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ABSTRACT 
 

 

 

Frame Rate Up-Conversion (FRC) is the conversion of a lower frame rate video 

signal to a higher frame rate video signal. FRC algorithms using Motion Estimation 

(ME) obtain better quality results. Among the block matching ME algorithms, Full 

Search (FS) achieves the best performance since it searches all search locations in a 

given search range. However, its computational complexity, especially for the recently 

available High Definition (HD) video formats, is very high. Therefore, in this thesis, we 

proposed new ME algorithms for real-time processing of HD video and designed 

efficient hardware architectures for implementing these ME algorithms. These 

algorithms perform very close to FS by searching much fewer search locations than FS 

algorithm. We implemented the proposed hardware architectures in VHDL and mapped 

them to a Xilinx FPGA. 

ME for FRC requires finding the true motion among consecutive frames. In order 

to find the true motion, Vector Median Filter (VMF) is used to smooth the motion 

vector field obtained by block matching ME. However, VMFs are difficult to 

implement in real-time due to their high computational complexity. Therefore, in this 

thesis, we proposed several techniques to reduce the computational complexity of 

VMFs by using data reuse methodology and by exploiting the spatial correlations in the 

vector field. In addition, we designed an efficient VMF hardware including the 

computation reduction techniques exploiting the spatial correlations in the motion 

vector field. We implemented the proposed hardware architecture in Verilog and 

mapped it to a Xilinx FPGA. 

ME based FRC requires interpolation of frames using the motion vectors found by 

ME. Frame interpolation algorithms also have high computational complexity. 

Therefore, in this thesis, we proposed a low cost hardware architecture for real-time 

implementation of frame interpolation algorithms. The proposed hardware architecture 

is reconfigurable and it allows adaptive selection of frame interpolation algorithms for 

each Macroblock. We implemented the proposed hardware architecture in VHDL and 

mapped it to a low cost Xilinx FPGA. 
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ÖZET 
 

 

Çerçeve hızı yükseltme, düşük çerçeve hızına sahip bir videonun daha yüksek 

çerçeve hızına sahip bir videoya dönüştürülmesidir. Hareket tahmini tabanlı çerçeve hızı 

yükseltme algoritmaları yüksek kaliteli sonuçlar elde etmektedirler. Arama alanındaki 

bütün arama noktalarını aradığı icin blok eşleştirmeli hareket tahmini algoritmaları 

arasında en iyi başarımı gösteren tam arama algoritmasıdır. Ancak, tam arama 

algoritmasının gerektirdiği işlem miktarı özellikle günümüzde yaygınlaşan yüksek 

tanımlı video çerçeveleri için çok yüksektir. Bu nedenle, bu tezde yüksek tanımlı video 

çerçevelerinin gerçek zamanlı işlenebilmesi için hareket tahmini algoritmaları ve bu 

hareket tahmini algoritmalarını etkin bir şekilde gerçekleştirebilecek donanım 

mimarileri önerdik. Bu algoritmalar tam arama algoritmasından çok daha az arama 

noktasını arayarak tam arama algoritmasına çok yakın sonuç elde etmektedirler. 

Önerilen donanım mimarilerini VHDL ile sahada programlanabilen kapı dizilerinde 

gerçekledik. 

Çerçeve hızı yükseltme için yapılan hareket tahmininin ardışık çerçeveler 

arasındaki gerçek hareketi bulması gereklidir. Ardışık çerçeveler arasındaki gerçek 

hareketi bulabilmek için blok eşleştirmeli hareket tahmininin elde ettiği hareket vektörü 

alanı vektör ortanca süzgeci kullanılarak düzeltilir. Ancak, vektör ortanca süzgeçlerinin 

gerçek zamanda gerçeklenmeleri gerektirdikleri yüksek işlem miktarı nedeniyle zordur. 

Bu yüzden, bu tezde veri tekrar kullanımı yöntemiyle ve vektör alanındaki 

benzerliklerin incelenmesiyle vektör ortanca süzgeçlerinin gerektirdikleri işlem 

miktarını azaltan teknikler önerdik. Ayrıca, vektör alanındaki benzerliklerin 

incelenmesiyle işlem miktarını azaltan tekniği de gerçekleyen etkin bir vektör ortanca 

süzgeci donanımı tasarlayıp sahada programlanabilen kapı dizilerinde gerçekledik. 

Hareket tahmini tabanlı çerçeve hızı yükseltme hareket vektörlerini kullanarak 

yeni çerçevelerin sentezlenmesini gerektirmektedir. Çerçeve sentezleme algoritmaları 

da yüksek miktarda işlem gerektirmektedirler. Bu yüzden, bu tezde çerçeve sentezleme 

algoritmalarının gerçek zamanda gerçeklenmelerini sağlayacak düşük maliyetli 

uyarlanır bir donanım mimarisi önerdik. Önerilen donanım mimarisi her blok için farklı 

bir çerçeve sentezleme algoritması kullanabilmektedir. Önerilen donanım mimarisini 

VDHL ile düşük maliyetli sahada programlanabilen kapı dizilerinde gerçekledik. 



 VI 

 

 

 

ACKNOWLEDGEMENTS 
 

 

I would like to thank my thesis advisor Dr. İlker Hamzaoğlu. I appreciate his 

guidance during this thesis. 

I want to thank Dr. H. Fatih Ugurdağ as well for his help and valuable feedback 

throughout the thesis. 

I am grateful to Halil Kükner and Abdülkadir Akın for their significant 

contributions. We worked together for almost one year and for the first time I had the 

chance to lead a team. 

I want to thank TÜBİTAK for their support to my thesis. 

My special thanks go to Gülin Alkan. 

Finally, I would like to thank to my family for their unlimited support and trust in 

me, which made everything possible for me. 

 



 VII 

TABLE OF CONTENTS 

 

 

INTRODUCTION .......................................................................................................... 15 

MOTION ESTIMATION ALGORITHMS .................................................................... 20 

2.1 The Full Search Algorithm ......................................................................... 23 

2.2 Fast Search Motion Estimation Algorithms ................................................ 24 

2.3 The Three Dimensional Recursive Search Algorithm ................................ 32 

HEXAGON BASED MOTION ESTIMATON ALGORITHM AND HARDWARE 

ARHITECTURES FOR ITS IMPLEMENTATION ...................................................... 35 

3.1. Hexagon Based Motion Estimation Algorithm .......................................... 35 

3.2. Generic Motion Estimation Hardware Architectures ................................. 44 

3.3. Systolic Motion Estimation Hardware Architecture ................................... 54 

DYNAMICALLY VARIABLE STEP SEARCH MOTION ESTIMATION 

ALGORITHMS AND A HARDWARE ARCHITECTURE FOR THEIR 

IMPLEMENTATION ..................................................................................................... 59 

4.1 Dynamically Variable Step Search Motion Estimation Algorithm ............ 60 

4.2 Reconfigurable Motion Estimation Hardware Architecture ....................... 65 

4.3 Recursive Dynamically Variable Step Search Motion Estimation Algorithm74 

COMPUTATION REDUCTIONS FOR VECTOR MEDIAN FILTERING ................. 82 

5.1 Computation Reductions for Vector Median Filtering ............................... 88 

5.1.1 Data-Reuse Technique ....................................................................... 88 

5.1.2 Spatial Correlations Technique ......................................................... 91 

5.2 Vector Median Filtering Hardware Architecture ...................................... 100 

FRAME INTERPOLATION HARDWARE ................................................................ 104 

6.1 Frame Interpolation Algorithms ............................................................... 107 

6.2 Reconfigurable Frame Interpolation Hardware Architecture ................... 113 

CONCLUSIONS .......................................................................................................... 120 

REFERENCES ............................................................................................................. 123 

 

 



 VIII 

LIST OF FIGURES 

 

Figure 1.1 The FRC process....................................................................................... 15 

Figure 2.1 BM ME ..................................................................................................... 21 

Figure 2.2 A BM ME example and the resulting MVF ............................................. 21 

Figure 2.3 Search locations of the FS algorithm for (±4, ±4) search range ............... 24 

Figure 2.4 The TSS algorithm .................................................................................... 25 

Figure 2.5 The 2D-LOGS algorithm .......................................................................... 25 

Figure 2.6 Search locations of the first step of the NTSS algorithm ......................... 26 

Figure 2.7 Search locations of the first and second steps of the NTSS algorithm ..... 27 

Figure 2.8 The FSS algorithm .................................................................................... 28 

Figure 2.9 The BBGDS algorithm ............................................................................. 28 

Figure 2.10 The DS algorithm (a) LDSP, (b) SDSP .................................................. 29 

Figure 2.11 Search locations of the DS algorithm for the next step .......................... 29 

Figure 2.12 The HEXBS algorithm (a) coarse pattern, (b) fine pattern ..................... 30 

Figure 2.13 Search locations of the HEXBS algorithm ............................................. 30 

Figure 2.14 The ARPS algorithm .............................................................................. 31 

Figure 2.15 The ADCS algorithm .............................................................................. 31 

Figure 2.16 The FTS algorithm .................................................................................. 32 

Figure 2.17 Spatial and temporal neighbors for the 3D-RS algorithm ...................... 33 

Figure 2.18 Candidate MV set ................................................................................... 34 

Figure 3.1 Some of the search locations of 32x16 pattern ......................................... 36 

Figure 3.2 Search locations of 10x9 pattern............................................................... 37 

Figure 3.3 Search locations of 12x12 pattern............................................................. 37 

Figure 3.4 Search locations of 14x15 pattern............................................................. 38 

Figure 3.5. Fine search patterns: (a) plus, (b) side, (c) double cross ......................... 38 

Figure 3.6 Improvement of the 10x9 pattern over HEXBS (FD = 1) ........................ 41 

Figure 3.7 Improvement of the 10x9 pattern over HEXBS (FD = 2) ........................ 42 

Figure 3.8 Improvement of the 12x12 pattern over HEXBS (FD = 3) ...................... 43 

Figure 3.9 Block diagram of processing elements: (a) PEI , (b) PEII ......................... 46 

Figure 3.10 Block diagram of the implementation type I .......................................... 46 

Figure 3.11 Block diagram of the implementation type II ......................................... 47 

Figure 3.12 16x8 generic architecture ........................................................................ 48 

Figure 3.13 16x6 generic architecture ........................................................................ 48 

Figure 3.14 16x4 generic architecture ........................................................................ 49 

Figure 3.15 16x2 generic architecture ........................................................................ 49 

Figure 3.16 Data layout in BRAMs ........................................................................... 51 

Figure 3.17 Ten byte rotate left operation done by the horizontal shifter.................. 51 

Figure 3.18 Six line rotate left operation done by the vertical shifter ....................... 52 



 IX 

Figure 3.19 Top-level block diagram of the systolic architecture ............................. 54 

Figure 3.20 Datapath of the systolic architecture....................................................... 55 

Figure 3.21 Search locations of the proposed HEXBS patterns ................................ 56 

Figure 3.22 Pixel organization in BRAMs of the systolic architecture ..................... 57 

Figure 3.23 Rotate amounts ....................................................................................... 58 

Figure 4.1 Search pattern A1 ..................................................................................... 61 

Figure 4.2 Search pattern A3 ..................................................................................... 62 

Figure 4.3 The pseudo code of the DVSS algorithm ................................................. 63 

Figure 4.4 Top-level block diagram ........................................................................... 65 

Figure 4.5 Reconfigurable systolic PE array.............................................................. 67 

Figure 4.6 Shifting in PE array (a) 1 pixel, (b) 2 pixels ............................................. 67 

Figure 4.7 Memory organization................................................................................ 69 

Figure 4.8 Multiplexing unit ...................................................................................... 70 

Figure 4.9 Main large pattern ..................................................................................... 75 

Figure 4.10 Pseudo code of the RDVSS algorithm ................................................... 77 

Figure 4.11 Spatial neighboring MBs of MB(i,j,t) .................................................... 78 

Figure 4.12 Temporal correlation .............................................................................. 78 

Figure 5.1 Smoothing MVF ....................................................................................... 83 

Figure 5.2 Current frame and its MVF ...................................................................... 83 

Figure 5.3 MVF (a) and smoothed MVF (b).............................................................. 83 

Figure 5.4 M-Ordering based VMF (a) input, (b) output ........................................... 84 

Figure 5.5 3x3 Filtering windows .............................................................................. 88 

Figure 5.6 The distances between vector 3 and other vectors in three consecutive 

filtering windows ............................................................................................... 89 

Figure 5.7 Top-level block diagram of the VMF hardware ..................................... 100 

Figure 5.8 Block diagram of the VMF datapath ...................................................... 102 

Figure 5.9 Block diagram of the weighting and minimum selector module ............ 102 

Figure 6.1 An example FRC system ........................................................................ 105 

Figure 6.2 MVs required to interpolate the current MB(i,j) .................................... 106 

Figure 6.3 The block diagram of SMF ..................................................................... 108 

Figure 6.4 The block diagram of DMF .................................................................... 108 

Figure 6.5 Frames at consecutive time instances (a) t-1, (b) t, (c) t+1..................... 110 

Figure 6.6 Interpolated frames using MVs obtained by FS (a) LI, (b) MCA, (c) SMF, 

(d) DMF, (e) SS, (f) CMF ................................................................................ 111 

Figure 6.7 Interpolated frames using MVs obtained by DVSS  (a) MCA, (b) SMF,      

(c) DMF, (d) SS, (e) CMF ................................................................................ 112 

Figure 6.8 Top-level hardware architecture ............................................................. 113 

Figure 6.9 On-chip memory and datapath................................................................ 114 

Figure 6.10 Data stored in the on-chip memory ...................................................... 114 

Figure 6.11 MB schedule ......................................................................................... 115 



 X 

Figure 6.12 Processing element ............................................................................... 116 

Figure 6.13 Soft switching module .......................................................................... 117 

Figure 6.14 Median module ..................................................................................... 118 
 

 



 XI 

LIST OF TABLES 
 

Table 3.1 MAD results for 32x16 pattern (FD = 1) ................................................... 39 

Table 3.2 MAD results for 32x16 pattern (FD = 2) ................................................... 39 

Table 3.3 MAD results for 32x16 pattern (FD = 3) ................................................... 39 

Table 3.4 MAD results for 10x9 pattern (FD = 1) ..................................................... 39 

Table 3.5 MAD results for 10x9 pattern (FD = 2) ..................................................... 39 

Table 3.6 MAD results comparison (FD = 1) ............................................................ 41 

Table 3.7 MAD results comparison (FD = 2) ............................................................ 42 

Table 3.8. MAD results comparison (FD = 3) ........................................................... 43 

Table 3.9 Total number of search locations for hundred frames (FD = 1) ................ 44 

Table 3.10 Total number of search locations for hundred frames (FD = 2) .............. 44 

Table 3.11 Trade-off between implementation types I and II .................................... 47 

Table 3.12 Comparison of generic architectures for various block sizes .................. 49 

Table 3.13 Comparison of horizontal shifters for various generic architectures ....... 49 

Table 3.14 Comparison of vertical shifters for various generic architectures ........... 50 

Table 3.15 Pipelining in the generic hardware architecture ....................................... 53 

Table 3.16 Search patterns ......................................................................................... 55 

Table 3.17 Data flow through the systolic PE array .................................................. 56 

Table 4.1 Several search patterns ............................................................................... 61 

Table 4.2 MAD results for fast search algorithms ..................................................... 64 

Table 4.3 MAD results for proposed search algorithms ............................................ 64 

Table 4.4 Dataflow through the reconfigurable systolic PE array ............................. 68 

Table 4.5 Output of the multiplexing unit for different pixel locations ..................... 70 

Table 4.6 Performance of the proposed hardware for several search patterns ........... 72 

Table 4.7 Performance of the proposed hardware for the DVSS algorithm .............. 72 

Table 4.8 Comparison of ME hardware architectures ............................................... 74 

Table 4.9 Search patterns used in the RDVSS algorithm .......................................... 75 

Table 4.10 MAD results ............................................................................................. 80 

Table 4.11 Average number of search locations per MB........................................... 80 

Table 5.1 Comparison of distance metrics ................................................................. 85 

Table 5.2 Required arithmetic operations without proposed technique ..................... 90 

Table 5.3 Required arithmetic operations with proposed technique .......................... 91 

Table 5.4 Comparison overhead of spatial correlation techniques ............................ 93 

Table 5.5 Store overhead of spatial correlation techniques ....................................... 93 

Table 5.6 Computation reductions for 3x3 VMF ....................................................... 94 

Table 5.7 Computation reductions by modified correlation techniques for 3x3 VMF

 ............................................................................................................................ 94 

Table 5.8 Computation reductions for 3x3 VMF using “dif” .................................... 95 



 XII 

Table 5.9 Computation reductions by modified correlation techniques for 3x3 VMF 

using “dif” .......................................................................................................... 95 

Table 5.10 Difference between the computation reductions achieved by the modified 

and the original spatial correlations techniques ................................................. 96 

Table 5.11 Computation reductions for 5x5 VMF ..................................................... 97 

Table 5.12 Computation reductions for 7x7 VMF ..................................................... 97 

Table 5.13 Average computation reductions ............................................................. 98 

