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ABSTRACT

Frame Rate Up-Conversion (FRC) is the conversion of a lower frame rate video
signal to a higher frame rate video signal. FRC algorithms using Motion Estimation
(ME) obtain better quality results. Among the block matching ME algorithms, Full
Search (FS) achieves the best performance since it searches all search locations in a
given search range. However, its computational complexity, especially for the recently
available High Definition (HD) video formats, is very high. Therefore, in this thesis, we
proposed new ME algorithms for real-time processing of HD video and designed
efficient hardware architectures for implementing these ME algorithms. These
algorithms perform very close to FS by searching much fewer search locations than FS
algorithm. We implemented the proposed hardware architectures in VHDL and mapped
them to a Xilinx FPGA.

ME for FRC requires finding the true motion among consecutive frames. In order
to find the true motion, Vector Median Filter (VMF) is used to smooth the motion
vector field obtained by block matching ME. However, VMFs are difficult to
implement in real-time due to their high computational complexity. Therefore, in this
thesis, we proposed several techniques to reduce the computational complexity of
VMFs by using data reuse methodology and by exploiting the spatial correlations in the
vector field. In addition, we designed an efficient VMF hardware including the
computation reduction techniques exploiting the spatial correlations in the motion
vector field. We implemented the proposed hardware architecture in Verilog and
mapped it to a Xilinx FPGA.

ME based FRC requires interpolation of frames using the motion vectors found by
ME. Frame interpolation algorithms also have high computational complexity.
Therefore, in this thesis, we proposed a low cost hardware architecture for real-time
implementation of frame interpolation algorithms. The proposed hardware architecture
is reconfigurable and it allows adaptive selection of frame interpolation algorithms for
each Macroblock. We implemented the proposed hardware architecture in VHDL and
mapped it to a low cost Xilinx FPGA.



HAREKET TAHMINI TABANLI CERCEVE HIZI YUKSELTME DONANIMLARI
TASARIMI

Ozgiir Tasdizen
MDBF, Doktora Tezi, 2010
Tez Danismant: Yrd. Dog. Dr. flker Hamzaoglu

Anahtar Kelimeler: Cerceve Hiz1 Yiikseltme, Hareket Tahmini,
Donanim Gergekleme, Video lyilestirme

OZET

Cerceve hiz1 yiikseltme, diisiik ¢ergeve hizina sahip bir videonun daha yiiksek
¢erceve hizina sahip bir videoya doniistiiriilmesidir. Hareket tahmini tabanli ¢ergeve hizi
yiikseltme algoritmalar1 yiiksek kaliteli sonuglar elde etmektedirler. Arama alanindaki
biitin arama noktalarin1 aradigi icin blok eslestirmeli hareket tahmini algoritmalar
arasinda en iyi basarimi gosteren tam arama algoritmasidir. Ancak, tam arama
algoritmasiin gerektirdigi islem miktar1 6zellikle giiniimiizde yayginlasan yiiksek
taniml1 video ¢ergeveleri i¢in ¢ok yiiksektir. Bu nedenle, bu tezde yiiksek tanimli video
cercevelerinin gergek zamanli iglenebilmesi i¢in hareket tahmini algoritmalar1 ve bu
hareket tahmini algoritmalarimi etkin bir sekilde gergeklestirebilecek donanim
mimarileri 6nerdik. Bu algoritmalar tam arama algoritmasindan ¢ok daha az arama
noktasini arayarak tam arama algoritmasma ¢ok yakin sonug¢ elde etmektedirler.
Onerilen donanim mimarilerini VHDL ile sahada programlanabilen kap: dizilerinde
gercekledik.

Cerceve hizi yiikseltme icin yapilan hareket tahmininin ardisik g¢ergeveler
arasindaki gergek hareketi bulmasi gereklidir. Ardisik ¢ergeveler arasindaki gercek
hareketi bulabilmek i¢in blok eslestirmeli hareket tahmininin elde ettigi hareket vektorii
alan1 vektor ortanca siizgeci kullanilarak diizeltilir. Ancak, vektor ortanca slizgeglerinin
gercek zamanda gerceklenmeleri gerektirdikleri yiiksek islem miktari nedeniyle zordur.
Bu yiizden, bu tezde veri tekrar kullanimi yontemiyle ve vektor alanindaki
benzerliklerin incelenmesiyle vektdr ortanca silizgeglerinin gerektirdikleri islem
miktari1  azaltan teknikler Onerdik. Ayrica, vektor alanindaki benzerliklerin
incelenmesiyle islem miktarini azaltan teknigi de gercekleyen etkin bir vektor ortanca
stizgeci donanimi tasarlayip sahada programlanabilen kap1 dizilerinde gergekledik.

Hareket tahmini tabanli ¢erceve hizi yiikseltme hareket vektorlerini kullanarak
yeni ¢ergevelerin sentezlenmesini gerektirmektedir. Cergeve sentezleme algoritmalari
da ytliksek miktarda islem gerektirmektedirler. Bu yiizden, bu tezde ¢ergeve sentezleme
algoritmalarinin gergek zamanda gergeklenmelerini saglayacak diisiik maliyetli
uyarlanir bir donanim mimarisi énerdik. Onerilen donanim mimarisi her blok igin farkli
bir ¢erceve sentezleme algoritmasi kullanabilmektedir. Onerilen donanim mimarisini
VDHL ile diisiik maliyetli sahada programlanabilen kap1 dizilerinde gergekledik.
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CHAPTER 1

INTRODUCTION

Frame Rate Up-Conversion (FRC) is the conversion of a lower frame rate video
signal to a higher frame rate video signal. FRC is used in many devices like televisions,
Digital Versatile Disc (DVD) players, portable DVD players, and mobile phones [1].
Recent Liquid Crystal Display (LCD) panels have a frame rate up to 240 Hz, whereas
movies are usually recorded at 24 Hz, 25 Hz or 30 Hz and the broadcasted video
material is either 50 Hz or 60 Hz. Since the input source and the display have different
frame rates, conversion between the received input signal and the output signal sent to
the display is necessary. FRC can be done by interpolating a new frame between every
two consecutive original frames like in 25 Hz to 50 Hz conversion, and it can be done
by interpolating three new frames between every two consecutive original frames like in
25 Hz to 100 Hz conversion. FRC for 1:4 conversion ratio is illustrated in Figure 1.1. In
this figure, F(t-1), F(t), F(t+1) are the original frames and the dashed frames are the

interpolated frames.
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FRC can be implemented with simple interpolation techniques or it can be
implemented with Motion Estimation (ME) based techniques which require more
hardware resources [1]. The quality of the displayed video depends on the performance
of the FRC. FRC implemented by simple techniques degrades the quality by creating
motion judder and motion blur effects which are the results of the sample and hold
nature of the displays [2]. ME based FRC is necessary in order to overcome these
artifacts. ME is computationally the most intensive part of video compression and video
enhancement systems [3, 4]. Among the Block Matching (BM) ME algorithms, Full
Search (FS) achieves the best performance since it searches all search locations in a
given search range. However, its computational complexity, especially for the recently
available High Definition Television (HDTV) video formats (1920x1080 pixels), is
very high, while the Peak Signal-to-Noise-Ratio (PSNR) obtained by fast search

algorithms is low.

ME for FRC requires finding the true motion among consecutive frames. In order
to find the true motion, Vector Median Filter (VMF) is used to smooth the Motion
Vector Field (MVF) obtained by BM ME. The output of the VMF is chosen as the
vector that minimizes the sum of distances to all the other vectors [5]. If the current
MV, which is in the middle of the VMF window, is not correlated with its neighboring
MVs, then the current MV will be replaced with the output of the VMF. However,
VMFs are difficult to implement in real-time due to their high computational
complexity [6]. ME based FRC requires interpolation of frames using the motion
vectors found by ME. Frame interpolation algorithms also have high computational

complexity.

Therefore, in this thesis, we proposed new ME algorithms for real-time processing
of HD video and designed efficient hardware architectures for implementing these ME
algorithms. These algorithms perform very close to FS by searching much fewer search
locations than the FS algorithm. In addition, we proposed several techniques to reduce
the computational complexity of VMFs by using data reuse methodology and by
exploiting the spatial correlations in the vector field. In addition, we designed an
efficient VMF hardware including the computation reduction techniques exploiting the

spatial correlations in the motion vector field. Finally, we proposed a low cost hardware
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architecture for real-time implementation of frame interpolation algorithms. The
proposed hardware architecture is reconfigurable and it allows adaptive selection of

frame interpolation algorithms for each Macroblock (MB).

We first proposed a ME algorithm, which is a generalization of the Hexagon-
Based Search (HEXBS) algorithm, and two hardware architectures for its
implementation [7]. These architectures are named as the generic architecture and the
systolic architecture. The simulation results showed that the Mean Absolute Difference
(MAD) performances obtained by the proposed HEXBS algorithm are better than the
MAD performances obtained by other fast search algorithms. Both hardware
architectures are implemented in Very High Speed Integrated Circuit Hardware
Description Language (VHDL). They can run at 144 MHz on a Xilinx XC3S1200E-5
FPGA and process 25 1920x1080 frames per second (fps) for a (+32,£16) pixel search
range. Various fast search algorithms can be implemented using the generic hardware
architecture. The main disadvantage of the generic architecture is that it uses 80 Block
Random Access Memories (BRAMSs). The systolic architecture is designed to
efficiently implement proposed HEXBS algorithm. The systolic architecture uses only
16 Block RAMs. A novel data-reuse method is used in this architecture to reduce the
number of internal memory accesses, and it has a low control overhead because of its

regular data flow.

We proposed Dynamically Variable Step Search (DVSS) ME algorithm and a
reconfigurable systolic ME hardware architecture for its implementation [8, 9]. This
architecture is implemented in VHDL and mapped to a Xilinx XC3S1200E-5 FPGA.
We then proposed Recursive Dynamically Variable Step Search (RDVSS) ME
algorithm [10]. The proposed DVSS and RDVSS algorithms work on a search range of
(+48, +£24) and (64, +64) pixels, respectively. An early search termination mechanism
based on a Sum of Absolute Differences (SAD) threshold is implemented in these
algorithms in order to trade off speed and quality. DVSS algorithm implemented by the
proposed reconfigurable systolic ME hardware architecture requires 467 clock cycles to
find the Motion Vector (MV) of a 16x16 MB on the average when the early search
termination threshold is set to 256. For this threshold value, the proposed hardware on
the average can process 34.3 HD fps. The FS algorithm checks 16641 search locations

in a search range of (64, +64) pixels, whereas the RDVSS algorithm on the average

17



checks only 418 search locations when the early search termination threshold is set to
1024. On the other hand, MAD performance of the RDVSS algorithm on the average is
only 14.7% lower than MAD performance of the FS algorithm when the early search
termination threshold is set to 256. Performing that close to the FS algorithm for such a

large search range is very important.

We proposed two techniques to reduce the computational complexity of 1-norm
VMF for FRC by using data reuse methodology and by exploiting spatial correlations in
the MVF [11]. Since 3x3 window size is used in FRC papers in the literature, we also
used this window size. However, the proposed techniques are scalable to any window
size. Data reuse technique stores the sum of 1-norm distances between the vectors in a
filtering window and uses them for the next filtering window instead of computing them
again. The spatial correlations based techniques check the spatial correlations between
neighboring MVs and avoid calculating the previously calculated values again. In
addition, we proposed an efficient VMF hardware architecture implementing the
proposed computation reduction techniques exploiting the spatial correlations in the
MVF. To the best of our knowledge, a VMF hardware implementing these techniques is
not presented in the literature. The proposed hardware is implemented for a 3x3 window
size, but it is scalable to any window size. The proposed hardware is implemented in
Verilog HDL, and mapped to a low cost Xilinx XC3S400A-5 FPGA. It consumes 1426

slices and works at 145 MHz. It can process more than 94 HD fps.

We finally proposed a low cost reconfigurable hardware architecture for the
interpolation of HD frames [12]. The proposed hardware architecture implements
Linear Interpolation (LI), Static Median Filtering (SMF), Dynamic Median Filtering
(DMF), Soft Switching (SS) and Cascaded Median Filtering (CMF) frame interpolation
algorithms and it allows adaptive selection of these algorithms for each MB. This
hardware architecture is implemented in VHDL and mapped to a low cost Xilinx
XC3SD3400A-4 FPGA. The implementation results show that the proposed hardware
can run at 101 MHz on this FPGA and it consumes 32 BRAMs and 15592 slices.

The rest of this thesis is organized as follows. Chapter 2 explains FS ME
algorithm and various fast search ME algorithms. Chapter 3 explains proposed HEXBS

ME algorithm, and the generic and systolic hardware architectures proposed for its
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implementation. Chapter 4 explains proposed DVSS and RDVSS ME algorithms, and
the proposed reconfigurable systolic hardware architecture. Chapter 5 explains VMFs,
the proposed techniques to reduce their computational complexity, and the proposed
VMF hardware architecture. Chapter 6 presents the proposed hardware architecture for

frame interpolation. Chapter 7 concludes the thesis.
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CHAPTER 2

MOTION ESTIMATION ALGORITHMS

ME is the part that has the highest computational complexity in video
compression and video enhancement systems. ME is used to reduce the bit-rate in video
compression systems by exploiting the temporal redundancy between successive
frames, and it is used to enhance the quality of displayed images in video enhancement
systems by extracting the true motion information. ME is used in video compression
standards such as ITU-T H.261/263/264 and ISO MPEG-1/2/4 [3,4], and in video

enhancement algorithms such as FRC, de-interlacing, de-noising and super resolution.

ME examines the movement of objects in an image sequence to obtain MVs
representing the estimated motion [3,4]. Many different ME techniques are proposed in
the literature. These techniques can be categorized as pixel based ME, object based ME,
and block based ME. Pixel based techniques require very high computational
complexity and they are not suitable for real-time applications. Object based techniques
reduce the computational complexity significantly but they cannot obtain high quality
results. Block based ME uses BM which is suitable for hardware implementation and

can obtain high quality results. Therefore, BM is the most preferred technique.

BM partitions current frame into non-overlapping NxN rectangular blocks and
tries to find a block from a reference frame in a given search range that best matches the
current block with respect to a Block Distortion Measure (BDM) [3,4]. SAD is the most
preferred BDM because of its suitability for hardware implementation. An SAD value is
computed with three operations; difference, absolute value, and addition. For NxN
block size, the SAD value of a search location defined by the MV d(d,,d,) is calculated

as in (2.1), where c¢(x,y) and r(x,y) represent current and reference frames, respectively.
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The coordinates (i,j) denote the offset locations of current and reference blocks. Since a
MV shows the relative motion of the current block in the reference frame, MVs are
specified in relative coordinates. If the location of the best matching block in the
reference frame is (x+u, y+v), then the corresponding MV is (u,v). Figure 2.1 shows the

BM ME process and Figure 2.2 shows a BM ME example and the resulting MVF.

N-1N-1
SAD(d) = cx+i,y+ ) —r(x+i+d,,y+j+d) 2.1)
x=0 y=0
Current frame Reference frame
() i (ERY P i
o

I I
i i
Block i pl i

Search Range [-p.p]

Feference frame

—————————————————

=earch Hegion

Figure 2.1 BM ME

Previous Frame Current Frame Motion Vectors
Figure 2.2 A BM ME example and the resulting MVF

In ME, there is a tradeoff between the number of search locations searched and

the resulting PSNR. The other two commonly used quality metrics are MAD and Mean
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Square Error (MSE). The formulas used to calculate the MAD, MSE, and PSNR are
given in (2.2), (2.3), and (2.4), respectively. In these equations, the coordinates (u,v)

denote the x and y components of the MV.

1 N-1N-1
MAD (u,v) = N IC(x, y)—R(X+Uu,y+V)| (2.2)
y=0 x=0
1 NN 2
MSE (uv) = 7 [C(x, y)—R(x+u,y+Vv)] (2.3)
y=0 x=0
2552
PSNR (u,v) = 10 IOgl{MSE} (2.4)

The FS algorithm gives the best PSNR results, because it finds the reference block
that best matches the current block by computing the SAD values for all search
locations in a given search range. The computational complexity of the FS algorithm is
very high, especially for the recently available consumer electronic devices such as HD
digital video broadcasting and high resolution & high frame rate flat panel displays.
Because of the large frame sizes in these applications, there are large motions between

successive frames and this requires a larger search range to find the best MV.

Several fast search ME algorithms are developed for low bit-rate applications like
video conferencing and video phone, which use small frame sizes and require small
search ranges. These algorithms try to approach the PSNR of the FS algorithm by
computing the SAD values for fewer search locations in a given search range. The most
successful fast search ME algorithms are Three Step Search (TSS) [13], Two
Dimensional Logarithmic Search (2D-LOGS) [14], New Three Step Search (NTSS)
[15], Four Step Search (FSS) [16], Block-Based Gradient Descent Search (BBGDS)
[17], Diamond Search (DS) [18], HEXBS [19], Adaptive Rood Pattern Search (ARPS)
[20], Adaptive Dual Cross Search (ADCS) [21] and Flexible Triangle Search (FTS)
[22].

22



Fast search ME algorithms perform very well for low bit-rate applications such as
video phone and video conferencing [23]. In most of the low bit-rate videos, fast and
complex movements are seldom, and nearly 80% of the blocks can be regarded as
stationary or quasi-stationary, therefore most of the MVs can be found in a search range
of (£5,£5) pixels. However, fast search ME algorithms do not produce satisfactory
results for the recently available consumer electronic devices such as HD digital video
broadcasting and high resolution & high frame rate flat panel displays, because of the

larger movements between successive frames in these videos.

ME for FRC requires finding the true motion among consecutive frames. The true
motion is the projection of the physical three dimensional motion on to the two
dimensional image space. In order to minimize the amount of information to be
transmitted, block based video coding standards encode the displaced difference block
instead of the original block. Although BM ME algorithms finding the minimal residue
are good at removing temporal redundancies, they are not sufficient alone for finding

the true motion.

2.1 The Full Search Algorithm

Since the FS algorithm computes the SAD value for each search location in the
search range, it is computationally the most expensive BM ME algorithm. There are (2p
+ 1)? search locations in a (+p, +p) search window. Figure 2.3 shows the search
locations of the FS algorithm for (+4, +4) search range. For this search range, there are
(2x4 + 1)? = 81 search locations. Calculating the SAD value for a search location for an
MxN MB requires (2p+1)? x MN x 3 operations. The operations per second required for
calculating the SAD values for an IxJ frame size and an F fps frame rate is given in
(2.5). For a 16x16 MB size, 1920x1080 pixels frame size, and 25 fps frame rate, the FS
algorithm requires 34.99 GOPS (Giga Operations Per Second) and 149.45 GOPS when

p is equal to 7 and 15, respectively.

