t-1 : t-2” is obtained by performing ME between the frames at the time

instances “t-1” and “t-2”. TD is the difference between MV(i,j,t-2) and MV(i,j,t-1).

Therefore, while processing previous frame “t-1”, for each MB, its MV in the “MVF t-1

: t-2” and a two bit value indicating whether its TD is equal or less than (±4,±4),

(±8,±8), (±16,±16) pixels or not should be stored in a memory. In Figure 4.12, TD value

 79

for MBn will be calculated by finding the difference between the two MVs shown with

bold lines in the consecutive MVFs.

The RDVSS algorithm is compared with the successful fast ME algorithms for

several video sequences with respect to the MAD criterion and the comparison results

are shown in Table 4.10. RDVSS is simulated for various SAD thresholds (τ) to show

the trade-off between the obtained image quality and the number of search locations.

The number of search locations checked by the RDVSS algorithm for these video

sequences are shown in Table 4.11. The luminance components of eight video

sequences with various resolution and frame rates are used for the comparison. The

resolution and frame rates of these video sequences are given in Table 4.11. Among

these videos “IceAge2”, “ParkJoy1080p”, “Ducks”, and “ParkJoy720p” are 50 frames

long and the other videos are 100 frames long. “ParkJoy1080p”, “Ducks”, and

“ParkJoy720p” HD video sequences are available from Video Quality Experts Group

[39]. These videos contain complex but slow motion. “IceAge2”, “Spider3”, and

“Spider2” video sequences are taken from “Ice Age 2”, “Spiderman 3”, and “Spiderman

2” movies where there are fast and complex movements. “Susie” and “Table Tennis”

video sequences are the up-scaled versions of the widely used CIF resolution

benchmark videos.

In our simulations, only the NTSS and the FSS algorithms have a search range of

(±16, ±16) pixels because their initial step size is equal to 8. The other ME algorithms

have a search range of (±64, ±64) pixels. The threshold value required for the ADCS

algorithm is set to 1024. Since the weights used in the APDS algorithm are not specified

in [32], we set them to 1. As shown in Table 4.10, the RDVSS algorithm obtains better

results than the well known fast ME algorithms. The performance gap between the

RDVSS and other ME algorithms increase with increased motion between consecutive

frames. Although the RDVSS algorithm on the average searches 34.1% to 62.4% less

search locations than “Main Large” search pattern, it obtains similar MAD results with

the “Main Large” search pattern. If only the early search termination is used for the

“Main Large” search pattern without using the spatial and temporal correlations, MAD

results decrease significantly, especially for videos containing fast motion. When

compared with the DVSS algorithm for a maximum search range of (±48, ±24) pixels

and for the same threshold level (τ=256), RDVSS searches 34% less search locations on

 80

the average while giving better PSNR results for videos containing large motions. For

videos containing very small motions, the DVSS algorithm gives slightly better results

by checking more search locations.

Table 4.10 MAD results

 Video

 Sequence
FS

NTSS

[15]

FSS

[16]

BBGDS

[17]

DS

[18]

HEXBS

[19]

A1

[8]

Main

Large

ParkJoy1080p 8.91 12.77 13.51 13.57 12.85 12.99 9.86 9.24

IceAge2 2.52 8.16 8.22 5.21 5.08 5.35 4.20 2.95

Ducks 3.81 5.26 5.44 5.29 5.27 5.40 5.07 4.93

ParkJoy720p 8.43 12.45 12.58 12.97 12.05 12.36 10.18 9.64

Spider3 2.44 8.21 8.30 5.30 5.21 5.39 3.30 2.81

Spider2 2.96 10.72 10.82 7.09 6.94 7.08 4.28 3.07

Susie 3.17 4.05 4.09 3.81 3.62 3.69 3.51 3.51

Table Tennis 3.42 3.97 4.01 3.86 3.80 3.83 3.57 3.55

 Video

 Sequence

APDS

[32]

ARPS

[20]

ADCS

[21]

DVSS

τ = 256

DVSS

τ = 1024

RDVSS

τ = 256

RDVSS

τ = 512

RDVSS

τ = 1024

ParkJoy1080p 13.70 10.82 10.37 9.02 9.07 9.43 9.54 9.64

IceAge2 5.21 3.97 4.97 4.29 4.79 3.15 3.39 3.92

Ducks 5.24 5.27 5.39 5.00 5.02 5.07 5.07 5.08

ParkJoy720p 12.99 10.70 10.22 9.01 9.17 9.92 10.04 10.16

Spider3 5.34 3.65 3.68 3.36 4.39 2.88 3.04 3.54

Spider2 7.10 5.39 5.02 4,39 4,53 3.11 3.21 3.82

Susie 3.96 3.58 3.58 2,99 2,99 3.47 3.51 3.85

Table Tennis 3.89 3.71 3.72 2,76 2,77 3.55 3.71 3.72

Table 4.11 Average number of search locations per MB

Video Sequence
RDVSS

τ = 256

RDVSS

τ = 512

RDVSS

τ = 1024

ParkJoy1080p (1920x1080, 25fps) 959 933 738

IceAge2 (1920x1080, 25fps) 601 448 301

Ducks(1280,760, 25fps) 380 372 366

ParkJoy720p (1280x720, 25fps) 921 805 723

Spider3 (1280x576, 25fps) 529 429 322

Spider2 (720x576, 25fps) 843 660 327

Susie (704x480, 15fps) 850 729 365

Table Tennis (704x480, 15fps) 782 716 204

 81

The RDVSS algorithm searches much less search locations than the FS algorithm.

The FS algorithm checks 16641 search locations in a search range of (±64, ±64) pixels,

whereas the RDVSS on the average checks only 418 search locations, when the SAD

threshold (τ) is set to 1024. On the other hand, MAD performance of the RDVSS

algorithm on the average is only 14.7% lower than MAD performance of the FS

algorithm, when the SAD threshold (τ) is set to 256. Performing that close to the FS

algorithm for such a large search window is very important.

 82

CHAPTER 5

COMPUTATION REDUCTIONS FOR VECTOR MEDIAN FILTERING

VMFs are widely used in image and video processing applications [5]. VMFs are

non-linear filters and they require dealing with multi dimensional data. Because of their

edge-preserving characteristics, they are mainly used for removing the noise from a

signal by smoothing out the signal. Because of their smoothing capability, they are also

used in video compression [40-43]. In [40], vector median filtering is applied adaptively

on the obtained MVF in order to improve the visual quality and in [41] a VMF is used to

estimate the MVs based on previously found MVs. In [42], by using adaptively weighted

VMF in the encoder, a smoother MVF is obtained. In [43], VMF is applied at the

decoder to smooth out irregular MVs. Recently, VMFs are used for FRC [44-52].

In order to achieve high quality results for FRC, the true motion between

consecutive frames should be found [44-52]. While ME for video compression needs to

find the MVs giving the minimum SAD, ME for FRC should find the MVs

corresponding to the physical motion of the objects. In order to find the true motion

between consecutive frames, VMFs are used to smooth the MVF obtained by the ME.

An example of smoothing an MVF is shown in Figure 5.1. In this example, the MV in

the middle of the 3x3 filtering window is replaced by the output of the VMF applied to 9

MVs in this 3x3 filtering window.

 83

Figure 5.1 Smoothing MVF

A frame from the Foreman video sequence and its MVF found by the FS

algorithm are shown in Figure 5.2. FS is implemented in a search range of (±8, ±8)

pixels for 16x16 MB size. The original MVF and the smoothed MVF by 3x3 VMF are

shown in Figure 5.3. The man in the video sequence shakes his head and most of the

corresponding MVs in the MVF point to vertical direction. However, some of these

MVs point to horizontal direction. Smoothing the MVF by applying the VMF corrects

some of the outlier MVs. For example, after the VMF operation, the MVs of the MBs

containing the face of the man become more accurate. MVs on the boundaries of the

frame are not filtered.

Figure 5.2 Current frame and its MVF

 (a) (b)

Figure 5.3 MVF (a) and smoothed MVF (b)

 84

The median of a given set of scalar values is found by numerically sorting these

scalar values and selecting the one in the middle. VMFs require ordering multi

dimensional data. Several ordering methods such as Aggregate Ordering (A-Ordering),

Reduced Ordering (R-Ordering), and Marginal Ordering (M-Ordering) are used for VMF

[53]. For a given set of input vectors, A-Ordering based VMFs calculate the sum of

distances of each vector to the other input vectors and select the vector with the

minimum distance as the output. R-Ordering based VMFs calculate the distance of each

input vector to a predefined reference, which may be the origin or the arithmetic mean.

In R-Ordering based VMFs, selection of the reference point significantly affects the

performance.

M-Ordering based VMFs use scalar median operation for finding the medians of

each vector dimension separately. They order the input vectors along each dimension,

find the medians of each dimension separately and generate the output vector using these

medians. M-Ordering based VMFs are not suitable for FRC, because they usually output

a new vector that does not exist in the input vector set. An example showing the

disadvantage of M-Ordering based VMFs is shown in Figure 5.4. In this figure, a

transition from black to white in RGB color domain at the time instance “tn” is shown.

At the time instance “tn-2” an impulsive noise occurs in the red dimension, which is

suppressed by the median filter. However, the median filter also changes this signal at

“tn-1” from low to high. This means during the transition from black to white a red output

appears incorrectly.

Figure 5.4 M-Ordering based VMF (a) input, (b) output

 85

In this thesis, we used A-ordering method, since it is more suitable for FRC. The

computational complexity of A-Ordering based VMF depends on the metric (norm) used

to calculate the distance between two vectors [54]. The absolute norm (1-norm), the

Euclidean norm (2-norm), or the squared Euclidean norm (squared 2-norm) can be used

for A-Ordering. The computational complexities of distance metrics for calculating the

sum of distances of a vector to the other vectors in an NxN filtering window are shown

in Table 5.1.

Table 5.1 Comparison of distance metrics

Arithmetic Operation 1-norm 2-norm Squared 2-norm

Add / Sub 4N
2
-5 4N

2
-5 4N

2
-5

Absolute 2N
2
-2 - -

Multiplication - 2N
2
-2 2N

2
-2

Square Root - N
2
-1 -

2-norm has the highest computational complexity since it uses a square root

operation for calculating a distance. Squared 2-norm has lower computational

complexity since it does not use square root operations. 1-norm has the lowest

computational complexity since it does not use square and square root operations. The

output of 1-norm VMF for N
2
 input vectors is given in (5.1), where N

2
 is the number of

vectors in the filtering window, j denotes a vector in the window, and i denotes the other

vectors in the window. 1-norm distance between two vectors is calculated as shown in

(5.2) [49, 50].

1,1

2

minarg  


N

jii ij
j

m vvv


 (5.1)

iyjyixjxij vvvvvv 
1


, where  

jyjxj vvv ,


 and  
iyixi vvv ,


 (5.2)

A disadvantage of VMFs is the lack of control on the operations of filter.

Weighted median filters are proposed in order to overcome this drawback [40, 42, 48,

55, 56]. Weighted VMF operation is shown in equation (5.3), where weights are shown

with wi [55]. In [56], algorithms for fast optimization of weights for the weighted VMF

are given.