Table 5.14 SAMND results ........................................................................................ 99 

Table 5.15 SND results .............................................................................................. 99 

Table 6.1 PSNR results of the FS algorithm ............................................................ 109 

Table 6.2 PSNR results of DVSS algorithm ............................................................ 109 

 



 XIII 

ABBREVIATIONS 

 

2D-LOGS Two Dimensional Logarithmic Search 

3D-RS  Three Dimensional Recursive Search 

ADCS  Adaptive Dual Cross Search 

AMCI  Adaptive Motion Compensated Interpolation 

APDS  Adaptive Predicted Direction Search 

ARPS  Adaptive Rood Pattern Search 

ASIC   Application Specific Integrated Circuit 

ASIP  Application Specific Instruction Set Processor 

ASNMV Average Spatially Neighboring Motion Vector 

BBGDS Block Based Gradient Descent Search 

BDM  Block Distortion Measure 

BM  Block Matching 

BRAM  Block Random Access Memory 

CIF  Common Intermediate Format 

CLB  Configurable Logic Block 

CMF  Cascaded Median Filtering 

DCS  Dual Cross Search 

DMF  Dynamic Median Filtering 

DS  Diamond Search 

DVD  Digital Versatile Disc 

DVSS  Dynamically Variable Step Search 

FD  Frame Distance 

FPGA  Field Programmable Gate Array 

FPS  Frames per Second 

FRC  Frame Rate Up-Conversion 

FS  Full Search 

FSS  Four Step Search 

FTS  Flexible Triangle Search 

GOPS  Giga Operations per Second 

HD  High Definition 

HDTV  High Definition Television 

HEXBS Hexagon Based Search 



 XIV 

LCD  Liquid Crystal Display 

LDSP  Large Diamond Search Pattern 

LI  Linear Interpolation  

LNMV Left Neighboring Motion Vector 

LUT  Look-Up Table 

MAD  Mean Absolute Difference 

MB   Macroblock 

MC  Motion Compensation 

MCA  Motion Compensated Averaging 

ME   Motion Estimation 

MPEG  Motion Picture Experts Group 

MSE  Mean Square Error 

MV   Motion Vector 

MVF  Motion Vector Field 

NTSS  New Three Step Search 

PE   Processing Element 

PSNR  Peak Signal-to-Noise Ratio 

RAM   Random Access Memory 

RDVSS Recursive Dynamically Variable Step Search 

RGB  Red Green Blue color space 

RTL   Register Transfer Level 

TSS  Three Step Search 

SAD   Sum of Absolute Differences 

SAMND Sum of Minimum Neighboring Absolute Differences 

SD  Spatial Distance 

SDSP  Small Diamond Search Pattern 

SMF  Static Median Filtering 

SND  Sum of Neighboring Differences 

SS  Soft Switching 

ST  Sum of Absolute Differences Threshold 

TD  Spatial Distance 

VHDL  Very High Speed Integrated Circuit Hardware Description Language 

VMF  Vector Median Filter 

WAMCI Weighted Adaptive Motion Compensated Interpolation 



 

 15 

 

 

 

 

 

 

CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

 

Frame Rate Up-Conversion (FRC) is the conversion of a lower frame rate video 

signal to a higher frame rate video signal. FRC is used in many devices like televisions, 

Digital Versatile Disc (DVD) players, portable DVD players, and mobile phones [1]. 

Recent Liquid Crystal Display (LCD) panels have a frame rate up to 240 Hz, whereas 

movies are usually recorded at 24 Hz, 25 Hz or 30 Hz and the broadcasted video 

material is either 50 Hz or 60 Hz. Since the input source and the display have different 

frame rates, conversion between the received input signal and the output signal sent to 

the display is necessary. FRC can be done by interpolating a new frame between every 

two consecutive original frames like in 25 Hz to 50 Hz conversion, and it can be done 

by interpolating three new frames between every two consecutive original frames like in 

25 Hz to 100 Hz conversion. FRC for 1:4 conversion ratio is illustrated in Figure 1.1. In 

this figure, F(t-1), F(t), F(t+1) are the original frames and the dashed frames are the 

interpolated frames. 

 

 

Figure 1.1 The FRC process 
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FRC can be implemented with simple interpolation techniques or it can be 

implemented with Motion Estimation (ME) based techniques which require more 

hardware resources [1]. The quality of the displayed video depends on the performance 

of the FRC. FRC implemented by simple techniques degrades the quality by creating 

motion judder and motion blur effects which are the results of the sample and hold 

nature of the displays [2]. ME based FRC is necessary in order to overcome these 

artifacts. ME is computationally the most intensive part of video compression and video 

enhancement systems [3, 4]. Among the Block Matching (BM) ME algorithms, Full 

Search (FS) achieves the best performance since it searches all search locations in a 

given search range. However, its computational complexity, especially for the recently 

available High Definition Television (HDTV) video formats (1920x1080 pixels), is 

very high, while the Peak Signal-to-Noise-Ratio (PSNR) obtained by fast search 

algorithms is low.  

 

ME for FRC requires finding the true motion among consecutive frames. In order 

to find the true motion, Vector Median Filter (VMF) is used to smooth the Motion 

Vector Field (MVF) obtained by BM ME. The output of the VMF is chosen as the 

vector that minimizes the sum of distances to all the other vectors [5]. If the current 

MV, which is in the middle of the VMF window, is not correlated with its neighboring 

MVs, then the current MV will be replaced with the output of the VMF. However, 

VMFs are difficult to implement in real-time due to their high computational 

complexity [6]. ME based FRC requires interpolation of frames using the motion 

vectors found by ME. Frame interpolation algorithms also have high computational 

complexity.  

 

Therefore, in this thesis, we proposed new ME algorithms for real-time processing 

of HD video and designed efficient hardware architectures for implementing these ME 

algorithms. These algorithms perform very close to FS by searching much fewer search 

locations than the FS algorithm. In addition, we proposed several techniques to reduce 

the computational complexity of VMFs by using data reuse methodology and by 

exploiting the spatial correlations in the vector field. In addition, we designed an 

efficient VMF hardware including the computation reduction techniques exploiting the 

spatial correlations in the motion vector field. Finally, we proposed a low cost hardware 
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architecture for real-time implementation of frame interpolation algorithms. The 

proposed hardware architecture is reconfigurable and it allows adaptive selection of 

frame interpolation algorithms for each Macroblock (MB).  

 

We first proposed a ME algorithm, which is a generalization of the Hexagon-

Based Search (HEXBS) algorithm, and two hardware architectures for its 

implementation [7]. These architectures are named as the generic architecture and the 

systolic architecture. The simulation results showed that the Mean Absolute Difference 

(MAD) performances obtained by the proposed HEXBS algorithm are better than the 

MAD performances obtained by other fast search algorithms. Both hardware 

architectures are implemented in Very High Speed Integrated Circuit Hardware 

Description Language (VHDL). They can run at 144 MHz on a Xilinx XC3S1200E-5 

FPGA and process 25 1920x1080 frames per second (fps) for a (±32,±16) pixel search 

range. Various fast search algorithms can be implemented using the generic hardware 

architecture. The main disadvantage of the generic architecture is that it uses 80 Block 

Random Access Memories (BRAMs). The systolic architecture is designed to 

efficiently implement proposed HEXBS algorithm. The systolic architecture uses only 

16 Block RAMs. A novel data-reuse method is used in this architecture to reduce the 

number of internal memory accesses, and it has a low control overhead because of its 

regular data flow. 

 

We proposed Dynamically Variable Step Search (DVSS) ME algorithm and a 

reconfigurable systolic ME hardware architecture for its implementation [8, 9]. This 

architecture is implemented in VHDL and mapped to a Xilinx XC3S1200E-5 FPGA. 

We then proposed Recursive Dynamically Variable Step Search (RDVSS) ME 

algorithm [10]. The proposed DVSS and RDVSS algorithms work on a search range of 

(±48, ±24) and (±64, ±64) pixels, respectively. An early search termination mechanism 

based on a Sum of Absolute Differences (SAD) threshold is implemented in these 

algorithms in order to trade off speed and quality. DVSS algorithm implemented by the 

proposed reconfigurable systolic ME hardware architecture requires 467 clock cycles to 

find the Motion Vector (MV) of a 16x16 MB on the average when the early search 

termination threshold is set to 256. For this threshold value, the proposed hardware on 

the average can process 34.3 HD fps. The FS algorithm checks 16641 search locations 

in a search range of (±64, ±64) pixels, whereas the RDVSS algorithm on the average 
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checks only 418 search locations when the early search termination threshold is set to 

1024. On the other hand, MAD performance of the RDVSS algorithm on the average is 

only 14.7% lower than MAD performance of the FS algorithm when the early search 

termination threshold is set to 256. Performing that close to the FS algorithm for such a 

large search range is very important.  

 

We proposed two techniques to reduce the computational complexity of 1-norm 

VMF for FRC by using data reuse methodology and by exploiting spatial correlations in 

the MVF [11]. Since 3x3 window size is used in FRC papers in the literature, we also 

used this window size. However, the proposed techniques are scalable to any window 

size. Data reuse technique stores the sum of 1-norm distances between the vectors in a 

filtering window and uses them for the next filtering window instead of computing them 

again. The spatial correlations based techniques check the spatial correlations between 

neighboring MVs and avoid calculating the previously calculated values again. In 

addition, we proposed an efficient VMF hardware architecture implementing the 

proposed computation reduction techniques exploiting the spatial correlations in the 

MVF. To the best of our knowledge, a VMF hardware implementing these techniques is 

not presented in the literature. The proposed hardware is implemented for a 3x3 window 

size, but it is scalable to any window size. The proposed hardware is implemented in 

Verilog HDL, and mapped to a low cost Xilinx XC3S400A-5 FPGA. It consumes 1426 

slices and works at 145 MHz. It can process more than 94 HD fps.  

 

We finally proposed a low cost reconfigurable hardware architecture for the 

interpolation of HD frames [12]. The proposed hardware architecture implements 

Linear Interpolation (LI), Static Median Filtering (SMF), Dynamic Median Filtering 

(DMF), Soft Switching (SS) and Cascaded Median Filtering (CMF) frame interpolation 

algorithms and it allows adaptive selection of these algorithms for each MB. This 

hardware architecture is implemented in VHDL and mapped to a low cost Xilinx 

XC3SD3400A-4 FPGA. The implementation results show that the proposed hardware 

can run at 101 MHz on this FPGA and it consumes 32 BRAMs and 15592 slices. 

 

The rest of this thesis is organized as follows. Chapter 2 explains FS ME 

algorithm and various fast search ME algorithms. Chapter 3 explains proposed HEXBS 

ME algorithm, and the generic and systolic hardware architectures proposed for its 
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implementation. Chapter 4 explains proposed DVSS and RDVSS ME algorithms, and 

the proposed reconfigurable systolic hardware architecture. Chapter 5 explains VMFs, 

the proposed techniques to reduce their computational complexity, and the proposed 

VMF hardware architecture. Chapter 6 presents the proposed hardware architecture for 

frame interpolation. Chapter 7 concludes the thesis. 

 

 

 



 

 20 

 

 

 

 

 

 

CHAPTER 2 

 

 

MOTION ESTIMATION ALGORITHMS 

 

 

 

 

ME is the part that has the highest computational complexity in video 

compression and video enhancement systems. ME is used to reduce the bit-rate in video 

compression systems by exploiting the temporal redundancy between successive 

frames, and it is used to enhance the quality of displayed images in video enhancement 

systems by extracting the true motion information. ME is used in video compression 

standards such as ITU-T H.261/263/264 and ISO MPEG-1/2/4 [3,4], and in video 

enhancement algorithms such as FRC, de-interlacing, de-noising and super resolution. 

 

ME examines the movement of objects in an image sequence to obtain MVs 

representing the estimated motion [3,4]. Many different ME techniques are proposed in 

the literature. These techniques can be categorized as pixel based ME, object based ME, 

and block based ME. Pixel based techniques require very high computational 

complexity and they are not suitable for real-time applications. Object based techniques 

reduce the computational complexity significantly but they cannot obtain high quality 

results. Block based ME uses BM which is suitable for hardware implementation and 

can obtain high quality results. Therefore, BM is the most preferred technique.   

 

BM partitions current frame into non-overlapping NxN rectangular blocks and 

tries to find a block from a reference frame in a given search range that best matches the 

current block with respect to a Block Distortion Measure (BDM) [3,4]. SAD is the most 

preferred BDM because of its suitability for hardware implementation. An SAD value is 

computed with three operations; difference, absolute value, and addition. For NxN 

block size, the SAD value of a search location defined by the MV d(dx,dy) is calculated 

as in (2.1), where c(x,y) and r(x,y) represent current and reference frames, respectively. 
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The coordinates (i,j) denote the offset locations of current and reference blocks. Since a 

MV shows the relative motion of the current block in the reference frame, MVs are 

specified in relative coordinates. If the location of the best matching block in the 

reference frame is (x+u, y+v), then the corresponding MV is (u,v). Figure 2.1 shows the 

BM ME process and Figure 2.2 shows a BM ME example and the resulting MVF. 
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Figure 2.1 BM ME 
 

 

 

Figure 2.2 A BM ME example and the resulting MVF 

 

In ME, there is a tradeoff between the number of search locations searched and 

the resulting PSNR. The other two commonly used quality metrics are MAD and Mean 
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Square Error (MSE). The formulas used to calculate the MAD, MSE, and PSNR are 

given in (2.2), (2.3), and (2.4), respectively. In these equations, the coordinates (u,v) 

denote the x and y components of the MV.     
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PSNR (u,v) = 




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
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255
log10      (2.4) 

 

The FS algorithm gives the best PSNR results, because it finds the reference block 

that best matches the current block by computing the SAD values for all search 

locations in a given search range. The computational complexity of the FS algorithm is 

very high, especially for the recently available consumer electronic devices such as HD 

digital video broadcasting and high resolution & high frame rate flat panel displays. 

Because of the large frame sizes in these applications, there are large motions between 

successive frames and this requires a larger search range to find the best MV.  

 

Several fast search ME algorithms are developed for low bit-rate applications like 

video conferencing and video phone, which use small frame sizes and require small 

search ranges. These algorithms try to approach the PSNR of the FS algorithm by 

computing the SAD values for fewer search locations in a given search range. The most 

successful fast search ME algorithms are Three Step Search (TSS) [13], Two 

Dimensional Logarithmic Search (2D-LOGS) [14], New Three Step Search (NTSS) 

[15], Four Step Search (FSS) [16], Block-Based Gradient Descent Search (BBGDS) 

[17], Diamond Search (DS) [18], HEXBS [19], Adaptive Rood Pattern Search (ARPS) 

[20], Adaptive Dual Cross Search (ADCS) [21] and Flexible Triangle Search (FTS) 

[22]. 

 



 

 23 

Fast search ME algorithms perform very well for low bit-rate applications such as 

video phone and video conferencing [23]. In most of the low bit-rate videos, fast and 

complex movements are seldom, and nearly 80% of the blocks can be regarded as 

stationary or quasi-stationary, therefore most of the MVs can be found in a search range 

of (±5,±5) pixels. However, fast search ME algorithms do not produce satisfactory 

results for the recently available consumer electronic devices such as HD digital video 

broadcasting and high resolution & high frame rate flat panel displays, because of the 

larger movements between successive frames in these videos. 

 

ME for FRC requires finding the true motion among consecutive frames. The true 

motion is the projection of the physical three dimensional motion on to the two 

dimensional image space. In order to minimize the amount of information to be 

transmitted, block based video coding standards encode the displaced difference block 

instead of the original block. Although BM ME algorithms finding the minimal residue 

are good at removing temporal redundancies, they are not sufficient alone for finding 

the true motion. 

 

 

 

2.1 The Full Search Algorithm 

 

 

 

Since the FS algorithm computes the SAD value for each search location in the 

search range, it is computationally the most expensive BM ME algorithm. There are (2p 

+ 1)
2
 search locations in a (±p, ±p) search window. Figure 2.3 shows the search 

locations of the FS algorithm for (±4, ±4) search range.  For this search range, there are 

(2x4 + 1)
2
 = 81 search locations. Calculating the SAD value for a search location for an 

MxN MB requires (2p+1)
2
 x MN x 3 operations. The operations per second required for 

calculating the SAD values for an IxJ frame size and an F fps frame rate is given in 

(2.5). For a 16x16 MB size, 1920x1080 pixels frame size, and 25 fps frame rate, the FS 

algorithm requires 34.99 GOPS (Giga Operations Per Second) and 149.45 GOPS when 

p is equal to 7 and 15, respectively. 