1JF

N (2p+1)2xM N x3 (2.5)
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Figure 2.3 Search locations of the FS algorithm for (+4, +4) search range

2.2 Fast Search Motion Estimation Algorithms

TSS is one of the oldest fast search ME algorithms [13]. As shown in Figure 2.4,

TSS searches the best MV in a coarse to fine search pattern. In the first step, nine search

locations including the origin are evaluated and the search location giving the minimum

SAD is selected as the center of the next search step. In the second step, the distance

between search locations is reduced by half. The third step searches the area centered at

the location giving the minimum SAD in the second step and the distance between
24

search locations is shortened by half again.
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The 2D-LOGS [14] algorithm is similar to the TSS algorithm. As shown in Figure
2.5, the 2D-LOGS algorithm searches the MV by successively moving towards the

location giving the minimum SAD using a shrinking step size. This algorithm starts

with a pre-determined step size “s” and checks five search locations in the first step. If

the minimum SAD is found at the center search location, the step size is reduced to

“s/2”. Otherwise, the search center is set to the search location giving the minimum

SAD and the search continues with step size “s”. Whenever the step size becomes equal

to one, as the final search step, the 2D-LOGS algorithm checks the neighboring search

locations of the search location giving the minimum SAD in the previous step.
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Figure 2.5 The 2D-LOGS algorithm
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The NTSS algorithm improves TSS by using a center biased search scheme and
reduces the computational complexity by using an early termination technique [15]. As
shown in Figure 2.6, NTSS uses eight additional search locations around the center
search location in the first step. Therefore, better results are obtained for quasi-
stationary blocks. In addition, an early termination technique is used for stationary and
quasi-stationary blocks. If the minimum SAD in the first step is found at the center
search location, the search is finished. This is called as the first step stop. If the
minimum SAD in the first step is found at one of the first tier neighbors of the search
center, then the second step is performed for the first tier neighbors of this search
location and the search is finished. This is called as the second step stop. The second
step stop technique uses three or five new search locations in the second step. Figure 2.7
(@) and (b) show example cases where three and five additional search locations are
used. If the minimum SAD after the first step is found at one of the original eight search
locations of the TSS algorithm, the search continues as the TSS algorithm.
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Figure 2.6 Search locations of the first step of the NTSS algorithm
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Figure 2.7 Search locations of the first and second steps of the NTSS algorithm

The FSS algorithm also uses a center biased search scheme and an early
termination technique [16]. The FSS algorithm performs better than the TSS algorithm
and obtains similar results with the NTSS algorithm. When compared with the NTSS
algorithm, the FSS algorithm reduces the worst case computational complexity from 33
to 27 search locations. As shown in Figure 2.8, step sizes for the first, second, and third
steps of the FSS algorithm are two pixels and step size for the last step is one pixel. In
the first step, nine search locations are checked. If the minimum SAD is found at the
center search location, the FSS algorithm continues with the fourth step. If the
minimum SAD is found at one of the eight neighboring search locations of the center
search location, the FSS moves the search center to this location and continues with the
second step. If the minimum SAD in the second step is found at the center search
location, the FSS algorithm continues with the fourth step. Otherwise, it continues with
third step. After the third step, the FSS algorithm continues with the fourth step. In the
second and third steps, three or five new search locations are checked based on the

search location giving the minimum SAD in the previous step.
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As shown in Figure 2.9, the BBGDS algorithm starts by performing FS in a
search range of (x1, £1) pixels around the center search location [17]. If the minimum
SAD is found at the center search location, the search finishes. If the minimum SAD is
found at one of the other search locations, it moves the center search location to this
location and performs FS. Therefore, in each step, three or five new search locations are

checked depending on the search location giving the minimum SAD in the previous

step.
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Figure 2.9 The BBGDS algorithm
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The DS algorithm is similar to the FSS algorithm. In the DS algorithm, the search
pattern is changed from a square to a diamond, and there is no limit on the number of
steps performed [18]. The DS algorithm obtains better PSNR results than TSS, 2D-
LOGS, NTSS and FSS algorithms. Figure 2.10 shows the two different search patterns,
the Large Diamond Search Pattern (LDSP) and the Small Diamond Search Pattern
(SDSP), used by the DS algorithm. LDSP is used in all the steps except the last step,
SDSP is used in the last step. As shown in Figure 2.11, the number of search locations
checked in the next step, which is either three or five, depends on the position of the
search location giving the minimum SAD in the current step. If in the current step the
minimum SAD is found at the center search location, then the DS algorithm performs
the last step.
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Figure 2.10 The DS algorithm (a) LDSP, (b) SDSP
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Figure 2.11 Search locations of the DS algorithm for the next step

The HEXBS algorithm uses two search patterns, coarse pattern and fine pattern
[19]. Figure 2.12 (a) and (b) show these coarse and fine search patterns. Coarse search
pattern is used in all the steps except the last step, fine search pattern is used in the last
step. If the search location giving the minimum SAD is found at the center of the

hexagon, the algorithm performs the fine search pattern. As shown in Figure 2.13, when
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the coarse search pattern is used in the next step, only three new search locations are
checked. When the fine search pattern is used in the next step, four neighboring search

locations of the center search location are checked.
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Figure 2.13 Search locations of the HEXBS algorithm

The ARPS algorithm uses a rood shaped search pattern and the MV of the left
neighboring MB which is called as predicted MV [20]. The predicted MV and the
search pattern of the ARPS algorithm are shown in Figure 2.14. The initial length of the
rood is determined as the maximum of the absolute values of x and y coordinates of the
predicted MV. The four arms of the rood have equal length. In the first step, the ARPS
algorithm checks the search location pointed by the predicted MV, search locations on
the rood pattern, and the center search location. The search continues by forming a new
rood pattern around the search location giving the minimum SAD in the current step,
and the length of the rood is reduced by half in each step. The ARPS algorithm finishes
if the minimum SAD obtained in a step is less than a pre-determined threshold or after

the step with rood length one.
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As shown in Figure 2.15, in the first search step, the ADCS algorithm checks the
search locations pointed by the MVs of the left neighboring MB and the upper
neighboring MB, and the center search location [21]. The search location giving the
minimum SAD is selected as the starting location for the dual cross search. If the
minimum SAD is below a threshold value, the search finishes. Otherwise, a 2x2 cross
pattern around the starting location is searched. If the minimum SAD is found at the
cross center, the search finishes and the cross center is selected as the MV. Otherwise, a
4x4 cross pattern around the search location giving the minimum SAD is searched. This
4x4 cross search pattern is repeated until the minimum SAD is found at the cross center.
In the last search step, the ADCS algorithm checks three intermediate search locations

between the search location on the current 4x4 cross pattern giving the minimum SAD
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and the current 4x4 cross center.
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The FTS algorithm searches the search locations on different size triangles [22].
The triangles with larger sizes are used to perform coarse search and the ones with
smaller sizes are used to perform fine search. The level of a triangle shows its size, and
the FTS algorithm switches between triangles with different levels. Figure 2.16 shows

the search locations forming level 0, 1, and 2 triangles.
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Figure 2.16 The FTS algorithm

2.3 The Three Dimensional Recursive Search Algorithm

The 3D-RS algorithm is one of the most popular true ME algorithms in the
literature [24]. The 3D-RS algorithm exploits the correlation of the MVs of neighboring
MBs to find the true motion of the current MB. Figure 2.17 shows the neighboring MBs
used by the 3D-RS algorithm.
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Figure 2.17 Spatial and temporal neighbors for the 3D-RS algorithm

The 3D-RS algorithm is based on two assumptions. The first assumption is that
objects are larger than MBs, and the second assumption is that objects have inertia.
Therefore, it uses a candidate set that contains the MVs of the spatial and temporal
neighboring MBs shown as “S” and “T” in Figure 2.17 [24]. When the spatial
neighboring MB is not available, temporal neighboring MB is used. At initialization, all
the MVs are set to zero. In addition to the MVs of the spatial and temporal neighboring
MBs, an additional update set is used for permitting small deviations from the original
candidate set [24]. A pseudo random update vector is added to the MV of one of the
spatial neighboring MBs, and this is used as an additional candidate [25]. The candidate

MV set of the 3D-RS algorithm is shown in Figure 2.18. The random update vector,
shown as U (r,t), is used for obtaining the candidate MV Cs, and it is selected from the

Update Set (US). The computational complexity of the 3D-RS algorithm is low,
because it checks a few search locations for each MB. The main drawback of the 3D-RS
algorithm is its recursive nature. It converges to the true motion a few frames after the

initialization.
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CHAPTER 3

HEXAGON BASED MOTION ESTIMATON ALGORITHM AND
HARDWARE ARHITECTURES FOR ITS IMPLEMENTATION

Since the computational complexity of the FS algorithm is too high and the
performances of fast search algorithms are not enough for the recently available HD
video formats, we proposed an ME algorithm [7], which is a generalization of the
HEXBS algorithm [19], and two hardware architectures for its implementation [7].
These architectures are named as the generic architecture and the systolic architecture.
Many hardware architectures for the FS algorithm are proposed in the literature.
However, only a small number of hardware architectures for fast search ME algorithms
are proposed. To the best of our knowledge, no hardware architecture is presented for
the HEXBS ME algorithm in the literature.

3.1. Hexagon Based Motion Estimation Algorithm

The proposed HEXBS ME algorithm consists of main and fine search patterns [7].
The search location of the main search pattern giving the minimum SAD is selected as
the center for the fine search pattern. Main search patterns consist of all the search
locations that can be checked by the HEXBS algorithm during several iterations in
horizontal and vertical directions. For example, 32x16 main search pattern consists of
all the search locations that can be checked by the HEXBS algorithm during 16
iterations in the horizontal direction and 8 iterations in the vertical direction. Figure 3.1
shows some of the search locations of 32x16 pattern. The numbers in Figure 3.1
represent iterations in which these search locations would be checked by the HEXBS

algorithm.
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11 10 9 8 8 8 8 8 8 8 8 8 9 10 11

Figure 3.1 Some of the search locations of 32x16 pattern

We also proposed 10x9, 12x12 and 14x15 main search patterns. The difference
between these patterns and 32x16 pattern is that these patterns have a gap of two pixels
in the vertical direction compared to the one pixel gap of 32x16 pattern, and these
patterns have less computational complexity than 32x16 pattern. Figure 3.2 shows the
search locations of 10x9 pattern. 12x12 pattern adds one more line in the upper and
lower boundaries of the search range and two more pixels in the horizontal direction.
14x15 pattern enhances the search range to =14 pixels in the horizontal direction and to
+15 pixels in the vertical direction. 12x12 and 14x15 search patterns are shown in
Figures 3.3 and 3.4, respectively. In these figures, “o” represents the center search
location, and “x” represents the other search locations. Search patterns 10x9, 12x12,
14x15, and 32x16 have 73, 113, 159, and 553 search locations, respectively. In order to
determine the trade-off between having one pixel gap and two pixels gap between
search locations in the vertical direction, we also implemented 32x16(Y) pattern which

has two pixels gap in the vertical direction.
We used the three fine search patterns shown in Figure 3.5. Tables 3.1, 3.2, 3.3,

3.4, and 3.5 show the performances of different combinations of fine search patterns
and main search patterns for various Frame Distances (FD). FD is the gap between the
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frames for which the ME is done. Since increasing FD is identical to lowering the frame
rate of the video, large movements between successive frames are introduced by
increasing FD. The results show that “Double Cross” fine search pattern improves the
performance up to 1% over other fine search patterns. Therefore, we used this fine

search pattern with our main search patterns in the rest of the thesis.

X X X X X X X X X X

Figure 3.2 Search locations of 10x9 pattern

X X X X X X X X X X X X X

Figure 3.3 Search locations of 12x12 pattern
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We compared the performance of our algorithm with the performances of FS,
DS [18], and HEXBS [19] algorithms based on the MAD metric. We used “Flowers”,
“Mobile Calendar”, “Table Tennis”, “Susie”, “Spider”, and “Irobot” videos for the
simulations. Each video has 100 frames. “Spider” and “Irobot” videos, which contain
large motion between frames, are taken from “Spiderman 2” and “Irobot” movies,
respectively. The resolution of these two videos is 720x576 pixels and their frame rate
is 25 fps. The other videos are the up-scaled versions of the widely used Common
Intermediate Format (CIF) resolution benchmark videos, and they have a resolution of
704x480 pixels and a frame rate of 29 fps. The simulations are done using 8 bit
luminance data for 16x16 MB size with Matlab.

X X X X X X X X X X X X X X

Figure 3.4 Search locations of 14x15 pattern

X X X X X X
X|1]X X |1]Xx x| 1]Xx
X X X X X X
(a) (b) (©)

Figure 3.5. Fine search patterns: (a) plus, (b) side, (c) double cross
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Table 3.1 MAD results for 32x16 pattern (FD = 1)

Algorithm Flowers | Mobile TabI(_e Susie
Calendar | Tennis

Plus 6.8377 | 11.3642 | 4.0670 | 3.0709

Side 6.8780 | 11.5426 | 4.0690 | 3.0823

Double Cross 6.8295 | 11.3217 | 4.0650 | 3.0612

Imp. of Double Cross over Plus | 0.12% 0.37% 0.05% | 0.32%

Imp. of Double Cross over Side | 0.71% 1.91% 0.10% | 0.68%
Table 3.2 MAD results for 32x16 pattern (FD = 2)

Algorithm Flowers | Mobile Tablg Susie
Calendar | Tennis

Plus 8.5085 | 12.0274 | 4.4561 | 3.6617

Side 8.5108 | 12.1349 | 4.4513 | 3.6742

Double Cross 8.4789 | 11.9386 | 4.4449 | 3.6496

Imp. of Double Cross over Plus | 0.38% 0.74% 0.25% | 0.33%

Imp. of Double Cross over Side | 0.37% 1.62% 0.14% | 0.67%
Table 3.3 MAD results for 32x16 pattern (FD = 3)

Algorithm Flowers | Mobile Tablg Susie
Calendar | Tennis

Plus 9.6198 | 12.7159 | 4.8755 | 4.3242

Side 9.6147 12.8476 | 4.8701 | 4.3348

Double Cross 0.5820 | 12.6338 | 4.8633 | 4.3112

Imp. of Double Cross over Plus | 0.39% 0.65% 0.25% | 0.30%

Imp. of Double Cross over Side | 0.34% 1.66% 0.14% | 0.54%

Table 3.4 MAD results for 10x9 pattern (FD = 1)

Algorithm Flowers | Mobile Tablg Susie
Calendar | Tennis

Plus 6.7892 11.5170 | 4.2255 | 3.5101

Side 6.8510 | 11.6879 | 4.2188 | 3.5070

Double Cross 6.7747 | 11.4531 | 4.2101 | 3.4742

Imp. of Double Cross over Plus | 0.21% 0.55% 0.36% | 1.02%

Imp. of Double Cross over Side | 1.11% 2.00% 0.21% | 0.94%

Table 3.5 MAD results for 10x9 pattern (FD = 2)

Algorithm Flowers | Mobile Tablg Susie
Calendar | Tennis

Plus 8.8149 | 13.1091 | 4.7517 | 4.6164

Side 8.8111 13.2902 | 4.7455 | 4.5996

Double Cross 8.7374 | 12.8067 | 4.7380 | 4.5742

Imp. of Double Cross over Plus | 0.88% 2.31% 0.29% | 0.91%

Imp. of Double Cross over Side | 0.84% 3.64% 0.16% | 0.55%
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The simulation results show that proposed search patterns outperform the DS and
the HEXBS algorithms. The reason for this is that our patterns are able to find the
search location giving the globally minimum SAD by checking more search locations in
the search range than the DS and the HEXBS algorithms. The performance difference
between proposed patterns and fast search algorithms increases with increased
amplitude of motion in the benchmark videos. In order to show this, the performances
of the proposed patterns are analyzed for different FDs. The simulation results of 10x9,
12x12, 14x15, 32x16 and 32x16(Y) patterns for different FDs are shown in Tables 3.6,
3.7, and 3.8. As shown in Table 3.6, when the FD is one, 10x9, 12x12, 14x15,
32x16(Y), and 32x16 patterns improve the performance of the HEXBS algorithm on the
average by 2.76%, 3.35%, 4.21%, 8.27%, and 10.11%, respectively. For videos having
almost no motion in the vertical direction, DS and HEXBS algorithms obtain 1% better
results, because DS and HEXBS algorithms have only one pixel gap between search
locations in the vertical direction, whereas proposed patterns, except 32x16 pattern,
have two pixels gap between search locations in the vertical direction. As shown in
Table 3.7, when the FD is two, 10x9, 12x12, 14x15, 32x16(Y), and 32x16 patterns
improve the performance of the HEXBS algorithm on the average by 7.46%, 8.12%,
9.19%, 8.20%, and 9.89%, respectively. When the FD is three, 12x12, 14x15,
32x16(Y), and 32x16 patterns improve the performance of the HEXBS algorithm by
11.61%, 12.94%, 14.44%, 19.72%, and 22.43%, respectively. The performance
improvements for different FDs are also shown in Figures 3.6, 3.7, and 3.8. Figure 3.6
and Figure 3.7 show the improvements of 10x9 pattern over the HEXBS algorithm
frame by frame for “Flowers” video sequence when the FD is one and two, respectively.
Figure 3.8 shows the improvement of 12x12 pattern over the HEXBS algorithm for the

“Flowers” video sequence when the FD is three.
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Table 3.6 MAD results comparison (FD = 1)

Algorithm Search | Flowers | Mobile | Table | Susie | Spiderman | Irobot
Range Calendar | Tennis
FS +10,£9 6.59 10.95 4.07 3.17 9.29 7.58
DS +10,£9 6.68 11.05 4.16 3.33 9.72 8.12
HEXBS +10,£9 6.87 11.40 4,17 3.43 10.24 8.45
10x9 +10,£9 6.77 11.45 4.21 3.47 9.34 7.69
o e 139% | -0.45% | -0.78% | -126% | B8.73% | 8.90%
FS +12,+£12 6.59 10.94 4.05 3.07 8.27 7.14
DS +12,+12 | 6.68 11.05 4.15 3.26 8.98 7.79
HEXBS +12,+12 | 6.86 11.40 4.16 3.32 9.33 8.04
12x12 +12,£12 6.77 11.46 4.19 3.35 8.30 7.24
O 1.33% | -054% | -0.66% |-0.95% | 11.04% | 9.90%
FS +14,+15 6.58 10.94 4,04 3.02 7.43 6.82
DS +14,£15 6.68 11.05 4,15 3.23 8.46 7.57
HEXBS +14,£15 6.86 11.40 4,15 3.28 8.80 7.82
14x15 +14,+15 6.77 11.46 4.18 3.32 7.48 6.93
Improvement 0 neaor | 0e104 | 1 om0 o 0
over HEXBS 1.32% 0.59% | -0.61% | -1.25% | 14.99% | 11.42%
FS +32,£16 6.58 10.86 4.03 2.96 5.43 5.66
DS +32,£16 6.68 11.05 4,14 3.20 7.65 6.97
HEXBS +32,£16 6.86 11.40 4.15 3.23 7.95 7.21
32x16 +32,£16 6.82 11.32 4.06 3.06 5.47 5.72
32x16(Y) +32,£16 6.78 11.44 4,17 3.26 5.53 5.79
32x16’s
Improvement 0.58% 0.7% | 2.09% | 5.43% | 31.23% | 20.62%
over HEXBS
32x16(Y)’s
Improvement 1.27% | -0.42% | -0.54% | -0.82% | 30.46% | 19.67%
over HEXBS
3 T T T T T T T
?, -
B |
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= 4T
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Figure 3.6 Improvement of the 10x9 pattern over HEXBS (FD = 1)

frame number
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Table 3.7 MAD results comparison (FD = 2)

Algorithm Search | Flowers | Mobile | Table | Susie | Spiderman | Irobot
Range Calendar | Tennis
FS +1049 | 8.4l 1129 | 464 | 433 13.22 12.05
DS +10+£9 | 9.82 1264 | 482 | 462 13.62 12.80
HEXBS | 1049 | 1036 | 1345 | 489 | 4.84 1426 | 13.30
10x9 +10+9 | 8.73 1280 | 473 | 457 13.27 12.18
LTE:OF"’EQ;”; 15.72% | 4.82% | 3.22% | 560% | 6.94% | 8.43%
FS +12+12 | 833 1126 | 454 | 4.08 12.07 11.14
DS +12+12 | 9.79 1264 | 477 | 443 1274 | 12.20
HEXBS | +12+12 | 10.33 | 1344 | 481 | 459 1316 | 12.55
12x12 | £12+12 | 867 1286 | 463 | 431 1210 | 11.25
:)Tsm’éggg 16.10% | 4.31% | 3.78% | 6.12% | 8.09% | 10.34%
FS 1415 | 832 1124 | 449 | 391 11.12 10.41
DS 1415 | 9.79 1263 | 475 | 431 1210 | 11.80
HEXBS | +14+15 | 10.33 | 1344 | 4.78 | 446 1256 | 12.14
14x15 | £14+15 | 8.66 1290 | 459 | 417 11.16 | 10.55
:)TS:OF‘"EQE? 16.11% | 4.04% | 4.06% | 6.62% | 11.16% | 13.12%
FS +32+16 | 831 1112 | 441 | 355 8.71 8.41
DS 32416 | 9.79 1262 | 473 | 414 11.07 10.97
HEXBS | £32+16 | 10.33 | 1343 | 4.76 | 4.27 11.47 11.26
32x16 | £32.4£16 | 8.47 1193 | 444 | 364 8.72 8.49
32x16(Y) | £32.416 | 867 1294 | 453 | 383 8.79 857
32x16’s
Improvement 17.94% | 11.17% | 6.66% | 14.64% | 23.97% | 24.56%
over HEXBS
32x16(Y)'s
Improvement 16.06% | 3.71% | 4.76% | 10.22% | 23.38% | 23.82%
over HEXBS

improvernent %

Figure 3.7 Improvement of the 10x9 pattern over HEXBS (FD = 2)
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Table 3.8. MAD results comparison (FD = 3)

Algorithm Search | Flowers | Mobile | Table | Susie | Spiderman | Irobot
Range Calendar | Tennis
FS +10,£9 10.62 12.23 5.25 5.44 16.45 14.98
DS +10+£9 | 14.49 15.69 5.48 5.86 16.84 15.80
HEXBS +10,£9 15.16 16.57 5.57 6.15 17.54 16.36
10x9 +10.+9 | 11.03 13.92 5.32 5.63 16.49 15.10
LTE:OF"’EQ;”; 27.23% | 15.96% | 4.51% | 8.30% | 5.94% | 7.71%
FS +12,+£12 9.88 12.18 5.10 5.07 15.20 13.93
DS +12+12 | 14.32 15.68 5.40 5.59 15.88 15.09
HEXBS +12+12 | 15.00 16.54 5.46 5.79 16.33 15.46
12x12 +12+12 | 10.30 13.94 5.17 5.25 15.22 14.03
:)Tsm’éggg 31.30% | 15.76% | 5.30% | 9.21% | 6.79% | 9.27%
FS +14,+15 9.55 12.14 5.01 4.81 14.15 13.08
DS +14,+15 14.27 15.67 5.37 5.41 15.16 14.61
HEXBS +14,+15 14.96 16.54 5.41 5.60 15.67 14.98
14x15 +14,+15 9.99 13.95 5.09 5.01 14.18 13.20
Improvement o o o o 0 o
over HEXBS 33.21% | 15.67% | 5.93% | 10.51% 9.46% 11.84%
FS +32.+16 9.36 12.01 4.83 4,23 11.40 10.22
DS +32,£16 | 14.26 15.67 5.33 511 13.94 13.58
HEXBS +32+16 | 14.94 16.53 5.36 5.31 14.43 13.88
32x16 +32.+16 9.58 12.63 4.86 431 11.40 10.29
32x16(Y) +32.+16 9.85 13.97 4.93 4.45 11.48 10.55
32x16’s
Improvement 35.90% | 23.59% | 9.41% | 18.81% | 20.98% | 25.87%
over HEXBS
32x16(Y)’s
Improvement 34.05% | 15.51% | 8.16% | 16.14% 20.43% 24.03%
over HEXBS
50 T T T T T T
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Figure 3.8 Improvement of the 12x12 pattern over HEXBS (FD = 3)
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Table 3.9 Total number of search locations for hundred frames (FD = 1)