 86

1,1

2

minarg  


N

jii iji
j

m vvwv


 (5.3)

VMFs are difficult to implement in real-time because of their high computational

complexity [6, 54]. Several techniques to reduce the computational complexity of VMFs

are developed. In [57], an approximation to the Euclidean norm for VMF is proposed.

The square root operation of the Euclidean norm is avoided by a linear approximation.

However, this technique requires sorting the vector dimensions according to their

absolute values and then weighting the greater dimensions more heavily. In [58], an

iterative technique for VMF is proposed. This technique requires less than five iterations

for a window size of 3x3, on the average. The authors indicate this as an advantage over

the existing techniques, which require nine passes in order to calculate the distance of

each vector to the remaining vectors. Because of the sequential nature of this technique,

it is not very suitable for hardware implementation.

In [54], an algorithm to reduce the computational complexity of squared 2-norm

VMF is presented. The input that minimizes the sum of the squared Euclidean distances

to other inputs will be the mean vector of the input set. Therefore, rather than

computing the difference of each vector to the remaining vectors, it will be enough to

compute the difference of each vector to the mean vector of the input set. This

technique reduces the order of computation from N
4
 to N

2
. However, a mean operation

is required by this technique and the mean operation requires a division.

In [54], a technique to reduce the computational complexity of 1-norm VMF is

presented as well. To compute the 1-norm median value, the proposed fast technique

first applies the scalar median for each dimension. This technique reduces the

computational complexity to N
2
, but applying the scalar median for each dimension is

identical to marginal ordering and this initial step of the proposed technique has a high

computational complexity. In addition, the complexity reduction proposed in this paper

depends on the variance of the input set and the size of the window. The proposed

technique is more effective for an input set having a lower variance and for windows

larger than 5x5.

 87

In [54], a pre-computation technique, which we used in this thesis, is mentioned

as well. It is indicated that, without using the pre-computed values, for an NxN window

“N
2
(N

2
-1)” distances must be calculated. By storing the distances that have already been

calculated, only “N(N
2
-1) + N(N-1) / 2” distances must be calculated. In this way, the

computational complexity of the 1-norm VMF is reduced to N
3
.

In [59], a performance improvement technique utilizing the redundancy in images

is presented. This technique is based on window memoization. In order to reduce the

amount of memory, only the two most significant bits of pixels are used for

memoization. Since MVs have two dimensions, this technique requires a large area for

FRC applications. In addition, using only the two most significant bits of vectors will

decrease the visual performance for FRC applications.

There are several papers in the literature presenting hardware implementations of

scalar median filters. In [60], 1D median filtering is implemented using a cumulative

histogram. The design is scalable for any window length. For 8 bit input samples a

histogram with 256 bins is used to find the median value. Proposed architecture is

synthesized to Xilinx XC2V6000 FPGA. In [61], median filtering is implemented with

a ranking method. Proposed architecture is implemented on a Xilinx XC4013XL-1

FPGA. This architecture consumes large area, because of the large number of required

comparators. In [62], an area efficient median based genetic algorithm is developed.

Rather than using larger window size, the authors developed a filter bank consisting of

3x3 filters. After training the algorithm on a test image, the resulting filter bank is

implemented on a Xilinx Virtex II Pro XC2VP50-7 FPGA. The authors claim that the

filter bank technique requires less hardware resources.

There are few papers presenting hardware implementations of VMFs [63]. In [63],

VMF is adaptively applied on the MVF. First, a mean vector is calculated for each

window position. Then, the mean of the distances between all the vectors in the window

to the mean vector is calculated. The proposed hardware implementation consumes 927

slices and works at 117.63 MHz on a Xilinx XC4VLX60 FPGA.

 88

5.1 Computation Reductions for Vector Median Filtering

We propose several techniques to reduce the computational complexity of 1-norm

VMF for FRC by using data reuse methodology and by exploiting spatial correlations in

the MVF [11]. To the best of our knowledge, there is no paper in the literature which

reduces the amount of computations performed by VMFs by analyzing the spatial

correlations between neighboring MVs. Since 3x3 window size is used in FRC papers

in the literature, we also used this window size. However, the proposed techniques are

scalable to any window size.

5.1.1 Data-Reuse Technique

Three consecutive 3x3 filtering windows are shown in Figure 5.5. The numbers in

this figure show the vectors in the filtering windows. Since the filtering window slides

from left to right over the MVF, vectors 1, 4, and 7 that are in the first filtering window

are not in the next filtering window. Therefore, data reuse technique is applicable to 6

out of 9 vectors in the current filtering window, and 5 out of 8 distances for each vector

can be stored and reused for the next filtering window.

Figure 5.5 3x3 Filtering windows

 89

Figure 5.6 The distances between vector 3 and other vectors in three consecutive

filtering windows

The 1-norm distances between vector 3 and other vectors in three consecutive

filtering windows are shown in Figure 5.6. The 1-norm distances of vector 3 to the other

vectors in the current filtering window are shown in Figure 5.6(a). For example, 3-5

denotes the 1-norm distance between vectors 3 and 5 in the current filtering window. As

shown in Figures 5.6(b) and 5.6(c), some of these 1-norm distances are also used to

compute the VMF for the next filtering windows.

 Calculating the sum of 1-norm distances of a vector to the remaining vectors in a

3x3 filtering window requires 16 subtraction, 16 absolute value and 15 addition

operations. Therefore, calculating the sum of 1-norm distances of each vector to the

remaining vectors in a 3x3 filtering window without data reuse technique requires

16*9=144 subtraction, 16*9=144 absolute value and 15*9=135 addition operations. The

number of arithmetic operations required for any filtering window size can be

calculated as follows. In an NxN filtering window, there are N
2
 vectors. Calculating the

sum of 1-norm distances of a vector to the remaining vectors in an NxN filtering

window requires 2(N
2
-1) subtraction, 2(N

2
-1) absolute value and 2(N

2
-2)+1 addition

operations. Therefore, for N
2
 vectors, 2N

2
(N

2
-1) subtraction, 2N

2
(N

2
-1) absolute value

and 2N
2
(N

2
-2)+N

2
 addition operations are required. The numbers of arithmetic

operations required for various filtering window sizes without proposed data reuse

technique are shown in Table 5.2. In this table, required arithmetic operations are given

per filtering operation and per HD frame. A 1920x1080 HD frame consists of 8100

16x16 MBs. Therefore, there are 7730 filtering windows for 3x3 VMF. For 5x5 VMF

and 7x7 VMF, there are 7368 and 7014 filtering windows, respectively.

 90

Table 5.2 Required arithmetic operations without proposed technique

Arithmetic

Operation

Per Filtering Operation Per HD Frame

3x3

VMF

5x5

VMF

7x7

VMF
3x3 VMF 5x5 VMF 7x7 VMF

Absolute value 144 1200 4704 1.113x10
6

8.841x10
6
 32.993x10

6

Subtraction 144 1200 4704 1.113x10
6
 8.841x10

6
 32.993x10

6

Addition 135 1175 4655 1.043x10
6
 8.657x10

6
 32.650x10

6

The number of these arithmetic operations can be significantly reduced by data

reuse technique. Data reuse technique is applicable to 6 vectors out of 9 vectors in a 3x3

filtering window. When the filtering window slides to right over the MVF, the current

filtering window has 3 new vectors that are not in the previous filtering window. Data

reuse technique stores the sum of 1-norm distances between the other 6 vectors that are

in the previous filtering window in 6*2=12 registers. For example, as shown in Figure

5.6, for vector 3, the sum of distances 3-2, 3-5, 3-8 are stored in a register, and the sum

of distances 3-6, 3-9 are stored in a register.

The sum of 1-norm distances of these 3 new vectors to the remaining vectors in the

filtering window should be calculated, and this requires 16*3=48 subtraction, 16*3=48

absolute value and 15*3=45 addition operations. In an NxN filtering window, 2N(N
2
-1)

subtraction, 2N(N
2
-1) absolute value, and 2N(N

2
-2)+N addition operations are required.

The 1-norm distances of the remaining 6 vectors in the filtering window to these

new 3 vectors should be calculated, and this requires 6*6=36 subtraction, 6*6=36

absolute value and 6*5=30 addition operations. In order to find the sum of 1-norm

distances of the remaining 6 vectors to all the other vectors in the filtering window, these

1-norm distances should be added to the previously calculated and stored sum of 1-norm

distances between these 6 vectors, and this requires 6*2=12 addition operations. In an

NxN filtering window, 2N(N
2
-N) subtraction, 2N(N

2
-N) absolute value, and (3N-2)(N

2
-

N) addition operations are required.

Therefore, calculating the sum of 1-norm distances of each vector to the remaining

vectors in a 3x3 filtering window with data reuse technique requires 48+36=84

subtraction, 48+36=84 absolute value and 45+30+12=87 addition operations. Calculating

the sum of 1-norm distances of each vector to the remaining vectors in an NxN filtering

window with data reuse technique requires 2N(2N
2
-N-1) subtraction, 2N(2N

2
-N-1)

 91

absolute value and 5N
3
-5N

2
-N addition operations. The numbers of arithmetic operations

required for various filtering window sizes with proposed data reuse technique are shown

in Table 5.3. For 3x3 filtering window size, the proposed data reuse technique avoids 60

subtraction, 60 absolute value and 48 addition operations, and it only requires 12 store

operations. The number of store operations required for NxN filtering window size is

2(N
2
-N).

Table 5.3 Required arithmetic operations with proposed technique

Arithmetic

Operation

Per Filtering Operation Per HD Frame

3x3

VMF

5x5

VMF

7x7

VMF
3x3 VMF 5x5 VMF 7x7 VMF

Absolute value 84 440 1260 0.649x10
6

3.241x10
6
 8.837x10

6

Subtraction 84 440 1260 0.649x10
6
 3.241x10

6
 8.837x10

6

Addition 87 495 1463 0.672x10
6
 3.647x10

6
 10.261x10

6

5.1.2 Spatial Correlations Technique

The proposed spatial correlations based techniques try to avoid redundant

computations for calculating sum of 1-norm distances between the vectors in the current

filtering window based on the spatial correlations between the neighboring MVs [11].

1-norm VMF calculates the sum of 1-norm distances of each vector to the other

vectors in the current filtering window and selects the vector with the minimum distance

as the output. The sum of 1-norm distances of a vector to the other vectors can be

calculated by finding the sum of absolute differences between the x dimension of this

vector and the x dimensions of the other vectors, and the sum of absolute differences

between the y dimension of this vector and the y dimensions of the other vectors, and

adding them.

When the filtering window slides to right in the MVF, Correlation 1 technique

compares the x dimensions and y dimensions of 3 new vectors in the current filtering

window. If the x dimensions of these 3 vectors are equal, it calculates the sum of

absolute differences between this x dimension and the x dimensions of the other vectors

 92

in the filtering window, and uses the same result for all 3 vectors. The same is done for

the y dimension. For example, since the y dimensions of vectors (4,9), (6,9), and (7,9)

are equal, the sum of absolute differences between 9 and the y dimensions of the other

vectors in the filtering window is calculated once and the same result is used for all 3

vectors.