 

       (2.5) 
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Figure 2.3 Search locations of the FS algorithm for (±4, ±4) search range 

 

 

 

 

2.2 Fast Search Motion Estimation Algorithms 

 

 

 

TSS is one of the oldest fast search ME algorithms [13]. As shown in Figure 2.4, 

TSS searches the best MV in a coarse to fine search pattern. In the first step, nine search 

locations including the origin are evaluated and the search location giving the minimum 

SAD is selected as the center of the next search step. In the second step, the distance 

between search locations is reduced by half. The third step searches the area centered at 

the location giving the minimum SAD in the second step and the distance between 

search locations is shortened by half again. 
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Figure 2.4 The TSS algorithm 

 

The 2D-LOGS [14] algorithm is similar to the TSS algorithm. As shown in Figure 

2.5, the 2D-LOGS algorithm searches the MV by successively moving towards the 

location giving the minimum SAD using a shrinking step size. This algorithm starts 

with a pre-determined step size “s” and checks five search locations in the first step. If 

the minimum SAD is found at the center search location, the step size is reduced to 

“s/2”. Otherwise, the search center is set to the search location giving the minimum 

SAD and the search continues with step size “s”. Whenever the step size becomes equal 

to one, as the final search step, the 2D-LOGS algorithm checks the neighboring search 

locations of the search location giving the minimum SAD in the previous step.  

 

 

Figure 2.5 The 2D-LOGS algorithm 
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The NTSS algorithm improves TSS by using a center biased search scheme and 

reduces the computational complexity by using an early termination technique [15]. As 

shown in Figure 2.6, NTSS uses eight additional search locations around the center 

search location in the first step. Therefore, better results are obtained for quasi-

stationary blocks. In addition, an early termination technique is used for stationary and 

quasi-stationary blocks. If the minimum SAD in the first step is found at the center 

search location, the search is finished. This is called as the first step stop. If the 

minimum SAD in the first step is found at one of the first tier neighbors of the search 

center, then the second step is performed for the first tier neighbors of this search 

location and the search is finished. This is called as the second step stop. The second 

step stop technique uses three or five new search locations in the second step. Figure 2.7 

(a) and (b) show example cases where three and five additional search locations are 

used. If the minimum SAD after the first step is found at one of the original eight search 

locations of the TSS algorithm, the search continues as the TSS algorithm. 

 

 

Figure 2.6 Search locations of the first step of the NTSS algorithm 
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Figure 2.7 Search locations of the first and second steps of the NTSS algorithm 

 

The FSS algorithm also uses a center biased search scheme and an early 

termination technique [16]. The FSS algorithm performs better than the TSS algorithm 

and obtains similar results with the NTSS algorithm. When compared with the NTSS 

algorithm, the FSS algorithm reduces the worst case computational complexity from 33 

to 27 search locations. As shown in Figure 2.8, step sizes for the first, second, and third 

steps of the FSS algorithm are two pixels and step size for the last step is one pixel. In 

the first step, nine search locations are checked. If the minimum SAD is found at the 

center search location, the FSS algorithm continues with the fourth step. If the 

minimum SAD is found at one of the eight neighboring search locations of the center 

search location, the FSS moves the search center to this location and continues with the 

second step. If the minimum SAD in the second step is found at the center search 

location, the FSS algorithm continues with the fourth step. Otherwise, it continues with 

third step. After the third step, the FSS algorithm continues with the fourth step. In the 

second and third steps, three or five new search locations are checked based on the 

search location giving the minimum SAD in the previous step. 
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Figure 2.8 The FSS algorithm 

 

As shown in Figure 2.9, the BBGDS algorithm starts by performing FS in a 

search range of (±1, ±1) pixels around the center search location [17]. If the minimum 

SAD is found at the center search location, the search finishes. If the minimum SAD is 

found at one of the other search locations, it moves the center search location to this 

location and performs FS. Therefore, in each step, three or five new search locations are 

checked depending on the search location giving the minimum SAD in the previous 

step.   

 

 

Figure 2.9 The BBGDS algorithm 
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The DS algorithm is similar to the FSS algorithm. In the DS algorithm, the search 

pattern is changed from a square to a diamond, and there is no limit on the number of 

steps performed [18]. The DS algorithm obtains better PSNR results than TSS, 2D-

LOGS, NTSS and FSS algorithms. Figure 2.10 shows the two different search patterns, 

the Large Diamond Search Pattern (LDSP) and the Small Diamond Search Pattern 

(SDSP), used by the DS algorithm. LDSP is used in all the steps except the last step, 

SDSP is used in the last step. As shown in Figure 2.11, the number of search locations 

checked in the next step, which is either three or five, depends on the position of the 

search location giving the minimum SAD in the current step. If in the current step the 

minimum SAD is found at the center search location, then the DS algorithm performs 

the last step. 

 

 

Figure 2.10 The DS algorithm (a) LDSP, (b) SDSP 

 

 

Figure 2.11 Search locations of the DS algorithm for the next step 

 

The HEXBS algorithm uses two search patterns, coarse pattern and fine pattern 

[19]. Figure 2.12 (a) and (b) show these coarse and fine search patterns. Coarse search 

pattern is used in all the steps except the last step, fine search pattern is used in the last 

step. If the search location giving the minimum SAD is found at the center of the 

hexagon, the algorithm performs the fine search pattern. As shown in Figure 2.13, when 
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the coarse search pattern is used in the next step, only three new search locations are 

checked. When the fine search pattern is used in the next step, four neighboring search 

locations of the center search location are checked. 

 

 

Figure 2.12 The HEXBS algorithm (a) coarse pattern, (b) fine pattern 

 

 

Figure 2.13 Search locations of the HEXBS algorithm 

 

The ARPS algorithm uses a rood shaped search pattern and the MV of the left 

neighboring MB which is called as predicted MV [20]. The predicted MV and the 

search pattern of the ARPS algorithm are shown in Figure 2.14. The initial length of the 

rood is determined as the maximum of the absolute values of x and y coordinates of the 

predicted MV. The four arms of the rood have equal length. In the first step, the ARPS 

algorithm checks the search location pointed by the predicted MV, search locations on 

the rood pattern, and the center search location. The search continues by forming a new 

rood pattern around the search location giving the minimum SAD in the current step, 

and the length of the rood is reduced by half in each step. The ARPS algorithm finishes 

if the minimum SAD obtained in a step is less than a pre-determined threshold or after 

the step with rood length one. 
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Figure 2.14 The ARPS algorithm 

 

As shown in Figure 2.15, in the first search step, the ADCS algorithm checks the 

search locations pointed by the MVs of the left neighboring MB and the upper 

neighboring MB, and the center search location [21]. The search location giving the 

minimum SAD is selected as the starting location for the dual cross search. If the 

minimum SAD is below a threshold value, the search finishes. Otherwise, a 2x2 cross 

pattern around the starting location is searched. If the minimum SAD is found at the 

cross center, the search finishes and the cross center is selected as the MV. Otherwise, a 

4x4 cross pattern around the search location giving the minimum SAD is searched. This 

4x4 cross search pattern is repeated until the minimum SAD is found at the cross center. 

In the last search step, the ADCS algorithm checks three intermediate search locations 

between the search location on the current 4x4 cross pattern giving the minimum SAD 

and the current 4x4 cross center. 
 

 

Figure 2.15 The ADCS algorithm 
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The FTS algorithm searches the search locations on different size triangles [22]. 

The triangles with larger sizes are used to perform coarse search and the ones with 

smaller sizes are used to perform fine search. The level of a triangle shows its size, and 

the FTS algorithm switches between triangles with different levels. Figure 2.16 shows 

the search locations forming level 0, 1, and 2 triangles.  

 

 

Figure 2.16 The FTS algorithm 

 

 

 

 

 

  

2.3 The Three Dimensional Recursive Search Algorithm 

 

 

 

The 3D-RS algorithm is one of the most popular true ME algorithms in the 

literature [24]. The 3D-RS algorithm exploits the correlation of the MVs of neighboring 

MBs to find the true motion of the current MB. Figure 2.17 shows the neighboring MBs 

used by the 3D-RS algorithm. 
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Figure 2.17 Spatial and temporal neighbors for the 3D-RS algorithm 

 

The 3D-RS algorithm is based on two assumptions. The first assumption is that 

objects are larger than MBs, and the second assumption is that objects have inertia. 

Therefore, it uses a candidate set that contains the MVs of the spatial and temporal 

neighboring MBs shown as “S” and “T” in Figure 2.17 [24]. When the spatial 

neighboring MB is not available, temporal neighboring MB is used. At initialization, all 

the MVs are set to zero. In addition to the MVs of the spatial and temporal neighboring 

MBs, an additional update set is used for permitting small deviations from the original 

candidate set [24]. A pseudo random update vector is added to the MV of one of the 

spatial neighboring MBs, and this is used as an additional candidate [25]. The candidate 

MV set of the 3D-RS algorithm is shown in Figure 2.18. The random update vector, 

shown as U


(r,t), is used for obtaining the candidate MV C3, and it is selected from the 

Update Set ( SU


). The computational complexity of the 3D-RS algorithm is low, 

because it checks a few search locations for each MB. The main drawback of the 3D-RS 

algorithm is its recursive nature. It converges to the true motion a few frames after the 

initialization.  
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Figure 2.18 Candidate MV set 
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CHAPTER 3 

 

 

HEXAGON BASED MOTION ESTIMATON ALGORITHM AND     

HARDWARE ARHITECTURES FOR ITS IMPLEMENTATION 

 

 

 

 

Since the computational complexity of the FS algorithm is too high and the 

performances of fast search algorithms are not enough for the recently available HD 

video formats, we proposed an ME algorithm [7], which is a generalization of the 

HEXBS algorithm [19], and two hardware architectures for its implementation [7]. 

These architectures are named as the generic architecture and the systolic architecture. 

Many hardware architectures for the FS algorithm are proposed in the literature. 

However, only a small number of hardware architectures for fast search ME algorithms 

are proposed. To the best of our knowledge, no hardware architecture is presented for 

the HEXBS ME algorithm in the literature.   

 

 

 

3.1. Hexagon Based Motion Estimation Algorithm 

 

 

 

The proposed HEXBS ME algorithm consists of main and fine search patterns [7]. 

The search location of the main search pattern giving the minimum SAD is selected as 

the center for the fine search pattern. Main search patterns consist of all the search 

locations that can be checked by the HEXBS algorithm during several iterations in 

horizontal and vertical directions. For example, 32x16 main search pattern consists of 

all the search locations that can be checked by the HEXBS algorithm during 16 

iterations in the horizontal direction and 8 iterations in the vertical direction. Figure 3.1 

shows some of the search locations of 32x16 pattern. The numbers in Figure 3.1 

represent iterations in which these search locations would be checked by the HEXBS 

algorithm.  
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Figure 3.1 Some of the search locations of 32x16 pattern 

 

We also proposed 10x9, 12x12 and 14x15 main search patterns. The difference 

between these patterns and 32x16 pattern is that these patterns have a gap of two pixels 

in the vertical direction compared to the one pixel gap of 32x16 pattern, and these 

patterns have less computational complexity than 32x16 pattern. Figure 3.2 shows the 

search locations of 10x9 pattern. 12x12 pattern adds one more line in the upper and 

lower boundaries of the search range and two more pixels in the horizontal direction. 

14x15 pattern enhances the search range to ±14 pixels in the horizontal direction and to 

±15 pixels in the vertical direction. 12x12 and 14x15 search patterns are shown in 

Figures 3.3 and 3.4, respectively. In these figures, “o” represents the center search 

location, and “x” represents the other search locations. Search patterns 10x9, 12x12, 

14x15, and 32x16 have 73, 113, 159, and 553 search locations, respectively. In order to 

determine the trade-off between having one pixel gap and two pixels gap between 

search locations in the vertical direction, we also implemented 32x16(Y) pattern which 

has two pixels gap in the vertical direction. 

 

We used the three fine search patterns shown in Figure 3.5. Tables 3.1, 3.2, 3.3, 

3.4, and 3.5 show the performances of different combinations of fine search patterns 

and main search patterns for various Frame Distances (FD). FD is the gap between the 
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frames for which the ME is done. Since increasing FD is identical to lowering the frame 

rate of the video, large movements between successive frames are introduced by 

increasing FD. The results show that “Double Cross” fine search pattern improves the 

performance up to 1% over other fine search patterns. Therefore, we used this fine 

search pattern with our main search patterns in the rest of the thesis. 
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 Figure 3.2 Search locations of 10x9 pattern  
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Figure 3.3 Search locations of 12x12 pattern 
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We compared the performance of our algorithm with the performances of FS, 

DS [18], and HEXBS [19] algorithms based on the MAD metric. We used “Flowers”, 

“Mobile Calendar”, “Table Tennis”, “Susie”, “Spider”, and “Irobot” videos for the 

simulations. Each video has 100 frames. “Spider” and “Irobot” videos, which contain 

large motion between frames, are taken from “Spiderman 2” and “Irobot” movies, 

respectively. The resolution of these two videos is 720x576 pixels and their frame rate 

is 25 fps. The other videos are the up-scaled versions of the widely used Common 

Intermediate Format (CIF) resolution benchmark videos, and they have a resolution of 

704x480 pixels and a frame rate of 29 fps. The simulations are done using 8 bit 

luminance data for 16x16 MB size with Matlab.  
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Figure 3.4 Search locations of 14x15 pattern 
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Figure 3.5. Fine search patterns: (a) plus, (b) side, (c) double cross 
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Table 3.1 MAD results for 32x16 pattern (FD = 1) 

Algorithm 
Flowers Mobile 

Calendar 

Table 

Tennis 

Susie 

Plus 6.8377 11.3642 4.0670 3.0709 

Side 6.8780 11.5426 4.0690 3.0823 

Double Cross 6.8295 11.3217 4.0650 3.0612 

Imp. of Double Cross over Plus 0.12% 0.37% 0.05% 0.32% 

Imp. of Double Cross over Side 0.71% 1.91% 0.10% 0.68% 

 

Table 3.2 MAD results for 32x16 pattern (FD = 2) 

Algorithm 
Flowers Mobile 

Calendar 

Table 

Tennis 

Susie 

Plus 8.5085 12.0274 4.4561 3.6617 

Side 8.5108 12.1349 4.4513 3.6742 

Double Cross 8.4789 11.9386 4.4449 3.6496 

Imp. of Double Cross over Plus 0.38% 0.74% 0.25% 0.33% 

Imp. of Double Cross over Side 0.37% 1.62% 0.14% 0.67% 

 

Table 3.3 MAD results for 32x16 pattern (FD = 3) 

Algorithm 
Flowers Mobile 

Calendar 

Table 

Tennis 

Susie 

Plus 9.6198 12.7159 4.8755 4.3242 

Side 9.6147 12.8476 4.8701 4.3348 

Double Cross 9.5820 12.6338 4.8633 4.3112 

Imp. of Double Cross over Plus 0.39% 0.65% 0.25% 0.30% 

Imp. of Double Cross over Side 0.34% 1.66% 0.14% 0.54% 

 

Table 3.4 MAD results for 10x9 pattern (FD = 1)  

Algorithm 
Flowers Mobile 

Calendar 

Table 

Tennis 

Susie 

Plus 6.7892 11.5170 4.2255 3.5101 

Side 6.8510 11.6879 4.2188 3.5070 

Double Cross 6.7747 11.4531 4.2101 3.4742 

Imp. of Double Cross over Plus 0.21% 0.55% 0.36% 1.02% 

Imp. of Double Cross over Side 1.11% 2.00% 0.21% 0.94% 

 

Table 3.5 MAD results for 10x9 pattern (FD = 2) 

Algorithm 
Flowers Mobile 

Calendar 

Table 

Tennis 

Susie 

Plus 8.8149 13.1091 4.7517 4.6164 

Side 8.8111 13.2902 4.7455 4.5996 

Double Cross 8.7374 12.8067 4.7380 4.5742 

Imp. of Double Cross over Plus 0.88% 2.31% 0.29% 0.91% 

Imp. of Double Cross over Side 0.84% 3.64% 0.16% 0.55% 
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The simulation results show that proposed search patterns outperform the DS and 

the HEXBS algorithms. The reason for this is that our patterns are able to find the 

search location giving the globally minimum SAD by checking more search locations in 

the search range than the DS and the HEXBS algorithms. The performance difference 

between proposed patterns and fast search algorithms increases with increased 

amplitude of motion in the benchmark videos. In order to show this, the performances 

of the proposed patterns are analyzed for different FDs. The simulation results of 10x9, 

12x12, 14x15, 32x16 and 32x16(Y) patterns for different FDs are shown in Tables 3.6, 

3.7, and 3.8. As shown in Table 3.6, when the FD is one, 10x9, 12x12, 14x15, 

32x16(Y), and 32x16 patterns improve the performance of the HEXBS algorithm on the 

average by 2.76%, 3.35%, 4.21%, 8.27%, and 10.11%, respectively. For videos having 

almost no motion in the vertical direction, DS and HEXBS algorithms obtain 1% better 

results, because DS and HEXBS algorithms have only one pixel gap between search 

locations in the vertical direction, whereas proposed patterns, except 32x16 pattern, 

have two pixels gap between search locations in the vertical direction. As shown in 

Table 3.7, when the FD is two, 10x9, 12x12, 14x15, 32x16(Y), and 32x16 patterns 

improve the performance of the HEXBS algorithm on the average by 7.46%, 8.12%, 

9.19%, 8.20%, and 9.89%, respectively. When the FD is three, 12x12, 14x15, 

32x16(Y), and 32x16 patterns improve the performance of the HEXBS algorithm by 

11.61%, 12.94%, 14.44%, 19.72%, and 22.43%, respectively. The performance 

improvements for different FDs are also shown in Figures 3.6, 3.7, and 3.8. Figure 3.6 

and Figure 3.7 show the improvements of 10x9 pattern over the HEXBS algorithm 

frame by frame for “Flowers” video sequence when the FD is one and two, respectively. 