Algorithm | Search | Flowers | Mobile Table Susie Spider | Irobot
Range Calendar | Tennis
DS +10,£9 | 2368828 | 2210984 | 1794202 | 2551537 | 5474507 | 4954167
HEXBS | £10,£9 | 1819199 | 1723104 | 1480132 | 1890779 | 3228507 | 2687300
DS +12,4+12 | 2376538 | 2212459 | 1797994 | 2587820 | 6127956 | 5521728
HEXBS | +12,4+12 | 1822081 | 1725384 | 1481011 | 1932625 | 3705149 | 2868489
DS +14,£15 | 2382128 | 2213137 | 1799742 | 2612773 | 6640820 | 6004468
HEXBS | +14,4+15 | 1823014 | 1725592 | 1482769 | 1953086 | 4014340 | 2975468
DS +32,4+16 | 2389644 | 2213295 | 1801483 | 2639287 | 7443832 | 7494935
HEXBS | +32,4+16 | 1823591 | 1725714 | 1484750 | 1979635 | 4556908 | 3253332

Table 3.10 Total number of search locations for hundred frames (FD = 2)

Algorithm | Search | Flowers | Mobile Table Susie | Spiderman | Irobot
Range Calendar | Tennis
DS +10,£9 | 2839416 | 2707125 | 1870785 | 2972983 | 5674083 | 5379456
HEXBS | +10,£9 | 2081194 | 2025332 | 1507523 | 2073247 | 3270665 | 2847186
DS +12,+£12 | 2857585 | 2713436 | 1886509 | 3071880 | 6431147 | 6074068
HEXBS | £12,+12 | 2094245 | 2031730 | 1522287 | 2159607 | 3800457 | 3120219
DS +14,£15 | 2866216 | 2716244 | 1896276 | 3145417 | 7049596 | 6652328
HEXBS | +14,+15 | 2097620 | 2034001 | 1529376 | 2206610 | 4160162 | 3288727
DS +32,+£16 | 2875455 | 2718188 | 1905789 | 3256697 | 8061850 | 8289404
HEXBS | +32,+16 | 2099428 | 2036426 | 1538257 | 2287782 | 4813062 | 3686533

Table 3.9 and Table 3.10 show the total number of search locations checked by

DS and HEXBS algorithms for various benchmark videos for different FDs. For
example, the HEXBS algorithm checks 4556908 search locations for 100 frames of the
“Spider” video, when the search range is (£32,£16) pixels and FD is one. On the

average, 28.1 search calculations are checked to find a MV.

3.2.  Generic Motion Estimation Hardware Architectures

We proposed the generic hardware architecture for implementing various fast
search algorithms. We proposed two different implementations of the generic hardware
architecture, named as the implementation Type | and the implementation Type I, for
calculating an SAD value, and we designed two different PE architectures for these
implementations. Figure 3.9 shows the block diagrams of PE, and PE,,. In both PEs, the
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absolute difference between the current pixel and the reference pixel is calculated and
stored in the SAD register. The difference between PE, and PE,; is the multiplexer in the
PE,.. This multiplexer allows zeros to be feed into the adder tree, which is needed for

the implementation type II.

The block diagrams of the implementation type | and type Il for a MB size of
16x16 pixels are shown in Figure 3.10 and Figure 3.11, respectively. In both
implementations, the outputs of PEs are added with an adder tree. Implementation type
| has a 16x16 PE, array, and horizontal shifters are used to align the reference MB read
from BRAMs with the current MB in the PE, array. In this implementation, the current
MB is loaded into the current registers of the PE, array only once. In implementation
type 11, smaller horizontal shifters are used to align the current MB, but a 20x16 PEy,
array is used. The advantage of using a larger PE array, which is capable of feeding
zeros into the adder tree, is that there is no need for shifting the reference data read from
BRAMSs. On the other hand, the current MB has to be aligned and loaded into the
current registers of the PE,, array as many times as the number of search locations. The
trade-off between these implementation types is shown in Table 3.11. Based on this
analysis, implementation type | is determined to be better than implementation type II.
Therefore, it is called as the “16x16 Generic Architecture” and used in the rest of this

thesis.
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Table 3.11 Trade-off between implementation types I and Il

Modules Implementation | Implementation
Typel Type ll
PE 256 PEI 320 PEII
Horizontal Shifter 128 20:16 128 16:16
Vertical Shifter 128 16:16 128 16:16
Adder Tree N 1.25N

The generic architecture has seven pipeline stages. In order to calculate the SAD
of a search location for a 16x16 MB in one clock cycle, 256 PEs are used and their
outputs are added with an adder tree. If MBs are divided into blocks, and a block is
processed in one clock cycle, smaller number of PEs, adders and shifters can be used.
The generic architectures for the block sizes of 16x8, 16x6, 16x4, and 16x2, are shown
in Figures 3.12, 3.13, 3.14, and 3.15 respectively. Area and performance comparison of
these generic architectures on a Xilinx Spartan 3E FPGA is given in Table 3.12. Area
comparisons of horizontal and vertical shifters for these generic architectures are given

in Tables 3.13 and 3.14, respectively.
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Table 3.12 Comparison of generic architectures for various block sizes

Number Number of SAD of a Total PE Array Total
Block Size of PEs 16x16 MB Area with Adder Area
BRAMs (Cycles) Tree (LUTs) (LUTS)
16x16 80 256 1 6940 31416
16x8 40 128 2 3463 14675
16x6 30 96 3 2580 9447
16x4 20 64 4 1726 6304
16x2 10 32 8 857 2889

Table 3.13 Comparison of horizontal shifters for various generic architectures

Number of Number of 20 to 16
Block Size Horizontal Shifters in a Horizontal -IZ—SI,?OI 1N6u§]?$t2?; TcEtLaLIJ_,I‘i\Sr)ea
Shifters Shifter
16x16 16 8 128 14208
16x8 8 8 64 7104
16x6 6 8 48 5328
16x4 4 8 32 3552
16x2 2 8 16 1776
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Table 3.14 Comparison of vertical shifters for various generic architectures

Number of 128bit
Block Size lines in a Vertical ;—g#fe?; Ngm fbtg:sof T(thaLIJ_/IA_\Sr)ea
Shifter
16x16 16 16 t016 128 10268
16x8 8 8t08 128 4108
16x6 6 6106 128 1539
16x4 4 4t04 128 1026
16x2 2 2to2 128 256

The data layout in BRAMSs is shown in Figure 3.16. Five BRAMs are used to
store one line of the search window. This is done to avoid data collisions that can occur
while accessing the reference MB for a search location. Since the maximum word
length of BRAMSs in the state of the art FPGAs is 32 bits, each memory location stores
four pixels. In Figure 3.16, each box represents a pixel and the number in the box
indicates the BRAM storing that pixel. Dark shaded area shows the reference MB for an
example search location for 16x16 MB size. In order to access the reference MB for an
arbitrary search location, outputs of the BRAMSs should be aligned. This is done by
horizontal and vertical shifters. For the example shown in Figure 3.16, in order to align
the reference MB with the current MB, horizontal shifters should rotate their 160 bit
input ten bytes to left and clip the least significant four bytes, and the vertical shifter
should rotate its inputs to left by six lines. Figure 3.17 and Figure 3.18 show these

horizontal and vertical rotate operations.
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Figure 3.17 Ten byte rotate left operation done by the horizontal shifter
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Figure 3.18 Six line rotate left operation done by the vertical shifter

In the proposed generic hardware architecture, there are three pipeline stages
named as SHFT, SAD, ADD. Reference MB is read from the BRAMs and aligned by
shifters in the SHFT stage. The absolute differences between corresponding current and
reference pixels are calculated in the SAD stage. The SAD for a 16x16 MB is calculated
by adding these absolute differences in the ADD stage. The pipelining in the proposed
generic hardware architecture is shown in Table 3.15. “al” to “a7” represent the seven
search locations in the first iteration of the HEXBS algorithm. Similarly, “b1”, “b2”,
and “b3” represent the three search locations in the next iteration. The pipeline has to
stall between iterations, because the next iteration is dependent on the data obtained
from the previous iteration. The number of stall cycles is equal to the number of
pipeline stages minus one. Therefore, the three stage pipelined datapath must be stalled
for two cycles between iterations. In the HEXBS algorithm, the number of search
iterations is limited by the search window size. For a search window of (+32,+16)
pixels, if the search continues horizontally, the datapath will be stalled 16 times, i.e. 32

cycles.

52



Table 3.15 Pipelining in the generic hardware architecture

Clock | SAD | SAD | SAD | SAD | SAD | SAD | SAD | SAD | SAD | SAD | SAD
cycles | al a2 a3 a4 a5 a6 a7 bl b2 b3 cl
1 SHFT

2 SAD | SHFT

3 ADD | SAD | SHFT

4 ADD | SAD | SHFT

5 ADD | SAD | SHFT

6 ADD | SAD | SHFT

7 ADD | SAD | SHFT

8 ADD | SAD | stall

9 ADD | stall

10 SHFT

11 SAD | SHFT

12 ADD | SAD | SHFT

13 ADD | SAD | stall
14 ADD | stall
15 SHFT
16 SAD
17 ADD

The proposed generic hardware architecture is implemented in VHDL, verified
with Register Transfer Level (RTL) simulations using Mentor Graphics Modelsim 6.3c
and mapped to Xilinx XC3S1200-5 FPGA using Xilinx ISE 9.2.04. The proposed
hardware can work at 144 MHz on this FPGA. Therefore, for the largest search window
size of (£32,£16) pixels, it can process 206743 MBs per second. Therefore, it is capable
of processing 127 fps, 57 fps, and 25 fps for 720x576, 1280x720 and 1920x1080
resolutions, respectively. The disadvantage of the generic architecture is that it uses 80
BRAMs.

Since 16x16 and 16x8 generic hardware architectures use large number of
BRAMs, it is not possible to implement them on current low cost FPGAs. Although
16x4 and 16x2 generic hardware architectures can be implemented on a low cost FPGA,
they are not suitable for real-time implementation of high frame size and high frame
rate applications, because they require large number of clock cycles to calculate an SAD
value. Therefore, in the next section, we propose a systolic ME hardware architecture
for real-time implementation of high frame size and high frame rate applications on a
low cost FPGA.
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3.3.  Systolic Motion Estimation Hardware Architecture

The systolic ME hardware architecture proposed to efficiently implement the
proposed HEXBS ME algorithm and its datapath are shown in Figures 3.19 and 3.20.
This systolic architecture is designed to reduce the internal memory bandwidth by
applying data-reuse [7]. It has six pipeline stages. It has 256 PEs and accumulates their
results with an adder tree. The main difference between the systolic architecture and the
generic architecture is it that not all of the PEs receive their reference data directly from
BRAMs. 16 BRAMs, configured for 16 bit port width, are connected to 32 PEs. The
remaining 224 PEs receive their reference data from their neighboring PEs. Reference
data is shifted to right in the PE array. Loading the reference data of a search location
has a start-up cost of 8 cycles. After the PE array is loaded, SAD values of the search

locations in the same line is obtained in each clock cycle.
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Figure 3.19 Top-level block diagram of the systolic architecture
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Table 3.16 shows the total number of search locations in different search patterns

and the number of clock cycles required to check these search locations on the systolic

architecture. “Double Cross” fine search pattern has an overhead of four clock cycles

compared to “Plus” fine search pattern.

Table 3.16 Search patterns

Search Range Number of Search Required
Locations Clock Cycles
+10, +9 73 122
+12, +12 113 176
+14, +15 159 236
+32, +16 553 672
. Number of Search Required
Fine Search Pattern Locations Clock Cycles
Plus 4 25
Side 6 27
Double Cross 8 29

Table 3.17 shows the data flow through the proposed systolic architecture. Let Al

— L2 shown in Figure 3.21 denote the pixels in these columns. In this figure, search

locations of the proposed HEXBS patterns are shown as bold. Al denotes the pixels in

the column Al and A2 denotes the pixels in the right neighboring column. Assuming

that D1 is the first search location in the line, in the first clock cycle, the PE array is
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filled with the pixels in columns L1 and L2. In the second clock cycle, these pixels are

shifted to the right in the PE array by two pixels and the pixels in columns K1 and K2

are loaded into two left end columns of the PE array. Therefore, in the 8th clock cycle,
the SAD value of search location D1 is obtained. In the 9th, 10th and 11th clock cycles,

SAD values of search locations C1, B1 and A1l are obtained.

X X X X X X X X X X X
Al | A2 | Bl |B2|Cl1|C2|D1|D2|El1|E2|F1L|F2|Gl1|G2|HLl|H2|Jl]|J2|Kl|K2]|Ll]|L2
X X X X X X X X X X X
X X X X X X X X X X X
Figure 3.21 Search locations of the proposed HEXBS patterns
Table 3.17 Data flow through the systolic PE array
Clock Processing Elements
Col | Col | Col | Col | Col | Col | Col | Col | Col | Col | Col | Col | Col | Col | Col | Col
Cycles
0|12 |3 |4 |5 |6 |7 ]| 8|9 |10|11]12|13]|14]15
1 L1 | L2
2 Kl1|K2|L1l|L2
3 J1 [ J2 | K1|K2|L1|L2
4 Hl1|H2|J1|J2 |Kl1|K2|L1l|L2
5 Gl|G2|H1|H2|J1|J2 |Kl|K2|L1|L2
6 F1|F2 | G1|G2|H1|H2|Jl|J2 |Kl|K2|Ll]|L2
7 El|E2|F1|F2|Gl|G2|H1|H2|J1|J2 |Kl|K2|Ll|L2
8 Di1|D2 |E1|E2|F1|F2 |Gl |G2|H1|H2|J1l|J2 |Kl|K2|L1l]|L2
9 Cl|C2|D1|D2|E1|E2|F1|F2|G1|G2|H1|H2|Jl|J2|K1l|K2
10 Bl|B2|Cl1|C2|D1|D2|E1|E2|F1|F2|G1|G2|H1|H2|J1 ]| J2
11 Al|A2|Bl1|B2|Cl|C2|D1|D2|E1|E2|F1|F2|G1|G2|H1l|H2
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Pixel organization in BRAMs is shown in Figure 3.22. Each BRAM has three
regions (0, 1, 2) for storing three different lines of the search window. For example,
BRAM 0 stores Oth, 16th, and 32th lines of the search window. The outputs of BRAMs
are aligned with vertical rotator. The vertical rotator consists of 16 16-bit rotators.
Rotate amount signal generated by the control unit determines how many lines the
outputs of the BRAMs will be rotated by the vertical rotator. The rotate amounts for
different search locations are shown in Figure 3.23. For the search locations in the first
line of the search window, the rotate amount is zero and it increases by two for the
search locations in the following lines of the search window. After 16, the rotate amount
repeats itself. For the search location shown as “X0” in Figure 3.23, the rotate amount i$
zero and the required reference data is in the first region (region 0) of all the BRAMs.
For rotate amounts other than 0, 16, and 32, two different address values are sent to
BRAMSs. For the search location shown as “X6” in Figure 3.23, the rotate amount is six
and the required reference data is in the first region (region 0) of BRAMs 6-15 and in
the second region (region 1) of BRAMs 0-5.

0 Pixel 0,1 of line 0
Pixel 1,2 of line 0 o
2 Pixel 2,3 of line 0 S
. o
| o
| i
78 | Pixel 78,79 of line 0
79 | Pixel 0,1 of line 16
80 |  Pixel 1,2 of line 16 -
81|  Pixel2,3 of line 16 S
1 U’
| &
| i
157 | Pixel 78,79 of line 16
158 | Pixel0,1 of line 32
159 | Pixel 1,2 of line 32
N
160 | Pixel2,3 of line 32 c
i L
| =
| &
o
255 | Pixel 77,78 of line 32
256 |  Pixel 79,80 of line 32

BRAM O
Figure 3.22 Pixel organization in BRAMSs of the systolic architecture

57



0 X0 0 0 0 0 0 0 0 0 0

2 2 2 2 2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4 4 4 4

6 6 X6 6 6 6 6 6 6 6 6 6
8 8 8 8 8 8 8 8 8 8 8

10 10 10 10 0 10 10 10 10 10 10 10
12 12 12 12 12 12 12 12 12 12 12

14 14 14 14 14 14 14 14 14 14 14 14
0 0 0 0 0 0 0 0 0 0 0

2 2 2 2 2 2 2 2 2 2 2 2
! 4 ! 4 1 4 4 4 4 4 4

6 6 6 6 6 6 6 6 6 6 6 6

Figure 3.23 Rotate amounts

The systolic hardware architecture is implemented in VHDL, verified with RTL
simulations using Mentor Graphics Modelsim 6.3c and mapped to Xilinx XC3S1200-5
FPGA using Xilinx ISE 9.2.04. It can work at 144 MHz on this FPGA. Same as the
generic architecture, for the largest search window size of (+32, +16) pixels, it can
process 206743 MBs per second. Therefore, it is capable of processing 127 fps, 57 fps,
and 25 fps for 720x576, 1280x720, and 1920x1080 resolutions, respectively. The
proposed systolic architecture consumes 6648 LUTs and 16 BRAMs. Because of the
regular data flow, control unit consumes only 265 LUTs. Therefore, the systolic
hardware fits into a state of the art low cost Xilinx Spartan-3E FPGA. Compared to the
generic architecture, the systolic architecture uses smaller number of BRAMSs and no
horizontal rotators, and the input data width of the vertical rotator is reduced to 16 bits.
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CHAPTER 4

DYNAMICALLY VARIABLE STEP SEARCH MOTION ESTIMATION
ALGORITHMS AND A HARDWARE ARCHITECTURE FOR THEIR
IMPLEMENTATION

We propose the DVSS and RDVSS ME algorithms for processing HD video
formats [9, 10]. The proposed ME algorithms exploit MV correlations between
neighboring MBs. We also propose a dynamically reconfigurable systolic ME hardware
architecture for efficiently implementing these algorithms [9]. The proposed ME
hardware is compared with several ME hardware implementations presented in the
literature [26-31].

Several ME algorithms exploiting MV correlations between spatial and temporal
neighboring MBs are proposed in the literature [32-38]. However, to the best of our
knowledge, no ME algorithm utilizing the difference of the MVs of the temporal
neighboring MBs as proposed in the RDVSS algorithm is presented in the literature.
ARPS [20] and ADCS [21] algorithms adapt their initial search locations based on the
MV of the previous MB. Adaptive Predicted Direction Search (APDS) [32] algorithm
finds the initial search location by calculating the angles of the MVs of spatial and
temporal neighboring MBs.

In [33], some of the candidate search locations are eliminated adaptively if their
partial SAD value exceeds a dynamically determined threshold. In [34], the size and
SAD values of the MVs of the previous blocks are used to adaptively change the search
window size of the FS algorithm for the current block. The techniques proposed in [35,
36] are developed for fast ME algorithms which are not suitable for processing HD
video. The dynamic adjustment of search window is a modification to the TSS

algorithm and it adapts the search window size of the next step based on the result of
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the previous step [35]. The dynamic adjustment of search window with variable size of
block technique adaptively adjusts the search window and can be used with fast ME
algorithms like NTSS and FSS [36]. In [36,37], MVs of upper, left, upper-left, and
upper-right spatial neighboring MBs are used to determine the initial search location. In
[37], in addition to MVs of these spatial neighboring MBs, MV of the temporal
neighboring MB is also used for determining the initial search location. The algorithm
proposed in [37] performs 7% close to the FS algorithm for low resolution videos where
the search range is (15, +15) pixels. Since this ME algorithm performs hierarchical
four levels of multi-resolution search with variable block size for each level and
implements the FS algorithm for MBs where neighboring correlations are not available,
its hardware implementation will be quite complex and it will perform significant
number of memory accesses. In [38], if the spatial neighboring MBs of the current MB
have identical MVs, this MV is used for the current MB as well without any search.
This technique achieves good results only for low bit-rate video where search is
performed in a very small search range, e.g. (+7, £7) pixels, and therefore the MVs are

similar.