When the filtering window slides to right in the MVF, Correlation 2 technique

compares the x dimension and y dimension of each new vector with the x dimension and

y dimension of the vector in the middle of the current filtering window. For example, it

compares the new vectors 10, 11, 12 with vector 6 in the second 3x3 filtering window in

Figure 5.5. If the x dimension of a new vector is equal to the x dimension of the vector in

the middle, it uses the previously calculated and stored sum of absolute differences

between x dimension of the vector in the middle (vector 6 in the second 3x3 filtering

window in Figure 5.5) and the x dimensions of the 5 old vectors in the filtering window

(vectors 2, 3, 5, 8, 9 in the second 3x3 filtering window in Figure 5.5) for this new

vector. The same is done for the y dimension.

When the filtering window slides to right in the MVF, Correlation 3 technique

compares the x dimension and y dimension of each new vector with the x dimension and

y dimension of the old vectors in the current filtering window. For example, it compares

the new vectors 10, 11, 12 with vectors 2, 3, 5, 6, 8, 9 in the second 3x3 filtering window

in Figure 5.5. If the x dimension of a new vector is equal to the x dimension of any

compared vector, it uses the previously calculated and stored sum of absolute differences

between x dimension of this old vector and the x dimensions of the remaining 5 old

vectors in the filtering window for this new vector. The same is done for the y

dimension.

The overhead of proposed techniques for various filtering window sizes are given

in Table 5.4 and Table 5.5. For an NxN filtering window, Correlation 1 requires (N
2
-N)

comparison operations, whereas Correlation 2 requires 2N comparison and 2 store

operations and Correlation 3 requires 2(N
3
- N

2
) comparison and 2(N

2
-N) store

operations.

 93

Table 5.4 Comparison overhead of spatial correlation techniques

Proposed

Technique

Per Filtering Operation Per HD Frame

3x3

VMF

5x5

VMF

7x7

VMF
3x3 VMF 5x5 VMF 7x7 VMF

Correlation 1 6 20 42 4.638 x10
4
 1.4736 x10

5
 2.94588 x10

5

Correlation 2 6 10 14 4.638 x10
4
 7.368 x10

4
 9.8196 x10

4

Correlation 3 36 200 588 2.7828 x10
5
 1.4736 x10

6
 3.913812 x10

6

Table 5.5 Store overhead of spatial correlation techniques

Proposed

Technique

Per Filtering Operation Per HD Frame

3x3

VMF

5x5

VMF

7x7

VMF
3x3 VMF 5x5 VMF 7x7 VMF

Correlation 1 0 0 0 0 0 0

Correlation 2 2 2 2 1.546 x10
4
 1.4736 x10

4
 1.4028 x10

4

Correlation 3 12 40 84 9.276 x10
4
 2.9472 x10

5
 5.89176 x10

5

The computation reductions achieved by spatial correlation techniques for a 3x3

filtering window are shown in Table 5.6 and Table 5.7. The simulations are done for the

first 50 frames of the “Ducks” and “SthlmPan” video sequences and for the first 100

frames of the other video sequences. The resolutions and frame rates of these video

sequences are given in Table 5.6. The MVFs are obtained by FS algorithm with 16x16

MB size on a search range of (±8,±8) pixels for CIF sized videos and on a search range

of (±16,±16) pixels for remaining videos. The simulation results in Table 5.6 show the

percentages of x dimensions and y dimensions of the 3 new vectors for all 3x3 filtering

windows in these video frames for which the sum of absolute differences computations

are avoided.

The proposed spatial correlation techniques do not require the x dimension and y

dimension of a new vector to be equal. They can avoid the sum of absolute differences

computations for only x dimension or y dimension of a new vector. In order to quantify

the impact of this, we modified the Correlation 1 and Correlation 2 techniques so that

they require the equality of x dimension and y dimension of a new vector in order to

avoid the sum of absolute differences computations for this vector. The simulation

results in Table 5.7 show the percentages of x dimensions and y dimensions of the 3 new

vectors for all 3x3 filtering windows in these video frames for which the sum of absolute

differences computations are avoided by these modified correlation techniques.

 94

Table 5.6 Computation reductions for 3x3 VMF

Video Sequence Resolution fps Correlation 1 Correlation 2 Correlation 3

CoastGuard (352x240) 30 44.980 % 64.366 % 78.028 %

Flowers H (352x240) 29 41.027 % 55.163 % 74.050 %

Foreman (352x288) 30 38.072 % 48.282 % 73.524 %

M. Calendar L (352x240) 29 49.088 % 71.061 % 79.829 %

Susie L (352x240) 29 37.524 % 48.398 % 72.016 %

Table Tennis L (352x240) 29 50.912 % 73.085 % 79.082 %

M. Calendar H (704x480) 29 48.249 % 67.501 % 84.591 %

Susie H (704x480) 29 30.476 % 38.539 % 67.298 %

Table Tennis H (704x480) 29 54.212 % 78.535 % 86.289 %

Flowers H (704x480) 29 40.527 % 56.890 % 75.077 %

Gladiator (720x576) 25 22.267 % 26.405 % 54.535 %

Spiderman (720x576) 25 15.148 % 15.858 % 43.050 %

Irobot (720x576) 25 25.357 % 33.081 % 61.834 %

Spider3 (1280x528) 23 37.845 % 52.946 % 70.189 %

Ducks (1280x720) 50 44.611 % 62.986 % 85.788 %

SthlmPan (1280x720) 50 47.674 % 68.687 % 81.234 %

Table 5.7 Computation reductions by modified correlation techniques for 3x3 VMF

Video Sequence Correlation 1 Correlation 2

CoastGuard 34.745 % 46.695 %

Flowers L 31.204 % 39.329 %

Foreman 29.134 % 35.188 %

M. Calendar L 42.924 % 60.590 %

Susie L 27.552 % 33.921 %

Table Tennis L 48.136 % 68.252 %

M. Calendar H 39.610 % 53.291 %

Susie H 20.139 % 24.874 %

Table Tennis H 50.599 % 72.935 %

Flowers H 32.132 % 45.279 %

Gladiator 9.212 % 11.945 %

Spiderman 4.376 % 4.131 %

Irobot 15.073 % 20.026 %

Spider3 30.279 % 43.129 %

Ducks 32.050 % 42.146 %

SthlmPan 41.989 % 59.919 %

We propose using a threshold, called “dif”, for increasing the computation

reductions achieved by the proposed spatial correlation techniques. The proposed

techniques require the dimensions of the compared vectors to be equal in order to avoid

computations. The proposed techniques using “dif” avoid the computations for similar

vectors as well by allowing a maximum difference of “dif” between the dimensions of

the compared vectors. For example, when “dif” is set to 2, a reduction in computations

will be achieved when the absolute value of the difference in any dimensions of the

compared vectors is less than or equal to 2 pixels. The computation reductions achieved

by the proposed spatial correlation techniques using “dif” for a 3x3 filtering window are

 95

shown in Table 5.8. The computation reductions achieved by the proposed modified

spatial correlations techniques using “dif” for a 3x3 filtering window are shown in

Table 5.9. When “dif” is set to 2 for modified spatial correlations techniques, a

reduction in computations will be achieved when the absolute value of the difference in

both dimensions of the compared vectors is less than or equal to 2 pixels. The modified

spatial correlations techniques achieve less computation reduction than the original

spatial correlations techniques. The difference between the computation reductions

achieved by the modified and the original spatial correlations techniques for various

“dif” values are shown in Table 5.10.

Table 5.8 Computation reductions for 3x3 VMF using “dif”

Video Sequence

dif = 2 dif = 4

Correlation

1

Correlation

2

Correlation

1

Correlation

2

CoastGuard 54.790 % 82.129 % 55.817 % 83.639 %

Flowers L 53.465 % 79.293 % 54.604 % 81.254 %

Foreman 54.115 % 79.396 % 56.117 % 83.326 %

M. Calendar L 55.704 % 83.379 % 56.157 % 84.160 %

Susie L 53.982 % 79.630 % 55.301 % 82.237 %

Table Tennis L 55.096 % 81.731 % 55.855 % 83.448 %

M. Calendar H 58.895 % 87.492 % 59.902 % 89.141 %

Susie H 49.734 % 71.195 % 54.156 % 78.508 %

Table Tennis H 59.530 % 88.712 % 60.415 % 89.936 %

Flowers H 52.989 % 77.214 % 55.727 % 81.881 %

Gladiator 35.067 % 45.234 % 40.075 % 52.704 %

Spiderman 26.456 % 30.027 % 32.910 % 38.770 %

Irobot 39.693 % 55.391 % 44.493 % 63.011 %

Spider3 46.487 % 66.401 % 49.734 % 71.198 %

Ducks 61.554 % 92.060 % 63.088 % 94.534 %

SthlmPan 56.742 % 83.411 % 58.796 % 86.812 %

Table 5.9 Computation reductions by modified correlation techniques for 3x3 VMF

using “dif”

Video Sequence

dif = 2 dif = 4

Correlation

1

Correlation

2

Correlation

1

Correlation

2

CoastGuard 53.324 % 79.913 % 55.328 % 82.833 %

Flowers L 51.377 % 75.644 % 53.306 % 78.936 %

Foreman 52.131 % 76.031 % 54.861 % 81.255 %

M. Calendar L 55.046 % 82.254 % 55.929 % 83.753 %

Susie L 52.471 % 76.969 % 54.513 % 80.725 %

Table Tennis L 54.224 % 79.808 % 55.489 % 82.664 %

M. Calendar H 56.664 % 83.727 % 58.327 % 86.413 %

Susie H 44.456 % 63.608 % 50.353 % 72.688 %

Table Tennis H 58.392 % 86.057 % 59.596 % 88.410 %

Flowers H 48.564 % 70.437 % 51.851 % 75.692 %

Gladiator 22.171 % 30.312 % 27.285 % 36.664 %

Spiderman 12.280 % 13.563 % 17.749 % 19.703 %

Irobot 29.919 % 42.004 % 35.101 % 49.797 %

Spider3 39.252 % 56.976 % 42.689 % 61.785 %

Ducks 59.560 % 88.808 % 62.622 % 93.747 %

SthlmPan 51.879 % 75.446 % 54.459 % 79.192 %

 96

Table 5.10 Difference between the computation reductions achieved by the

modified and the original spatial correlations techniques

Video Sequence
dif = 0 dif = 2 dif = 4

Corr. 1 Corr. 2 Corr. 1 Corr. 2 Corr. 1 Corr. 2

CoastGuard -22.754% -27.453% -2.675% -2.698% -0.876% -0.963%

Flowers L -23.942% -28.704% -3.905% -4.601% -2.377% -2.852%

Foreman -23.476% -27.119% -3.666% -4.238% -2.238% -2.485%

M. Calendar L -12.557% -14.735% -1.181% -1.349% -0.406% -0.483%

Susie L -26.575% -29.912% -2.799% -3.341% -1.424% -1.838%

Table Tennis L -5.452% -6.612% -1.582% -2.352% -0.655% -0.939%

M. Calendar H -17.905% -21.051% -3.788% -4.303% -2.629% -3.060%

Susie H -33.918% -35.457% -10.612% -10.656% -7.022% -7.413%

Table Tennis H -6.664% -7.130% -1.911% -2.992% -1.355% -1.696%

Flowers H -20.714% -20.409% -8.350% -8.776% -6.955% -7.558%

Gladiator -58.629% -54.762% -36.775% -32.988% -31.915% -30.434%

Spiderman -71.111% -73.950% -53.583% -54.830% -46.068% -49.179%

Irobot -40.556% -39.463% -24.624% -24.168% -21.108% -20.970%

Spider3 -19.992% -18.541% -15.563% -14.194% -14.165% -13.220%

Ducks -28.156% -33.086% -3.239% -3.532% -0.738% -0.832%

SthlmPan -11.924% -12.765% -8.570% -9.549% -7.376% -8.777%

Since the proposed spatial correlations techniques are scalable to larger window

sizes, we obtained the performance results for larger filtering window sizes. The

simulation results for 5x5 VMF and for 7x7 VMF are given in Table 5.11 and Table

5.12, respectively. The simulation results for various “dif” values and filtering window

sizes are given in Table 5.13. As “dif” value increases, computation reductions increase,

especially for videos having large motions.