Figure 3.8 shows the improvement of 12x12 pattern over the HEXBS algorithm for the 

“Flowers” video sequence when the FD is three. 
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Table 3.6 MAD results comparison (FD = 1) 

Algorithm Search 

Range 

Flowers Mobile 

Calendar 

Table 

Tennis 

Susie Spiderman Irobot 

FS ±10,±9 6.59 10.95 4.07 3.17 9.29 7.58 

DS ±10,±9 6.68 11.05 4.16 3.33 9.72 8.12 

HEXBS ±10,±9 6.87 11.40 4.17 3.43 10.24 8.45 

10x9 ±10,±9 6.77 11.45 4.21 3.47 9.34 7.69 

Improvement 

over HEXBS 

 
1.39% -0.45% -0.78% -1.26% 8.73%  8.90% 

FS ±12,±12 6.59 10.94 4.05 3.07 8.27 7.14 

DS ±12,±12 6.68 11.05 4.15 3.26 8.98 7.79 

HEXBS ±12,±12 6.86 11.40 4.16 3.32 9.33 8.04 

12x12 ±12,±12 6.77 11.46 4.19 3.35 8.30 7.24 

Improvement 

over HEXBS 

 
1.33% -0.54% -0.66% -0.95% 11.04% 9.90% 

FS ±14,±15 6.58 10.94 4.04 3.02 7.43 6.82 

DS ±14,±15 6.68 11.05 4.15 3.23 8.46 7.57 

HEXBS ±14,±15 6.86 11.40 4.15 3.28 8.80 7.82 

14x15 ±14,±15 6.77 11.46 4.18 3.32 7.48 6.93 

Improvement 

over HEXBS 

 
1.32% -0.59% -0.61% -1.25% 14.99% 11.42% 

FS ±32,±16 6.58 10.86 4.03 2.96 5.43 5.66 

DS ±32,±16 6.68 11.05 4.14 3.20 7.65 6.97 

HEXBS ±32,±16 6.86 11.40 4.15 3.23 7.95 7.21 

32x16 ±32,±16 6.82 11.32 4.06 3.06 5.47 5.72 

32x16(Y) ±32,±16 6.78 11.44 4.17 3.26 5.53 5.79 

32x16’s 

Improvement 

over HEXBS 

 

0.58% 0.7% 2.09% 5.43% 31.23% 20.62% 

32x16(Y)’s 

Improvement 

over HEXBS 

 

1.27% -0.42% -0.54% -0.82% 30.46% 19.67% 

 

 
Figure 3.6 Improvement of the 10x9 pattern over HEXBS (FD = 1) 
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Table 3.7 MAD results comparison (FD = 2) 

Algorithm Search 

Range 

Flowers Mobile 

Calendar 

Table 

Tennis 

Susie Spiderman Irobot 

FS ±10,±9 8.41 11.29 4.64 4.33 13.22 12.05 

DS ±10,±9 9.82 12.64 4.82 4.62 13.62 12.80 

HEXBS ±10,±9 10.36 13.45 4.89 4.84 14.26 13.30 

10x9 ±10,±9 8.73 12.80 4.73 4.57 13.27 12.18 

Improvement 

over HEXBS 

 
15.72% 4.82% 3.22% 5.60% 6.94% 8.43% 

FS ±12,±12 8.33 11.26 4.54 4.08 12.07 11.14 

DS ±12,±12 9.79 12.64 4.77 4.43 12.74 12.20 

HEXBS ±12,±12 10.33 13.44 4.81 4.59 13.16 12.55 

12x12 ±12,±12 8.67 12.86 4.63 4.31 12.10 11.25 

Improvement 

over HEXBS 

 
16.10% 4.31% 3.78% 6.12% 8.09% 10.34% 

FS ±14,±15 8.32 11.24 4.49 3.91 11.12 10.41 

DS ±14,±15 9.79 12.63 4.75 4.31 12.10 11.80 

HEXBS ±14,±15 10.33 13.44 4.78 4.46 12.56 12.14 

14x15 ±14,±15 8.66 12.90 4.59 4.17 11.16 10.55 

Improvement 

over HEXBS 

 
16.11% 4.04% 4.06% 6.62% 11.16% 13.12% 

FS ±32,±16 8.31 11.12 4.41 3.55 8.71 8.41 

DS ±32,±16 9.79 12.62 4.73 4.14 11.07 10.97 

HEXBS ±32,±16 10.33 13.43 4.76 4.27 11.47 11.26 

32x16 ±32,±16 8.47 11.93 4.44 3.64 8.72 8.49 

32x16(Y) ±32,±16 8.67 12.94 4.53 3.83 8.79 8.57 

32x16’s 

Improvement 

over HEXBS 

 

17.94% 11.17% 6.66% 14.64% 23.97% 24.56% 

32x16(Y)’s 

Improvement 

over HEXBS 

 

16.06% 3.71% 4.76% 10.22% 23.38% 23.82% 

 

 
Figure 3.7 Improvement of the 10x9 pattern over HEXBS (FD = 2) 
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Table 3.8. MAD results comparison (FD = 3) 

Algorithm Search 

Range 

Flowers Mobile 

Calendar 

Table 

Tennis 

Susie Spiderman Irobot 

FS ±10,±9 10.62 12.23 5.25 5.44 16.45 14.98 

DS ±10,±9 14.49 15.69 5.48 5.86 16.84 15.80 

HEXBS ±10,±9 15.16 16.57 5.57 6.15 17.54 16.36 

10x9 ±10,±9 11.03 13.92 5.32 5.63 16.49 15.10 

Improvement 

over HEXBS 

 
27.23% 15.96% 4.51% 8.30% 5.94% 7.71% 

FS ±12,±12 9.88 12.18 5.10 5.07 15.20 13.93 

DS ±12,±12 14.32 15.68 5.40 5.59 15.88 15.09 

HEXBS ±12,±12 15.00 16.54 5.46 5.79 16.33 15.46 

12x12 ±12,±12 10.30 13.94 5.17 5.25 15.22 14.03 

Improvement 

over HEXBS 

 
31.30% 15.76% 5.30% 9.21% 6.79% 9.27% 

FS ±14,±15 9.55 12.14 5.01 4.81 14.15 13.08 

DS ±14,±15 14.27 15.67 5.37 5.41 15.16 14.61 

HEXBS ±14,±15 14.96 16.54 5.41 5.60 15.67 14.98 

14x15 ±14,±15 9.99 13.95 5.09 5.01 14.18 13.20 

Improvement 

over HEXBS 

 
33.21% 15.67% 5.93% 10.51% 9.46% 11.84% 

FS ±32,±16 9.36 12.01 4.83 4.23 11.40 10.22 

DS ±32,±16 14.26 15.67 5.33 5.11 13.94 13.58 

HEXBS ±32,±16 14.94 16.53 5.36 5.31 14.43 13.88 

32x16 ±32,±16 9.58 12.63 4.86 4.31 11.40 10.29 

32x16(Y) ±32,±16 9.85 13.97 4.93 4.45 11.48 10.55 

32x16’s 

Improvement 

over HEXBS  

 35.90% 23.59% 9.41% 18.81% 20.98% 25.87% 

32x16(Y)’s 

Improvement 

over HEXBS 

 34.05% 15.51% 8.16% 16.14% 20.43% 24.03% 

 

 

Figure 3.8 Improvement of the 12x12 pattern over HEXBS (FD = 3) 
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Table 3.9 Total number of search locations for hundred frames (FD = 1)  

Algorithm Search 

Range 

Flowers Mobile 

Calendar 

Table 

Tennis 

Susie Spider Irobot 

DS ±10,±9 2368828 2210984 1794202 2551537 5474507 4954167 

HEXBS ±10,±9 1819199 1723104 1480132 1890779 3228507 2687300 

DS ±12,±12 2376538 2212459 1797994 2587820 6127956 5521728 

HEXBS ±12,±12 1822081 1725384 1481011 1932625 3705149 2868489 

DS ±14,±15 2382128 2213137 1799742 2612773 6640820 6004468 

HEXBS ±14,±15 1823014 1725592 1482769 1953086 4014340 2975468 

DS ±32,±16 2389644 2213295 1801483 2639287 7443832 7494935 

HEXBS ±32,±16 1823591 1725714 1484750 1979635 4556908 3253332 

 

Table 3.10 Total number of search locations for hundred frames (FD = 2) 

Algorithm Search 

Range 

Flowers Mobile 

Calendar 

Table 

Tennis 

Susie Spiderman Irobot 

DS ±10,±9 2839416 2707125 1870785 2972983 5674083 5379456 

HEXBS ±10,±9 2081194 2025332 1507523 2073247 3270665 2847186 

DS ±12,±12 2857585 2713436 1886509 3071880 6431147 6074068 

HEXBS ±12,±12 2094245 2031730 1522287 2159607 3800457 3120219 

DS ±14,±15 2866216 2716244 1896276 3145417 7049596 6652328 

HEXBS ±14,±15 2097620 2034001 1529376 2206610 4160162 3288727 

DS ±32,±16 2875455 2718188 1905789 3256697 8061850 8289404 

HEXBS ±32,±16 2099428 2036426 1538257 2287782 4813062 3686533 

 

Table 3.9 and Table 3.10 show the total number of search locations checked by 

DS and HEXBS algorithms for various benchmark videos for different FDs. For 

example, the HEXBS algorithm checks 4556908 search locations for 100 frames of the 

“Spider” video, when the search range is (±32,±16) pixels and FD is one. On the 

average, 28.1 search calculations are checked to find a MV.  

 

 

 

3.2. Generic Motion Estimation Hardware Architectures 

 

 

 

We proposed the generic hardware architecture for implementing various fast 

search algorithms. We proposed two different implementations of the generic hardware 

architecture, named as the implementation Type I and the implementation Type II, for 

calculating an SAD value, and we designed two different PE architectures for these 

implementations. Figure 3.9 shows the block diagrams of PEI and PEII. In both PEs, the 
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absolute difference between the current pixel and the reference pixel is calculated and 

stored in the SAD register. The difference between PEI and PEII is the multiplexer in the 

PEII. This multiplexer allows zeros to be feed into the adder tree, which is needed for 

the implementation type II.  

 

The block diagrams of the implementation type I and type II for a MB size of 

16x16 pixels are shown in Figure 3.10 and Figure 3.11, respectively. In both 

implementations, the outputs of PEs are added with an adder tree. Implementation type 

I has a 16x16 PEI array, and horizontal shifters are used to align the reference MB read 

from BRAMs with the current MB in the PEI array. In this implementation, the current 

MB is loaded into the current registers of the PEI array only once. In implementation 

type II, smaller horizontal shifters are used to align the current MB, but a 20x16 PEII 

array is used. The advantage of using a larger PE array, which is capable of feeding 

zeros into the adder tree, is that there is no need for shifting the reference data read from 

BRAMs. On the other hand, the current MB has to be aligned and loaded into the 

current registers of the PEII array as many times as the number of search locations. The 

trade-off between these implementation types is shown in Table 3.11. Based on this 

analysis, implementation type I is determined to be better than implementation type II. 

Therefore, it is called as the “16x16 Generic Architecture” and used in the rest of this 

thesis.  
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Figure 3.9 Block diagram of processing elements: (a) PEI , (b) PEII 

 

 

Figure 3.10 Block diagram of the implementation type I 
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Figure 3.11 Block diagram of the implementation type II 

 

Table 3.11 Trade-off between implementation types I and II 

Modules 
Implementation 

Type I 

Implementation 

Type II 

PE 256 PEI 320 PEII 

Horizontal Shifter 128 20:16 128 16:16 

Vertical Shifter 128 16:16 128 16:16 

Adder Tree N 1.25 N 

 

The generic architecture has seven pipeline stages. In order to calculate the SAD 

of a search location for a 16x16 MB in one clock cycle, 256 PEs are used and their 

outputs are added with an adder tree. If MBs are divided into blocks, and a block is 

processed in one clock cycle, smaller number of PEs, adders and shifters can be used. 

The generic architectures for the block sizes of 16x8, 16x6, 16x4, and 16x2, are shown 

in Figures 3.12, 3.13, 3.14, and 3.15 respectively. Area and performance comparison of 

these generic architectures on a Xilinx Spartan 3E FPGA is given in Table 3.12. Area 

comparisons of horizontal and vertical shifters for these generic architectures are given 

in Tables 3.13 and 3.14, respectively. 
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Figure 3.12 16x8 generic architecture 

 

 

Figure 3.13 16x6 generic architecture 

 



 

 49 

 

Figure 3.14 16x4 generic architecture 

 

 

Figure 3.15 16x2 generic architecture 
 

Table 3.12 Comparison of generic architectures for various block sizes 

Block Size 

Number 

of 

BRAMs 

Number of 

PEs 

SAD of a 

16x16 MB 

(Cycles) 

Total PE Array 

Area with Adder 

Tree (LUTs) 

Total 

Area 

(LUTs) 

16x16 80 256 1 6940 31416 

16x8 40 128 2 3463 14675 

16x6 30 96 3 2580 9447 

16x4 20 64 4 1726 6304 

16x2 10 32 8 857 2889 

 

Table 3.13 Comparison of horizontal shifters for various generic architectures 

Block Size 

Number of 

Horizontal 

Shifters 

Number of 20 to 16 

Shifters in a Horizontal 

Shifter 

Total Number of 

20 to 16 Shifters 

Total Area 

(LUTs) 

16x16 16 8 128 14208 

16x8 8 8 64 7104 

16x6 6 8 48 5328 

16x4 4 8 32 3552 

16x2 2 8 16 1776 



 

 50 

 

Table 3.14 Comparison of vertical shifters for various generic architectures 

Block Size 

Number of 128bit 

lines in a Vertical 

Shifter 

Type of  

Shifters 

Number of 

Shifters 

Total Area 

(LUTs) 

16x16 16 16 to16 128 10268 

16x8 8 8 to 8 128 4108 

16x6 6 6 to 6 128 1539 

16x4 4 4 to 4 128 1026 

16x2 2 2 to 2 128 256 

 

The data layout in BRAMs is shown in Figure 3.16. Five BRAMs are used to 

store one line of the search window. This is done to avoid data collisions that can occur 

while accessing the reference MB for a search location. Since the maximum word 

length of BRAMs in the state of the art FPGAs is 32 bits, each memory location stores 

four pixels. In Figure 3.16, each box represents a pixel and the number in the box 

indicates the BRAM storing that pixel. Dark shaded area shows the reference MB for an 

example search location for 16x16 MB size. In order to access the reference MB for an 

arbitrary search location, outputs of the BRAMs should be aligned. This is done by 

horizontal and vertical shifters. For the example shown in Figure 3.16, in order to align 

the reference MB with the current MB, horizontal shifters should rotate their 160 bit 

input ten bytes to left and clip the least significant four bytes, and the vertical shifter 

should rotate its inputs to left by six lines. Figure 3.17 and Figure 3.18 show these 

horizontal and vertical rotate operations.  
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Figure 3.16 Data layout in BRAMs 

 

 

 

Figure 3.17 Ten byte rotate left operation done by the horizontal shifter 



 

 52 

 

Figure 3.18 Six line rotate left operation done by the vertical shifter 

 

 

In the proposed generic hardware architecture, there are three pipeline stages 

named as SHFT, SAD, ADD. Reference MB is read from the BRAMs and aligned by 

shifters in the SHFT stage. The absolute differences between corresponding current and 

reference pixels are calculated in the SAD stage. The SAD for a 16x16 MB is calculated 

by adding these absolute differences in the ADD stage. The pipelining in the proposed 

generic hardware architecture is shown in Table 3.15. “a1” to “a7” represent the seven 

search locations in the first iteration of the HEXBS algorithm. Similarly, “b1”, “b2”, 

and “b3” represent the three search locations in the next iteration. The pipeline has to 

stall between iterations, because the next iteration is dependent on the data obtained 

from the previous iteration. The number of stall cycles is equal to the number of 

pipeline stages minus one. Therefore, the three stage pipelined datapath must be stalled 

for two cycles between iterations. In the HEXBS algorithm, the number of search 

iterations is limited by the search window size. For a search window of (±32,±16) 

pixels, if the search continues horizontally, the datapath will be stalled 16 times, i.e. 32 

cycles.  
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Table 3.15 Pipelining in the generic hardware architecture 

Clock 

cycles 

SAD 

a1 

SAD 

a2 

SAD 

a3 

SAD 

a4 

SAD 

a5 

SAD 

a6 

SAD 

a7 

SAD 

b1 

SAD 

b2 

SAD 

b3 

SAD 

c1 

1 SHFT           

2 SAD SHFT          

3 ADD SAD SHFT         

4  ADD SAD SHFT        

5   ADD SAD SHFT       

6    ADD SAD SHFT      

7     ADD SAD SHFT     

8      ADD SAD stall    

9       ADD stall    

10        SHFT    

11        SAD SHFT   

12        ADD SAD SHFT  

13         ADD SAD stall 

14          ADD stall 

15           SHFT 

16           SAD 

17           ADD 

 

The proposed generic hardware architecture is implemented in VHDL, verified 

with Register Transfer Level (RTL) simulations using Mentor Graphics Modelsim 6.3c 

and mapped to Xilinx XC3S1200-5 FPGA using Xilinx ISE 9.2.04. The proposed 

hardware can work at 144 MHz on this FPGA. Therefore, for the largest search window 

size of (±32,±16) pixels, it can process 206743 MBs per second. Therefore, it is capable 

of processing 127 fps, 57 fps, and 25 fps for 720x576, 1280x720 and 1920x1080 

resolutions, respectively. The disadvantage of the generic architecture is that it uses 80 

BRAMs. 