4.1  Dynamically Variable Step Search Motion Estimation Algorithm

We propose the DVSS algorithm [9] in order to obtain a performance very close
to the FS algorithm by searching even fewer search locations than the ME algorithms
proposed in [7, 8]. The DVSS algorithm has a maximum of three different granularity
search steps. First, the entire search window is searched with a coarse granularity search
step. Then, two finer granularity search steps are performed around the search locations
from previous steps with minimum SAD. The number of steps and the search range of
each step are determined for the current block based on the size and the SAD value of
the previously found MV for the left neighboring block. It is possible to use one of
many different search patterns for a given block. Some of these search patterns, named
as Al [8], A2, A3, B and C, and the search patterns used in [7] are shown in Table 4.1.
As shown in this table, skipping the coarse and medium steps and doing the fine step on
the entire search range is identical to the FS algorithm. The search pattern Al, as shown

in Figure 4.1, has 3 steps and the search ranges of coarse, medium, and fine steps are
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(+48,+£24), (£6,£6), (£3,£3) pixels, respectively. The search pattern A2 is the same as

ATl except that the search range of its first step is (+24, +12) pixels. The search pattern

A3, as shown in Figure 4.2, has only medium and fine steps. In Figures 4.1 and 4.2,

numbers represent the steps and shaded numbers show the search locations with

minimum SAD for these steps.

Table 4.1 Several search patterns

Search Search Search Number of
Search
Pattern Range of Range of Rgnge of Sear_ch
First Step | Second Step | Third Step | Locations
10x9 [7] - +10, +9 +3, +3 73
14x15 [7] - +14, £15 +3, 43 159
Al [8] +48, +24 +6, +6 +3, +3 405
A2 +24, £12 +6, +6 +3, 43 161
A3 - +18, £10 +3, +3 249
32x16 [7] - +32, £16 +3, +3 553
B +48, +24 +12, +£12 +6, +6 565
C +48, +24 +24, £12 +12, +6 793
48x24 [7] - +48, £24 +3, +3 1221
FS - - +48, +24 4753
1 1 1 1 1
1 ) 1 p) 1 2 1 2 1
303(3(3[3[3]3
1 23 f1|3]|2]3]|1]3]2 1 2 1
303(3(3[3[3]3
23 f2(3|2]3]|2]3]2 2 2
30333333
1 231 (32]3]1]3]2 1 2 1
303(3(3(3(3]3
Z|WYV T|S|RIQP|OIN|ML|K I |\ H G|F D|C|BlA
1 1 1 1 1

Figure 4.1 Search pattern Al
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Figure 4.2 Search pattern A3

The number of steps and sizes of search ranges for each step determine the
computational complexity of a search pattern and the MAD performance obtained by it.
The DVSS algorithm decreases the computational complexity by adaptively changing
between search patterns Al, A2, A3 for each block based on the size and SAD value of
the previously found MV for the left neighboring block, which is called as Left
Neighboring Motion Vector (LNMV). It uses FS, A3, A2, and Al search patterns for

small, medium, medium-to-large and large motions, respectively.

The pseudo code of the DVSS algorithm is shown in Figure 4.3. If LNMV falls
within a smaller search range, it decreases the search granularity and the search range
size, because for small motions doing the search in a smaller search range is sufficient
and doing a finer granularity search in a smaller search range can give better MAD
results. If the SAD value for LNMV is higher than a pre-determined threshold level (z),
it increases the search granularity and the search range size. The threshold level z is set
to 256 and 1024 in our simulations. By setting = to a higher value, many search
locations can be skipped and higher processing speeds can be achieved with a slight

decrease in the MAD performance.
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If there is no left neighboring block
Do pattern Al
Else if SAD value of LNMV exceeds the threshold ()
Switch to next coarser pattern
Else
If LNMV is within (£8, +4) pixels
Do FS in a search range of (£10, £5) pixels
Else if LNMYV is within (£16, +8) pixels
Do pattern A3
Else if LNMV is within (+24, +12) pixels
Do pattern A2
Else
Do pattern Al
Figure 4.3 The pseudo code of the DVSS algorithm

The performances of the DVSS algorithm and its search patterns are compared
with the performances of successful fast ME algorithms with respect to the MAD
criterion and the results are shown in Table 4.2 and Table 4.3. Seven 100 frame video
sequences are used for comparison, which are also used in Chapter 3.1 except the
“Gladiator” video sequence. The “Gladiator” video is taken from the movie with the
same name and it contains large motions. The frame size and rate of these benchmark
videos are given in Tables 4.2 and 4.3. In the simulations, among the previously
proposed fast search algorithms only the NTSS and the FSS algorithms have a search
range of (£16, £16) pixels. The other fast search algorithms have a search range of

(+48, £24) pixels. The FS is performed for both search ranges.

The simulation results showed that DVSS algorithm performs very close to the FS
algorithm by searching much fewer search locations than the FS algorithm and it
outperforms successful fast search ME algorithms by searching more search locations
than these algorithms. The DVSS algorithm obtains similar performance results by
searching fewer search locations than the search patterns proposed in Chapter 3.1. Even
though, the FS algorithm with (£48, +24) search range checks 4753 search locations in
comparison to 405 search locations checked by the search pattern Al, its MAD

performance is on the average only 7.5% better than the performance of the search
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pattern Al. The performance of the FS algorithm with (+16, +16) search range is very

low for videos with large motion content.

Table 4.2 MAD results for fast search algorithms

\(,i:drz(r’niegi‘;‘;”g FS FS | NTSS | FSS | BBGDS | DS | HEXBS | ARPS | ADCS | FTS

Ret) 48424 | 16416 | [15] | [16] | [171 | 28] | (91 | [20] | 1] | [22]
(7222?7%’”‘2%%3) 420 | 696 | 1071 | 1081 | 747 | 720 | 737 | 607 | 624 | 687
(nocf(?feifnz"gfp o | 283 | 538 | 868 | 879 | 568 | 543 | 561 | 393 | 373 | 600
(720;§$g°§5fp g | 292 | 871 | 548 | 555 | 453 | 430 | 451 | 388 | 403 | 487
(704);;85615];[)5) 322 | 342 | 405 | 408 | 381 | 36 | 371 | 362 | 362 | 3.92
70 452%"(‘)"”155];[)5) 839 | 841 | 1047 | 1112 | 106 |1031| 109 | 870 | 895 |13.11
(732322322;35) 3.48 358 | 397 | 401 | 38 | 380 | 383 | 373 | 374 | 388
(352§%§g§gfp g | 47 423 | 481 | 486 | 451 | 456 | 508 | 454 | 469 | 569

Table 4.3 MAD results for proposed search algorithms

Video Sequence 10x9 14x15 32x16 48x24 Al B c DVSS DVSS
(Frame Size & Rate) [7] [7] [7] [7] [8] 7 =256 7=1024
Spiderman
(720576, 25fps) 9.34 7.48 5.53 4.22 4.27 4.26 4.25 4.39 4.54
Gladiator
(720x576, 25fps) 7,29 5,84 3,32 2.88 2.97 293 | 292 3.14 3.26
IRobot 7.69 6.93 5.72 3.08 3.23 315 | 3.10 3.29 3.33
(720x576, 25fps) ) ) ) ) ) ) ) ) )
Susie
(704x480, 15fps) 3.92 3.72 3.40 3.33 341 3.34 3.32 3.29 3.29
Flowers
(704x480, 15fps) 8.89 8.79 8.62 8.61 9.26 9.06 | 8.95 8.51 8.48
Table Tennis
(704480, 15fps) 3.79 3.66 3.56 351 3.57 3.55 3.54 3.55 3.57
Foreman
(352288, 15fps) 5.02 4.95 4.67 4.66 4.87 4,70 4.60 451 4.39

The performance gap between fast search algorithms and the proposed search
patterns increase with increased video resolution and motion between consecutive
frames. On the other hand, as it can be seen from “Foreman” benchmark video, when
the resolution is very low and the motion can be detected in a search range of (£16,
+16) pixels, the performance gap decreases. The DVSS algorithm decreases the
computational complexity significantly with a small decrease in the MAD performance.
It even sometimes gives better MAD results than the pattern Al. The reason for this
improvement is that search patterns with finer granularities perform better for small
motions and the DVSS algorithm dynamically decreases its granularity when small

MVs are found for the previous blocks.
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4.2  Reconfigurable Motion Estimation Hardware Architecture

The reconfigurable systolic ME hardware architecture is based on the ME
hardware presented in Chapter 3.3. The major differences between them are the
proposed hardware is dynamically reconfigurable and it implements the DVSS
algorithm. For each MB, the proposed ME hardware can be dynamically reconfigured
to execute different number of steps and different search ranges for each step. Top-
level block diagram of the proposed ME hardware architecture is shown in Figure 4.4.
The hardware is highly pipelined and its latency is eight clock cycles; one cycle for
synchronous read from memory, one cycle for shift registers, two cycles for the

reconfigurable systolic PE array and four cycles for the adder tree.
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Figure 4.4 Top-level block diagram

The proposed ME hardware finds an MV for a 16x16 MB based on the minimum
SAD criterion in a maximum search range of (48, +24) pixels using the luminance
data. The “top-level controller” takes the threshold level (z) as an input and determines
the number of search steps and their search ranges for each block adaptively. The

“control unit” finds the MV for each block by generating required address and control
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signals to compute the SAD values of the search locations in the search window
determined by the top-level controller for each step.

The search locations in a search window are searched line by line. First, SAD
values of the search locations in the top line of the search window are calculated starting
from the right most search location in the top line. Then, SAD values of the search
locations in the next line of the search window are calculated starting from the right
most search location in the next line. The first step ends after SAD values of the search
locations in the bottom line of the search window are calculated. The next step around
the search location with the minimum SAD is done in the same way.

16 BRAMs in the FPGA are used to store the search window. BRAMs are
configured as dual port memories for overlapping the ME of the current MB with the
loading of the search window of the next MB. The vertical rotator is used to align the
outputs of the BRAMS and it has 32 identical rotators each 16 bits long. The reference
MB data read from BRAMSs must be matched with the current MB data, which is loaded
into the PE array previously, by rotating the data lines. For example, for the search
locations in the fourth line of the search window, the rotate amount will be equal to four

so that first line of the reference data will be read from the fourth BRAM.

The SAD value for a search location is calculated by summing the outputs of all
256 PEs in the reconfigurable PE array by an adder tree. The adder tree has four
pipeline stages; SAD values of 4x4 blocks are calculated in the first two clock cycles, in
the third clock cycle SAD values of 8x8 blocks are calculated and in the fourth clock
cycle SAD value of 16x16 MB is calculated.

The reconfigurable systolic PE array is shown in Figure 4.5. 256 PEs are used to
calculate the SAD of a 16x16 MB. A PE is used to calculate the absolute difference
between a current pixel and the corresponding reference pixel. The latency of the PE
array is two clock cycles, because reference and current pixel inputs and the absolute
difference output are registered. The reconfiguration of the PE array is achieved with
the multiplexers placed between the PEs that process the same line in a MB. Since the
PE array explained in Chapter 3.3 is not reconfigurable, these multiplexers bring a

slight area overhead in comparison to the PE array proposed in Chapter 3.3. But, they
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do not affect the clock frequency since they are not placed on the critical path. In Figure
4.5, interconnects used for implementing 4, 2 and 1 shift amounts are illustrated with
dashed, thin and bold lines respectively. Interconnects marked with “m” are connected

to BRAMs.
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Figure 4.5 Reconfigurable systolic PE array

The reference pixels for the first search location in a line of the search window are
loaded in four clock cycles. After the SAD value of the first search location is
calculated, the SAD value of the next search location is calculated in one cycle. After
the SAD value of the first search location is calculated, reference data is shifted to the
right in the PE array in each consecutive clock cycle and shift amount can be 4, 2 or 1
pixels depending on the type of the step; coarse, medium or fine, respectively. Figure
4.6 demonstrates the shifting in the PE array when the shift amount is equal to 1 and 2
pixels. For example, when the shift amount is equal to 2 pixels, PEO shifts its content to
PE2, PE1 shifts its content to PE3, and PE2 shifts its content to PE4.

| PE0 | PE1 | PE2 | PE3 | e e | PE12 | PE13 | PE14 | PE15 |
QA 2 AR 7~ QA L 7 7~
@)

................ | | PE12 | PE13

.‘

PEO | PE1 | PE2

(b)

Figure 4.6 Shifting in PE array (a) 1 pixel, (b) 2 pixels
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The data flow through the reconfigurable systolic PE array is shown in Table 4.4.
Let capital letters “A” to “Z” shown in Figure 4.1 denote all pixels in these columns
respectively. Assuming that “P” is the first search location, four clock cycles will be
required to feed the reference data for this search location to the PE array, because
regardless of the search pattern during the loading of reference pixels for the first search
location the multiplexing unit feeds first four columns of the PE array. Assuming that
after “P”, the search pattern continues with search locations “R, T and V” (two pixel
gap between consecutive search locations), multiplexing unit will feed only first two
columns of the PE array. Therefore, reference pixels for these search locations will be in
the PE array in 5th, 6th and 7th clock cycles, respectively.

Table 4.4 Dataflow through the reconfigurable systolic PE array

Processing Elements
Clock | Col | Col | Col | Col | Col | Col | Col | Col | Col | Col | Col | Col | Col | Col | Col | Col
Cvled ol 1 | 2| 3| a|s5 |6 |7 |8 |9 10]|1]|12]|13]|14]1s
1 D C B A
2 H G F E D C B A
3 L K J | H G F E D C B A
4 P O N M L K J | H G F E D C B A
5 R Q P 0] N M L K J | H G F E D C
6 T S R Q P (6] N M L K J | H G F E
7 V U T S R Q P (6] N M L K J | H G

In order to calculate the SAD values of search locations at the rate of one SAD
value per clock cycle, pixels for a particular search location must be brought to the PE
array in one clock cycle, and this requires many accesses to the memory in the same
clock cycle. This memory requirement cannot be satisfied by an FPGA without data-
reuse. The systolic hardware architecture proposed in Chapter 3.3 reduces the internal
memory bandwidth by applying data-reuse and it uses only 16 BRAMs for storing the
reference pixels of a search window for a search range of (£32, £16) pixels. BRAMs are
configured as 16 bits wide because of the two pixel distance between consecutive search

locations.

The ME hardware proposed in this chapter also applies data-reuse. However, it
uses only 16 BRAMs for storing the reference pixels of a search window for a search
range of (48, +24) pixels. The proposed ME hardware further reduces the internal

memory bandwidth by feeding only 64 PEs from BRAMSs, the remaining PES receive
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reference pixels from neighboring PEs. BRAMs are configured as 32 bits wide and they
are connected to the four left end columns of the PE array. Therefore, loading the

reference pixels for the first search location into the PE array takes four clock cycles.

Each BRAM stores four lines of reference pixels. Storing a line of reference
pixels uses 28 address locations. Therefore, addresses 0-111 are occupied to store four
lines of reference pixels. Figure 4.7 shows the layout of the reference pixels in the first
BRAM, which stores Oth, 16th, 32th and 48th lines of the reference pixels in four
distinct regions. The remaining BRAMSs have the same organization.

0 Pixel 0,1,2,3 of line 0
Pixel 4,5,6,7 of line 0 o
2 Pixel 8,9,10,11 of line 0 _5
. o>
i)
| o’
27 | Pixel 108,109,100,111 of line 0
28 Pixel 0,1,2,3 of line 16
29 Pixel 4,5,6,7 of line 16 —
30 Pixel 8,9,10,11 of line 16 _5
. o
D
| o
55 | Pixel 108,109,100,111 of line 16
56 Pixel 0,1,2,3 of line 32
57 Pixel 4,5,6,7 of line 32 o
58 Pixel 8,9,10,11 of line 32 _5
. o
D
| o
83 | Pixel 108,109,100,111 of line 32
84 Pixel 0,1,2,3 of line 48 o
85 Pixel 4,5,6,7 of line 48 c
o
’ o))
D
o
111 | Pixel 108,109,100,111 of line 43

BRAM 0O

Figure 4.7 Memory organization

The “multiplexing unit”, shown in Figure 4.8, is used to feed the correct data to
the PE array. The data received from the vertical rotator is captured in a 56 bit long shift
register, which stores 7 pixels. If the enable signal of the shift register is high, it shifts
its content 32 bits to right. In order to support horizontal distances of one, two, and four
between consecutive search locations, multiplexing unit is designed to feed first one,

two, or four left end columns of the PE array. Independent from the search pattern,
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reference pixels for the first search location are loaded by feeding the four columns.
Therefore, four clock cycles are required to fill the PE array with the reference pixels
for the first search location. The reference pixels for the next search location will be
available in the next clock cycle. If the distance between two search locations is four
pixels, “4 select” multiplexers otherwise “2 select” multiplexers are used to select the
corresponding reference pixels from the shift register. Table 4.5 shows the output of the
multiplexing unit for different pixel locations. The content of the shift register, which is
shown with capital letters in Figure 4.8, is also given in Table 4.5. If the search location
is aligned with the memory content, the most significant four bytes (G, F, E, D in Figure
4.8) will be selected as the output. Otherwise 1, 2, or 3 pixel shift will be performed.

| .
4 select \’/-1 select \7/4 select \,/-1- selact
F ) W) W N T )

Sel4 byte ?
_b3 /

Data from
Vertical Rotator

T fefr[eJofcfefa]

Shifter Enable | |

T

2 select

Sel2_Mux_rowl

2 select

Sel2 Mux row2

Sel PE0OQin

Sel_PEOlin

PE PE
0,1 02 0,3

PE

Figure 4.8 Multiplexing unit

Table 4.5 Output of the multiplexing unit for different pixel locations

Clock Shift Register Aligned Out 1 Pixel 2 Pixel 3 Pixel
Cycle Content Shifted Out | Shifted Out | Shifted Out
1 DCBA--- DCBA
2 HGFEDCB HGFE EDCB FEDC GFED
3 LKJIHGF LKJI IHGF JIHG KJIH
4 PONMLK]J PONM MLKJ NMLK ONML
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The proposed hardware architecture is implemented in VHDL, verified by RTL
simulation using Modelsim 6.3c, and mapped to an XC3S1500-5 FPGA using Synplify
Pro 8.9 and ISE 10.1. The proposed hardware works at 130MHz and consumes 9128
slices (2282 CLBs) and 16 BRAMs. The reconfigurable systolic PE array with the adder

tree consumes 7510 slices.

The number of clock cycles per MB required by the proposed hardware depends
on the search pattern. Starting a step has a start-up cost of 15 clock cycles, which is
called as the step latency, and starting the search on a line has a start-up cost of 8 clock
cycles, which is called as the line latency. The total number of clock cycles per MB
required to complete a search pattern is given by (4.1). The performance of proposed
ME hardware for several search patterns are calculated based on (4.1) and given in
Table 4.6.

Ng

Z(Ts + (Nggg =1)% Ny + (M _1)X Tnne) (4.1)

1

In (4.1), “ns, Nsag, Niine” are the number of steps, search locations per line, and

2

lines per step, respectively. “ts” and “tjine” are step and line latencies, respectively.
Based on this equation, for the coarse, medium and fine steps the start-up latency is 45
clock cycles. For these three steps, there is 192 clock cycles of line latency and 396
clock cycles are required for remaining search locations. Therefore, pattern Al requires
633 clock cycles to find the MV of a MB. Patterns A2 and A3 requires 357 and 380
clock cycles, respectively. FS with a search range of (£10, £5) pixels requires 304 clock

cycles.

The performance of the DVSS algorithm on the proposed ME hardware for
different threshold values is shown in Table 4.7. The DVSS algorithm achieves much
better real-time performance, with a small decrease in the MAD performance, since it
adaptively changes the search patterns and uses the pattern Al only for large motions,
patterns A2 and A3 for medium motions and FS only for small motions. As it can be

seen in Table 4.7, increasing the threshold value increases the supported frame rate.
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Table 4.6 Performance of the proposed hardware for several search patterns

Required Processed .
s:g;cr?] Clock Cycles | MBs per SupportedRZ:z:me Size &
per MB Second
Al [8] 633 205371 1920x1080, 25.3 fps
B 957 135841 1366x768, 33.1 fps
C 1221 106470 1366x768, 25.9 fps
10x9 [7] 122 1180327 1920x1080, 145.7 fps
14x15 [7] 236 610169 1920x1080, 75.3 fps
32x16 [7] 672 214285 1920x1080, 26.4 fps
48x24 [7] 1425 101052 1366x768, 24.6 fps
FS 5103 25475 720x576, 15.7 fps

Table 4.7 Performance of the proposed hardware for the DVSS algorithm

. Required Average Supported

SE\C/]IL?:F?CG Thr?:)h old Cycles for 100 Nll?;rﬁgr Cycles per 1920x1080
Frames MB fps
Spider 256 96094246 1620 594 27.0
Spider 1024 90284377 1620 558 28.7
Gladiator 256 87299334 1620 539 29.7
Gladiator 1024 80952068 1620 500 32.1
Irobot 256 77966499 1620 482 33.3
Irobot 1024 74177157 1620 458 35.0
Susie 256 59212520 1320 449 35.7
Susie 1024 51666864 1320 392 41.0
Flowers 256 52181938 1320 396 40.5
Flowers 1024 49586582 1320 376 42.7
TableTennis 256 53382291 1320 405 39.6
TableTennis 1024 47136775 1320 358 44.9
Foreman 256 15926153 396 403 39.9
Foreman 1024 14250681 396 360 44.5

ME hardware

implementations presented in the literature in Table 4.8. The proposed ME hardware

The proposed ME hardware is compared with several
consumes less area than the implementation of one of the best performing fast search
ME algorithms in the same FPGA [22]. The MAD performance of this hardware is
lower than the MAD performance of the proposed ME hardware, since it implements
the FTS algorithm. In [26], a hybrid architecture supporting both FS and DS is
presented. This architecture speeds up FS by successively eliminating some of the
search locations. In addition, it is suitable for the irregular data flow of fast search

algorithms and it consumes less area than the dedicated FS systolic array
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implementations. However, it has lower throughput than the proposed ME hardware.