Based on these results, Correlation 2 technique performs slightly better than

Correlation 1 technique, especially for 3x3 filtering window. This is an expected result,

because for stationary frames and for frames having a global motion Correlation 2

should perform better. For these types of frames, MVs entering the filtering window

will be equal, and therefore Correlation 2 will avoid the computations for all these MVs,

whereas Correlation 1 will perform one computation. Because, Correlation 1 technique

performs at least one computation independent of the new vectors entering the filtering

window. Correlation 1 can avoid at most 2/3, 4/5, and 6/7 of the computations for 3x3,

5x5, and 7x7 filtering windows, respectively. The performance difference between

Correlation 1 and Correlation 2 techniques decreases for larger filtering windows. One

reason for this is that in Correlation 2 for larger filtering windows, the difference

between the physical locations of new vectors entering the filtering window and the old

 97

vector compared with them, which is the vector in the middle of the filtering window, is

large. Therefore, the compared vectors are less correlated.

As the filtering window size gets larger, the performances of the proposed

techniques decrease. Because for larger filtering windows, objects become smaller than

the filtering window, and the correlation between compared vectors decrease. Because

of this reason, FRC algorithms reported in the literature use a 3x3 filtering window.

Table 5.11 Computation reductions for 5x5 VMF

Video Sequence
dif = 0 dif = 2 dif = 4

Corr. 1 Corr. 2 Corr. 1 Corr. 2 Corr. 1 Corr. 2

CoastGuard 42.750 % 47.704 % 50.128 % 61.702 % 50.626 % 63.078 %

Flowers L 37.810 % 36.924 % 48.039 % 58.003 % 49.089 % 59.940 %

Foreman 40.184 % 36.491 % 53.417 % 62.924 % 55.310 % 67.005 %

M. Calendar L 46.340 % 53.430 % 50.282 % 62.424 % 50.645 % 63.115 %

Susie L 37.540 % 36.628 % 49.737 % 60.397 % 50.413 % 62.154 %

Table Tennis L 45.101 % 50.522 % 49.771 % 60.486 % 50.475 % 62.468 %

M. Calendar H 56.564 % 62.068 % 65.172 % 79.570 % 65.912 % 81.050 %

Susie H 38.910 % 35.554 % 58.864 % 66.725 % 62.401 % 73.170 %

Table Tennis H 60.476 % 50.522 % 65.472 % 79.565 % 66.336 % 81.524 %

Flowers H 45.780 % 47.686 % 59.189 % 68.679 % 62.030 % 73.470 %

Gladiator 27.430 % 19.664 % 43.647 % 38.273 % 49.840 % 45.511 %

Spiderman 20.456 % 13.530 % 35.440 % 26.366 % 43.525 % 34.379 %

Irobot 31.699 % 26.417 % 48.686 % 48.222 % 54.094 % 55.842 %

Spider3 44.059 % 47.526 % 54.089 % 59.734 % 57.761 % 64.250 %

Ducks 57.085 % 61.989 % 71.159 % 87.315 % 71.972 % 89.541 %

SthlmPan 57.945 % 66.797 % 66.409 % 79.672 % 68.268 % 82.595 %

Table 5.12 Computation reductions for 7x7 VMF

Video Sequence
dif = 0 dif = 2 dif = 4

Corr. 1 Corr. 2 Corr. 1 Corr. 2 Corr. 1 Corr. 2

CoastGuard 25.041 % 25.571 % 28.344 % 32.690 % 28.447 % 33.128 %

Flowers L 21.381 % 16.631 % 26.833 % 28.842 % 27.496 % 30.320 %

Foreman 30.823 % 24.184 % 39.590 % 42.231 % 41.182 % 45.877 %

M. Calendar L 26.143 % 27.002 % 28.217 % 32.909 % 28.416 % 33.144 %

Susie L 22.101 % 19.247 % 28.049 % 31.846 % 28.361 % 32.739 %

Table Tennis L 25.753 % 27.128 % 27.999 % 31.939 % 28.364 % 32.847 %

M. Calendar H 55.894 % 55.755 % 62.243 % 70.959 % 62.717 % 71.926 %

Susie H 48.854 % 31.888 % 57.946 % 60.760 % 60.600 % 66.247 %

Table Tennis H 57.334 % 60.399 % 62.129 % 69.333 % 63.002 % 71.596 %

Flowers H 44.143 % 38.834 % 56.124 % 58.545 % 58.866 % 63.359 %

Gladiator 28.616 % 15.913 % 45.245 % 32.942 % 51.534 % 39.865 %

Spiderman 22.651 % 11.656 % 38.627 % 23.103 % 46.783 % 30.440 %

Irobot 33.189 % 21.120 % 49.750 % 41.159 % 55.017 % 48.515 %

Spider3 44.071 % 42.133 % 53.805 % 52.892 % 57.360 % 56.995 %

Ducks 60.188 % 58.451 % 71.861 % 82.111 % 72.385 % 84.076 %

SthlmPan 60.476 % 64.228 % 67.664 % 75.335 % 69.333 % 77.858 %

 98

Table 5.13 Average computation reductions

Filter Size
dif = 0 dif = 2 dif = 4

Corr 1 Corr 2 Corr 1 Corr 2 Corr 1 Corr 2

3x3 39.2% 53.8% 50.8% 73.9% 53.3% 77.7%

5x5 43.1% 43.3% 54.3% 62.5% 56.7% 66.1%

7x7 37.9% 33.7% 46.5% 47.9% 48.7% 51.1 %

MVFs with higher spatial consistency increase the quality of the frames

interpolated by FRC. Therefore, we used the Sum of Absolute Minimum Neighboring

Difference (SAMND) metric [64] in order to determine the impact of VMF on the

spatial consistency of MVFs. SAMND metric determines the correlation between the

motions of the neighboring MBs by calculating the difference between their MVs as

shown in (5.4). Since this is an off-line operation, 2-norm is used to find the distances

between the MVs. In (5.4), cx


 denotes the vector in the middle of the filtering window,

ix


 denotes the remaining vectors in the filtering window, and N denotes the total

number of MBs in a frame.

Table 5.14 shows the SAMND results for 3x3 filtering window. FS algorithm is

used to obtain MVFs. The results given in this table are average SAMND values per

MB, for which VMF is applicable. In these simulations, smoothing is applied

recursively which means that the VMF uses the existing smoothed MVs in the current

filtering window. Since real-time video processing hardware work MB by MB rather

than working frame by frame, this is suitable for hardware implementation. As it can be

seen from Table 5.14, smoothing the MVF increases the spatial consistency between

neighboring MVs. SAMND performance decreases for larger “dif” values. Because

increasing “dif” increases the possibility of selecting the MV in the middle of the

filtering window as the median MV, which is equal to not doing any smoothing

operation.





N

MB

ic xxSAMND
1

2
min


, where i ≠ c (5.4)

Since SAMND metric is based on the minimum difference between the current

MV and its neighboring MVs, it may give incorrect results for exceptional cases, e.g.

when two similar outlier MVs are in the same filtering window. Therefore, we

 99

Table 5.14 SAMND results

Video

Sequence

Without

smoothing

With

smoothing

dif = 2 dif = 4

Corr

1

Corr

2

Corr

1

Corr

2

CoastGuard 0.1262 0.0075 0.0346 0.0439 0.0467 0.0654

Flowers 0.2712 0.0155 0.0264 0.0609 0.0343 0.0890

Foreman 0.3233 0.0313 0.0629 0.0876 0.0827 0.1303

M.Calendar 0.0803 0.0015 0.0305 0.0370 0.0414 0.0508

Susie 0.3232 0.0386 0.0771 0.1074 0.0954 0.1468

TableTennis 0.1007 0.0061 0.0282 0.0302 0.0486 0.0507

M.Calendar 0.3480 0.0107 0.0393 0.0611 0.0521 0.0861

Susie 1.4038 0.1180 0.1258 0.1400 0.1680 0.2069

TableTennis 0.2777 0.0129 0.0531 0.0567 0.0716 0.0762

Flowers 0.8106 0.0610 0.0615 0.0755 0.0820 0.1084

Gladiator 2.9077 0.2577 0.3294 0.3325 0.3621 0.3718

Spiderman 4.4531 0.4605 0.5343 0.5418 0.5691 0.5852

Irobot 1.9819 0.1506 0.2007 0.2068 0.2336 0.2426

Spider3 1.6618 0.1282 0.2035 0.2073 0.2286 0.2369

Ducks 0.1554 0.0109 0.0536 0.0721 0.0867 0.1178

SthlmPan 0.6359 0.0580 0.0612 0.0706 0.0770 0.0956

developed the Sum of Neighboring Differences (SND) metric which takes the

difference of the current MV with all its neighboring MVs into account. The SND

metric is calculated as shown in (5.5). Table 5.15 shows the SND results for 3x3

filtering window. FS algorithm is used to obtain MVFs. The results given in this table

are average SND values per MB, for which VMF is applicable.


 


N

MB ci

ic xxSND
1

9

2


 (5.5)

Table 5.15 SND results

Video

Sequence

Without

smoothing

With

smoothing

dif = 2 dif = 4

Corr

1

Corr

2

Corr

1

Corr

2

CoastGuard 6.1574 2.5855 4.7004 4.7300 5.2268 5.3790

Flowers 7.7833 2.1327 3.8889 4.2306 4.3277 4.7518

Foreman 10.2969 4.0322 6.4099 6.5707 7.3295 7.5359

M.Calendar 3.5041 1.3238 2.6138 2.7027 3.0164 3.1185

Susie 10.1784 4.9273 7.4894 7.6945 8.2058 8.4920

TableTennis 3.1192 1.0538 1.7603 1.8031 2.2278 2.2640

M.Calendar 10.6241 2.6353 4.4929 4.6107 5.0107 5.2168

Susie 32.5122 10.1467 12.8724 12.9829 14.7590 15.0836

TableTennis 6.9591 1.6999 3.1505 3.1698 3.5601 3.6048

Flowers 20.8387 5.3685 6.5933 6.8530 7.6923 8.1461

Gladiator 90.6198 46.0629 46.1256 46.5114 47.8577 47.8834

Spiderman 122.0818 59.6276 59.7013 60.1205 61.7425 61.9127

Irobot 63.2902 31.0584 31.8333 31.8711 33.5845 33.7574

Spider3 49.7524 23.7022 23.7708 23.8530 25.0597 25.2509

Ducks 7.4080 2.4609 5.7550 5.8512 6.9311 6.9999

SthlmPan 20.1122 5.8201 6.8342 6.8986 7.7794 7.9782

 100

As it can be seen from Table 5.15, smoothing the MVF increases the spatial

consistency between neighboring MVs and improves the SND performance. Since

increasing “dif” increases the possibility of selecting the MV in the middle of the

filtering window as the median MV, which is equal to not doing any smoothing

operation, SND performance decreases with larger “dif” values.