 

Since 16x16 and 16x8 generic hardware architectures use large number of 

BRAMs, it is not possible to implement them on current low cost FPGAs. Although 

16x4 and 16x2 generic hardware architectures can be implemented on a low cost FPGA, 

they are not suitable for real-time implementation of high frame size and high frame 

rate applications, because they require large number of clock cycles to calculate an SAD 

value. Therefore, in the next section, we propose a systolic ME hardware architecture 

for real-time implementation of high frame size and high frame rate applications on a 

low cost FPGA. 
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3.3. Systolic Motion Estimation Hardware Architecture 

 

 

 

The systolic ME hardware architecture proposed to efficiently implement the 

proposed HEXBS ME algorithm and its datapath are shown in Figures 3.19 and 3.20. 

This systolic architecture is designed to reduce the internal memory bandwidth by 

applying data-reuse [7]. It has six pipeline stages. It has 256 PEs and accumulates their 

results with an adder tree. The main difference between the systolic architecture and the 

generic architecture is it that not all of the PEs receive their reference data directly from 

BRAMs. 16 BRAMs, configured for 16 bit port width, are connected to 32 PEs. The 

remaining 224 PEs receive their reference data from their neighboring PEs. Reference 

data is shifted to right in the PE array. Loading the reference data of a search location 

has a start-up cost of 8 cycles. After the PE array is loaded, SAD values of the search 

locations in the same line is obtained in each clock cycle.  

 

 

 

Figure 3.19 Top-level block diagram of the systolic architecture 
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Figure 3.20 Datapath of the systolic architecture 

 

Table 3.16 shows the total number of search locations in different search patterns 

and the number of clock cycles required to check these search locations on the systolic 

architecture. “Double Cross” fine search pattern has an overhead of four clock cycles 

compared to “Plus” fine search pattern. 

 

Table 3.16 Search patterns 

Search Range 
Number of Search 

Locations 

Required 

Clock Cycles 

±10, ±9 73 122 

±12, ±12 113 176 

±14, ±15 159 236 

±32, ±16 553 672 

Fine Search Pattern 
Number of Search 

Locations 

Required 

Clock Cycles 

Plus 4 25 

Side 6 27 

Double Cross 8 29 

 

 

Table 3.17 shows the data flow through the proposed systolic architecture. Let A1 

– L2 shown in Figure 3.21 denote the pixels in these columns. In this figure, search 

locations of the proposed HEXBS patterns are shown as bold. A1 denotes the pixels in 

the column A1 and A2 denotes the pixels in the right neighboring column. Assuming 

that D1 is the first search location in the line, in the first clock cycle, the PE array is 
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filled with the pixels in columns L1 and L2. In the second clock cycle, these pixels are 

shifted to the right in the PE array by two pixels and the pixels in columns K1 and K2 

are loaded into two left end columns of the PE array. Therefore, in the 8th clock cycle, 

the SAD value of search location D1 is obtained. In the 9th, 10th and 11th clock cycles, 

SAD values of search locations C1, B1 and A1 are obtained. 

 

 X  x  x  x  x  x  x  x  x  x  x 

                      

                      

A1 A2 B1 B2 C1 C2 D1 D2 E1 E2 F1 F2 G1 G2 H1 H2 J1 J2 K1 K2 L1 L2 

                      

                      

 X  x  x  x  x  x  x  x  x  x  x 

                      

                      

x  x  x  x  x  X  x  x  x  x  x  

Figure 3.21 Search locations of the proposed HEXBS patterns 

 

Table 3.17 Data flow through the systolic PE array 

Clock 

Cycles 

Processing Elements  

Col 

 0 

Col  

1 

Col  

2 

Col  

3 

Col 

4 

Col 

5 

Col 

6 

Col 

7 

Col 

8 

Col 

9 

Col 

10 

Col 

11 

Col 

12 

Col 

13 

Col 

14 

Col 

15 

1 L1 L2               

2 K1 K2 L1 L2             

3 J1 J2 K1 K2 L1 L2           

4 H1 H2 J1 J2 K1 K2 L1 L2         

5 G1 G2 H1 H2 J1 J2 K1 K2 L1 L2       

6 F1 F2 G1 G2 H1 H2 J1 J2 K1 K2 L1 L2     

7 E1 E2 F1 F2 G1 G2 H1 H2 J1 J2 K1 K2 L1 L2   

8 D1 D2 E1 E2 F1 F2 G1 G2 H1 H2 J1 J2 K1 K2 L1 L2 

9 C1 C2 D1 D2 E1 E2 F1 F2 G1 G2 H1 H2 J1 J2 K1 K2 

10 B1 B2 C1 C2 D1 D2 E1 E2 F1 F2 G1 G2 H1 H2 J1 J2 

11 A1 A2 B1 B2 C1 C2 D1 D2 E1 E2 F1 F2 G1 G2 H1 H2 
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Pixel organization in BRAMs is shown in Figure 3.22. Each BRAM has three 

regions (0, 1, 2) for storing three different lines of the search window. For example, 

BRAM 0 stores 0th, 16th, and 32th lines of the search window. The outputs of BRAMs 

are aligned with vertical rotator. The vertical rotator consists of 16 16-bit rotators. 

Rotate amount signal generated by the control unit determines how many lines the 

outputs of the BRAMs will be rotated by the vertical rotator. The rotate amounts for 

different search locations are shown in Figure 3.23. For the search locations in the first 

line of the search window, the rotate amount is zero and it increases by two for the 

search locations in the following lines of the search window. After 16, the rotate amount 

repeats itself. For the search location shown as “X0” in Figure 3.23, the rotate amount is 

zero and the required reference data is in the first region (region 0) of all the BRAMs. 

For rotate amounts other than 0, 16, and 32, two different address values are sent to 

BRAMs. For the search location shown as “X6” in Figure 3.23, the rotate amount is six 

and the required reference data is in the first region (region 0) of BRAMs 6-15 and in 

the second region (region 1) of BRAMs 0-5. 

 

 
Figure 3.22 Pixel organization in BRAMs of the systolic architecture 

 
 



 

 58 

 0  X0  0  0  0  0  0  0  0  0  0  

                       

2  2  2  2  2  2  2  2  2  2  2  2 

                       

 4  4  4  4  4  4  4  4  4  4  4  

                       

6  6  X6  6  6  6  6  6  6  6  6  6 

                       

 8  8  8  8  8  8  8  8  8  8  8  

                       

10  10  10  10  O  10  10  10  10  10  10  10 

                       

 12  12  12  12  12  12  12  12  12  12  12  

                       

14  14  14  14  14  14  14  14  14  14  14  14 

                       

 0  0  0  0  0  0  0  0  0  0  0  

                       

2  2  2  2  2  2  2  2  2  2  2  2 

                       

 4  4  4  4  4  4  4  4  4  4  4  

                       

6  6  6  6  6  6  6  6  6  6  6  6 

Figure 3.23 Rotate amounts 

 

The systolic hardware architecture is implemented in VHDL, verified with RTL 

simulations using Mentor Graphics Modelsim 6.3c and mapped to Xilinx XC3S1200-5 

FPGA using Xilinx ISE 9.2.04. It can work at 144 MHz on this FPGA. Same as the 

generic architecture, for the largest search window size of (±32, ±16) pixels, it can 

process 206743 MBs per second. Therefore, it is capable of processing 127 fps, 57 fps, 

and 25 fps for 720x576, 1280x720, and 1920x1080 resolutions, respectively. The 

proposed systolic architecture consumes 6648 LUTs and 16 BRAMs. Because of the 

regular data flow, control unit consumes only 265 LUTs. Therefore, the systolic 

hardware fits into a state of the art low cost Xilinx Spartan-3E FPGA. Compared to the 

generic architecture, the systolic architecture uses smaller number of BRAMs and no 

horizontal rotators, and the input data width of the vertical rotator is reduced to 16 bits. 
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CHAPTER 4 

 

 

DYNAMICALLY VARIABLE STEP SEARCH MOTION ESTIMATION 

ALGORITHMS AND A HARDWARE ARCHITECTURE FOR THEIR 

IMPLEMENTATION 

 

 

 

 

We propose the DVSS and RDVSS ME algorithms for processing HD video 

formats [9, 10]. The proposed ME algorithms exploit MV correlations between 

neighboring MBs. We also propose a dynamically reconfigurable systolic ME hardware 

architecture for efficiently implementing these algorithms [9]. The proposed ME 

hardware is compared with several ME hardware implementations presented in the 

literature [26-31]. 

 

Several ME algorithms exploiting MV correlations between spatial and temporal 

neighboring MBs are proposed in the literature [32-38]. However, to the best of our 

knowledge, no ME algorithm utilizing the difference of the MVs of the temporal 

neighboring MBs as proposed in the RDVSS algorithm is presented in the literature. 

ARPS [20] and ADCS [21] algorithms adapt their initial search locations based on the 

MV of the previous MB. Adaptive Predicted Direction Search (APDS) [32] algorithm 

finds the initial search location by calculating the angles of the MVs of spatial and 

temporal neighboring MBs. 

 

In [33], some of the candidate search locations are eliminated adaptively if their 

partial SAD value exceeds a dynamically determined threshold. In [34], the size and 

SAD values of the MVs of the previous blocks are used to adaptively change the search 

window size of the FS algorithm for the current block. The techniques proposed in [35, 

36] are developed for fast ME algorithms which are not suitable for processing HD 

video. The dynamic adjustment of search window is a modification to the TSS 

algorithm and it adapts the search window size of the next step based on the result of 
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the previous step [35]. The dynamic adjustment of search window with variable size of 

block technique adaptively adjusts the search window and can be used with fast ME 

algorithms like NTSS and FSS [36]. In [36,37], MVs of upper, left, upper-left, and 

upper-right spatial neighboring MBs are used to determine the initial search location. In 

[37], in addition to MVs of these spatial neighboring MBs, MV of the temporal 

neighboring MB is also used for determining the initial search location. The algorithm 

proposed in [37] performs 7% close to the FS algorithm for low resolution videos where 

the search range is (±15, ±15) pixels. Since this ME algorithm performs hierarchical 

four levels of multi-resolution search with variable block size for each level and 

implements the FS algorithm for MBs where neighboring correlations are not available, 

its hardware implementation will be quite complex and it will perform significant 

number of memory accesses. In [38], if the spatial neighboring MBs of the current MB 

have identical MVs, this MV is used for the current MB as well without any search. 

This technique achieves good results only for low bit-rate video where search is 

performed in a very small search range, e.g. (±7, ±7) pixels, and therefore the MVs are 

similar.  

 

 

 

4.1 Dynamically Variable Step Search Motion Estimation Algorithm 

 

 

 

We propose the DVSS algorithm [9] in order to obtain a performance very close 

to the FS algorithm by searching even fewer search locations than the ME algorithms 

proposed in [7, 8]. The DVSS algorithm has a maximum of three different granularity 

search steps. First, the entire search window is searched with a coarse granularity search 

step. Then, two finer granularity search steps are performed around the search locations 

from previous steps with minimum SAD. The number of steps and the search range of 

each step are determined for the current block based on the size and the SAD value of 

the previously found MV for the left neighboring block. It is possible to use one of 

many different search patterns for a given block. Some of these search patterns, named 

as A1 [8], A2, A3, B and C, and the search patterns used in [7] are shown in Table 4.1. 

As shown in this table, skipping the coarse and medium steps and doing the fine step on 

the entire search range is identical to the FS algorithm. The search pattern A1, as shown 

in Figure 4.1, has 3 steps and the search ranges of coarse, medium, and fine steps are 
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(±48,±24), (±6,±6), (±3,±3) pixels, respectively. The search pattern A2 is the same as 

A1 except that the search range of its first step is (±24, ±12) pixels. The search pattern 

A3, as shown in Figure 4.2, has only medium and fine steps. In Figures 4.1 and 4.2, 

numbers represent the steps and shaded numbers show the search locations with 

minimum SAD for these steps. 

 

Table 4.1 Several search patterns 

Search 

Pattern 

Search 

Range of 

First Step 

Search 

Range of 

Second Step 

Search 

Range of 

Third Step 

Number of 

Search 

Locations 

10x9 [7] - ±10, ±9 ±3, ±3 73 

14x15 [7] - ±14, ±15 ±3, ±3 159 

A1 [8] ±48, ±24 ±6, ±6 ±3, ±3 405 

A2 ±24, ±12 ±6, ±6 ±3, ±3 161 

A3 - ±18, ±10 ±3, ±3 249 

32x16 [7] - ±32, ±16 ±3, ±3 553 

B ±48, ±24 ±12, ±12 ±6, ±6 565 

C ±48, ±24 ±24, ±12 ±12, ±6 793 

48x24 [7] - ±48, ±24 ±3, ±3 1221 

FS - - ±48, ±24 4753 
 

 

Figure 4.1 Search pattern A1 
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Figure 4.2 Search pattern A3 

 

The number of steps and sizes of search ranges for each step determine the 

computational complexity of a search pattern and the MAD performance obtained by it. 

The DVSS algorithm decreases the computational complexity by adaptively changing 

between search patterns A1, A2, A3 for each block based on the size and SAD value of 

the previously found MV for the left neighboring block, which is called as Left 

Neighboring Motion Vector (LNMV). It uses FS, A3, A2, and A1 search patterns for 

small, medium, medium-to-large and large motions, respectively.  

 

The pseudo code of the DVSS algorithm is shown in Figure 4.3. If LNMV falls 

within a smaller search range, it decreases the search granularity and the search range 

size, because for small motions doing the search in a smaller search range is sufficient 

and doing a finer granularity search in a smaller search range can give better MAD 

results. If the SAD value for LNMV is higher than a pre-determined threshold level (τ), 

it increases the search granularity and the search range size. The threshold level τ is set 

to 256 and 1024 in our simulations. By setting τ to a higher value, many search 

locations can be skipped and higher processing speeds can be achieved with a slight 

decrease in the MAD performance. 
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If there is no left neighboring block 

 Do pattern A1 

Else if SAD value of LNMV exceeds the threshold (τ) 

 Switch to next coarser pattern 

Else  

If LNMV is within (±8, ±4) pixels 

  Do FS in a search range of (±10, ±5) pixels  

 Else if LNMV is within (±16, ±8) pixels 

  Do pattern A3 

Else if LNMV is within (±24, ±12) pixels 

  Do pattern A2 

 Else 

  Do pattern A1 

Figure 4.3 The pseudo code of the DVSS algorithm 

 

The performances of the DVSS algorithm and its search patterns are compared 

with the performances of successful fast ME algorithms with respect to the MAD 

criterion and the results are shown in Table 4.2 and Table 4.3. Seven 100 frame video 

sequences are used for comparison, which are also used in Chapter 3.1 except the 

“Gladiator” video sequence. The “Gladiator” video is taken from the movie with the 

same name and it contains large motions. The frame size and rate of these benchmark 

videos are given in Tables 4.2 and 4.3. In the simulations, among the previously 

proposed fast search algorithms only the NTSS and the FSS algorithms have a search 

range of (±16, ±16) pixels. The other fast search algorithms have a search range of 

(±48, ±24) pixels. The FS is performed for both search ranges.  

 

The simulation results showed that DVSS algorithm performs very close to the FS 

algorithm by searching much fewer search locations than the FS algorithm and it 

outperforms successful fast search ME algorithms by searching more search locations 

than these algorithms. The DVSS algorithm obtains similar performance results by 

searching fewer search locations than the search patterns proposed in Chapter 3.1.  Even 

though, the FS algorithm with (±48, ±24) search range checks 4753 search locations in 

comparison to 405 search locations checked by the search pattern A1, its MAD 

performance is on the average only 7.5% better than the performance of the search 
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pattern A1. The performance of the FS algorithm with (±16, ±16) search range is very 

low for videos with large motion content. 