Because of the overhead of the reconfigurability and additional complexity of the
control unit, the proposed ME hardware consumes 2363 slices more than the ME
hardware proposed in [7] in the same FPGA. 1136 slices are used by the multiplexing
unit, 836 additional slices are used by the multiplexers in the PE array and the
remaining additional slices are used by the additional complexity of the control unit.
Because of the overhead of the dynamic reconfigurability, which is implemented in the
top-level controller, the proposed ME hardware consumes slightly more area than the
ME hardware proposed in [8] in the same FPGA.

The throughput of the proposed ME hardware is much higher than the FS
hardware implementations in [27,28]. An Application Specific Integrated Circuit
(ASIC) implementation of the FS algorithm utilizing 256 PEs in 0.25um CMOS
technology is given in [27]. This architecture is a modified version of the AB2 type
systolic array [29]. Another ASIC implementation of the FS algorithm is given in [28].
The throughput of this architecture is low, because it has only 64 PEs, it is optimized for
low power consumption and it is implemented in an older technology. A real-time ME
hardware implementing the FS algorithm for HD video is given in [30]. However, since
this hardware is implemented on a high-end FPGA, it is not suitable for consumer
electronics products. The FPGA implementations of the systolic architectures ASL,
AB2, AS2 are presented in [31]. Despite using large number of PEs, the throughputs of
these ME hardware are much lower than the throughput of the proposed ME hardware,
because they are implementing the FS algorithm. The area results presented in [31]

include only the datapath and do not include the control unit and the memory.
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Table 4.8 Comparison of ME hardware architectures
Cycles Supported

HW | Algorithm Technology MB # of PEs Search Area Speed per 16x16 | 1920x1080
size Range [MHZz]
MB [fps]
XC3S1500-5 2282 467 343
[9] DVSS FPGA 16x16 256 (48, +24) CLBs 130 (1=256) (1=256)
XC3S5000 6142
[22] FTS CPGA 16x16 16 (*16, £16) oLBs 74 202 452
8x8, Dedicated | (-16, +15)in 9K 2879
[26] FS &DS Unknown 16x16 HW both axis gates 50 (average) 21
XC3E1200E- 1692
[7] 32x16 [7] 5 FPGA 16x16 256 (£32, £16) CLBs 144 672 26.4
XC3S1500-5 2271
[8] Al118] FPGA 16x16 256 (48, +24) CLBs 130 633 25.3
0.25um (-16, +15)in | 16.07
[27] FS CMOS 1P5M 16x16 256 both axis mm2 36 1421 31
8x8,
28] FS 0.6um SPTM | 16,16, 64 @32,432) | 267K 60 4200 17
CMOS gates
32x32
XC4VLX100 Dedicated 380
[30] FS FPGA 16x16 HW (16, +16) LUTs 221 1111 24.5
AS1 XC40250 1214
[31] FS FPGA 16x16 33 (16, £16) CLBs 24 25344 0.1
AB2 XC40250 948
[31] FS FPGA 16x16 256 (16, £16) CLBs 30 1584 2.3
AS2 XC40250 3732
[31] FS FPGA 16x16 528 (16, £16) CLBs 22 768 35

4.3 Recursive Dynamically Variable Step Search Motion Estimation Algorithm

The proposed RDVSS [10] algorithm searches fewer search locations than the
DVSS algorithm for the same size search window. RDVSS dynamically determines the
search patterns that will be used for each MB based on the MVs of its spatial and
temporal neighboring MBs assuming that objects are bigger than a MB and motion
between consecutive frames is continuous. By using a larger search range, the RDVSS
algorithm gives better PSNR results than the DVSS algorithm for the benchmark videos
with large motions. For the benchmark videos with smaller motions, the DVSS
algorithm gives slightly better PSNR results by checking more search locations in the
same search range. The RDVSS algorithm gives much better PSNR results than fast
search ME algorithms. In addition, the RDVSS algorithm has a regular data flow and it
can be efficiently implemented using the reconfigurable ME hardware architecture

proposed in this chapter.

The search patterns used in the RDVSS algorithm are listed with their search
ranges and total number of search locations in Table 4.9. Similar to the DVSS
algorithm, each search pattern has a maximum of three different granularity search steps

with different size search ranges. In the first, second, and third steps, horizontal and
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vertical distances between search locations are 4, 2, and 1 pixels, respectively. Figure
4.9 shows a portion of main large search pattern. In this figure, numbers represent the
steps and dark shaded numbers show the search locations with minimum SAD for these
steps. Main large search pattern, first, searches the given (+64, +64) search window
with a coarse granularity search step. It, then, performs a finer granularity search step in
the (+4, +4) search window around the search location that has the minimum SAD in
the previous step. It, finally, performs an even finer granularity search step in the (%1,
+1) search window around the search location that has the minimum SAD in the

previous step.

Table 4.9 Search patterns used in the RDVSS algorithm

Search Search Search Number of
Search Pattern Range of Range of Range of Search
First Step | Second Step | Third Step | Locations
Main Large +64, +64 +4, +4 +1, +1 1113
Al 8] +48, +24 +6, +6 +3, +3 405
Main Medium +32 £32 +4, +4 +1, £1 313
Main Small +16,+16 +4, +4 +1, +1 161
Recursive Large +16, £16 +2, 42 +1, +1 97
Recursive Medium +8, +8 +2, +2 +1, £1 41
Recursive Small - +4, +4 +1, +1 33
3x3 Full Search - - +3, £3 49
1x1 Full Search - - +1, +1 9
1 1 1 1 1 1 1
1 1 1 2 1 2 1 1 1
2 2 2 2 2
3/3]3
1 1 113[2]3]1 2 1 1 1
3/3]3
2 2 2 2 2
1 1 1 2 1 2 1 1 1
1 1 1 1 1 1 1

Figure 4.9 Main large pattern
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The pseudo code of the RDVSS algorithm is given in Figure 4.10. The RDVSS
algorithm performs three search iterations for each MB. The first iteration is used for
tracking global motions like camera movement assuming that motion between
consecutive frames is continuous. The second iteration is used for tracking complex
motions of objects assuming that objects are larger than a MB. If the first and second
iterations do not find a satisfactory MV, main search patterns with large search ranges

are used around (0,0) location for finding a better MV.

The RDVSS algorithm determines the search patterns that will be used in each
iteration for the current MB dynamically based on the MVs of its spatial and temporal
neighboring MBs. After performing each search pattern for the current MB, the RDVSS
algorithm compares the minimum SAD obtained so far with the SAD threshold
determined for this MB and it terminates the ME for this MB if the SAD is less than the
SAD threshold. Therefore, for each MB, the RDVSS algorithm calculates Spatial
Difference (SD), Average Spatial Neighboring MV (ASNMYV), Temporal Distance
(TD) and SAD Threshold (ST) by using the MVs of its available spatial neighboring
MBs. Figure 4.11 shows the spatial neighboring MBs of MB(i,j,t), where “i” and “j”
denote the x and y coordinates of the MB in a frame and “t” denotes the frame
containing this MB. Therefore, for example, only the left spatial neighboring MB is

available for the MBs in the first row of a frame.

SD is the maximum absolute difference in the x and y coordinates of MVs of four
spatial neighboring MBs; MB(i-1,j-1,t), MB(i,j-1,t), MB(i+1,j-1,t), and MB(i-1,j,t). As
shown in (4.2), ASNMV is the average of the MVs of these four spatial neighboring
MBs. As shown in (4.3), ST is determined by comparing the minimum SAD value of
these four spatial neighboring MBs with the pre-determined SAD threshold for the
video frame (z) and selecting the larger one.

ASNMV = %[MV (i-1j-L)+MV(@, j-L)+MV(i+1 j-L)+MV(i-1j,t)] @2

ST = MAX [z, MIN[SAD(i —1, j —1,t), SAD(i, j —1,t),SAD(i +1, j —1,t), SAD(i -1, j,t)]] (4.3)
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Iteration 1:

If (TD is equal or less than (+4,+4) pixels)

Do Recursive Small Pattern around MV(i,j,t-1)
Else if (TD is equal or less than (£8,£8) pixels)

Do Recursive Medium Pattern around MV(i,j,t-1)
Else if (TD is equal or less than (£16,£16) pixels)

Do Recursive Large Pattern around MV(i,j,t-1)
Else

Do 1x1 Full Search Pattern around MV(i,j,t-1)

Iteration 2:
If (SD is equal or less than (+3,£3) pixels)
Do 3x3 Full Search Pattern around ASNMV
Else
Do 1x1 Full Search Pattern around MV (i-1,j-1,t), MV(i,j-1,t), MV/(i+1,j-
1,t), and MV(i-1,j,t)

Iteration 3:
If (SD is equal or less than (£16,+16) pixels)
Do Main Small Pattern around (0,0)
Else if (SD is equal or less than (£32,+32) pixels)
Do Main Medium Pattern around (0,0)
Else
Do Main Large Pattern around (0,0)

Until (Main Large Pattern is used)
Do next larger Main Pattern around (0,0)

Figure 4.10 Pseudo code of the RDVSS algorithm
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(F1.5. 1 (i, 1)

Figure 4.11 Spatial neighboring MBs of MB(i,j,t)
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Figure 4.12 Temporal correlation

Figure 4.12 shows three consecutive frames and their MVFs. “MVF t-2 : t-3” is

obtained by performing ME between the frames at the time instances “t-2” and “t-3”,

and “MVF t-1 : t-2” is obtained by performing ME between the frames at the time
instances “t-1” and “t-2”. TD is the difference between MV(i,j,t-2) and MV(i,j,t-1).

Therefore, while processing previous frame “t-1”, for each MB, its MV in the “MVF t-1

: t-2” and a two bit value indicating whether its TD is equal or less than (+4,+4),

(£8,£8), (£16,£16) pixels or not should be stored in a memory. In Figure 4.12, TD value
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for MB,, will be calculated by finding the difference between the two MVs shown with

bold lines in the consecutive MV/Fs.

The RDVSS algorithm is compared with the successful fast ME algorithms for
several video sequences with respect to the MAD criterion and the comparison results
are shown in Table 4.10. RDVSS is simulated for various SAD thresholds (z) to show
the trade-off between the obtained image quality and the number of search locations.
The number of search locations checked by the RDVSS algorithm for these video
sequences are shown in Table 4.11. The luminance components of eight video
sequences with various resolution and frame rates are used for the comparison. The
resolution and frame rates of these video sequences are given in Table 4.11. Among
these videos “IceAge2”, “ParkJoy1080p”, “Ducks”, and “ParkJoy720p” are 50 frames
long and the other videos are 100 frames long. “ParkJoyl080p”, “Ducks”, and
“ParkJoy720p” HD video sequences are available from Video Quality Experts Group
[39]. These videos contain complex but slow motion. “IceAge2”, “Spider3”, and
“Spider2” video sequences are taken from “Ice Age 2”, “Spiderman 3”, and “Spiderman
2” movies where there are fast and complex movements. “Susie” and “Table Tennis”
video sequences are the up-scaled versions of the widely used CIF resolution

benchmark videos.

In our simulations, only the NTSS and the FSS algorithms have a search range of
(16, £16) pixels because their initial step size is equal to 8. The other ME algorithms
have a search range of (£64, £64) pixels. The threshold value required for the ADCS
algorithm is set to 1024. Since the weights used in the APDS algorithm are not specified
in [32], we set them to 1. As shown in Table 4.10, the RDVSS algorithm obtains better
results than the well known fast ME algorithms. The performance gap between the
RDVSS and other ME algorithms increase with increased motion between consecutive
frames. Although the RDVSS algorithm on the average searches 34.1% to 62.4% less
search locations than “Main Large” search pattern, it obtains similar MAD results with
the “Main Large” search pattern. If only the early search termination is used for the
“Main Large” search pattern without using the spatial and temporal correlations, MAD
results decrease significantly, especially for videos containing fast motion. When
compared with the DVSS algorithm for a maximum search range of (+48, £24) pixels

and for the same threshold level (z=256), RDVSS searches 34% less search locations on
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the average while giving better PSNR results for videos containing large motions. For
videos containing very small motions, the DVSS algorithm gives slightly better results

by checking more search locations.

Table 4.10 MAD results

Video Es NTSS | FSS | BBGDS DS HEXBS | Al Main

Sequence [15] [16] [17] [18] [19] [8] Large
ParkJoy1080p | 8.91 | 12.77 | 1351 | 1357 | 12.85 | 12.99 9.86 | 9.24
IceAge2 252 | 816 | 822 5.21 5.08 5.35 420 | 2.95
Ducks 381 | 526 | 544 5.29 5.27 5.40 5.07 | 4.93
ParkJoy720p | 8.43 | 12.45 | 12.58 12.97 12.05 12.36 10.18 | 9.64
Spider3 244 | 821 | 830 5.30 5.21 5.39 330 | 281
Spider2 2.96 | 10.72 | 10.82 7.09 6.94 7.08 4.28 3.07
Susie 317 | 4.05 | 4.09 3.81 3.62 3.69 351 | 351

Table Tennis | 3.42 | 3.97 | 4.01 3.86 3.80 3.83 3.57 | 3.55

Video APDS | ARPS | ADCS | DVSS DVSS RDVSS | RDVSS | RDVSS

Sequence [32] [20] [21] | t=256 | T=1024 | T=256 | T=512 | T=1024
ParkJoy1080p 13.70 10.82 | 10.37 9.02 9.07 9.43 9.54 9.64
IceAge2 521 3.97 4.97 4.29 4.79 3.15 3.39 3.92
Ducks 5.24 5.27 5.39 5.00 5.02 5.07 5.07 5.08
ParkJoy720p 12.99 10.70 | 10.22 9.01 9.17 9.92 10.04 10.16
Spider3 5.34 3.65 3.68 3.36 4.39 2.88 3.04 3.54
Spider2 710 | 539 | 502 | 439 453 311 3.21 3.82
Susie 3.96 3.58 3.58 2,99 2,99 3.47 351 3.85
Table Tennis 3.89 3.71 3.72 2,76 2,77 3.55 3.71 3.72

Table 4.11 Average number of search locations per MB

Video Sequence RDVSS | RDVSS RDVSS

7= 256 =512 7=1024
ParkJoy1080p (1920x1080, 25fps) 959 933 738
IceAge2 (1920x1080, 25fps) 601 448 301
Ducks(1280,760, 25fps) 380 372 366
ParkJoy720p (1280x720, 25fps) 921 805 723
Spider3 (1280x576, 25fps) 529 429 322
Spider2 (720x576, 25fps) 843 660 327
Susie (704x480, 15fps) 850 729 365
Table Tennis (704x480, 15fps) 782 716 204

80



The RDVSS algorithm searches much less search locations than the FS algorithm.
The FS algorithm checks 16641 search locations in a search range of (64, £64) pixels,
whereas the RDVSS on the average checks only 418 search locations, when the SAD
threshold (z) is set to 1024. On the other hand, MAD performance of the RDVSS
algorithm on the average is only 14.7% lower than MAD performance of the FS
algorithm, when the SAD threshold (z) is set to 256. Performing that close to the FS

algorithm for such a large search window is very important.
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CHAPTER 5

COMPUTATION REDUCTIONS FOR VECTOR MEDIAN FILTERING

VMFs are widely used in image and video processing applications [5]. VMFs are
non-linear filters and they require dealing with multi dimensional data. Because of their
edge-preserving characteristics, they are mainly used for removing the noise from a
signal by smoothing out the signal. Because of their smoothing capability, they are also
used in video compression [40-43]. In [40], vector median filtering is applied adaptively
on the obtained MVF in order to improve the visual quality and in [41] a VMF is used to
estimate the MVs based on previously found MVs. In [42], by using adaptively weighted
VMF in the encoder, a smoother MVF is obtained. In [43], VMF is applied at the
decoder to smooth out irregular MVs. Recently, VMFs are used for FRC [44-52].

In order to achieve high quality results for FRC, the true motion between
consecutive frames should be found [44-52]. While ME for video compression needs to
find the MVs giving the minimum SAD, ME for FRC should find the MVs
corresponding to the physical motion of the objects. In order to find the true motion
between consecutive frames, VMFs are used to smooth the MVF obtained by the ME.
An example of smoothing an MVF is shown in Figure 5.1. In this example, the MV in
the middle of the 3x3 filtering window is replaced by the output of the VMF applied to 9
MVs in this 3x3 filtering window.
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Figure 5.1 Smoothing MVF
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A frame from the Foreman video sequence and its MVF found by the FS
algorithm are shown in Figure 5.2. FS is implemented in a search range of (x8, +8)
pixels for 16x16 MB size. The original MVF and the smoothed MVF by 3x3 VMF are
shown in Figure 5.3. The man in the video sequence shakes his head and most of the
corresponding MVs in the MVF point to vertical direction. However, some of these
MVs point to horizontal direction. Smoothing the MVF by applying the VMF corrects
some of the outlier MVs. For example, after the VMF operation, the MVs of the MBs
containing the face of the man become more accurate. MVs on the boundaries of the
frame are not filtered.
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Figure 5.2 Current frame and its MVF

- ///, S 7 NV
- TN T T
NN NN NS bAOWNY
PRI NN
AR Y Y A TS A
A VA A R
TN TV A A A
SN R
S sl
SN A
oy gyt Sy
R oy
» -
+ L L I A
L . o - [ f N e T
(@) (b)

Figure 5.3 MVF (a) and smoothed MVF (b)
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The median of a given set of scalar values is found by numerically sorting these
scalar values and selecting the one in the middle. VMFs require ordering multi
dimensional data. Several ordering methods such as Aggregate Ordering (A-Ordering),
Reduced Ordering (R-Ordering), and Marginal Ordering (M-Ordering) are used for VMF
[53]. For a given set of input vectors, A-Ordering based VMFs calculate the sum of
distances of each vector to the other input vectors and select the vector with the
minimum distance as the output. R-Ordering based VMFs calculate the distance of each
input vector to a predefined reference, which may be the origin or the arithmetic mean.
In R-Ordering based VMFs, selection of the reference point significantly affects the

performance.

M-Ordering based VMFs use scalar median operation for finding the medians of
each vector dimension separately. They order the input vectors along each dimension,
find the medians of each dimension separately and generate the output vector using these
medians. M-Ordering based VMFs are not suitable for FRC, because they usually output
a new vector that does not exist in the input vector set. An example showing the
disadvantage of M-Ordering based VMFs is shown in Figure 5.4. In this figure, a
transition from black to white in RGB color domain at the time instance “t,” is shown.

2

At the time instance “t,.,” an impulsive noise occurs in the red dimension, which is

suppressed by the median filter. However, the median filter also changes this signal at
“tn-1” from low to high. This means during the transition from black to white a red output

appears incorrectly.

Red H Red
o/ Lo
i Lo
1

Figure 5.4 M-Ordering based VMF (a) input, (b) output
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In this thesis, we used A-ordering method, since it is more suitable for FRC. The
computational complexity of A-Ordering based VMF depends on the metric (norm) used
to calculate the distance between two vectors [54]. The absolute norm (1-norm), the
Euclidean norm (2-norm), or the squared Euclidean norm (squared 2-norm) can be used
for A-Ordering. The computational complexities of distance metrics for calculating the
sum of distances of a vector to the other vectors in an NxN filtering window are shown
in Table 5.1.

Table 5.1 Comparison of distance metrics

Arithmetic Operation | 1-norm 2-norm Squared 2-norm
Add / Sub 4N*-5 4N°-5 4N*-5
Absolute 2N°-2 - -

Multiplication - 2N%-2 2N°-2
Square Root - N*-1 -

2-norm has the highest computational complexity since it uses a square root
operation for calculating a distance. Squared 2-norm has lower computational
complexity since it does not use square root operations. 1-norm has the lowest
computational complexity since it does not use square and square root operations. The
output of 1-norm VMF for N? input vectors is given in (5.1), where N? is the number of
vectors in the filtering window, j denotes a vector in the window, and i denotes the other
vectors in the window. 1-norm distance between two vectors is calculated as shown in
(5.2) [49, 50].