5.2 Vector Median Filtering Hardware Architecture

In this thesis, we also propose an efficient VMF hardware implementing the

proposed computation reduction techniques exploiting the spatial correlations in the

MVF [11]. To the best of our knowledge, a VMF hardware implementing these

techniques is not presented in the literature. The proposed architecture is scalable to any

window size. But, it is implemented for a 3x3 window size because of the FRC

requirements. The top-level block diagram of the proposed hardware is shown in Figure

5.7. The control unit generates the necessary control signals for datapaths and sends the

MVs to them. It also controls the weighting and minimum selector module. VMF

computations for a filtering window are overlapped with loading the new vectors for the

next filtering window.

Figure 5.7 Top-level block diagram of the VMF hardware

 101

The proposed hardware has two datapaths working in parallel. The sum of 1-norm

distances of a vector to the other vectors in the filtering window is computed by these

two datapaths. One datapath computes the sum of absolute differences between the x

dimension of this vector and the x dimensions of the other vectors, and the other

datapath computes the sum of absolute differences between the y dimension of this

vector and the y dimensions of the other vectors.

When the start signal is asserted, the control unit gets the number of MVs per

column and MVs per row information from the 9-bit (in order to support 1920x1080

resolution) “MV_per_col” and “MV_per_row” signals. Then, control unit requests the

vectors in the current filtering window by asserting “MV_req” signal. If the current

filtering window is the first filtering window in a row, control unit asserts the

“line_start” signal together with the “MV_req” signal. Because, VMF hardware should

get 9 new vectors for the first filtering window in a row, whereas it should get 3 new

vectors for the other filtering windows in the row. The VMF hardware receives one new

16-bit vector (8-bit x dimension and 8-bit y dimension) in each clock cycle.

The block diagram of a datapath is shown in Figure 5.8. Ping pong registers are

used to overlap computing VMF for the current filtering window with receiving the new

vectors for the next filtering window. Vectors are loaded to the registers column by

column. For a 3x3 filtering window, loading a column of vectors takes 3 clock cycles.

After the vectors in one column of the filtering window are loaded, they are shifted to

left by one column. In the datapath, the multiplexer with 9 inputs is used to select the

vector of which the sum of 1-norm distances with other vectors will be calculated.

The block diagram of the weighting and minimum selector module is shown in

Figure 5.9. After the results obtained by the two datapaths are weighted separately, they

are added and the result is stored in a register. The results obtained for all 9 vectors in

the current filtering window are compared and the vector with the minimum value is

selected as the median vector. The weights are stored in a register file and they can be

changed adaptively during run time. Therefore, the proposed hardware can implement

adaptively weighted VMF.

 102

Figure 5.8 Block diagram of the VMF datapath

Figure 5.9 Block diagram of the weighting and minimum selector module

 103

The spatial correlation techniques are implemented in the control unit using 6 8-

bit comparators. The number of comparators can be reduced by performing the

comparisons serially. Since the proposed VMF hardware has two datapaths working in

parallel, it requires the equality of x dimension and y dimension of a new vector in

order to avoid the sum of absolute differences computations for this vector. Therefore, it

can achieve the computation reduction percentages shown in Table 5.7.

For the first filtering window in a row, loading 9 new vectors and computing

VMF takes 22 clock cycles. For the other filtering windows in the row, computing VMF

takes 12 cycles. Therefore, VMF for a frame without spatial correlation techniques

takes ((MV_per_col-2) x 22 + (MV_per_col-2) x (MV_per_row – 3) x 12) clock cycles.

Therefore, for 16x16 MB size, VMF for a 1920x1080 HD frame without spatial

correlation techniques takes 92690 cycles. For 4x4 MB size, it takes 1539928 cycles.

The proposed VMF hardware architecture is implemented in Verilog HDL, and

mapped to a low cost Xilinx XC3S400A-5 FPGA using Xilinx ISE 10.1.03. The

implementation is verified with post place and route simulations using Mentor Graphics

Modelsim 6.1 PE. The FPGA implementation consumes 1426 slices and it can work at

145 MHz. Since, for 4x4 MB size, VMF for a 1920x1080 HD frame without spatial

correlation techniques takes 1539928 clock cycles, VMF for this frame takes 10.62 ms.

Therefore, without spatial correlation techniques, the proposed VMF hardware can

process 94 HD fps. When the spatial correlation techniques are used, it can process

more than 94 HD fps.

 104

CHAPTER 6

FRAME INTERPOLATION HARDWARE

FRC is the conversion of a lower frame rate video signal to a higher frame rate

video signal. LCD panels used for HDTV have a frame rate up to 240 Hz, whereas

video signals are usually recorded in 24 Hz, 25 Hz, or 30 Hz. Therefore, FRC is

required in order to display the HDTV video signals in the LCD panels. FRC can be

done by interpolating a new frame between every two consecutive original frames like

in 25 Hz to 50 Hz, 30 Hz to 60 Hz, 50 Hz to 100 Hz, 60 Hz to 120 Hz conversions, and

it can be done by interpolating three new frames between every two consecutive

original frames like in 25 Hz to 100 Hz, 50 Hz to 200 Hz, 30 Hz to 120 Hz, 60 Hz to

240 Hz conversions. In the case of 24 Hz to 60 Hz conversion 3:2 pull-down technique

is used [65].

Because of their low computational complexity, simple FRC techniques like

frame repetition and Linear Interpolation (LI) are used in some consumer electronics

products. But, these simple techniques often produce artifacts to which human eye is

very sensitive. Frame repetition results in motion judder and LI causes blurring at object

boundaries [66, 67]. To overcome these problems, FRC algorithms using motion

information between consecutive frames are developed. For example, Motion

Compensated Averaging (MCA) technique performs frame interpolation by using the

MVs found by the ME process.

The LI and MCA techniques perform frame interpolation as shown in equations

(6.1) and (6.2), respectively. In these equations, “t” is the time instance the frame “F”

belongs to, “ x


” is the spatial location of the current pixel in the frame and “τ” is the

time slot the interpolated frame belongs to. For the conversion ratio 1:2, τ will be 0.5 for

both interpolated frames, and for the conversion ratio 1:4, τ will be 0.25, 0.5, and 0.75

for the three interpolated frames.

 105

       txFtxFtxFLI ,1,1,


  (6.1)

       tvxFtvxFtxFMCA ,11,
2

1
,


  (6.2)

Figure 6.1 An example FRC system

An example FRC system is shown in Figure 6.1. Analyzing the off-chip memory

bandwidth requirement of this FRC system clearly shows that FRC systems require

significant data transfer from the off-chip frame memory. This FRC system implements

a 1:4 conversion ratio. It will interpolate new frames by using one MV per MB and

accessing one MB from the current frame and one MB from the reference frame. Since

each color channel is 10 bits, the RGB values of a pixel take 30 bits which can be stored

in a 32 bit word in memory. A Full HD frame has 1920x1080 (1.98M) pixels which

take 7.92MB. Therefore, 15.84MB (2x7.92MB) have to be accessed from the off-chip

frame memory in order to interpolate one frame. Since three frames will be interpolated

per original frame, 47.52MB have to be accessed from the off-chip frame memory.

The received input frame and the interpolated frames will be stored in the frame

memory and they will be sent to the LCD display from the frame memory. Storing

interpolated frames in the frame memory requires accessing 23.76MB (3x7.92MB).

Storing the received input frame in the frame memory and reading the output frames

that will be sent to the display from the frame memory requires accessing 39.6MB

(5x7.92MB). Therefore, 110.88MB per frame have to be accessed from the off-chip

frame memory. In the case of 60 Hz to 240 Hz conversion, this process will be repeated

60 times per second. Therefore, 6.5 GB/s memory bandwidth is required. As it can be

seen from this example, FRC systems require significant off-chip memory bandwidth.

 106

Although recent 16 bit wide DDR III memories with a data rate of 1600 MHz have a

bandwidth up to 3.2 GB/s [68], and by using the 4:2:2 or 4:2:0 video formats the

amount of chrominance data can be reduced, real-time implementation of FRC systems

is very difficult.

FRC algorithms such as Adaptive Motion Compensated Interpolation and

Overlapped Block Adaptive Motion Compensated Interpolation (AMCI) [69] and

Weighted Adaptive Motion Compensated Interpolation (WAMCI) [70] produce good

quality results. However, for interpolating a MB, these algorithms do not only access

the MBs in the current and previous frames pointed by the MV for the current MB, they

also access the MBs pointed by the MVs of the eight spatially neighboring MBs of the

current MB. The MVs required for interpolating MB(i,j) in AMCI and WAMCI

algorithms are shown in Figure 6.2. In this figure, “i” and “j” denote the x and y

coordinates of a MB, respectively. The dark shaded MB is the current MB(i,j) and

dashed MBs are its non-causal neighboring MBs. Therefore, these FRC algorithms

access 9 MBs from current frame and 9 MBs from reference frame for interpolating a

MB. This significantly increases the off-chip memory bandwidth requirement of an

FRC system.

Figure 6.2 MVs required to interpolate the current MB(i,j)

Even though the off-chip memory bandwidth required by these FRC algorithms

can be reduced by using a large on-chip memory as proposed in [71], real-time

implementation of these FRC algorithms for HDTV is very difficult and they require a

significant area for the on-chip memory. Several complete FRC hardware

implementations including these frame interpolation algorithms are proposed in [72-74].

However, they do not specify the details of the frame interpolation part of their

hardware, and they do not propose a reconfigurable hardware architecture for

implementing these frame interpolation algorithms.

 107

6.1 Frame Interpolation Algorithms

FRC by repetition of the original frames results in motion judder and LI causes

blurring at object boundaries. MCA is used to overcome these artifacts. However, it

introduces blocking artifacts. Blocking artifacts occur at object boundaries when a block

contains multiple objects with different motions. An appropriate solution to these local

problems is the graceful degradation [67].

Graceful degradation methods are SMF, DMF, SS, and CMF. Their equations are

shown in (6.3), (6.4), (6.5), and (6.6), respectively. Their advantages and drawbacks are

discussed in detail in [67]. In general, SMF produces good results for stationary scenes;

however it fails for detailed parts of the video. DMF performs better for these parts of

video. The drawback of DMF is its tendency to cause serration of edges in highly

detailed areas. The block diagrams of SMF and DMF are shown in Figure 6.3 and

Figure 6.4, respectively.