 

Table 4.2 MAD results for fast search algorithms 

Video Sequence 

(Frame Size & 

Rate) 

FS 

±48,±24 

FS 

±16,±16 

NTSS 

[15] 

FSS 

[16] 

BBGDS 

[17] 

DS   

[18] 

HEXBS 

[19] 

ARPS 

[20] 

ADCS 

[21] 

FTS    

[22] 

Spiderman 

(720x576, 25fps) 
4.20 6.96 10.71 10.81 7.47 7.20 7.37 6.07 6.24 6.87 

Gladiator 
(720x576, 25fps) 

2.83 5.38 8.68 8.79 5.68 5.43 5.61 3.93 3.73 6.00 

IRobot 

(720x576, 25fps) 
2.92 3.71 5.48 5.55 4.53 4.39 4.51 3.88 4.03 4.87 

Susie 
(704x480, 15fps) 

3.22 3.42 4.05 4.08 3.81 3.6 3.71 3.62 3.62 3.92 

Flowers 

(704x480, 15fps) 
8.39 8.41 10.47 11.12 10.6 10.31 10.9 8.70 8.95 13.11 

Table Tennis 
(704x480, 15fps) 

3.48 3.58 3.97 4.01 3.86 3.80 3.83 3.73 3.74 3.88 

Foreman 

(352x288, 15fps) 
4.17 4.23 4.81 4.86 4.51 4.56 5.08 4.54 4.69 5.69 

 

Table 4.3 MAD results for proposed search algorithms 

Video Sequence 

(Frame Size & Rate) 

10x9 

[7] 

14x15 

[7] 

32x16 

[7] 

48x24 

[7] 

A1 

[8] 
B C 

DVSS  

τ = 256 

DVSS  

τ = 1024 

Spiderman  

(720x576, 25fps) 
9.34 7.48 5.53 4.22 4.27 4.26 4.25 4.39 4.54 

Gladiator  
(720x576, 25fps) 

7,29 5,84 3,32 2.88 2.97 2.93 2.92 3.14 3.26 

IRobot  

(720x576, 25fps) 
7.69 6.93 5.72 3.08 3.23 3.15 3.10 3.29 3.33 

Susie  
(704x480, 15fps) 

3.92 3.72 3.40 3.33 3.41 3.34 3.32 3.29 3.29 

Flowers  

(704x480, 15fps) 
8.89 8.79 8.62 8.61 9.26 9.06 8.95 8.51 8.48 

Table Tennis  
(704x480, 15fps) 

3.79 3.66 3.56 3.51 3.57 3.55 3.54 3.55 3.57 

Foreman  

(352x288, 15fps) 
5.02 4.95 4.67 4.66 4.87 4.70 4.60 4.51 4.39 

 

 

The performance gap between fast search algorithms and the proposed search 

patterns increase with increased video resolution and motion between consecutive 

frames. On the other hand, as it can be seen from “Foreman” benchmark video, when 

the resolution is very low and the motion can be detected in a search range of (±16, 

±16) pixels, the performance gap decreases. The DVSS algorithm decreases the 

computational complexity significantly with a small decrease in the MAD performance. 

It even sometimes gives better MAD results than the pattern A1. The reason for this 

improvement is that search patterns with finer granularities perform better for small 

motions and the DVSS algorithm dynamically decreases its granularity when small 

MVs are found for the previous blocks.  
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4.2 Reconfigurable Motion Estimation Hardware Architecture 

 

 

 

The reconfigurable systolic ME hardware architecture is based on the ME 

hardware presented in Chapter 3.3. The major differences between them are the 

proposed hardware is dynamically reconfigurable and it implements the DVSS 

algorithm. For each MB, the proposed ME hardware can be dynamically reconfigured 

to execute different number of steps and different search ranges for each step.  Top-

level block diagram of the proposed ME hardware architecture is shown in Figure 4.4. 

The hardware is highly pipelined and its latency is eight clock cycles; one cycle for 

synchronous read from memory, one cycle for shift registers, two cycles for the 

reconfigurable systolic PE array and four cycles for the adder tree.  

 

 

Figure 4.4 Top-level block diagram 

 

The proposed ME hardware finds an MV for a 16x16 MB based on the minimum 

SAD criterion in a maximum search range of (±48, ±24) pixels using the luminance 

data. The “top-level controller” takes the threshold level (τ) as an input and determines 

the number of search steps and their search ranges for each block adaptively. The 

“control unit” finds the MV for each block by generating required address and control 
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signals to compute the SAD values of the search locations in the search window 

determined by the top-level controller for each step.  

 

The search locations in a search window are searched line by line. First, SAD 

values of the search locations in the top line of the search window are calculated starting 

from the right most search location in the top line. Then, SAD values of the search 

locations in the next line of the search window are calculated starting from the right 

most search location in the next line. The first step ends after SAD values of the search 

locations in the bottom line of the search window are calculated. The next step around 

the search location with the minimum SAD is done in the same way.  

 

16 BRAMs in the FPGA are used to store the search window. BRAMs are 

configured as dual port memories for overlapping the ME of the current MB with the 

loading of the search window of the next MB. The vertical rotator is used to align the 

outputs of the BRAMs and it has 32 identical rotators each 16 bits long. The reference 

MB data read from BRAMs must be matched with the current MB data, which is loaded 

into the PE array previously, by rotating the data lines. For example, for the search 

locations in the fourth line of the search window, the rotate amount will be equal to four 

so that first line of the reference data will be read from the fourth BRAM.  

 

The SAD value for a search location is calculated by summing the outputs of all 

256 PEs in the reconfigurable PE array by an adder tree. The adder tree has four 

pipeline stages; SAD values of 4x4 blocks are calculated in the first two clock cycles, in 

the third clock cycle SAD values of 8x8 blocks are calculated and in the fourth clock 

cycle SAD value of 16x16 MB is calculated. 

 

The reconfigurable systolic PE array is shown in Figure 4.5. 256 PEs are used to 

calculate the SAD of a 16x16 MB. A PE is used to calculate the absolute difference 

between a current pixel and the corresponding reference pixel. The latency of the PE 

array is two clock cycles, because reference and current pixel inputs and the absolute 

difference output are registered. The reconfiguration of the PE array is achieved with 

the multiplexers placed between the PEs that process the same line in a MB. Since the 

PE array explained in Chapter 3.3 is not reconfigurable, these multiplexers bring a 

slight area overhead in comparison to the PE array proposed in Chapter 3.3. But, they 
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do not affect the clock frequency since they are not placed on the critical path. In Figure 

4.5, interconnects used for implementing 4, 2 and 1 shift amounts are illustrated with 

dashed, thin and bold lines respectively. Interconnects marked with “m” are connected 

to BRAMs. 

 

Figure 4.5 Reconfigurable systolic PE array 

 

The reference pixels for the first search location in a line of the search window are 

loaded in four clock cycles. After the SAD value of the first search location is 

calculated, the SAD value of the next search location is calculated in one cycle. After 

the SAD value of the first search location is calculated, reference data is shifted to the 

right in the PE array in each consecutive clock cycle and shift amount can be 4, 2 or 1 

pixels depending on the type of the step; coarse, medium or fine, respectively. Figure 

4.6 demonstrates the shifting in the PE array when the shift amount is equal to 1 and 2 

pixels. For example, when the shift amount is equal to 2 pixels, PE0 shifts its content to 

PE2, PE1 shifts its content to PE3, and PE2 shifts its content to PE4. 

 

(a) 

 

(b) 

Figure 4.6 Shifting in PE array (a) 1 pixel, (b) 2 pixels 
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The data flow through the reconfigurable systolic PE array is shown in Table 4.4. 

Let capital letters “A” to “Z” shown in Figure 4.1 denote all pixels in these columns 

respectively. Assuming that “P” is the first search location, four clock cycles will be 

required to feed the reference data for this search location to the PE array, because 

regardless of the search pattern during the loading of reference pixels for the first search 

location the multiplexing unit feeds first four columns of the PE array. Assuming that 

after “P”, the search pattern continues with search locations “R, T and V” (two pixel 

gap between consecutive search locations), multiplexing unit will feed only first two 

columns of the PE array. Therefore, reference pixels for these search locations will be in 

the PE array in 5th, 6th and 7th clock cycles, respectively. 

 

Table 4.4 Dataflow through the reconfigurable systolic PE array 

Clock 

Cycle 

Processing Elements 

Col 

 0 

Col  

1 

Col  

2 

Col  

3 

Col 

4 

Col 

5 

Col 

6 

Col 

7 

Col 

8 

Col 

9 

Col 

10 

Col 

11 

Col 

12 

Col 

13 

Col 

14 

Col 

15 

1 D C B A             

2 H G F E D C B A         

3 L K J I H G F E D C B A     

4 P O N M L K J I H G F E D C B A 

5 R Q P O N M L K J I H G F E D C 

6 T S R Q P O N M L K J I H G F E 

7 V U T S R Q P O N M L K J I H G 

 

In order to calculate the SAD values of search locations at the rate of one SAD 

value per clock cycle, pixels for a particular search location must be brought to the PE 

array in one clock cycle, and this requires many accesses to the memory in the same 

clock cycle. This memory requirement cannot be satisfied by an FPGA without data-

reuse. The systolic hardware architecture proposed in Chapter 3.3 reduces the internal 

memory bandwidth by applying data-reuse and it uses only 16 BRAMs for storing the 

reference pixels of a search window for a search range of (±32, ±16) pixels. BRAMs are 

configured as 16 bits wide because of the two pixel distance between consecutive search 

locations.  

 

The ME hardware proposed in this chapter also applies data-reuse. However, it 

uses only 16 BRAMs for storing the reference pixels of a search window for a search 

range of (±48, ±24) pixels. The proposed ME hardware further reduces the internal 

memory bandwidth by feeding only 64 PEs from BRAMs, the remaining PEs receive 
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reference pixels from neighboring PEs. BRAMs are configured as 32 bits wide and they 

are connected to the four left end columns of the PE array. Therefore, loading the 

reference pixels for the first search location into the PE array takes four clock cycles.  

 

Each BRAM stores four lines of reference pixels. Storing a line of reference 

pixels uses 28 address locations. Therefore, addresses 0-111 are occupied to store four 

lines of reference pixels. Figure 4.7 shows the layout of the reference pixels in the first 

BRAM, which stores 0th, 16th, 32th and 48th lines of the reference pixels in four 

distinct regions. The remaining BRAMs have the same organization. 

 

 

Figure 4.7 Memory organization 

 

The “multiplexing unit”, shown in Figure 4.8, is used to feed the correct data to 

the PE array. The data received from the vertical rotator is captured in a 56 bit long shift 

register, which stores 7 pixels. If the enable signal of the shift register is high, it shifts 

its content 32 bits to right. In order to support horizontal distances of one, two, and four 

between consecutive search locations, multiplexing unit is designed to feed first one, 

two, or four left end columns of the PE array. Independent from the search pattern, 
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reference pixels for the first search location are loaded by feeding the four columns. 

Therefore, four clock cycles are required to fill the PE array with the reference pixels 

for the first search location. The reference pixels for the next search location will be 

available in the next clock cycle. If the distance between two search locations is four 

pixels, “4 select” multiplexers otherwise “2 select” multiplexers are used to select the 

corresponding reference pixels from the shift register. Table 4.5 shows the output of the 

multiplexing unit for different pixel locations. The content of the shift register, which is 

shown with capital letters in Figure 4.8, is also given in Table 4.5. If the search location 

is aligned with the memory content, the most significant four bytes (G, F, E, D in Figure 

4.8) will be selected as the output. Otherwise 1, 2, or 3 pixel shift will be performed. 

 

 

Figure 4.8 Multiplexing unit 

 

Table 4.5 Output of the multiplexing unit for different pixel locations 

Clock 

Cycle 

Shift Register 

Content 
Aligned Out 

1 Pixel 

Shifted Out 

2 Pixel 

Shifted Out 

3 Pixel 

Shifted Out 

1 D C B A - - - D C B A    

2 H G F E D C B H G F E E D C B F E D C G F E D 

3 L K J I H G F L K J I I H G F J I H G K J I H 

4 P O N M L K J P O N M M L K J N M L K O N M L 
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The proposed hardware architecture is implemented in VHDL, verified by RTL 

simulation using Modelsim 6.3c, and mapped to an XC3S1500-5 FPGA using Synplify 

Pro 8.9 and ISE 10.1. The proposed hardware works at 130MHz and consumes 9128 

slices (2282 CLBs) and 16 BRAMs. The reconfigurable systolic PE array with the adder 

tree consumes 7510 slices.  

 

The number of clock cycles per MB required by the proposed hardware depends 

on the search pattern. Starting a step has a start-up cost of 15 clock cycles, which is 

called as the step latency, and starting the search on a line has a start-up cost of 8 clock 

cycles, which is called as the line latency. The total number of clock cycles per MB 

required to complete a search pattern is given by (4.1). The performance of proposed 

ME hardware for several search patterns are calculated based on (4.1) and given in 

Table 4.6.  

 

     
sn

linelinelinesads nnn
1

11          (4.1) 

 

 In (4.1), “ns, nsad, nline” are the number of steps, search locations per line, and 

lines per step, respectively. “τs” and “τline” are step and line latencies, respectively. 

Based on this equation, for the coarse, medium and fine steps the start-up latency is 45 

clock cycles. For these three steps, there is 192 clock cycles of line latency and 396 

clock cycles are required for remaining search locations. Therefore, pattern A1 requires 

633 clock cycles to find the MV of a MB. Patterns A2 and A3 requires 357 and 380 

clock cycles, respectively. FS with a search range of (±10, ±5) pixels requires 304 clock 

cycles. 

 

The performance of the DVSS algorithm on the proposed ME hardware for 

different threshold values is shown in Table 4.7. The DVSS algorithm achieves much 

better real-time performance, with a small decrease in the MAD performance, since it 

adaptively changes the search patterns and uses the pattern A1 only for large motions, 

patterns A2 and A3 for medium motions and FS only for small motions. As it can be 

seen in Table 4.7, increasing the threshold value increases the supported frame rate.  
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Table 4.6 Performance of the proposed hardware for several search patterns 

Search 

Pattern 

Required 

Clock Cycles 

per MB 

Processed 

MBs per 

Second 

Supported Frame Size & 

Rate 

A1 [8] 633 205371 1920x1080, 25.3 fps 

B 957 135841 1366x768, 33.1 fps 

C 1221 106470 1366x768, 25.9 fps 

10x9 [7] 122 1180327 1920x1080, 145.7 fps 

14x15 [7] 236 610169 1920x1080, 75.3 fps 

32x16 [7] 672 214285 1920x1080, 26.4 fps 

48x24 [7] 1425 101052 1366x768, 24.6 fps 

FS 5103 25475 720x576, 15.7 fps 

 

Table 4.7 Performance of the proposed hardware for the DVSS algorithm 

Video 

Sequence 

Threshold 

(τ) 

Required 

Cycles for 100 

Frames 

MBs per 

Frame 

Average 

Cycles per 

MB 

Supported 

1920x1080 

fps 

Spider 256 96094246 1620 594 27.0 

Spider 1024 90284377 1620 558 28.7 

Gladiator 256 87299334 1620 539 29.7 

Gladiator 1024 80952068 1620 500 32.1 

Irobot 256 77966499 1620 482 33.3 

Irobot 1024 74177157 1620 458 35.0 

Susie 256 59212520 1320 449 35.7 

Susie 1024 51666864 1320 392 41.0 

Flowers 256 52181938 1320 396 40.5 

Flowers 1024 49586582 1320 376 42.7 

TableTennis 256 53382291 1320 405 39.6 

TableTennis 1024 47136775 1320 358 44.9 

Foreman 256 15926153 396 403 39.9 

Foreman 1024 14250681 396 360 44.5 

 

 The proposed ME hardware is compared with several ME hardware 

implementations presented in the literature in Table 4.8. The proposed ME hardware 

consumes less area than the implementation of one of the best performing fast search 

ME algorithms in the same FPGA [22]. The MAD performance of this hardware is 

lower than the MAD performance of the proposed ME hardware, since it implements 

the FTS algorithm. In [26], a hybrid architecture supporting both FS and DS is 

presented. This architecture speeds up FS by successively eliminating some of the 

search locations. In addition, it is suitable for the irregular data flow of fast search 

algorithms and it consumes less area than the dedicated FS systolic array 
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implementations. However, it has lower throughput than the proposed ME hardware. 

 

Because of the overhead of the reconfigurability and additional complexity of the 

control unit, the proposed ME hardware consumes 2363 slices more than the ME 

hardware proposed in [7] in the same FPGA. 1136 slices are used by the multiplexing 

unit, 836 additional slices are used by the multiplexers in the PE array and the 

remaining additional slices are used by the additional complexity of the control unit. 

Because of the overhead of the dynamic reconfigurability, which is implemented in the 

top-level controller, the proposed ME hardware consumes slightly more area than the 

ME hardware proposed in [8] in the same FPGA. 

 

The throughput of the proposed ME hardware is much higher than the FS 

hardware implementations in [27,28]. An Application Specific Integrated Circuit 

(ASIC) implementation of the FS algorithm utilizing 256 PEs in 0.25μm CMOS 

technology is given in [27]. This architecture is a modified version of the AB2 type 

systolic array [29]. Another ASIC implementation of the FS algorithm is given in [28]. 