NZ

V,, =arg min Do

=Li#]

v, |, (5.1)

9, 0], =l v

+‘ij _Viy‘ , where V; = (v,

x?

vjy) and v, = (vix,viy) (5.2)

A disadvantage of VMFs is the lack of control on the operations of filter.
Weighted median filters are proposed in order to overcome this drawback [40, 42, 48,
55, 56]. Weighted VMF operation is shown in equation (5.3), where weights are shown
with w; [55]. In [56], algorithms for fast optimization of weights for the weighted VMF

are given.
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VMFs are difficult to implement in real-time because of their high computational
complexity [6, 54]. Several techniques to reduce the computational complexity of VMFs
are developed. In [57], an approximation to the Euclidean norm for VMF is proposed.
The square root operation of the Euclidean norm is avoided by a linear approximation.
However, this technique requires sorting the vector dimensions according to their
absolute values and then weighting the greater dimensions more heavily. In [58], an
iterative technique for VMF is proposed. This technique requires less than five iterations
for a window size of 3x3, on the average. The authors indicate this as an advantage over
the existing techniques, which require nine passes in order to calculate the distance of
each vector to the remaining vectors. Because of the sequential nature of this technique,

it is not very suitable for hardware implementation.

In [54], an algorithm to reduce the computational complexity of squared 2-norm
VMF is presented. The input that minimizes the sum of the squared Euclidean distances
to other inputs will be the mean vector of the input set. Therefore, rather than
computing the difference of each vector to the remaining vectors, it will be enough to
compute the difference of each vector to the mean vector of the input set. This
technique reduces the order of computation from N* to N However, a mean operation

is required by this technique and the mean operation requires a division.

In [54], a technique to reduce the computational complexity of 1-norm VMF is
presented as well. To compute the 1-norm median value, the proposed fast technique
first applies the scalar median for each dimension. This technique reduces the
computational complexity to N, but applying the scalar median for each dimension is
identical to marginal ordering and this initial step of the proposed technique has a high
computational complexity. In addition, the complexity reduction proposed in this paper
depends on the variance of the input set and the size of the window. The proposed
technique is more effective for an input set having a lower variance and for windows

larger than 5x5.
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In [54], a pre-computation technique, which we used in this thesis, is mentioned
as well. It is indicated that, without using the pre-computed values, for an NxN window
“N?(N2-1)” distances must be calculated. By storing the distances that have already been
calculated, only “N(N?-1) + N(N-1) / 2” distances must be calculated. In this way, the

computational complexity of the 1-norm VMF is reduced to N°.

In [59], a performance improvement technique utilizing the redundancy in images
is presented. This technique is based on window memoization. In order to reduce the
amount of memory, only the two most significant bits of pixels are used for
memoization. Since MVs have two dimensions, this technique requires a large area for
FRC applications. In addition, using only the two most significant bits of vectors will

decrease the visual performance for FRC applications.

There are several papers in the literature presenting hardware implementations of
scalar median filters. In [60], 1D median filtering is implemented using a cumulative
histogram. The design is scalable for any window length. For 8 bit input samples a
histogram with 256 bins is used to find the median value. Proposed architecture is
synthesized to Xilinx XC2V6000 FPGA. In [61], median filtering is implemented with
a ranking method. Proposed architecture is implemented on a Xilinx XC4013XL-1
FPGA. This architecture consumes large area, because of the large number of required
comparators. In [62], an area efficient median based genetic algorithm is developed.
Rather than using larger window size, the authors developed a filter bank consisting of
3x3 filters. After training the algorithm on a test image, the resulting filter bank is
implemented on a Xilinx Virtex Il Pro XC2VP50-7 FPGA. The authors claim that the

filter bank technique requires less hardware resources.

There are few papers presenting hardware implementations of VMFs [63]. In [63],
VMEF is adaptively applied on the MVF. First, a mean vector is calculated for each
window position. Then, the mean of the distances between all the vectors in the window
to the mean vector is calculated. The proposed hardware implementation consumes 927
slices and works at 117.63 MHz on a Xilinx XC4VLX60 FPGA.
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5.1 Computation Reductions for Vector Median Filtering

We propose several techniques to reduce the computational complexity of 1-norm
VMF for FRC by using data reuse methodology and by exploiting spatial correlations in
the MVF [11]. To the best of our knowledge, there is no paper in the literature which
reduces the amount of computations performed by VMFs by analyzing the spatial
correlations between neighboring MVs. Since 3x3 window size is used in FRC papers
in the literature, we also used this window size. However, the proposed techniques are
scalable to any window size.

51.1 Data-Reuse Technique

Three consecutive 3x3 filtering windows are shown in Figure 5.5. The numbers in
this figure show the vectors in the filtering windows. Since the filtering window slides
from left to right over the MVF, vectors 1, 4, and 7 that are in the first filtering window
are not in the next filtering window. Therefore, data reuse technique is applicable to 6
out of 9 vectors in the current filtering window, and 5 out of 8 distances for each vector

can be stored and reused for the next filtering window.

Figure 5.5 3x3 Filtering windows
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Figure 5.6 The distances between vector 3 and other vectors in three consecutive
filtering windows

The 1-norm distances between vector 3 and other vectors in three consecutive
filtering windows are shown in Figure 5.6. The 1-norm distances of vector 3 to the other
vectors in the current filtering window are shown in Figure 5.6(a). For example, 3-5
denotes the 1-norm distance between vectors 3 and 5 in the current filtering window. As
shown in Figures 5.6(b) and 5.6(c), some of these 1-norm distances are also used to
compute the VMF for the next filtering windows.

Calculating the sum of 1-norm distances of a vector to the remaining vectors in a
3x3 filtering window requires 16 subtraction, 16 absolute value and 15 addition
operations. Therefore, calculating the sum of 1-norm distances of each vector to the
remaining vectors in a 3x3 filtering window without data reuse technique requires
16*9=144 subtraction, 16*9=144 absolute value and 15*9=135 addition operations. The
number of arithmetic operations required for any filtering window size can be
calculated as follows. In an NxN filtering window, there are N? vectors. Calculating the
sum of 1-norm distances of a vector to the remaining vectors in an NxN filtering
window requires 2(N°-1) subtraction, 2(N-1) absolute value and 2(N*-2)+1 addition
operations. Therefore, for N? vectors, 2N?(N?-1) subtraction, 2N*(N?-1) absolute value
and 2N%(N?-2)+N? addition operations are required. The numbers of arithmetic
operations required for various filtering window sizes without proposed data reuse
technique are shown in Table 5.2. In this table, required arithmetic operations are given
per filtering operation and per HD frame. A 1920x1080 HD frame consists of 8100
16x16 MBs. Therefore, there are 7730 filtering windows for 3x3 VMF. For 5x5 VMF
and 7x7 VMF, there are 7368 and 7014 filtering windows, respectively.
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Table 5.2 Required arithmetic operations without proposed technique

. . Per Filtering Operation Per HD Frame
Arithmetic 33 Ex5 7x7
Operation VME VME VME 3X3 VMF | 5x5 VMF | 7x7 VMF
Absolute value | 144 1200 4704 | 1.113x10° | 8.841x10° | 32.993x10°

Subtraction 144 1200 4704 | 1.113x10° | 8.841x10° | 32.993x10°

Addition 135 1175 4655 | 1.043x10° | 8.657x10° | 32.650x10°

The number of these arithmetic operations can be significantly reduced by data
reuse technique. Data reuse technique is applicable to 6 vectors out of 9 vectors in a 3x3
filtering window. When the filtering window slides to right over the MVF, the current
filtering window has 3 new vectors that are not in the previous filtering window. Data
reuse technique stores the sum of 1-norm distances between the other 6 vectors that are
in the previous filtering window in 6*2=12 registers. For example, as shown in Figure
5.6, for vector 3, the sum of distances 3-2, 3-5, 3-8 are stored in a register, and the sum

of distances 3-6, 3-9 are stored in a register.

The sum of 1-norm distances of these 3 new vectors to the remaining vectors in the
filtering window should be calculated, and this requires 16*3=48 subtraction, 16*3=48
absolute value and 15*3=45 addition operations. In an NxN filtering window, 2N(N*-1)
subtraction, 2N(N?-1) absolute value, and 2N(N?-2)+N addition operations are required.

The 1-norm distances of the remaining 6 vectors in the filtering window to these
new 3 vectors should be calculated, and this requires 6*6=36 subtraction, 6*6=36
absolute value and 6*5=30 addition operations. In order to find the sum of 1-norm
distances of the remaining 6 vectors to all the other vectors in the filtering window, these
1-norm distances should be added to the previously calculated and stored sum of 1-norm
distances between these 6 vectors, and this requires 6*2=12 addition operations. In an
NxN filtering window, 2N(N?-N) subtraction, 2N(N?-N) absolute value, and (3N-2)(N*

N) addition operations are required.

Therefore, calculating the sum of 1-norm distances of each vector to the remaining
vectors in a 3x3 filtering window with data reuse technique requires 48+36=84
subtraction, 48+36=84 absolute value and 45+30+12=87 addition operations. Calculating
the sum of 1-norm distances of each vector to the remaining vectors in an NxN filtering
window with data reuse technique requires 2N(2N?-N-1) subtraction, 2N(2N?-N-1)
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absolute value and 5SN°-5N*N addition operations. The numbers of arithmetic operations
required for various filtering window sizes with proposed data reuse technique are shown
in Table 5.3. For 3x3 filtering window size, the proposed data reuse technique avoids 60
subtraction, 60 absolute value and 48 addition operations, and it only requires 12 store
operations. The number of store operations required for NxN filtering window size is
2(N%-N).

Table 5.3 Required arithmetic operations with proposed technique

. . Per Filtering Operation Per HD Frame
Arithmetic 3x3 55 X7
Operation VME VME VME 3x3 VMF | 5x5 VMF | 7x7 VMF
Absolute value 84 440 1260 | 0.649x10° | 3.241x10° | 8.837x10°
Subtraction 84 440 1260 | 0.649x10° | 3.241x10° | 8.837x10°
Addition 87 495 1463 | 0.672x10° | 3.647x10° | 10.261x10°

5.1.2 Spatial Correlations Technique

The proposed spatial correlations based techniques try to avoid redundant
computations for calculating sum of 1-norm distances between the vectors in the current

filtering window based on the spatial correlations between the neighboring MVs [11].

1-norm VMF calculates the sum of 1-norm distances of each vector to the other
vectors in the current filtering window and selects the vector with the minimum distance
as the output. The sum of 1-norm distances of a vector to the other vectors can be
calculated by finding the sum of absolute differences between the x dimension of this
vector and the x dimensions of the other vectors, and the sum of absolute differences
between the y dimension of this vector and the y dimensions of the other vectors, and

adding them.

When the filtering window slides to right in the MVF, Correlation 1 technique
compares the x dimensions and y dimensions of 3 new vectors in the current filtering
window. If the x dimensions of these 3 vectors are equal, it calculates the sum of

absolute differences between this x dimension and the x dimensions of the other vectors
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in the filtering window, and uses the same result for all 3 vectors. The same is done for
the y dimension. For example, since the y dimensions of vectors (4,9), (6,9), and (7,9)
are equal, the sum of absolute differences between 9 and the y dimensions of the other
vectors in the filtering window is calculated once and the same result is used for all 3

vectors.

When the filtering window slides to right in the MVF, Correlation 2 technique
compares the x dimension and y dimension of each new vector with the x dimension and
y dimension of the vector in the middle of the current filtering window. For example, it
compares the new vectors 10, 11, 12 with vector 6 in the second 3x3 filtering window in
Figure 5.5. If the x dimension of a new vector is equal to the x dimension of the vector in
the middle, it uses the previously calculated and stored sum of absolute differences
between x dimension of the vector in the middle (vector 6 in the second 3x3 filtering
window in Figure 5.5) and the x dimensions of the 5 old vectors in the filtering window
(vectors 2, 3, 5, 8, 9 in the second 3x3 filtering window in Figure 5.5) for this new

vector. The same is done for the y dimension.

When the filtering window slides to right in the MVF, Correlation 3 technique
compares the x dimension and y dimension of each new vector with the x dimension and
y dimension of the old vectors in the current filtering window. For example, it compares
the new vectors 10, 11, 12 with vectors 2, 3, 5, 6, 8, 9 in the second 3x3 filtering window
in Figure 5.5. If the x dimension of a new vector is equal to the x dimension of any
compared vector, it uses the previously calculated and stored sum of absolute differences
between x dimension of this old vector and the x dimensions of the remaining 5 old
vectors in the filtering window for this new vector. The same is done for the y

dimension.

The overhead of proposed techniques for various filtering window sizes are given
in Table 5.4 and Table 5.5. For an NxN filtering window, Correlation 1 requires (N*N)
comparison operations, whereas Correlation 2 requires 2N comparison and 2 store
operations and Correlation 3 requires 2(N3- N?) comparison and 2(N%-N) store

operations.
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Table 5.4 Comparison overhead of spatial correlation techniques

Per Filtering Operation Per HD Frame
Proposed 33 | 5x5 | 7x7
Technique vME | VME | VME 3x3 VMF 5x5 VMF X7 VMF
Correlation 1 6 20 42 4.638 x10* | 1.4736 x10° | 2.94588 x10°
Correlation 2 6 10 14 4.638 x10* 7.368 x10* 9.8196 x10*
Correlation 3 36 200 588 | 2.7828 x10° | 1.4736 x10° | 3.913812 x10°

Table 5.5 Store overhead of spatial correlation techniques

Per Filtering Operation Per HD Frame
Proposed 3x3 | 5x6 | 7x7
Technique vME | vmE | vivE 3x3 VMF 5x5 VMF 7x7 VMF
Correlation 1 0 0 0 0 0 0
Correlation 2 2 2 2 1.546 x10* | 1.4736x10* | 1.4028 x10*
Correlation 3 12 40 84 9.276 x10* | 2.9472x10° | 5.89176 x10°

The computation reductions achieved by spatial correlation techniques for a 3x3
filtering window are shown in Table 5.6 and Table 5.7. The simulations are done for the
first 50 frames of the “Ducks” and “SthimPan” video sequences and for the first 100
frames of the other video sequences. The resolutions and frame rates of these video
sequences are given in Table 5.6. The MVFs are obtained by FS algorithm with 16x16
MB size on a search range of (£8,£8) pixels for CIF sized videos and on a search range
of (£16,+16) pixels for remaining videos. The simulation results in Table 5.6 show the
percentages of x dimensions and y dimensions of the 3 new vectors for all 3x3 filtering
windows in these video frames for which the sum of absolute differences computations

are avoided.

The proposed spatial correlation techniques do not require the x dimension and y
dimension of a new vector to be equal. They can avoid the sum of absolute differences
computations for only x dimension or y dimension of a new vector. In order to quantify
the impact of this, we modified the Correlation 1 and Correlation 2 techniques so that
they require the equality of x dimension and y dimension of a new vector in order to
avoid the sum of absolute differences computations for this vector. The simulation
results in Table 5.7 show the percentages of x dimensions and y dimensions of the 3 new
vectors for all 3x3 filtering windows in these video frames for which the sum of absolute

differences computations are avoided by these modified correlation techniques.
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Table 5.6 Computation reductions for 3x3 VMF

Video Sequence | Resolution fps Correlation 1 | Correlation 2 Correlation 3
CoastGuard (352x240) 30 44,980 % 64.366 % 78.028 %
Flowers H (352x240) 29 41.027 % 55.163 % 74.050 %
Foreman (352x288) 30 38.072 % 48.282 % 73.524 %
M. Calendar L (352x240) 29 49.088 % 71.061 % 79.829 %
Susie L (352x240) 29 37.524 % 48.398 % 72.016 %
Table Tennis L (352x240) 29 50.912 % 73.085 % 79.082 %
M. Calendar H (704x480) 29 48.249 % 67.501 % 84.591 %
Susie H (704x480) 29 30.476 % 38.539 % 67.298 %
Table Tennis H (704x480) 29 54.212 % 78.535 % 86.289 %
Flowers H (704x480) 29 40.527 % 56.890 % 75.077 %
Gladiator (720x576) 25 22.267 % 26.405 % 54.535 %
Spiderman (720x576) 25 15.148 % 15.858 % 43.050 %
Irobot (720x576) 25 25.357 % 33.081 % 61.834 %
Spider3 (1280x528) 23 37.845 % 52.946 % 70.189 %
Ducks (1280x720) 50 44.611 % 62.986 % 85.788 %
SthimPan (1280x720) 50 47.674 % 68.687 % 81.234 %

Table 5.7 Computation reductions by modified correlation techniques for 3x3 VMF

Video Sequence Correlation 1 Correlation 2
CoastGuard 34.745 % 46.695 %
Flowers L 31.204 % 39.329 %
Foreman 29.134 % 35.188 %
M. Calendar L 42.924 % 60.590 %
Susie L 27.552 % 33.921 %
Table Tennis L 48.136 % 68.252 %
M. Calendar H 39.610 % 53.291 %
Susie H 20.139 % 24.874 %
Table Tennis H 50.599 % 72.935 %
Flowers H 32.132 % 45.279 %
Gladiator 9.212 % 11.945 %
Spiderman 4.376 % 4.131 %
Irobot 15.073 % 20.026 %
Spider3 30.279 % 43.129 %
Ducks 32.050 % 42.146 %
SthimPan 41.989 % 59.919 %

We propose using a threshold, called “dif”, for increasing the computation
reductions achieved by the proposed spatial correlation techniques. The proposed
techniques require the dimensions of the compared vectors to be equal in order to avoid
computations. The proposed techniques using “dif” avoid the computations for similar
vectors as well by allowing a maximum difference of “dif” between the dimensions of
the compared vectors. For example, when “dif” is set to 2, a reduction in computations
will be achieved when the absolute value of the difference in any dimensions of the
compared vectors is less than or equal to 2 pixels. The computation reductions achieved

by the proposed spatial correlation techniques using “dif” for a 3x3 filtering window are
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shown in Table 5.8. The computation reductions achieved by the proposed modified
spatial correlations techniques using “dif” for a 3x3 filtering window are shown in
Table 5.9. When “dif” is set to 2 for modified spatial correlations techniques, a
reduction in computations will be achieved when the absolute value of the difference in
both dimensions of the compared vectors is less than or equal to 2 pixels. The modified
spatial correlations techniques achieve less computation reduction than the original
spatial correlations techniques. The difference between the computation reductions
achieved by the modified and the original spatial correlations techniques for various

“dif” values are shown in Table 5.10.