SS is an alternative to the rapid switching of DMF between LI and motion

compensated pixels. SS takes the weighted average of motion compensated and non-

motion compensated pixels. As a result, switching between LI and MCA becomes

softer. As shown in Equation (6.5), the weighting mechanism is controlled by a factor

“k” which shows the reliability of the MVs. For reliable MVs, MCA will be preferred

and for unreliable MVs, LI will be preferred. SS may result in local motion judder or

local blur. CMF combines the strengths of SMF, DMF, and SS by taking the median of

these methods. CMF can overcome the problems of these individual methods if

controlled carefully.

          txFtxFtxFmediantxF MCASMF ,,,,1,,


 (6.3)

          txFtvxFtvxFmediantxF LIDMF ,,,)1(,1,,


 (6.4)

         txFktxkFtxF MCALISS ,1,,


 (6.5)

         txFtxFtxFmediantxF SSDMFSMFCMF ,,,,,,


 (6.6)

 108

Figure 6.3 The block diagram of SMF

 Figure 6.4 The block diagram of DMF

We have compared the PSNR performance of various frame interpolation

techniques. Table 6.1 shows PSNR results when FS is used as the ME algorithm and

Table 6.2 shows PSNR results when DVSS is used as the ME algorithm. For these

simulations, the ratio used in the SS is set to 0.5. The results showed that ME based

frame interpolation techniques perform better than LI. When FS is used, MCA performs

15.41% better than LI on the average. Similarly, SMF, DMF, SS and CMF perform

9.34%, 15.85%, 10.62% and 13.18% better than LI on the average, respectively. The

results also showed that the difference between the PSNR results of FS and DVSS

algorithms is negligible. Although, DVSS checks much fewer search locations than FS,

its performance is almost the same as the performance of FS. For MCA, the FS

algorithm performs only 0.77% better than DVSS algorithm. The performance

difference between FS and DVSS is only 0.01%, 0.37%, 0.34% and 0.23% for SMF,

DMF, SS and CMF, respectively.

 109

Table 6.1 PSNR results of the FS algorithm

Video LI MCA SMF DMF SS CMF
CoastGuard 25.3869 29.3512 27.6633 28.6013 28.1044 28.3669

Flowers 22.5259 27.1509 25.2657 26.2040 25.5612 25.9352
Foreman 29.0562 30.9336 32.0160 32.5259 31.2801 32.4068

M.Calendar L 22.5586 25.1749 24.4105 24.9861 24.6377 24.8840
Susie 30.4907 34.4495 33.2389 34.3749 33.4113 33.9824

TableTennis L 28.2165 32.3890 30.7374 32.0982 31.1210 31.5816
M.Calendar H 19.0235 24.0895 21.8492 23.5409 22.4858 22.9549

Susie 29.9640 33.9879 32.8294 34.2893 33.0780 33.7452
TableTennis H 30.4426 34.2168 32.9888 34.4667 33.2847 33.8645

Flowers 20.6369 28.8036 24.3785 27.0520 25.0289 25.8353
Gladiator 20.6718 26.3470 23.3757 27.0797 24.5895 25.3301

Spiderman 23.1200 27.2346 25.3174 26.9515 26.0612 26.3776
Irobot 21.9556 26.5563 24.2142 26.8914 25.2759 25.8553

Spider3 29.1199 25.6806 29.3254 29.4353 27.1299 29.4055
Ducks 33.6571 34.0227 34.1742 34.1982 34.4229 34.4350

SthlmPan 24.1271 33.8959 27.5507 33.4062 29.1224 30.1477

Table 6.2 PSNR results of DVSS algorithm

Video LI MCA SMF DMF SS CMF
CoastGuard 25.3869 29.3876 27.6680 28.6071 28.1088 28.3702

Flowers 22.5259 26.7278 25.2583 26.1943 25.4825 25.9267
Foreman 29.0562 29.2466 32.0245 32.5206 30.7452 32.4098

M.Calendar L 22.5586 25.2333 24.4124 24.9875 24.6363 24.8801
Susie 30.4907 34.7535 33.2744 34.3455 33.4722 33.9978

TableTennis L 28.2165 32.3997 30.7304 32.0198 31.0706 31.5227
M.Calendar H 19.0235 24.4249 21.8711 23.5668 22.5436 22.9784

Susie 29.9640 34.3474 32.8574 34.2781 33.1551 33.7598
TableTennis H 30.4426 34.4332 32.9863 34.3809 33.2914 33.8242

Flowers 20.6369 28.2882 24.3839 27.0656 24.9771 25.8437
Gladiator 20.6718 25.3891 23.3495 26.7955 24.3361 25.2051

Spiderman 23.1200 27.1854 25.2789 26.8401 26.0077 26.3021
Irobot 21.9556 26.3661 24.1695 26.5634 25.1613 25.6951

Spider3 29.1199 24.9613 29.2992 28.6499 26.5562 28.7680
Ducks 33.6571 34.0392 34.1772 34.2004 34.4272 34.4375

SthlmPan 24.1271 33.8959 27.5508 33.4063 29.1224 30.1477

 110

 (a) (c)

(b)

Figure 6.5 Frames at consecutive time instances (a) t-1, (b) t, (c) t+1

In addition to PSNR comparison, in order to visually compare the quality of the

interpolated frames by these frame interpolation techniques, we interpolated a frame

from the “Foreman” benchmark video. Figure 6.5 shows three consecutive frames from

this video. The frame at time instance “t” in Figure 6.5 is interpolated with several

frame interpolation techniques by using the MVs obtained by the FS algorithm and the

DVSS algorithm between the frames at time instances “t-1” and “t+1”. The resulting

frames for the FS algorithm are shown in Figure 6.6, and the resulting frames for DVSS

algorithm are shown in Figure 6.7. For LI, the resulting frames for FS and DVSS

algorithms are the same.

 111

(a) (b)

 (c) (d)

 (e) (f)

Figure 6.6 Interpolated frames using MVs obtained by FS (a) LI, (b) MCA, (c) SMF,

(d) DMF, (e) SS, (f) CMF

 112

(a)

 (b) (c)

 (d) (e)

Figure 6.7 Interpolated frames using MVs obtained by DVSS (a) MCA, (b) SMF,

(c) DMF, (d) SS, (e) CMF

 113

6.2 Reconfigurable Frame Interpolation Hardware Architecture

We propose a low cost reconfigurable hardware architecture for real-time

implementation of frame interpolation algorithms requiring low off-chip memory

bandwidth; LI, MCA, SMF, DMF, SS and CMF [67]. The top-level block diagram of

the proposed frame interpolation hardware architecture is shown in Figure 6.8. The

proposed hardware architecture implements LI, MCA, SMF, DMF, SS and CMF frame

interpolation algorithms and it allows adaptive selection between these algorithms for

each 16x16 MB. The proposed hardware interpolates frames MB by MB. It takes the

selected interpolation algorithm and the MV for each 16x16 MB as inputs and performs

the frame interpolation. In this thesis, we implemented the on-chip memory, the

datapath, and the control unit parts of this hardware, which are shown in Figure 6.9.

The input MV to the frame interpolation hardware points to a MB in the current

frame and to a MB in the reference frame in a range of (±48, ±24) pixels. MVs used in

the interpolation process correspond to a larger search range in the ME process. For

example, for the conversion ratio 1:2, the MVs with a range of (±48, ±24) pixels used in

the interpolation process correspond to a search range of (±96, ±48) pixels in the ME

process.

Figure 6.8 Top-level hardware architecture

 114

Figure 6.9 On-chip memory and datapath

As shown in Figure 6.9 and Figure 6.10, the on-chip memory consists of 32

BRAMs, and it is used to store 112x64 pixels from the current frame and 112x64 pixels

from the reference frame. BRAM 0 to BRAM 15 are used to store the appropriate area

from the current frame and BRAM 16 to BRAM 31 are used to store the appropriate

area from the reference frame. Since each color channel (R, G, B) is 10 bits wide,

BRAMs are configured as 448x32-bit, and each BRAM is used to store 4 lines of the

required area from the corresponding frame.

Figure 6.10 Data stored in the on-chip memory

 115

As shown in Figure 6.10, most of the data that should be stored in the on-chip

memory for two consecutive MBs are the same. Therefore, for the next MB only the

non-overlapping 64x16 pixels, shown with dashed lines in Figure 6.10, can be accessed

from the frame memory by using data-reuse methodology. In addition, since the

BRAMs in the FPGAs have dual ports, the interpolation of a MB can be overlapped

with accessing the non-overlapping area required by the next MB from the frame

memory as shown in Figure 6.11. However, this requires storing additional 16 pixels

per line in each BRAM and it increases the complexity of the address generation

module.

Figure 6.11 MB schedule

The proposed datapath includes 48 PEs. The boxes named as “R”, “G”, and “B”

in Figure 6.9 represent the PEs. Each PE performs the interpolation of a color channel.

Therefore, the datapath interpolates R, G, B channels of a pixel in parallel and it

interpolates 16 pixels in each clock cycle. The rotator consists of 30 identical rotators

each 16 bits long. Two rotators are used to align the interpolated pixels to match with

their original positions where they must be in the current MB. The interpolated pixels

can be stored in an output register file and sent to the off-chip frame memory by a top-

level memory controller.

The block diagram of a PE is shown in Figure 6.12. In the first clock cycle of the

interpolation process, the previous pixel  1, txF


 and the current pixel  txF ,


 will be

stored in 10 bit registers “Reg. P.” and “Reg. C.”. In the second clock cycle, motion

compensated values of the previous pixel  1,  tvxF

 and the current pixel

 116

 tvxF ,)1(


 will be stored in the 10 bit registers “Reg. P. MC” and “Reg. C. MC”.

Since loading from BRAMs can be implemented much faster than the datapath

operations, we assume that loading these pixels can be done in a single clock cycle by

using a clock twice faster the clock used in the datapath. “Reg. SMF”, “Reg. DMF” and

“Reg. CMF” include three 10 bit registers. In the second cycle, outputs of “Reg. P.” and

“Reg. C.” will be added and the least significant bit will be discarded so that their

average will be calculated and stored in the register “Reg. DMF”. Similarly, in the third

cycle MCA value will be calculated and stored in the register “Reg. SMF”. “Reg. CMF”

stores the outputs of SMF, DMF and SS.

Figure 6.12 Processing element

 117

SS value is calculated by the “Soft Switching” module. The block diagram of the

SS module is shown in Figure 6.13. This module takes LI and MCA values as inputs

and multiplies them with “k” and “(1-k)” coefficients. In order to save area, no

multiplier or divider is used in this module. Multiplying the input values with the “k”

and “(1-k)” coefficients of 24/32:8/32, 20/32:12/32, 18/32:14/32, 16/32:16/32 are

implemented by using only two adder/subtractors, one adder, and two multiplexers. For

example, the SS ratio of 3:5 will be implemented as follows. The hardware will use the

20/32 and 12/32 coefficients. Multiplying with the “k” coefficient of 20/32 will be

implemented by adding the result of “<< 2” (x4) operation and the result of “<< 4”

(x16) operation. Similarly, multiplying with “(1-k)” coefficient of 12/32 will be

implemented by subtracting the result of “<< 2” operation from the result of “<< 4”

operation. The least significant 5 bits of the results of adder/subtractors will be

discarded to implement the divide by 32. The SS value will be obtained by adding these

two values.