The throughput of this architecture is low, because it has only 64 PEs, it is optimized for 

low power consumption and it is implemented in an older technology. A real-time ME 

hardware implementing the FS algorithm for HD video is given in [30]. However, since 

this hardware is implemented on a high-end FPGA, it is not suitable for consumer 

electronics products. The FPGA implementations of the systolic architectures AS1, 

AB2, AS2 are presented in [31]. Despite using large number of PEs, the throughputs of 

these ME hardware are much lower than the throughput of the proposed ME hardware, 

because they are implementing the FS algorithm. The area results presented in [31] 

include only the datapath and do not include the control unit and the memory. 
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Table 4.8 Comparison of ME hardware architectures 

HW Algorithm Technology 
MB 

size 
# of PEs 

Search 

Range 

Area 

 

Speed 

[MHz] 

Cycles 

per 16x16 

MB 

Supported 

1920x1080 

[fps] 

[9] DVSS 
XC3S1500-5 

FPGA 
16x16 256 (±48, ±24) 

2282 

CLBs 
130 

467 

(τ = 256) 

34.3 

(τ = 256) 

[22] FTS 
XC3S5000 

FPGA 
16x16 16 (±16, ±16) 

6142 
CLBs 

74 202 45.2 

[26]  FS & DS Unknown 
8x8, 

16x16 

Dedicated 

HW 

(-16, +15) in 

both axis 

9K 

gates 
50 

2879 

(average) 
2.1 

[7] 32x16 [7] 
XC3E1200E-

5 FPGA 
16x16 256 (±32, ±16) 

1692 
CLBs 

144 672 26.4 

[8] A1 [8] 
XC3S1500-5 

FPGA 
16x16 256 (±48, ±24) 

2271 

CLBs 
130 633 25.3 

[27] FS 
0.25μm 

CMOS 1P5M 
16x16 256 

(-16, +15) in 
both axis 

16.07 
mm2 

36 1421 3.1 

[28] FS 
0.6μm SPTM 

CMOS 

8x8, 

16x16, 

32x32 

64 (±32, ±32) 
267K 
gates 

60 4209 1.7 

[30] FS 
XC4VLX100 

FPGA 
16x16 

Dedicated 

HW 
(±16, ±16) 

380 

LUTs 
221 1111 24.5 

AS1 

[31] 
FS 

XC40250 

FPGA 
16x16 33 (±16, ±16) 

1214 

CLBs 
24 25344 0.1 

AB2 

[31] 
FS 

XC40250 

FPGA 
16x16 256 (±16, ±16) 

948 

CLBs 
30 1584 2.3 

AS2 
[31] 

FS 
XC40250 

FPGA 
16x16 528 (±16, ±16) 

3732 
CLBs 

22 768 3.5 

 

 

 

4.3 Recursive Dynamically Variable Step Search Motion Estimation Algorithm 

 

 

The proposed RDVSS [10] algorithm searches fewer search locations than the 

DVSS algorithm for the same size search window. RDVSS dynamically determines the 

search patterns that will be used for each MB based on the MVs of its spatial and 

temporal neighboring MBs assuming that objects are bigger than a MB and motion 

between consecutive frames is continuous. By using a larger search range, the RDVSS 

algorithm gives better PSNR results than the DVSS algorithm for the benchmark videos 

with large motions. For the benchmark videos with smaller motions, the DVSS 

algorithm gives slightly better PSNR results by checking more search locations in the 

same search range. The RDVSS algorithm gives much better PSNR results than fast 

search ME algorithms. In addition, the RDVSS algorithm has a regular data flow and it 

can be efficiently implemented using the reconfigurable ME hardware architecture 

proposed in this chapter. 

 

The search patterns used in the RDVSS algorithm are listed with their search 

ranges and total number of search locations in Table 4.9. Similar to the DVSS 

algorithm, each search pattern has a maximum of three different granularity search steps 

with different size search ranges. In the first, second, and third steps, horizontal and 
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vertical distances between search locations are 4, 2, and 1 pixels, respectively. Figure 

4.9 shows a portion of main large search pattern. In this figure, numbers represent the 

steps and dark shaded numbers show the search locations with minimum SAD for these 

steps. Main large search pattern, first, searches the given (±64, ±64) search window 

with a coarse granularity search step. It, then, performs a finer granularity search step in 

the (±4, ±4) search window around the search location that has the minimum SAD in 

the previous step. It, finally, performs an even finer granularity search step in the (±1, 

±1) search window around the search location that has the minimum SAD in the 

previous step. 

 

Table 4.9 Search patterns used in the RDVSS algorithm 

Search Pattern 

Search 

Range of 

First Step 

Search 

Range of 

Second Step 

Search 

Range of  

Third Step 

Number of  

Search 

Locations 

Main Large ±64, ±64 ±4, ±4 ±1, ±1 1113 

A1 [8] ±48, ±24 ±6, ±6 ±3, ±3 405 

Main Medium ±32 ±32 ±4, ±4 ±1, ±1 313 

Main Small ±16, ±16 ±4, ±4 ±1, ±1 161 

Recursive Large ±16, ±16 ±2, ±2 ±1, ±1 97 

Recursive Medium ±8, ±8 ±2, ±2 ±1, ±1 41 

Recursive Small - ±4, ±4 ±1, ±1 33 

3x3 Full Search - - ±3, ±3 49 

1x1 Full Search - - ±1, ±1 9 
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Figure 4.9 Main large pattern 
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The pseudo code of the RDVSS algorithm is given in Figure 4.10. The RDVSS 

algorithm performs three search iterations for each MB. The first iteration is used for 

tracking global motions like camera movement assuming that motion between 

consecutive frames is continuous. The second iteration is used for tracking complex 

motions of objects assuming that objects are larger than a MB. If the first and second 

iterations do not find a satisfactory MV, main search patterns with large search ranges 

are used around (0,0) location for finding a better MV. 

 

The RDVSS algorithm determines the search patterns that will be used in each 

iteration for the current MB dynamically based on the MVs of its spatial and temporal 

neighboring MBs. After performing each search pattern for the current MB, the RDVSS 

algorithm compares the minimum SAD obtained so far with the SAD threshold 

determined for this MB and it terminates the ME for this MB if the SAD is less than the 

SAD threshold. Therefore, for each MB, the RDVSS algorithm calculates Spatial 

Difference (SD), Average Spatial Neighboring MV (ASNMV), Temporal Distance 

(TD) and SAD Threshold (ST) by using the MVs of its available spatial neighboring 

MBs. Figure 4.11 shows the spatial neighboring MBs of MB(i,j,t), where “i” and “j” 

denote the x and y coordinates of the MB in a frame and “t” denotes the frame 

containing this MB. Therefore, for example, only the left spatial neighboring MB is 

available for the MBs in the first row of a frame.  

 

SD is the maximum absolute difference in the x and y coordinates of MVs of four 

spatial neighboring MBs; MB(i-1,j-1,t), MB(i,j-1,t), MB(i+1,j-1,t), and MB(i-1,j,t). As 

shown in (4.2), ASNMV is the average of the MVs of these four spatial neighboring 

MBs. As shown in (4.3), ST is determined by comparing the minimum SAD value of 

these four spatial neighboring MBs with the pre-determined SAD threshold for the 

video frame (τ) and selecting the larger one.  

 

 ),,1(),1,1(),1,(),1,1(
4

1
tjiMVtjiMVtjiMVtjiMVASNMV         (4.2) 

 

  ),,1(),,1,1(),,1,(),,1,1(, tjiSADtjiSADtjiSADtjiSADMINMAXST       (4.3) 
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Iteration 1: 

 If (TD is equal or less than (±4,±4) pixels) 

  Do Recursive Small Pattern around MV(i,j,t-1) 

 Else if (TD is equal or less than (±8,±8) pixels) 

  Do Recursive Medium Pattern around MV(i,j,t-1) 

 Else if (TD is equal or less than (±16,±16) pixels) 

  Do Recursive Large Pattern around MV(i,j,t-1) 

 Else 

Do 1x1 Full Search Pattern around MV(i,j,t-1) 

 

Iteration 2:  

 If (SD is equal or less than (±3,±3) pixels) 

Do 3x3 Full Search Pattern around ASNMV 

 Else 

Do 1x1 Full Search Pattern around MV(i-1,j-1,t),  MV(i,j-1,t), MV(i+1,j-

1,t), and MV(i-1,j,t) 

 

Iteration 3: 

 If (SD is equal or less than (±16,±16) pixels) 

  Do Main Small Pattern around (0,0) 

 Else if (SD is equal or less than (±32,±32) pixels) 

  Do Main Medium Pattern around (0,0) 

Else 

Do Main Large Pattern around (0,0) 

 

Until (Main Large Pattern is used) 

Do next larger Main Pattern around (0,0)  

Figure 4.10 Pseudo code of the RDVSS algorithm 
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Figure 4.11 Spatial neighboring MBs of MB(i,j,t) 

 

 
 

 

Figure 4.12 Temporal correlation 

 

Figure 4.12 shows three consecutive frames and their MVFs. “MVF t-2 : t-3” is 

obtained by performing ME between the frames at the time instances “t-2” and “t-3”, 

and “MVF t-1 : t-2” is obtained by performing ME between the frames at the time 

instances “t-1” and “t-2”. TD is the difference between MV(i,j,t-2) and MV(i,j,t-1). 

Therefore, while processing previous frame “t-1”, for each MB, its MV in the “MVF t-1 

: t-2” and a two bit value indicating whether its TD is equal or less than (±4,±4),  

(±8,±8), (±16,±16) pixels or not should be stored in a memory. In Figure 4.12, TD value 
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for MBn will be calculated by finding the difference between the two MVs shown with 

bold lines in the consecutive MVFs.  

 

The RDVSS algorithm is compared with the successful fast ME algorithms for 

several video sequences with respect to the MAD criterion and the comparison results 

are shown in Table 4.10. RDVSS is simulated for various SAD thresholds (τ) to show 

the trade-off between the obtained image quality and the number of search locations. 

The number of search locations checked by the RDVSS algorithm for these video 

sequences are shown in Table 4.11. The luminance components of eight video 

sequences with various resolution and frame rates are used for the comparison. The 

resolution and frame rates of these video sequences are given in Table 4.11. Among 

these videos “IceAge2”, “ParkJoy1080p”, “Ducks”, and “ParkJoy720p” are 50 frames 

long and the other videos are 100 frames long. “ParkJoy1080p”, “Ducks”, and 

“ParkJoy720p” HD video sequences are available from Video Quality Experts Group 

[39]. These videos contain complex but slow motion. “IceAge2”, “Spider3”, and 

“Spider2” video sequences are taken from “Ice Age 2”, “Spiderman 3”, and “Spiderman 

2” movies where there are fast and complex movements. “Susie” and “Table Tennis” 

video sequences are the up-scaled versions of the widely used CIF resolution 

benchmark videos. 

 

In our simulations, only the NTSS and the FSS algorithms have a search range of 

(±16, ±16) pixels because their initial step size is equal to 8. The other ME algorithms 

have a search range of (±64, ±64) pixels. The threshold value required for the ADCS 

algorithm is set to 1024. Since the weights used in the APDS algorithm are not specified 

in [32], we set them to 1. As shown in Table 4.10, the RDVSS algorithm obtains better 

results than the well known fast ME algorithms. The performance gap between the 

RDVSS and other ME algorithms increase with increased motion between consecutive 

frames. Although the RDVSS algorithm on the average searches 34.1% to 62.4% less 

search locations than “Main Large” search pattern, it obtains similar MAD results with 

the “Main Large” search pattern. If only the early search termination is used for the 

“Main Large” search pattern without using the spatial and temporal correlations, MAD 

results decrease significantly, especially for videos containing fast motion. When 

compared with the DVSS algorithm for a maximum search range of (±48, ±24) pixels 

and for the same threshold level (τ=256), RDVSS searches 34% less search locations on 



 

 80 

the average while giving better PSNR results for videos containing large motions. For 

videos containing very small motions, the DVSS algorithm gives slightly better results 

by checking more search locations. 

 

Table 4.10 MAD results 

 
 Video 

   Sequence 
FS 

NTSS 

[15] 

FSS 

[16] 

BBGDS 

[17] 

DS   

[18] 

HEXBS 

[19] 

A1 

[8] 

Main 

Large 

ParkJoy1080p  8.91 12.77 13.51 13.57 12.85 12.99 9.86 9.24 

IceAge2 2.52 8.16 8.22 5.21 5.08 5.35 4.20 2.95 

Ducks 3.81 5.26 5.44 5.29 5.27 5.40 5.07 4.93 

ParkJoy720p 8.43 12.45 12.58 12.97 12.05 12.36 10.18 9.64 

Spider3 2.44 8.21 8.30 5.30 5.21 5.39 3.30 2.81 

Spider2 2.96 10.72 10.82 7.09 6.94 7.08 4.28 3.07 

Susie 3.17 4.05 4.09 3.81 3.62 3.69 3.51 3.51 

Table Tennis 3.42 3.97 4.01 3.86 3.80 3.83 3.57 3.55 

  

 Video 

   Sequence 

APDS 

[32] 

ARPS 

[20] 

ADCS 

[21] 

DVSS 

τ = 256 

DVSS 

τ = 1024 

RDVSS 

τ = 256 

RDVSS 

τ = 512 

RDVSS 

τ = 1024 

ParkJoy1080p  13.70 10.82 10.37 9.02 9.07 9.43 9.54 9.64 

IceAge2 5.21 3.97 4.97 4.29 4.79 3.15 3.39 3.92 

Ducks 5.24 5.27 5.39 5.00 5.02 5.07 5.07 5.08 

ParkJoy720p 12.99 10.70 10.22 9.01 9.17 9.92 10.04 10.16 

Spider3 5.34 3.65 3.68 3.36 4.39 2.88 3.04 3.54 

Spider2 7.10 5.39 5.02 4,39 4,53 3.11 3.21 3.82 

Susie 3.96 3.58 3.58 2,99 2,99 3.47 3.51 3.85 

Table Tennis 3.89 3.71 3.72 2,76 2,77 3.55 3.71 3.72 

 

Table 4.11 Average number of search locations per MB 

Video Sequence 
RDVSS 

τ = 256 

RDVSS 

τ = 512 

RDVSS 

τ = 1024 

ParkJoy1080p (1920x1080, 25fps) 959 933 738 

IceAge2 (1920x1080, 25fps) 601 448 301 

Ducks(1280,760, 25fps) 380 372 366 

ParkJoy720p (1280x720, 25fps) 921 805 723 

Spider3 (1280x576, 25fps) 529 429 322 

Spider2 (720x576, 25fps) 843 660 327 

Susie (704x480, 15fps) 850 729 365 

Table Tennis (704x480, 15fps) 782 716 204 
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The RDVSS algorithm searches much less search locations than the FS algorithm. 

The FS algorithm checks 16641 search locations in a search range of (±64, ±64) pixels, 

whereas the RDVSS on the average checks only 418 search locations, when the SAD 

threshold (τ) is set to 1024. On the other hand, MAD performance of the RDVSS 

algorithm on the average is only 14.7% lower than MAD performance of the FS 

algorithm, when the SAD threshold (τ) is set to 256. Performing that close to the FS 

algorithm for such a large search window is very important. 
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CHAPTER 5 

 

 

COMPUTATION REDUCTIONS FOR VECTOR MEDIAN FILTERING 

 

 

 
 

VMFs are widely used in image and video processing applications [5]. VMFs are 

non-linear filters and they require dealing with multi dimensional data. Because of their 

edge-preserving characteristics, they are mainly used for removing the noise from a 

signal by smoothing out the signal. Because of their smoothing capability, they are also 

used in video compression [40-43]. In [40], vector median filtering is applied adaptively 

on the obtained MVF in order to improve the visual quality and in [41] a VMF is used to 

estimate the MVs based on previously found MVs. In [42], by using adaptively weighted 

VMF in the encoder, a smoother MVF is obtained. In [43], VMF is applied at the 

decoder to smooth out irregular MVs. Recently, VMFs are used for FRC [44-52].  

 

In order to achieve high quality results for FRC, the true motion between 

consecutive frames should be found [44-52]. While ME for video compression needs to 

find the MVs giving the minimum SAD, ME for FRC should find the MVs 

corresponding to the physical motion of the objects. In order to find the true motion 

between consecutive frames, VMFs are used to smooth the MVF obtained by the ME. 

An example of smoothing an MVF is shown in Figure 5.1. In this example, the MV in 

the middle of the 3x3 filtering window is replaced by the output of the VMF applied to 9 

MVs in this 3x3 filtering window. 
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Figure 5.1 Smoothing MVF 

 

A frame from the Foreman video sequence and its MVF found by the FS 

algorithm are shown in Figure 5.2. FS is implemented in a search range of (±8, ±8) 

pixels for 16x16 MB size. The original MVF and the smoothed MVF by 3x3 VMF are 

shown in Figure 5.3. The man in the video sequence shakes his head and most of the 

corresponding MVs in the MVF point to vertical direction. However, some of these 

MVs point to horizontal direction. Smoothing the MVF by applying the VMF corrects 

some of the outlier MVs. For example, after the VMF operation, the MVs of the MBs 

containing the face of the man become more accurate. MVs on the boundaries of the 

frame are not filtered. 

 

 

Figure 5.2 Current frame and its MVF 

 

      (a)             (b) 

Figure 5.3 MVF (a) and smoothed MVF (b) 
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The median of a given set of scalar values is found by numerically sorting these 

scalar values and selecting the one in the middle. VMFs require ordering multi 

dimensional data. Several ordering methods such as Aggregate Ordering (A-Ordering), 

Reduced Ordering (R-Ordering), and Marginal Ordering (M-Ordering) are used for VMF 

[53]. For a given set of input vectors, A-Ordering based VMFs calculate the sum of 

distances of each vector to the other input vectors and select the vector with the 

minimum distance as the output. R-Ordering based VMFs calculate the distance of each 

input vector to a predefined reference, which may be the origin or the arithmetic mean. 