Table 5.8 Computation reductions for 3x3 VMF using “dif”

dif =2 dif =4
Video Sequence | Correlation | Correlation | Correlation | Correlation
1 2 1 2

CoastGuard 54.790 % 82.129 % 55.817 % 83.639 %
Flowers L 53.465 % 79.293 % 54.604 % 81.254 %
Foreman 54.115% 79.396 % 56.117 % 83.326 %
M. Calendar L 55.704 % 83.379 % 56.157 % 84.160 %
Susie L 53.982 % 79.630 % 55.301 % 82.237 %
Table Tennis L 55.096 % 81.731 % 55.855 % 83.448 %
M. Calendar H 58.895 % 87.492 % 59.902 % 89.141 %
Susie H 49.734 % 71.195 % 54.156 % 78.508 %
Table Tennis H 59.530 % 88.712 % 60.415 % 89.936 %
Flowers H 52.989 % 77.214 % 55.727 % 81.881 %
Gladiator 35.067 % 45.234 % 40.075 % 52.704 %
Spiderman 26.456 % 30.027 % 32.910 % 38.770 %
Irobot 39.693 % 55.391 % 44.493 % 63.011 %
Spider3 46.487 % 66.401 % 49.734 % 71.198 %
Ducks 61.554 % 92.060 % 63.088 % 94.534 %
SthimPan 56.742 % 83.411 % 58.796 % 86.812 %

Table 5.9 Computation reductions by modified correlation techniques for 3x3 VMF

using “dif”
dif=2 dif=4
Video Sequence | Correlation | Correlation | Correlation | Correlation
1 2 1 2

CoastGuard 53.324 % 79.913 % 55.328 % 82.833 %
Flowers L 51.377 % 75.644 % 53.306 % 78.936 %
Foreman 52.131 % 76.031 % 54.861 % 81.255 %
M. Calendar L 55.046 % 82.254 % 55.929 % 83.753 %
Susie L 52.471 % 76.969 % 54.513 % 80.725 %
Table Tennis L 54.224 % 79.808 % 55.489 % 82.664 %
M. Calendar H 56.664 % 83.727 % 58.327 % 86.413 %
Susie H 44.456 % 63.608 % 50.353 % 72.688 %
Table Tennis H 58.392 % 86.057 % 59.596 % 88.410 %
Flowers H 48.564 % 70.437 % 51.851 % 75.692 %
Gladiator 22.171 % 30.312 % 27.285 % 36.664 %
Spiderman 12.280 % 13.563 % 17.749 % 19.703 %
Irobot 29.919 % 42.004 % 35.101 % 49.797 %
Spider3 39.252 % 56.976 % 42.689 % 61.785 %
Ducks 59.560 % 88.808 % 62.622 % 93.747 %
SthimPan 51.879 % 75.446 % 54.459 % 79.192 %
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Table 5.10 Difference between the computation reductions achieved by the
modified and the original spatial correlations techniques

dif=0 dif=2 dif =4

Video Sequence
Corr. 1 Corr. 2 Corr. 1 Corr. 2 Corr. 1 Corr. 2
CoastGuard -22.754% | -27.453% -2.675% -2.698% -0.876% -0.963%
Flowers L -23.942% | -28.704% -3.905% -4.601% -2.377% -2.852%
Foreman -23.476% | -27.119% -3.666% -4.238% -2.238% -2.485%
M. Calendar L -12.557% | -14.735% -1.181% -1.349% -0.406% -0.483%
Susie L -26.575% | -29.912% -2.799% -3.341% -1.424% -1.838%
Table Tennis L -5.452% -6.612% -1.582% -2.352% -0.655% -0.939%
M. Calendar H -17.905% | -21.051% -3.788% -4.303% -2.629% -3.060%
Susie H -33.918% | -35.457% | -10.612% | -10.656% -7.022% -7.413%
Table Tennis H -6.664% -7.130% -1.911% -2.992% -1.355% -1.696%
Flowers H -20.714% | -20.409% -8.350% -8.776% -6.955% -7.558%
Gladiator -58.629% | -54.762% | -36.775% | -32.988% | -31.915% -30.434%
Spiderman -71.111% | -73.950% | -53.583% | -54.830% | -46.068% -49.179%
Irobot -40.556% | -39.463% | -24.624% | -24.168% | -21.108% | -20.970%
Spider3 -19.992% | -18.541% | -15.563% | -14.194% | -14.165% -13.220%
Ducks -28.156% | -33.086% -3.239% -3.532% -0.738% -0.832%
SthimPan -11.924% | -12.765% -8.570% -9.549% -7.376% -8.777%

Since the proposed spatial correlations techniques are scalable to larger window
sizes, we obtained the performance results for larger filtering window sizes. The
simulation results for 5x5 VMF and for 7x7 VMF are given in Table 5.11 and Table
5.12, respectively. The simulation results for various “dif” values and filtering window
sizes are given in Table 5.13. As “dif” value increases, computation reductions increase,

especially for videos having large motions.

Based on these results, Correlation 2 technique performs slightly better than
Correlation 1 technique, especially for 3x3 filtering window. This is an expected result,
because for stationary frames and for frames having a global motion Correlation 2
should perform better. For these types of frames, MVs entering the filtering window
will be equal, and therefore Correlation 2 will avoid the computations for all these MVs,
whereas Correlation 1 will perform one computation. Because, Correlation 1 technique
performs at least one computation independent of the new vectors entering the filtering
window. Correlation 1 can avoid at most 2/3, 4/5, and 6/7 of the computations for 3x3,
5x5, and 7x7 filtering windows, respectively. The performance difference between
Correlation 1 and Correlation 2 techniques decreases for larger filtering windows. One
reason for this is that in Correlation 2 for larger filtering windows, the difference

between the physical locations of new vectors entering the filtering window and the old
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vector compared with them, which is the vector in the middle of the filtering window, is

large. Therefore, the compared vectors are less correlated.

As the filtering window size gets larger, the performances of the proposed
techniques decrease. Because for larger filtering windows, objects become smaller than
the filtering window, and the correlation between compared vectors decrease. Because

of this reason, FRC algorithms reported in the literature use a 3x3 filtering window.

Table 5.11 Computation reductions for 5x5 VMF

dif=0 dif=2 dif=4

Video Sequence
Corr.1 Corr. 2 Corr. 1 Corr. 2 Corr. 1 Corr. 2

CoastGuard 42.750% | 47.704% | 50.128% | 61.702% | 50.626 % | 63.078 %
Flowers L 37.810% | 36.924% | 48.039% | 58.003% | 49.089% | 59.940 %
Foreman 40.184% | 36.491% | 53.417% | 62.924% | 55.310% | 67.005 %
M. Calendar L 46.340% | 53.430% | 50.282% | 62.424% | 50.645% | 63.115 %
Susie L 37.540% | 36.628% | 49.737 % | 60.397 % | 50.413% | 62.154 %

Table Tennis L 45.101% | 50.522% | 49.771% | 60.486 % | 50.475% | 62.468 %
M. Calendar H 56.564 % | 62.068% | 65.172% | 79.570% | 65.912% | 81.050 %

Susie H 38.910% | 35554 % | 58.864 % | 66.725% | 62.401% | 73.170 %
Table Tennis H 60.476 % | 50.522% | 65.472% | 79.565% | 66.336 % | 81.524 %
Flowers H 45.780 % | 47.686% | 59.189% | 68.679% | 62.030% | 73.470 %
Gladiator 27430% | 19.664% | 43.647% | 38.273% | 49.840% | 45511 %
Spiderman 20.456 % | 13.530% | 35.440% | 26.366 % | 43.525% | 34.379 %
Irobot 31.699 % | 26.417% | 48.686% | 48.222% | 54.094% | 55.842 %
Spider3 44059 % | 47.526% | 54.089% | 59.734% | 57.761% | 64.250 %
Ducks 57.085% | 61.989% | 71.159% | 87.315% | 71.972% | 89.541 %
SthimPan 57.945% | 66.797 % | 66.409% | 79.672% | 68.268 % | 82.595 %

Table 5.12 Computation reductions for 7x7 VMF

dif=0 dif=2 dif=4

Video Sequence
Corr. 1 Corr. 2 Corr. 1 Corr. 2 Corr. 1 Corr. 2
CoastGuard 25.041% | 25571% | 28.344% | 32.690% | 28.447 % | 33.128%
Flowers L 21.381% | 16.631% | 26.833% | 28.842% | 27.496 % | 30.320 %
Foreman 30.823% | 24.184% | 39590% | 42231 % | 41.182% | 45.877 %
M. Calendar L 26.143% | 27.002% | 28.217% | 32909 % | 28.416 % | 33.144%
Susie L 22101 % | 19.247% | 28.049% | 31.846% | 28.361% | 32.739 %
Table Tennis L 25753 % | 27.128% | 27.999% | 31.939% | 28.364% | 32.847 %
M. Calendar H 55.894 % | 55.755 % 62.243 % 70.959 % 62.717 % 71.926 %
Susie H 48.854 % | 31.888% | 57.946 % | 60.760 % | 60.600 % 66.247 %
Table Tennis H 57.334% | 60.399% | 62.129% | 69.333% | 63.002 % 71.596 %
Flowers H 44143 % | 38.834% | 56.124% | 58.545% | 58.866 % 63.359 %
Gladiator 28.616 % | 15913% | 45.245% | 32.942% | 51.534% | 39.865 %
Spiderman 22.651% | 11.656% | 38.627 % | 23.103% | 46.783% | 30.440 %
Irobot 33.189% | 21.120% 49.750 % 41.159 % 55.017 % 48.515 %
Spider3 44,071 % | 42.133% | 53.805% | 52.892% | 57.360 % | 56.995 %
Ducks 60.188% | 58.451% | 71.861% | 82.111% | 72.385% | 84.076 %
SthimPan 60.476 % | 64.228% | 67.664% | 75.335% | 69.333 % 77.858 %
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Table 5.13 Average computation reductions

Filter Size dif=0 dif=2 dif=4
Corr 1l Corr 2 Corrl Corr 2 Corrl Corr 2
3x3 39.2% 53.8% 50.8% 73.9% 53.3% 77.7%
5x5 43.1% 43.3% 54.3% 62.5% 56.7% 66.1%
X7 37.9% 33.7% 46.5% 47.9% 48.7% 51.1%

MVFs with higher spatial consistency increase the quality of the frames
interpolated by FRC. Therefore, we used the Sum of Absolute Minimum Neighboring
Difference (SAMND) metric [64] in order to determine the impact of VMF on the
spatial consistency of MVFs. SAMND metric determines the correlation between the
motions of the neighboring MBs by calculating the difference between their MVs as
shown in (5.4). Since this is an off-line operation, 2-norm is used to find the distances

between the MVs. In (5.4), X, denotes the vector in the middle of the filtering window,
X. denotes the remaining vectors in the filtering window, and N denotes the total

number of MBs in a frame.

Table 5.14 shows the SAMND results for 3x3 filtering window. FS algorithm is
used to obtain MVFs. The results given in this table are average SAMND values per
MB, for which VMF is applicable. In these simulations, smoothing is applied
recursively which means that the VMF uses the existing smoothed MVs in the current
filtering window. Since real-time video processing hardware work MB by MB rather
than working frame by frame, this is suitable for hardware implementation. As it can be
seen from Table 5.14, smoothing the MVF increases the spatial consistency between
neighboring MVs. SAMND performance decreases for larger “dif” values. Because
increasing “dif” increases the possibility of selecting the MV in the middle of the
filtering window as the median MV, which is equal to not doing any smoothing

operation.

N
SAMND = " min|%, —X,

MB=1

,»wWherei#c (5.4)

Since SAMND metric is based on the minimum difference between the current
MV and its neighboring MVs, it may give incorrect results for exceptional cases, e.g.

when two similar outlier MVs are in the same filtering window. Therefore, we
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Table 5.14 SAMND results

. . . dif=2 dif=4
Video Without With

Sequence smoothing | smoothing C(irr Cgrr Ccirr CZ”
CoastGuard 0.1262 0.0075 0.0346 | 0.0439 | 0.0467 | 0.0654
Flowers 0.2712 0.0155 0.0264 | 0.0609 | 0.0343 | 0.0890
Foreman 0.3233 0.0313 0.0629 | 0.0876 | 0.0827 | 0.1303
M.Calendar 0.0803 0.0015 0.0305 | 0.0370 | 0.0414 | 0.0508
Susie 0.3232 0.0386 0.0771 | 0.1074 | 0.0954 | 0.1468
TableTennis 0.1007 0.0061 0.0282 | 0.0302 | 0.0486 | 0.0507
M.Calendar 0.3480 0.0107 0.0393 | 0.0611 | 0.0521 | 0.0861
Susie 1.4038 0.1180 0.1258 | 0.1400 | 0.1680 | 0.2069
TableTennis 0.2777 0.0129 0.0531 | 0.0567 | 0.0716 | 0.0762
Flowers 0.8106 0.0610 0.0615 | 0.0755 | 0.0820 | 0.1084
Gladiator 2.9077 0.2577 0.3294 | 0.3325 | 0.3621 | 0.3718
Spiderman 4.4531 0.4605 0.5343 | 0.5418 | 0.5691 | 0.5852
Irobot 1.9819 0.1506 0.2007 | 0.2068 | 0.2336 | 0.2426
Spider3 1.6618 0.1282 0.2035 | 0.2073 | 0.2286 | 0.2369
Ducks 0.1554 0.0109 0.0536 | 0.0721 | 0.0867 | 0.1178
SthimPan 0.6359 0.0580 0.0612 | 0.0706 | 0.0770 | 0.0956

developed the Sum of Neighboring Differences (SND) metric which takes the
difference of the current MV with all its neighboring MVs into account. The SND
metric is calculated as shown in (5.5). Table 5.15 shows the SND results for 3x3
filtering window. FS algorithm is used to obtain MVFs. The results given in this table

are average SND values per MB, for which VMF is applicable.

N 9
SND = ZZHXC _)_(in

MB=li=c

(5.5)

Table 5.15 SND results

Video Without With Corlf:inc - 2Corr Corrdlf - 4Corr
Sequence smoothing | smoothing 1 5 1 2

CoastGuard 6.1574 2.5855 47004 | 4.7300 | 5.2268 | 5.3790
Flowers 7.7833 2.1327 3.8889 | 4.2306 | 4.3277 | 4.7518
Foreman 10.2969 4.0322 6.4099 | 6.5707 | 7.3295 | 7.5359
M.Calendar 3.5041 1.3238 2.6138 | 2.7027 | 3.0164 | 3.1185
Susie 10.1784 49273 7.4894 | 7.6945 | 8.2058 | 8.4920
TableTennis 3.1192 1.0538 1.7603 | 1.8031 | 2.2278 | 2.2640
M.Calendar 10.6241 2.6353 44929 | 4.6107 | 5.0107 | 5.2168
Susie 32.5122 10.1467 12.8724 | 12.9829 | 14.7590 | 15.0836
TableTennis 6.9591 1.6999 3.1505 | 3.1698 | 3.5601 | 3.6048
Flowers 20.8387 5.3685 6.5933 | 6.8530 | 7.6923 | 8.1461
Gladiator 90.6198 46.0629 | 46.1256 | 46.5114 | 47.8577 | 47.8834
Spiderman 122.0818 59.6276 | 59.7013 | 60.1205 | 61.7425 | 61.9127
Irobot 63.2902 31.0584 | 31.8333 | 31.8711 | 33.5845 | 33.7574
Spider3 49,7524 23.7022 | 23.7708 | 23.8530 | 25.0597 | 25.2509
Ducks 7.4080 2.4609 5.7550 | 5.8512 | 6.9311 | 6.9999
SthimPan 20.1122 5.8201 6.8342 | 6.8986 | 7.7794 | 7.9782
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As it can be seen from Table 5.15, smoothing the MVF increases the spatial
consistency between neighboring MVs and improves the SND performance. Since
increasing “dif” increases the possibility of selecting the MV in the middle of the
filtering window as the median MV, which is equal to not doing any smoothing

operation, SND performance decreases with larger “dif” values.

5.2 Vector Median Filtering Hardware Architecture

In this thesis, we also propose an efficient VMF hardware implementing the
proposed computation reduction techniques exploiting the spatial correlations in the
MVF [11]. To the best of our knowledge, a VMF hardware implementing these
techniques is not presented in the literature. The proposed architecture is scalable to any
window size. But, it is implemented for a 3x3 window size because of the FRC
requirements. The top-level block diagram of the proposed hardware is shown in Figure
5.7. The control unit generates the necessary control signals for datapaths and sends the
MVs to them. It also controls the weighting and minimum selector module. VMF
computations for a filtering window are overlapped with loading the new vectors for the

next filtering window.

start
MV_per_row !
» * Datapath X
MV_per_col | |
MV_in | l
loadW| | Control Unit Weighting &
addrW | > Minimum
AN Selector
MV _req T
Line:start
done .| Datapath Y
Median_MV

Figure 5.7 Top-level block diagram of the VMF hardware
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The proposed hardware has two datapaths working in parallel. The sum of 1-norm
distances of a vector to the other vectors in the filtering window is computed by these
two datapaths. One datapath computes the sum of absolute differences between the x
dimension of this vector and the x dimensions of the other vectors, and the other
datapath computes the sum of absolute differences between the y dimension of this
vector and the y dimensions of the other vectors.

When the start signal is asserted, the control unit gets the number of MVs per
column and MVs per row information from the 9-bit (in order to support 1920x1080
resolution) “MV_per_col” and “MV_per_row” signals. Then, control unit requests the
vectors in the current filtering window by asserting “MV _req” signal. If the current
filtering window is the first filtering window in a row, control unit asserts the
“line_start” signal together with the “MV_req” signal. Because, VMF hardware should
get 9 new vectors for the first filtering window in a row, whereas it should get 3 new
vectors for the other filtering windows in the row. The VMF hardware receives one new

16-bit vector (8-bit x dimension and 8-bit y dimension) in each clock cycle.

The block diagram of a datapath is shown in Figure 5.8. Ping pong registers are
used to overlap computing VMF for the current filtering window with receiving the new
vectors for the next filtering window. Vectors are loaded to the registers column by
column. For a 3x3 filtering window, loading a column of vectors takes 3 clock cycles.
After the vectors in one column of the filtering window are loaded, they are shifted to
left by one column. In the datapath, the multiplexer with 9 inputs is used to select the

vector of which the sum of 1-norm distances with other vectors will be calculated.

The block diagram of the weighting and minimum selector module is shown in
Figure 5.9. After the results obtained by the two datapaths are weighted separately, they
are added and the result is stored in a register. The results obtained for all 9 vectors in
the current filtering window are compared and the vector with the minimum value is
selected as the median vector. The weights are stored in a register file and they can be
changed adaptively during run time. Therefore, the proposed hardware can implement

adaptively weighted VMF.
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Figure 5.8 Block diagram of the VMF datapath
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Figure 5.9 Block diagram of the weighting and minimum selector module
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The spatial correlation techniques are implemented in the control unit using 6 8-
bit comparators. The number of comparators can be reduced by performing the
comparisons serially. Since the proposed VMF hardware has two datapaths working in
parallel, it requires the equality of x dimension and y dimension of a new vector in
order to avoid the sum of absolute differences computations for this vector. Therefore, it
can achieve the computation reduction percentages shown in Table 5.7.

For the first filtering window in a row, loading 9 new vectors and computing
VMF takes 22 clock cycles. For the other filtering windows in the row, computing VMF
takes 12 cycles. Therefore, VMF for a frame without spatial correlation techniques
takes ((MV_per_col-2) x 22 + (MV_per_col-2) x (MV_per_row — 3) x 12) clock cycles.
Therefore, for 16x16 MB size, VMF for a 1920x1080 HD frame without spatial
correlation techniques takes 92690 cycles. For 4x4 MB size, it takes 1539928 cycles.

The proposed VMF hardware architecture is implemented in Verilog HDL, and
mapped to a low cost Xilinx XC3S400A-5 FPGA using Xilinx ISE 10.1.03. The
implementation is verified with post place and route simulations using Mentor Graphics
Modelsim 6.1 PE. The FPGA implementation consumes 1426 slices and it can work at
145 MHz. Since, for 4x4 MB size, VMF for a 1920x1080 HD frame without spatial
correlation techniques takes 1539928 clock cycles, VMF for this frame takes 10.62 ms.
Therefore, without spatial correlation techniques, the proposed VMF hardware can
process 94 HD fps. When the spatial correlation techniques are used, it can process
more than 94 HD fps.
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CHAPTER 6

FRAME INTERPOLATION HARDWARE

FRC is the conversion of a lower frame rate video signal to a higher frame rate
video signal. LCD panels used for HDTV have a frame rate up to 240 Hz, whereas
video signals are usually recorded in 24 Hz, 25 Hz, or 30 Hz. Therefore, FRC is
required in order to display the HDTV video signals in the LCD panels. FRC can be
done by interpolating a new frame between every two consecutive original frames like
in 25 Hz to 50 Hz, 30 Hz to 60 Hz, 50 Hz to 100 Hz, 60 Hz to 120 Hz conversions, and
it can be done by interpolating three new frames between every two consecutive
original frames like in 25 Hz to 100 Hz, 50 Hz to 200 Hz, 30 Hz to 120 Hz, 60 Hz to
240 Hz conversions. In the case of 24 Hz to 60 Hz conversion 3:2 pull-down technique
is used [65].

Because of their low computational complexity, simple FRC techniques like
frame repetition and Linear Interpolation (LI) are used in some consumer electronics
products. But, these simple techniques often produce artifacts to which human eye is
very sensitive. Frame repetition results in motion judder and LI causes blurring at object
boundaries [66, 67]. To overcome these problems, FRC algorithms using motion
information between consecutive frames are developed. For example, Motion
Compensated Averaging (MCA) technique performs frame interpolation by using the
MVs found by the ME process.

The LI and MCA techniques perform frame interpolation as shown in equations
(6.1) and (6.2), respectively. In these equations, “t” is the time instance the frame “F”
belongs to, “X” is the spatial location of the current pixel in the frame and “t” is the
time slot the interpolated frame belongs to. For the conversion ratio 1:2, t will be 0.5 for
both interpolated frames, and for the conversion ratio 1:4, t will be 0.25, 0.5, and 0.75
for the three interpolated frames.
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F,(Xt—7)=0-7)F(X,t —1)+ & (X,t) (6.1)
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P 60 Hz 240 Hz| P2 Full HD
Video Video LCD

FRC Hardware

Figure 6.1 An example FRC system

An example FRC system is shown in Figure 6.1. Analyzing the off-chip memory
bandwidth requirement of this FRC system clearly shows that FRC systems require
significant data transfer from the off-chip frame memory. This FRC system implements
a 1:4 conversion ratio. It will interpolate new frames by using one MV per MB and
accessing one MB from the current frame and one MB from the reference frame. Since
each color channel is 10 bits, the RGB values of a pixel take 30 bits which can be stored
in a 32 bit word in memory. A Full HD frame has 1920x1080 (1.98M) pixels which
take 7.92MB. Therefore, 15.84MB (2x7.92MB) have to be accessed from the off-chip
frame memory in order to interpolate one frame. Since three frames will be interpolated

per original frame, 47.52MB have to be accessed from the off-chip frame memory.