Figure 6.13 Soft switching module

 118

The “Median” module is shown in Figure 6.14. It takes three 10 bit inputs “A”,

“B”, “C” and calculates the median of these inputs. The median module has three

comparators, two 2-to-1 multiplexers and two logic gates for generating the select

signals of these two multiplexers. In order to increase its clock frequency, pipelining

registers shown in Figure 6.12 are used at its inputs and output. First, the median value

for SMF is calculated. Then, the median value for DMF is calculated in the next clock

cycle. Finally, the median value for CMF is calculated. In order to calculate CMF, the

result of the median module for SMF and DMF are stored in “Reg. CMF” together with

the result of SS module.

Figure 6.14 Median module

The “Output Mux” shown in Figure 6.12 is used to select the result of the

interpolation algorithm specified by the “Interpolation Algorithm” input. This

multiplexer selects either results of LI, MCA, SS or the result of the median module.

The results of LI and MCA will be ready in the second and third clock cycles. The SS

result will be calculated and registered in the fourth clock cycle. SMF, DMF, and CMF

results will be ready in the 5th, 6th, and 8th clock cycles, respectively. When operated

in LI, MCA, SMF, DMF, or SS modes, there is no need to stall the pipeline assuming

that four input pixels are loaded in one clock cycle. CMF mode requires stalling the

pipeline for two clock cycles. Therefore, when operated in any mode except CMF, the

proposed hardware interpolates a 16x16 MB in 16 clock cycles after the first result is

ready. When operated in CMF mode, it interpolates a 16x16 MB in 48 clock cycles

after the first result is ready.

 119

The proposed hardware architecture is implemented in VHDL and mapped to a

low cost Xilinx Spartan XC3SD3400A-4 FPGA using Xilinx ISE 9.2.04. It is verified

with RTL simulations using Mentor Graphics Modelsim. The implementation results

show that the proposed hardware can work at 101 MHz and it consumes 15592 slices

and 32 BRAMs. A PE consumes 222 slices. SS and median modules consume 38 and

25 slices, respectively.

 120

CHAPTER 7

CONCLUSIONS

Since the input source and display have different frame rates, FRC systems are

required in current consumer electronic devices. An ME based FRC system has three

parts; ME, MVF post-processing to obtain the true motion, and frame interpolation

Each part has a significant computational complexity. Therefore, in this thesis, we

proposed ME algorithms and hardware architectures for implementing these algorithms.

In addition, we proposed techniques for reducing the computational complexity of VMF

and a hardware architecture for implementing VMF. Finally, we proposed a hardware

architecture for frame interpolation.

For the first part of an FRC system, we first developed a HEXBS ME algorithm

and two hardware architectures, the generic architecture and the systolic architecture, to

implement it [7]. The proposed HEXBS ME algorithm has lower computational

complexity than the FS algorithm. The simulation results showed that the PSNR

obtained by this algorithm is better than the PSNR obtained by other fast search

algorithms. The generic architecture and the systolic architecture are implemented in

VHDL and mapped to Xilinx FPGAs. Both hardware architectures can run at 144 MHz

when implemented on an XC3S1200E-5 FPGA, and they can process 25 1920x1080 fps

for the search range of (±32,±16) pixels. Various fast search ME algorithms can be

implemented using the generic hardware architecture. However, it uses 80 BRAMs. On

the other hand, only the proposed HEXBS algorithm can be efficiently implemented

using the systolic hardware architecture. Since it uses 16 BRAMs, it fits into

XC3S1200E-5, a low cost Xilinx Spartan-3E FPGA.

 121

We proposed the DVSS ME algorithm to improve the results obtained by the

proposed HEXBS ME algorithm [9]. The simulation results showed that the DVSS

algorithm performs very close to the FS algorithm by searching much fewer search

locations than the FS algorithm and it outperforms successful fast search ME algorithms

by searching more search locations than these algorithms. A high performance

dynamically reconfigurable systolic ME hardware architecture for efficiently

implementing the DVSS algorithm is proposed. The proposed hardware architecture is

implemented in VHDL and mapped to an XC3S1500-5 FPGA. On this FPGA, it works

at 130MHz and consumes 9128 slices and 16 BRAMs. It requires on the average 467

clock cycles to find the MV of a MB when the early search termination threshold value

is set to 256. The proposed ME hardware consumes less area than the implementation

of one of the best performing fast search ME algorithms in the same FPGA. The

proposed ME hardware is capable of processing HD video formats in real-time and its

throughput is much higher than the FS hardware implementations reported in the

literature.

We proposed the RDVSS algorithm to further improve the results obtained by the

DVSS algorithm [10]. The RDVSS algorithm can be implemented on the hardware

architecture proposed for the DVSS algorithm with a slight modification. To the best of

our knowledge, no ME algorithm utilizing the difference of the MVs of the temporal

neighboring MBs as proposed in the RDVSS algorithm is presented in the literature.

The simulation results showed that for the same search range, the RDVSS algorithm

searches much less search locations than the DVSS algorithm. For videos with large

motions, the performance of the RDVSS algorithm is better than the DVSS algorithm.

For videos containing very small motions, the DVSS algorithm gives slightly better

results by checking more search locations.

For the second part of an FRC system, we proposed several techniques to reduce

the computational complexity of VMFs by using data reuse methodology and by

exploiting the spatial correlations in the MVF [11]. To the best of our knowledge, there

is no paper in the literature which reduces the amount of computations performed by

VMFs by analyzing the spatial correlations between neighboring MVs. In addition, we

designed and implemented an efficient VMF hardware including the computation

reduction techniques exploiting the spatial correlations in the MVF on a low cost Xilinx

 122

XC3S400A-5 FPGA. The FPGA implementation can work at 145 MHz and it can

process more than 94 HD fps.

For the third part of an FRC system, we proposed a low cost reconfigurable frame

interpolation hardware [12]. The proposed hardware improves the quality of the

interpolated frames by implementing LI, MCA, SMF, DMF, SS and CMF frame

interpolation algorithms and by allowing adaptive selection between these algorithms

for each 16x16 MB. The proposed hardware architecture is implemented in VHDL and

mapped to a low cost Xilinx XC3SD3400A-4 FPGA. The implementation results show

that the proposed hardware can run at 101 MHz on this FPGA, and it consumes 32

BRAMs and 15592 slices.

 123

REFERENCES

[1] G. De Haan, “Video processing,” University Press Eindhoven, 2000.

[2] G. De Haan, “Television display processing: past & future,” in ICCE, pp. 53-54,

Las Vegas, USA, Jan. 2007.

[3] I. Richardson, “H.264 and MPEG-4 Video Compression,” Wiley, 2003.

[4] V. Bhaskaran and K. Konstantinides, “Image and video compression standards,

algorithms and architectures,” Kluwer Academic Publishers, 1997.

[5] P. Haavisto and Y. Neuvo J. Astola, “Vector median filters,” Proceeedings of the

IEEE, vol. 78, no. 4, pp. 678-689, Apr. 1990.

[6] D. S. Richards, “VLSI median filters,” IEEE Transaction on Acoustics, Speech

and Signal Processing, vol. 1, no. 38, pp. 145-153, Jan. 1990.

[7] O. Tasdizen, A. Akin, H. Kukner, I. Hamzaoglu, and H. F. Ugurdag, “High

performance hardware architectures for a hexagon-based motion estimation

algorithm,” in VLSI SoC, Rhodes, Greece, Oct. 2008.

[8] O. Tasdizen, H. Kukner, A. Akin, and I. Hamzaoglu, “A high performance

reconfigurable motion estimation hardware architecture,” in DATE, Nice, France,

Apr. 2009.

[9] O. Tasdizen , A. Akin, H. Kukner, and I. Hamzaoglu, "Dynamically variable step

search motion estimation algorithm and a dynamically reconfigurable hardware

for its implementation," IEEE Transactions on Consumer Electronics, vol. 55, no.

3, pp. 1645-1653, Aug. 2009.

[10] O. Tasdizen and I. Hamzaoglu, “Recursive dynamically variable step search

motion estimation algorithm for high definition video,” in ICPR, Istanbul, Turkey,

Aug. 2010.

[11] O. Tasdizen and I. Hamzaoglu, “Computation reduction techniques for vector

median filtering and their hardware implementation,” in Euromicro DSD, Lille,

France, Sep. 2010.

[12] O. Tasdizen and I. Hamzaoglu, “A reconfigurable frame interpolation hardware

architecture for high definition video,” in Euromicro DSD, Patras, Greece, Aug.

2009.

[13] T. Koga, K.Iinuma, and T. Ishiguro, “Motion compensated interframe coding for

video conferencing,” in NTC, pp. G5.3.1-G5.3.5, New Orleans, USA, Dec. 1981.

[14] J. R. Jain and A. K. Jain, “Displacement measurement and its application in

interframe image coding,” IEEE Transactions on Communications, vol. 29, no.

12, pp. 1799-1808, Dec. 1981.

 124

[15] R. Li, B. Zeng, and M.L. Liou, “A new three-step search algorithm for block

motion estimation,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 4, no.4, pp. 438–442, Aug. 1994.

[16] L. M. Po and W. C. Ma, “A novel four-step search algorithm for fast block

motion estimation,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 6, no.3, pp. 313–317, Jun. 1996.

[17] L. K. Liu and E. Feig, “A block-based gradient descent search algorithm for fast

block-matching motion estimation in video coding,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 6, no.4, pp. 419–422, Aug. 1996.

[18] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast block matching

motion estimation,” IEEE Transactions on Image Processing, vol. 9, no.2, pp.

287–290, Feb. 2000.

[19] C. Zhu, X. Lin, and L. P. Chau, “Hexagon-based search pattern for fast block

motion estimation,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 12, no.5, pp. 349–355, May 2002.

[20] Y. Nie and K.-K. Ma, “Adaptive rood pattern search for fast block-matching

motion estimation,” IEEE Transactions on Image Processing, vol. 11, no. 12, pp.

1442–1449, Dec. 2002.

[21] X.-Q. Banh and Y.-P. Tan, “Adaptive dual-cross search algorithm for block-

matching motion estimation,” IEEE Transactions on Consumer Electronics, vol.

50, no. 2, pp. 766-775, May 2004.

[22] M. Rehan, M. W. El-Kharashi, P. Agathoklis, and F. Gebali, “An FPGA

implementation of the flexible triangle search algorithm for block based motion

estimation,” in ISCAS, Greece, May 2006.

[23] S.-T. Jung and S.-S. Lee, “A 4-way pipelined processing architecture for three-

step search block-matching motion estimation,” IEEE Transactions on Consumer

Electronics, no. 50, pp. 674-681, May 2004.

[24] G. De Haan, P. W. A. C. Biezen, H. Huijgen, and O. A. Ojo, “True-motion

estimation with 3-D recursive search block matching,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 3, no. 5, pp. 368-379, Oct 1993.

[25] A. Beric, G. De Haan, R. Sethuraman, and J. Van Meerbergen, “An efficient

picture-rate up-converter,” Journal of VLSI Signal Processing, vol. 41, no. 1, pp.