The received input frame and the interpolated frames will be stored in the frame
memory and they will be sent to the LCD display from the frame memory. Storing
interpolated frames in the frame memory requires accessing 23.76MB (3x7.92MB).
Storing the received input frame in the frame memory and reading the output frames
that will be sent to the display from the frame memory requires accessing 39.6MB
(5x7.92MB). Therefore, 110.88MB per frame have to be accessed from the off-chip
frame memory. In the case of 60 Hz to 240 Hz conversion, this process will be repeated
60 times per second. Therefore, 6.5 GB/s memory bandwidth is required. As it can be

seen from this example, FRC systems require significant off-chip memory bandwidth.
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Although recent 16 bit wide DDR 11 memories with a data rate of 1600 MHz have a
bandwidth up to 3.2 GB/s [68], and by using the 4:2:2 or 4:2:0 video formats the
amount of chrominance data can be reduced, real-time implementation of FRC systems

is very difficult.

FRC algorithms such as Adaptive Motion Compensated Interpolation and
Overlapped Block Adaptive Motion Compensated Interpolation (AMCI) [69] and
Weighted Adaptive Motion Compensated Interpolation (WAMCI) [70] produce good
quality results. However, for interpolating a MB, these algorithms do not only access
the MBs in the current and previous frames pointed by the MV for the current MB, they
also access the MBs pointed by the MVs of the eight spatially neighboring MBs of the
current MB. The MVs required for interpolating MB(i,j) in AMCI and WAMCI
algorithms are shown in Figure 6.2. In this figure, “i” and “j” denote the x and y
coordinates of a MB, respectively. The dark shaded MB is the current MB(i,j) and
dashed MBs are its non-causal neighboring MBs. Therefore, these FRC algorithms
access 9 MBs from current frame and 9 MBs from reference frame for interpolating a
MB. This significantly increases the off-chip memory bandwidth requirement of an
FRC system.

MV | MV | MV

(-1,4-12 (13| i+ j-1)

MYV | MV | MV
(1) | 1)

Figure 6.2 MVs required to interpolate the current MB(i,j)

Even though the off-chip memory bandwidth required by these FRC algorithms
can be reduced by using a large on-chip memory as proposed in [71], real-time
implementation of these FRC algorithms for HDTV is very difficult and they require a
significant area for the on-chip memory. Several complete FRC hardware
implementations including these frame interpolation algorithms are proposed in [72-74].
However, they do not specify the details of the frame interpolation part of their
hardware, and they do not propose a reconfigurable hardware architecture for

implementing these frame interpolation algorithms.
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6.1 Frame Interpolation Algorithms

FRC by repetition of the original frames results in motion judder and LI causes
blurring at object boundaries. MCA is used to overcome these artifacts. However, it
introduces blocking artifacts. Blocking artifacts occur at object boundaries when a block
contains multiple objects with different motions. An appropriate solution to these local

problems is the graceful degradation [67].

Graceful degradation methods are SMF, DMF, SS, and CMF. Their equations are
shown in (6.3), (6.4), (6.5), and (6.6), respectively. Their advantages and drawbacks are
discussed in detail in [67]. In general, SMF produces good results for stationary scenes;
however it fails for detailed parts of the video. DMF performs better for these parts of
video. The drawback of DMF is its tendency to cause serration of edges in highly
detailed areas. The block diagrams of SMF and DMF are shown in Figure 6.3 and
Figure 6.4, respectively.

SS is an alternative to the rapid switching of DMF between LI and motion
compensated pixels. SS takes the weighted average of motion compensated and non-
motion compensated pixels. As a result, switching between LI and MCA becomes
softer. As shown in Equation (6.5), the weighting mechanism is controlled by a factor
“k” which shows the reliability of the MVs. For reliable MVs, MCA will be preferred
and for unreliable MVs, LI will be preferred. SS may result in local motion judder or
local blur. CMF combines the strengths of SMF, DMF, and SS by taking the median of
these methods. CMF can overcome the problems of these individual methods if

controlled carefully.

FSMF()_(" t— T) = median( ( ) ()_( t)’ FMCA()_(" t— T)) (6.3)
Four (X,t—7)=median(F (X + 2/, t —1), F(X — A—7)V,t), F,, (X,t —7)) (6.4)
Fss ()?’t - 2') kF, (X t— T) ( )FMCA()_(’t - T) (6.5)

Foye (X,t —7) = median(F,,. (X, t — 7), Foy e (X,t — 7), Fi (X, t — 7)) (6.6)
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Figure 6.3 The block diagram of SMF
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Figure 6.4 The block diagram of DMF

We have compared the PSNR performance of various frame interpolation
techniques. Table 6.1 shows PSNR results when FS is used as the ME algorithm and
Table 6.2 shows PSNR results when DVSS is used as the ME algorithm. For these
simulations, the ratio used in the SS is set to 0.5. The results showed that ME based
frame interpolation techniques perform better than L1. When FS is used, MCA performs
15.41% better than LI on the average. Similarly, SMF, DMF, SS and CMF perform
9.34%, 15.85%, 10.62% and 13.18% better than LI on the average, respectively. The
results also showed that the difference between the PSNR results of FS and DVSS
algorithms is negligible. Although, DVSS checks much fewer search locations than FS,
its performance is almost the same as the performance of FS. For MCA, the FS
algorithm performs only 0.77% better than DVSS algorithm. The performance
difference between FS and DVSS is only 0.01%, 0.37%, 0.34% and 0.23% for SMF,
DMF, SS and CMF, respectively.
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Table 6.1 PSNR results of the FS algorithm

Video LI MCA SMF DMF SS CMF
CoastGuard 25.3869 29.3512 27.6633 28.6013 28.1044 28.3669
Flowers 22.5259 27.1509 25.2657 26.2040 25.5612 25.9352
Foreman 29.0562 30.9336 32.0160 32.5259 31.2801 32.4068
M.Calendar L 22.5586 25.1749 24.4105 24.9861 24.6377 24.8840
Susie 30.4907 34.4495 33.2389 34.3749 33.4113 33.9824
TableTennis L 28.2165 32.3890 30.7374 32.0982 31.1210 31.5816
M.Calendar H 19.0235 24.0895 21.8492 23.5409 22.4858 22.9549
Susie 29.9640 33.9879 32.8294 34.2893 33.0780 33.7452
TableTennis H 30.4426 34.2168 32.9888 34.4667 33.2847 33.8645
Flowers 20.6369 28.8036 24.3785 27.0520 25.0289 25.8353
Gladiator 20.6718 26.3470 23.3757 27.0797 24.5895 25.3301
Spiderman 23.1200 27.2346 25.3174 26.9515 26.0612 26.3776
Irobot 21.9556 26.5563 24.2142 26.8914 25.2759 25.8553
Spider3 29.1199 25.6806 29.3254 29.4353 27.1299 29.4055
Ducks 33.6571 34.0227 34.1742 34.1982 34.4229 34.4350
SthimPan 24.1271 33.8959 27.5507 33.4062 29.1224 30.1477

Table 6.2 PSNR results of DVSS algorithm

Video LI MCA SMF DMF SS CMF
CoastGuard 25.3869 29.3876 27.6680 28.6071 28.1088 28.3702
Flowers 22.5259 26.7278 25.2583 26.1943 25.4825 25.9267
Foreman 29.0562 29.2466 32.0245 32.5206 30.7452 32.4098
M.Calendar L 22.5586 25.2333 24.4124 24.9875 24.6363 24.8801
Susie 30.4907 34.7535 33.2744 34.3455 33.4722 33.9978
TableTennis L 28.2165 32.3997 30.7304 32.0198 31.0706 31.5227
M.Calendar H 19.0235 24.4249 21.8711 23.5668 22.5436 22.9784
Susie 29.9640 34.3474 32.8574 34.2781 33.1551 33.7598
TableTennis H 30.4426 34.4332 32.9863 34.3809 33.2914 33.8242
Flowers 20.6369 28.2882 24.3839 27.0656 249771 25.8437
Gladiator 20.6718 25.3891 23.3495 26.7955 24.3361 25.2051
Spiderman 23.1200 27.1854 25.2789 26.8401 26.0077 26.3021
Irobot 21.9556 26.3661 24.1695 26.5634 25.1613 25.6951
Spider3 29.1199 24.9613 29.2992 28.6499 26.5562 28.7680
Ducks 33.6571 34.0392 34.1772 34.2004 34.4272 34.4375
SthimPan 241271 33.8959 27.5508 33.4063 29.1224 30.1477
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Figure 6.5 Frames at consecutive time instances (a) t-1, (b) t, (c) t+1

In addition to PSNR comparison, in order to visually compare the quality of the
interpolated frames by these frame interpolation techniques, we interpolated a frame
from the “Foreman” benchmark video. Figure 6.5 shows three consecutive frames from
this video. The frame at time instance “t” in Figure 6.5 is interpolated with several
frame interpolation techniques by using the MVs obtained by the FS algorithm and the
DVSS algorithm between the frames at time instances “t-1" and “t+1”. The resulting
frames for the FS algorithm are shown in Figure 6.6, and the resulting frames for DVSS
algorithm are shown in Figure 6.7. For LI, the resulting frames for FS and DVSS

algorithms are the same.
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(f)
Figure 6.6 Interpolated frames using MVs obtained by FS (a) LI, (b) MCA, (c) SMF,
(d) DMF, (e) SS, (f) CMF
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Figure 6.7 Interpolated frames using MVs obtained by DVSS (a) MCA, (b) SMF,
(c) DMF, (d) SS, (e) CMF
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6.2  Reconfigurable Frame Interpolation Hardware Architecture

We propose a low cost reconfigurable hardware architecture for real-time
implementation of frame interpolation algorithms requiring low off-chip memory
bandwidth; LI, MCA, SMF, DMF, SS and CMF [67]. The top-level block diagram of
the proposed frame interpolation hardware architecture is shown in Figure 6.8. The
proposed hardware architecture implements LI, MCA, SMF, DMF, SS and CMF frame
interpolation algorithms and it allows adaptive selection between these algorithms for
each 16x16 MB. The proposed hardware interpolates frames MB by MB. It takes the
selected interpolation algorithm and the MV for each 16x16 MB as inputs and performs
the frame interpolation. In this thesis, we implemented the on-chip memory, the

datapath, and the control unit parts of this hardware, which are shown in Figure 6.9.

The input MV to the frame interpolation hardware points to a MB in the current
frame and to a MB in the reference frame in a range of (+48, £24) pixels. MVs used in
the interpolation process correspond to a larger search range in the ME process. For
example, for the conversion ratio 1:2, the MVs with a range of (48, +£24) pixels used in

the interpolation process correspond to a search range of (£96, £48) pixels in the ME

process.
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Figure 6.8 Top-level hardware architecture
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Figure 6.9 On-chip memory and datapath

As shown in Figure 6.9 and Figure 6.10, the on-chip memory consists of 32
BRAMSs, and it is used to store 112x64 pixels from the current frame and 112x64 pixels
from the reference frame. BRAM 0 to BRAM 15 are used to store the appropriate area
from the current frame and BRAM 16 to BRAM 31 are used to store the appropriate
area from the reference frame. Since each color channel (R, G, B) is 10 bits wide,
BRAMs are configured as 448x32-bit, and each BRAM s used to store 4 lines of the

required area from the corresponding frame.
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Figure 6.10 Data stored in the on-chip memory
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As shown in Figure 6.10, most of the data that should be stored in the on-chip
memory for two consecutive MBs are the same. Therefore, for the next MB only the
non-overlapping 64x16 pixels, shown with dashed lines in Figure 6.10, can be accessed
from the frame memory by using data-reuse methodology. In addition, since the
BRAMs in the FPGAs have dual ports, the interpolation of a MB can be overlapped
with accessing the non-overlapping area required by the next MB from the frame
memory as shown in Figure 6.11. However, this requires storing additional 16 pixels

per line in each BRAM and it increases the complexity of the address generation

module.
kemaory
Forts 4
Port A B n-3 Interpolation | B n-2 Interpolation | B n-1 Interpolation |
Forn B MB n-2 Data Access | MB n-1 Data Access | MB n Data Access |
Time

Figure 6.11 MB schedule

The proposed datapath includes 48 PEs. The boxes named as “R”, “G”, and “B”
in Figure 6.9 represent the PEs. Each PE performs the interpolation of a color channel.
Therefore, the datapath interpolates R, G, B channels of a pixel in parallel and it
interpolates 16 pixels in each clock cycle. The rotator consists of 30 identical rotators
each 16 bits long. Two rotators are used to align the interpolated pixels to match with
their original positions where they must be in the current MB. The interpolated pixels
can be stored in an output register file and sent to the off-chip frame memory by a top-

level memory controller.

The block diagram of a PE is shown in Figure 6.12. In the first clock cycle of the
interpolation process, the previous pixel F(%,t—1) and the current pixel F(%,t) will be
stored in 10 bit registers “Reg. P.” and “Reg. C.”. In the second clock cycle, motion

compensated values of the previous pixel F(x+,t-1) and the current pixel
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F(X—(1-7)v,t) will be stored in the 10 bit registers “Reg. P. MC” and “Reg. C. MC”.

Since loading from BRAMSs can be implemented much faster than the datapath
operations, we assume that loading these pixels can be done in a single clock cycle by
using a clock twice faster the clock used in the datapath. “Reg. SMF”, “Reg. DMF” and
“Reg. CMF” include three 10 bit registers. In the second cycle, outputs of “Reg. P.” and
“Reg. C.” will be added and the least significant bit will be discarded so that their
average will be calculated and stored in the register “Reg. DMF”. Similarly, in the third
cycle MCA value will be calculated and stored in the register “Reg. SMF”. “Reg. CMF”
stores the outputs of SMF, DMF and SS.

Frendons Pieel Carrent Pixel

|10aa

Reg P MC

g
aa
9]
¥

Reg C.IMC]
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Figure 6.12 Processing element
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SS value is calculated by the “Soft Switching” module. The block diagram of the
SS module is shown in Figure 6.13. This module takes LI and MCA values as inputs
and multiplies them with “k” and “(1-k)” coefficients. In order to save area, no
multiplier or divider is used in this module. Multiplying the input values with the “k”
and “(1-k)” coefficients of 24/32:8/32, 20/32:12/32, 18/32:14/32, 16/32:16/32 are
implemented by using only two adder/subtractors, one adder, and two multiplexers. For
example, the SS ratio of 3:5 will be implemented as follows. The hardware will use the
20/32 and 12/32 coefficients. Multiplying with the “k” coefficient of 20/32 will be
implemented by adding the result of “<< 2” (x4) operation and the result of “<< 4”
(x16) operation. Similarly, multiplying with “(1-k)” coefficient of 12/32 will be
implemented by subtracting the result of “<< 2” operation from the result of “<< 4”
operation. The least significant 5 bits of the results of adder/subtractors will be
discarded to implement the divide by 32. The SS value will be obtained by adding these

10 10
MCA datam LI datain
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select

two values.

— /_/ \.‘_ \_// p
add / sub
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\T 15
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Figure 6.13 Soft switching module
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The “Median” module is shown in Figure 6.14. It takes three 10 bit inputs “A”,
“B”, “C” and calculates the median of these inputs. The median module has three
comparators, two 2-to-1 multiplexers and two logic gates for generating the select
signals of these two multiplexers. In order to increase its clock frequency, pipelining
registers shown in Figure 6.12 are used at its inputs and output. First, the median value
for SMF is calculated. Then, the median value for DMF is calculated in the next clock
cycle. Finally, the median value for CMF is calculated. In order to calculate CMF, the
result of the median module for SMF and DMF are stored in “Reg. CMF” together with

the result of SS module.

Figure 6.14 Median module

The “Output Mux” shown in Figure 6.12 is used to select the result of the
interpolation algorithm specified by the “Interpolation Algorithm” input. This
multiplexer selects either results of LI, MCA, SS or the result of the median module.
The results of LI and MCA will be ready in the second and third clock cycles. The SS
result will be calculated and registered in the fourth clock cycle. SMF, DMF, and CMF
results will be ready in the 5th, 6th, and 8th clock cycles, respectively. When operated
in LI, MCA, SMF, DMF, or SS modes, there is no need to stall the pipeline assuming
that four input pixels are loaded in one clock cycle. CMF mode requires stalling the
pipeline for two clock cycles. Therefore, when operated in any mode except CMF, the
proposed hardware interpolates a 16x16 MB in 16 clock cycles after the first result is
ready. When operated in CMF mode, it interpolates a 16x16 MB in 48 clock cycles

after the first result is ready.
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The proposed hardware architecture is implemented in VHDL and mapped to a
low cost Xilinx Spartan XC3SD3400A-4 FPGA using Xilinx ISE 9.2.04. 1t is verified
with RTL simulations using Mentor Graphics Modelsim. The implementation results
show that the proposed hardware can work at 101 MHz and it consumes 15592 slices
and 32 BRAMs. A PE consumes 222 slices. SS and median modules consume 38 and

25 slices, respectively.
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CHAPTER 7

CONCLUSIONS

Since the input source and display have different frame rates, FRC systems are
required in current consumer electronic devices. An ME based FRC system has three
parts; ME, MVF post-processing to obtain the true motion, and frame interpolation
Each part has a significant computational complexity. Therefore, in this thesis, we
proposed ME algorithms and hardware architectures for implementing these algorithms.
In addition, we proposed techniques for reducing the computational complexity of VMF
and a hardware architecture for implementing VMF. Finally, we proposed a hardware

architecture for frame interpolation.

For the first part of an FRC system, we first developed a HEXBS ME algorithm
and two hardware architectures, the generic architecture and the systolic architecture, to
implement it [7]. The proposed HEXBS ME algorithm has lower computational
complexity than the FS algorithm. The simulation results showed that the PSNR
obtained by this algorithm is better than the PSNR obtained by other fast search
algorithms. The generic architecture and the systolic architecture are implemented in
VHDL and mapped to Xilinx FPGAs. Both hardware architectures can run at 144 MHz
when implemented on an XC3S1200E-5 FPGA, and they can process 25 1920x1080 fps
for the search range of (+32,£16) pixels. Various fast search ME algorithms can be
implemented using the generic hardware architecture. However, it uses 80 BRAMs. On
the other hand, only the proposed HEXBS algorithm can be efficiently implemented
using the systolic hardware architecture. Since it uses 16 BRAMs, it fits into
XC3S1200E-5, a low cost Xilinx Spartan-3E FPGA.

120



We proposed the DVSS ME algorithm to improve the results obtained by the
proposed HEXBS ME algorithm [9]. The simulation results showed that the DVSS
algorithm performs very close to the FS algorithm by searching much fewer search
locations than the FS algorithm and it outperforms successful fast search ME algorithms
by searching more search locations than these algorithms. A high performance
dynamically reconfigurable systolic ME hardware architecture for efficiently
implementing the DVSS algorithm is proposed. The proposed hardware architecture is
implemented in VHDL and mapped to an XC3S1500-5 FPGA. On this FPGA, it works
at 130MHz and consumes 9128 slices and 16 BRAMSs. It requires on the average 467
clock cycles to find the MV of a MB when the early search termination threshold value
is set to 256. The proposed ME hardware consumes less area than the implementation
of one of the best performing fast search ME algorithms in the same FPGA. The
proposed ME hardware is capable of processing HD video formats in real-time and its
throughput is much higher than the FS hardware implementations reported in the

literature.

We proposed the RDVSS algorithm to further improve the results obtained by the
DVSS algorithm [10]. The RDVSS algorithm can be implemented on the hardware
architecture proposed for the DVSS algorithm with a slight modification. To the best of
our knowledge, no ME algorithm utilizing the difference of the MVs of the temporal
neighboring MBs as proposed in the RDVSS algorithm is presented in the literature.
The simulation results showed that for the same search range, the RDVSS algorithm
searches much less search locations than the DVSS algorithm. For videos with large
motions, the performance of the RDVSS algorithm is better than the DVSS algorithm.
For videos containing very small motions, the DVSS algorithm gives slightly better

results by checking more search locations.

For the second part of an FRC system, we proposed several techniques to reduce
the computational complexity of VMFs by using data reuse methodology and by
exploiting the spatial correlations in the MVF [11]. To the best of our knowledge, there
is no paper in the literature which reduces the amount of computations performed by
VMFs by analyzing the spatial correlations between neighboring MVs. In addition, we
designed and implemented an efficient VMF hardware including the computation

reduction techniques exploiting the spatial correlations in the MVF on a low cost Xilinx
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XC3S400A-5 FPGA. The FPGA implementation can work at 145 MHz and it can
process more than 94 HD fps.

For the third part of an FRC system, we proposed a low cost reconfigurable frame
interpolation hardware [12]. The proposed hardware improves the quality of the
interpolated frames by implementing LI, MCA, SMF, DMF, SS and CMF frame
interpolation algorithms and by allowing adaptive selection between these algorithms
for each 16x16 MB. The proposed hardware architecture is implemented in VHDL and
mapped to a low cost Xilinx XC3SD3400A-4 FPGA. The implementation results show
that the proposed hardware can run at 101 MHz on this FPGA, and it consumes 32
BRAMs and 15592 slices.
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