49-63, Aug. 2005.

[26] W. M. Chao, C. W. Hsu, Y. C. Chang, and L. G. Chen, “A novel motion estimator

supporting diamond search and fast full search,” in ISCAS, Arizona, USA, May

2002.

[27] N. Roma and L. Sousa, “Efficient and configurable full-search block-matching

processors,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 12, no. 12, pp. 1160-1167, Dec. 2002.

[28] J.-F. Shen, T.-Chich Wang, and L.-G. Chen, “A novel low-power full-search

block-matching motion-estimation design for H.263+,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 11, no.7, pp. 890–897, Jul. 2001.

[29] T. Komarek and P. Pirsch, “Array architectures for block matching algorithms,”

IEEE Transactions on Circuits and Systems for Video Technology, no. 36, pp.

1301-1308, 1989.

 125

[30] A. Saha and S. Ghosh, “A speed-area optimization of full search block matching

hardware with applications in high-definition TVs (HDTV),” in HiPC, Springer,

4873, pp. 83-94, 2007.

[31] A. Ryszko and K. Wiatr, “An assesment of FPGA suitability for implementation

of real-time motion estimation,” in Euromicro DSD, Warsaw, Poland, pp. 364-

367, Sep. 2001.

[32] J.-Y. Nam, J.-S. Seo, J.-S. Kwak, M.-H. Lee, and Y. H. Ha, “New fast-search

algorithm for block matching motion estimation using temporal and spatial

correlation of motion vector,” IEEE Transactions on Consumer Electronics, vol.

46, no. 4, pp. 934-942, Nov. 2000.

[33] V. G. Moshnyaga, “A New computationally adaptive formulation of block-

matching motion estimation,” IEEE Transactions on Circuits and Systems for

Video Technology, vol. 11, no. 1, pp. 118–124, Jan 2001.

[34] S. Saponara and L. Fanucci, “Data-adaptive motion estimation algorithm and

VLSI architecture design for low-power video systems,” IEE Computers and

Digital Techniques, vol. 151, no 1, pp. 51-59, Jan. 2004.

[35] L.-W. Lee, J.-F. Wang, J.-Y. Lee and J-D. Shie, “Dynamic search-window

adjustment and interlaced search for block matching algorithm,” IEEE

Transactions on Circuits and Systems for Video Technology, vol. 3, no.1, pp. 85–

87, Feb. 1993.

[36] H.-S. Oh and H.-K. Lee, “Adaptive adjustment of the search window for block-

matching algorithm with variable block size,” IEEE Transactions on Consumer

Electronics, vol. 44, no. 3, pp. 659-666, Aug. 1998.

[37] J. Chalidabhongse and C.-C. J. Kuo, “Fast motion vector estimation using

multiresolution-spatio-temporal correlations,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 7, no.3, pp. 477–488, Jun. 1997.

[38] S.-I. Park and I.-C. Park, “Low complexity motion estimation utilizing spatial

correlation,” IEE Electronics Letters, vol. 42, no.9, pp. 523-525, Apr. 2006.

[39] Video Quality Experts Group Benchmark Videos, ftp://vqeg.its.bldrdoc.gov/.

[40] L. Alparone , M. Barni, F. Bartoloni, and L. Santurri, “An improved H.263 video

coder relying on weighted median filtering of motion vectors,” IEEE Transactions

on Circuits and Systems for Video Technology, vol. 11, no. 2, pp. 235-240, Feb.

2001.

[41] Y.-P. Tan and H. Sun, “Fast motion re-estimation for arbitrary downsizing video

transcoding using H.264/AVC standard,” IEEE Transactions on Consumer

Electronics, vol. 50, no. 3, pp. 887-894, Aug. 2004.

[42] L. Alparone, M. Barni, F. Bartolini, and V. Cappellini, “Adaptively weighted

vector median filters for motion fields smoothing,” in ICASSP, vol. 4, pp. 2267-

2270, Georgia, USA, May 1996.

[43] G. Dane and T. Q. Nguyen, “Motion vector processing for frame rate up

conversion,” in ICASSP, no. 3, pp. 309-312, Montreal, Canada, May 2004.

[44] T. Ha, S. Lee, and J. Kim, “Motion compensated frame interpolation by new

block-based motion estimation algorithm,” IEEE Transactions on Consumer

Electronics, vol. 50, no. 2, pp. 752-759, May 2004.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2192
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2192
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=28404

 126

[45] J.-W. Han, C.-S. Kim, S.-J. Ko, and B.-D. Choi, “Frame rate up-conversion using

perspective transform,” IEEE Transactions on Consumer Electronics, vol. 52, no.

3, pp. 975-982, Aug. 2006.

[46] Y. T. Yang, Y. S. Tung, and J. L. Wu, “Quality enhancement of frame rate up-

converted video by adaptive frame skip and reliable motion extraction,” IEEE

Transactions on Circuits and Systems for Video Technology, vol. 17, no.12, pp.

1700–1713, Dec. 2007.

[47] S.-J. Kang, K.-R. Cho, and Y. H. Kim, “Motion compensated frame rate up-

conversion using extended bilateral motion estimation,” IEEE Transactions on

Consumer Electronics, vol. 53, no. 4, pp. 1759-1767, Nov. 2007.

[48] S.-J. Kang, D.-G. Yoo, S.-K. Lee, and Y. H. Kim, “Multiframe-based bilateral

motion estimation with emphasis on stationary caption processing for frame rate

up-conversion,” IEEE Transactions on Consumer Electronics, vol. 54, no. 4, pp.

1830-1838, Nov. 2008.

[49] S. Fujiwara and A. Taguchi, “Motion-compensated frame rate up-conversion

based on block matching algorithm with multi size blocks,” in ISPACS, vol. Hong

Kong, pp. 13-16, Dec. 2005.

[50] J. Zhai, K. Yu, and S. Li, “A low complexity motion compensated frame

interpolation method,” in ISCAS, pp. 4927-4930, Kobe, Japan, May 2005.

[51] A.-M. Huang and T. Q. Nguyen, “A multistage motion vector processing method

for motion-compensated frame interpolation,” IEEE Transactions on Image

Processing, vol. 17, no. 5, pp. 694-708, May 2008.

[52] A.-M. Huang and T. Nguyen, “Motion vector processing based on residual energy

information for motion compensated frame interpolation,” in ICIP, pp. 2721-

2724, Georgia, USA, Oct. 2006.

[53] M. Barni and V. Cappellini, “On the computational complexity of multivariate

median filters,” Signal Processing, vol. 1, no. 71, pp. 45-54, Jan. 1998.

[54] M. Barni, “A fast algorithm for 1-Norm vector median filtering,” IEEE

Transactions on Image Processing, vol. 10, no. 6, pp. 1452-1455, Oct. 1997.

[55] L. Yin, R. Yang, M. Gabbouj, and Y. Neuvo, “Weighted median filters: a

tutorial,” IEEE Transactions on Circuits and Systems-II: Analog and Digital

Signal Processing, vol. 43, no. 3, pp. 157-192, Mar. 1996.

[56] K. E. Barner and Y. Shen, “Fast adaptive optimization of weighted vector median

filters,” IEEE Transactions on Image Processing, vol. 54, no. 7, pp. 2497-2510,

Jul. 2006.

[57] M. Barni, V. Cappellini, and A. Mecocci, “Fast vector median filter based on

euclidean norm approximation,” IEEE Signal Processing Letters, vol. 6, no. 1, pp.

92-94, Jun. 1994.

[58] C. Spence and C. Fancourt, “An iterative method for vector median filtering,” in

ICIP, no. 5, pp. 265-268, Texas, USA, Sep. 2007.

[59] F. Khalvati and M. D. Aagaard, “Window memoization: an efficient hardware

architecture for high-performance image processing,” Journal of Real-Time Image

Processing, Springer, published online, Jul. 2009.

 127

[60] S. A. Fahmy and C. W. Luk, “High-throughput one-dimensional median and

weighted median filters on FPGA,” IEE Computers and Digital Techniques, vol.

4, no. 3, pp. 384-394, 2009.

[61] R. L. Swenson and K. R. Dimond, “A hardware FPGA implementation of a 2D

median filter using a novel rank adjustment technique,” in International

Conference on Image Processing And Its Applications, no. 1, pp. 103-106,

Manchester, UK, Jul. 1999.

[62] Z. Vasicek and L. Sekanina, “An area-efficient alternative to adaptive median

filtering in FPGAs,” in FPL, pp. 216-221, Amsterdam, Holland, Aug. 2007.

[63] S.-J. Kang, D.-G. Yoo, S.-K. Lee, and Y. H. Kim, “Design and implementation of

median filter based adaptive motion vector smoothing for motion compensated

frame rate up-conversion,” in ISCE, pp.745-748, Kyoto, Japan, May 2009.

[64] J. Wang, D. Wang, and W. Zhang, “Temporal compensated motion estimation

with simple block based prediction,” IEEE Transactions on Broadcasting, vol. 49,

no. 3, Sep. 2003.

[65] K. A. Bugwadia, E. D. Petajan, and N. N.Puri, “Progressive-scan rate up-

conversion of 24/30 Hz source materials for HDTV,” IEEE Transactions on

Consumer Electronics, vol. 42, no. 3, pp. 312-321, Aug. 1996.

[66] R. Castagno, P. Haavisto, and G. Ramponi, “A method for motion adaptive frame

rate up-conversion,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 6, no.5, pp. 436–442, Oct. 1996.

[67] O. A. Ojo and G. De Haan, “Robust motion-compensated video upconversion,”

IEEE Transactions on Consumer Electronics, vol. 43, no. 4, pp. 1045-1056, Nov.

1997.

[68] Online, 2009, Available: http://www. micron.com

[69] Lee, S. H., Shin, Y. C., Yang, S., Moon, H. H., and Park, R. H., “Adaptive

motion-compensated interpolation for frame rate up-conversion,” IEEE

Transactions on Consumer Electronics, vol. 48, no. 3, pp. 444-450, Aug. 2002.

[70] S. H. Lee, O. Kwon, and R. H. Park, “Weighted-adaptive motion-compensated

frame rate up-conversion,” IEEE Transactions on Consumer Electronics, vol. 49,

no. 3, pp. 485-492, Aug. 2003.

[71] A. Beric, J. Van Meerbergen, G. De Haan, and R. Sethuraman, “Memory-centric

video processing,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 18, no.4, pp. 439–452, Apr. 2008.

[72] G. De Haan, P. W. A. C. Biezen, and O. A. Ojo, “An evolutionary architecture for

motion-compensated 100 Hz television,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 5, no.3, pp. 207–217, Jun. 1995.

[73] G. De Haan, J. Kettenis, A. Löning, and B. De Loore, “IC for motion-

compensated 100 Hz TV with natural-motion movie-mode,” IEEE Transactions

on Consumer Electronics, vol. 42, no. 2, pp. 165-174, May 1996.

[74] G. De Haan, “IC for motion-compensated de-interlacing, noise reduction, and

picture-rate conversion,” IEEE Transactions on Consumer Electronics, vol. 45,

no. 3, pp. 617-624, Aug. 1999.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2192