In R-Ordering based VMFs, selection of the reference point significantly affects the 

performance.  

 

M-Ordering based VMFs use scalar median operation for finding the medians of 

each vector dimension separately. They order the input vectors along each dimension, 

find the medians of each dimension separately and generate the output vector using these 

medians.  M-Ordering based VMFs are not suitable for FRC, because they usually output 

a new vector that does not exist in the input vector set. An example showing the 

disadvantage of M-Ordering based VMFs is shown in Figure 5.4. In this figure, a 

transition from black to white in RGB color domain at the time instance “tn” is shown. 

At the time instance “tn-2” an impulsive noise occurs in the red dimension, which is 

suppressed by the median filter. However, the median filter also changes this signal at 

“tn-1” from low to high. This means during the transition from black to white a red output 

appears incorrectly.   

 

 

Figure 5.4 M-Ordering based VMF (a) input, (b) output 
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In this thesis, we used A-ordering method, since it is more suitable for FRC. The 

computational complexity of A-Ordering based VMF depends on the metric (norm) used 

to calculate the distance between two vectors [54]. The absolute norm (1-norm), the 

Euclidean norm (2-norm), or the squared Euclidean norm (squared 2-norm) can be used 

for A-Ordering. The computational complexities of distance metrics for calculating the 

sum of distances of a vector to the other vectors in an NxN filtering window are shown 

in Table 5.1. 

 

Table 5.1 Comparison of distance metrics 

Arithmetic Operation 1-norm 2-norm Squared 2-norm 

Add / Sub 4N
2
-5 4N

2
-5 4N

2
-5 

Absolute 2N
2
-2 - - 

Multiplication - 2N
2
-2 2N

2
-2 

Square Root - N
2
-1 - 

 

2-norm has the highest computational complexity since it uses a square root 

operation for calculating a distance. Squared 2-norm has lower computational 

complexity since it does not use square root operations. 1-norm has the lowest 

computational complexity since it does not use square and square root operations. The 

output of 1-norm VMF for N
2
 input vectors is given in (5.1), where N

2
 is the number of 

vectors in the filtering window, j denotes a vector in the window, and i denotes the other 

vectors in the window. 1-norm distance between two vectors is calculated as shown in 

(5.2) [49, 50].  

    
1,1

2

minarg  


N

jii ij
j

m vvv


                (5.1) 

 

iyjyixjxij vvvvvv 
1


, where  

jyjxj vvv ,


 and  
iyixi vvv ,


      (5.2) 

 

 

A disadvantage of VMFs is the lack of control on the operations of filter. 

Weighted median filters are proposed in order to overcome this drawback [40, 42, 48, 

55, 56]. Weighted VMF operation is shown in equation (5.3), where weights are shown 

with wi [55]. In [56], algorithms for fast optimization of weights for the weighted VMF 

are given.  
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1,1

2

minarg  


N

jii iji
j

m vvwv


                  (5.3) 

 

VMFs are difficult to implement in real-time because of their high computational 

complexity [6, 54]. Several techniques to reduce the computational complexity of VMFs 

are developed. In [57], an approximation to the Euclidean norm for VMF is proposed. 

The square root operation of the Euclidean norm is avoided by a linear approximation. 

However, this technique requires sorting the vector dimensions according to their 

absolute values and then weighting the greater dimensions more heavily. In [58], an 

iterative technique for VMF is proposed. This technique requires less than five iterations 

for a window size of 3x3, on the average. The authors indicate this as an advantage over 

the existing techniques, which require nine passes in order to calculate the distance of 

each vector to the remaining vectors. Because of the sequential nature of this technique, 

it is not very suitable for hardware implementation.  

 

In [54], an algorithm to reduce the computational complexity of squared 2-norm 

VMF is presented. The input that minimizes the sum of the squared Euclidean distances 

to other inputs will be the mean vector of the input set. Therefore, rather than 

computing the difference of each vector to the remaining vectors, it will be enough to 

compute the difference of each vector to the mean vector of the input set. This 

technique reduces the order of computation from N
4
 to N

2
. However, a mean operation 

is required by this technique and the mean operation requires a division. 

 

In [54], a technique to reduce the computational complexity of 1-norm VMF is 

presented as well. To compute the 1-norm median value, the proposed fast technique 

first applies the scalar median for each dimension. This technique reduces the 

computational complexity to N
2
, but applying the scalar median for each dimension is 

identical to marginal ordering and this initial step of the proposed technique has a high 

computational complexity. In addition, the complexity reduction proposed in this paper 

depends on the variance of the input set and the size of the window. The proposed 

technique is more effective for an input set having a lower variance and for windows 

larger than 5x5.  
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In [54], a pre-computation technique, which we used in this thesis, is mentioned 

as well. It is indicated that, without using the pre-computed values, for an NxN window 

“N
2
(N

2
-1)” distances must be calculated. By storing the distances that have already been 

calculated, only “N(N
2
-1) + N(N-1) / 2” distances must be calculated. In this way, the 

computational complexity of the 1-norm VMF is reduced to N
3
. 

 

In [59], a performance improvement technique utilizing the redundancy in images 

is presented. This technique is based on window memoization. In order to reduce the 

amount of memory, only the two most significant bits of pixels are used for 

memoization. Since MVs have two dimensions, this technique requires a large area for 

FRC applications. In addition, using only the two most significant bits of vectors will 

decrease the visual performance for FRC applications.  

 

There are several papers in the literature presenting hardware implementations of 

scalar median filters. In [60], 1D median filtering is implemented using a cumulative 

histogram. The design is scalable for any window length. For 8 bit input samples a 

histogram with 256 bins is used to find the median value. Proposed architecture is 

synthesized to Xilinx XC2V6000 FPGA. In [61], median filtering is implemented with 

a ranking method. Proposed architecture is implemented on a Xilinx XC4013XL-1 

FPGA. This architecture consumes large area, because of the large number of required 

comparators. In [62], an area efficient median based genetic algorithm is developed. 

Rather than using larger window size, the authors developed a filter bank consisting of 

3x3 filters. After training the algorithm on a test image, the resulting filter bank is 

implemented on a Xilinx Virtex II Pro XC2VP50-7 FPGA. The authors claim that the 

filter bank technique requires less hardware resources.  

  

There are few papers presenting hardware implementations of VMFs [63]. In [63], 

VMF is adaptively applied on the MVF. First, a mean vector is calculated for each 

window position. Then, the mean of the distances between all the vectors in the window 

to the mean vector is calculated. The proposed hardware implementation consumes 927 

slices and works at 117.63 MHz on a Xilinx XC4VLX60 FPGA. 
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5.1 Computation Reductions for Vector Median Filtering 

 

 

 

We propose several techniques to reduce the computational complexity of 1-norm 

VMF for FRC by using data reuse methodology and by exploiting spatial correlations in 

the MVF [11]. To the best of our knowledge, there is no paper in the literature which 

reduces the amount of computations performed by VMFs by analyzing the spatial 

correlations between neighboring MVs. Since 3x3 window size is used in FRC papers 

in the literature, we also used this window size. However, the proposed techniques are 

scalable to any window size. 

 

 

 
5.1.1 Data-Reuse Technique 

 

 

 

Three consecutive 3x3 filtering windows are shown in Figure 5.5. The numbers in 

this figure show the vectors in the filtering windows. Since the filtering window slides 

from left to right over the MVF, vectors 1, 4, and 7 that are in the first filtering window 

are not in the next filtering window. Therefore, data reuse technique is applicable to 6 

out of 9 vectors in the current filtering window, and 5 out of 8 distances for each vector 

can be stored and reused for the next filtering window. 

 

 

Figure 5.5 3x3 Filtering windows 
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Figure 5.6 The distances between vector 3 and other vectors in three consecutive 

filtering windows 
 

The 1-norm distances between vector 3 and other vectors in three consecutive 

filtering windows are shown in Figure 5.6. The 1-norm distances of vector 3 to the other 

vectors in the current filtering window are shown in Figure 5.6(a). For example, 3-5 

denotes the 1-norm distance between vectors 3 and 5 in the current filtering window. As 

shown in Figures 5.6(b) and 5.6(c), some of these 1-norm distances are also used to 

compute the VMF for the next filtering windows.   

 

  Calculating the sum of 1-norm distances of a vector to the remaining vectors in a 

3x3 filtering window requires 16 subtraction, 16 absolute value and 15 addition 

operations. Therefore, calculating the sum of 1-norm distances of each vector to the 

remaining vectors in a 3x3 filtering window without data reuse technique requires 

16*9=144 subtraction, 16*9=144 absolute value and 15*9=135 addition operations. The 

number of arithmetic operations required for any filtering window size can be 

calculated as follows. In an NxN filtering window, there are N
2
 vectors. Calculating the 

sum of 1-norm distances of a vector to the remaining vectors in an NxN filtering 

window requires 2(N
2
-1) subtraction, 2(N

2
-1) absolute value and 2(N

2
-2)+1  addition 

operations. Therefore, for N
2
 vectors, 2N

2
(N

2
-1) subtraction, 2N

2
(N

2
-1) absolute value 

and 2N
2
(N

2
-2)+N

2
 addition operations are required. The numbers of arithmetic 

operations required for various filtering window sizes without proposed data reuse 

technique are shown in Table 5.2. In this table, required arithmetic operations are given 

per filtering operation and per HD frame. A 1920x1080 HD frame consists of 8100 

16x16 MBs. Therefore, there are 7730 filtering windows for 3x3 VMF. For 5x5 VMF 

and 7x7 VMF, there are 7368 and 7014 filtering windows, respectively.   
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Table 5.2 Required arithmetic operations without proposed technique 

Arithmetic 

Operation 

Per Filtering Operation Per HD Frame 

3x3 

VMF 

5x5 

VMF 

7x7 

VMF 
3x3 VMF 5x5 VMF 7x7 VMF 

Absolute value 144 1200 4704 1.113x10
6 

8.841x10
6
 32.993x10

6
 

Subtraction 144 1200 4704 1.113x10
6
 8.841x10

6
 32.993x10

6
 

Addition 135 1175 4655 1.043x10
6
 8.657x10

6
 32.650x10

6
 

 

The number of these arithmetic operations can be significantly reduced by data 

reuse technique. Data reuse technique is applicable to 6 vectors out of 9 vectors in a 3x3 

filtering window. When the filtering window slides to right over the MVF, the current 

filtering window has 3 new vectors that are not in the previous filtering window. Data 

reuse technique stores the sum of 1-norm distances between the other 6 vectors that are 

in the previous filtering window in 6*2=12 registers. For example, as shown in Figure 

5.6, for vector 3, the sum of distances 3-2, 3-5, 3-8 are stored in a register, and the sum 

of distances 3-6, 3-9 are stored in a register. 

 

The sum of 1-norm distances of these 3 new vectors to the remaining vectors in the 

filtering window should be calculated, and this requires 16*3=48 subtraction, 16*3=48 

absolute value and 15*3=45 addition operations. In an NxN filtering window, 2N(N
2
-1) 

subtraction, 2N(N
2
-1) absolute value, and 2N(N

2
-2)+N addition operations are required. 

 

The 1-norm distances of the remaining 6 vectors in the filtering window to these 

new 3 vectors should be calculated, and this requires 6*6=36 subtraction, 6*6=36 

absolute value and 6*5=30 addition operations. In order to find the sum of 1-norm 

distances of the remaining 6 vectors to all the other vectors in the filtering window, these 

1-norm distances should be added to the previously calculated and stored sum of 1-norm 

distances between these 6 vectors, and this requires 6*2=12 addition operations. In an 

NxN filtering window, 2N(N
2
-N) subtraction, 2N(N

2
-N) absolute value, and (3N-2)(N

2
-

N) addition operations are required. 

 

Therefore, calculating the sum of 1-norm distances of each vector to the remaining 

vectors in a 3x3 filtering window with data reuse technique requires 48+36=84 

subtraction, 48+36=84 absolute value and 45+30+12=87 addition operations. Calculating 

the sum of 1-norm distances of each vector to the remaining vectors in an NxN filtering 

window with data reuse technique requires 2N(2N
2
-N-1) subtraction, 2N(2N

2
-N-1) 
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absolute value and 5N
3
-5N

2
-N addition operations. The numbers of arithmetic operations 

required for various filtering window sizes with proposed data reuse technique are shown 

in Table 5.3. For 3x3 filtering window size, the proposed data reuse technique avoids 60 

subtraction, 60 absolute value and 48 addition operations, and it only requires 12 store 

operations. The number of store operations required for NxN filtering window size is 

2(N
2
-N). 

 

Table 5.3 Required arithmetic operations with proposed technique 

Arithmetic 

Operation 

Per Filtering Operation Per HD Frame 

3x3 

VMF 

5x5 

VMF 

7x7 

VMF 
3x3 VMF 5x5 VMF 7x7 VMF 

Absolute value 84 440 1260 0.649x10
6 

3.241x10
6
 8.837x10

6
 

Subtraction 84 440 1260 0.649x10
6
 3.241x10

6
 8.837x10

6
 

Addition 87 495 1463 0.672x10
6
 3.647x10

6
 10.261x10

6
 

 

 

 

 
5.1.2 Spatial Correlations Technique 

 

 

 

The proposed spatial correlations based techniques try to avoid redundant 

computations for calculating sum of 1-norm distances between the vectors in the current 

filtering window based on the spatial correlations between the neighboring MVs [11]. 

 

1-norm VMF calculates the sum of 1-norm distances of each vector to the other 

vectors in the current filtering window and selects the vector with the minimum distance 

as the output. The sum of 1-norm distances of a vector to the other vectors can be 

calculated by finding the sum of absolute differences between the x dimension of this 

vector and the x dimensions of the other vectors, and the sum of absolute differences 

between the y dimension of this vector and the y dimensions of the other vectors, and 

adding them. 

 

When the filtering window slides to right in the MVF, Correlation 1 technique 

compares the x dimensions and y dimensions of 3 new vectors in the current filtering 

window. If the x dimensions of these 3 vectors are equal, it calculates the sum of 

absolute differences between this x dimension and the x dimensions of the other vectors 
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in the filtering window, and uses the same result for all 3 vectors. The same is done for 

the y dimension. For example, since the y dimensions of vectors (4,9), (6,9), and (7,9) 

are equal, the sum of absolute differences between 9 and the y dimensions of the other 

vectors in the filtering window is calculated once and the same result is used for all 3 

vectors. 

 

When the filtering window slides to right in the MVF, Correlation 2 technique 

compares the x dimension and y dimension of each new vector with the x dimension and 

y dimension of the vector in the middle of the current filtering window. For example, it 

compares the new vectors 10, 11, 12 with vector 6 in the second 3x3 filtering window in 

Figure 5.5. If the x dimension of a new vector is equal to the x dimension of the vector in 

the middle, it uses the previously calculated and stored sum of absolute differences 

between x dimension of the vector in the middle (vector 6 in the second 3x3 filtering 

window in Figure 5.5) and the x dimensions of the 5 old vectors in the filtering window 

(vectors 2, 3, 5, 8, 9 in the second 3x3 filtering window in Figure 5.5) for this new 

vector. The same is done for the y dimension. 

 

When the filtering window slides to right in the MVF, Correlation 3 technique 

compares the x dimension and y dimension of each new vector with the x dimension and 

y dimension of the old vectors in the current filtering window. For example, it compares 

the new vectors 10, 11, 12 with vectors 2, 3, 5, 6, 8, 9 in the second 3x3 filtering window 

in Figure 5.5. If the x dimension of a new vector is equal to the x dimension of any 

compared vector, it uses the previously calculated and stored sum of absolute differences 

between x dimension of this old vector and the x dimensions of the remaining 5 old 

vectors in the filtering window for this new vector. The same is done for the y 

dimension. 

 

The overhead of proposed techniques for various filtering window sizes are given 

in Table 5.4 and Table 5.5. For an NxN filtering window, Correlation 1 requires (N
2
-N) 

comparison operations, whereas Correlation 2 requires 2N comparison and 2 store 

operations and Correlation 3 requires 2(N
3
- N

2
) comparison and 2(N

2
-N) store 

operations. 
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Table 5.4 Comparison overhead of spatial correlation techniques 

Proposed 

Technique 

Per Filtering Operation Per HD Frame 

3x3 

VMF 

5x5 

VMF 

7x7 

VMF 
3x3 VMF 5x5 VMF 7x7 VMF 

Correlation 1 6 20 42 4.638 x10
4
 1.4736 x10

5
 2.94588 x10

5
 

Correlation 2 6 10 14 4.638 x10
4
 7.368 x10

4
 9.8196 x10

4
 

Correlation 3 36 200 588 2.7828 x10
5
 1.4736 x10

6
 3.913812 x10

6
 

 

Table 5.5 Store overhead of spatial correlation techniques 

Proposed 

Technique 

Per Filtering Operation Per HD Frame 

3x3 

VMF 

5x5 

VMF 

7x7 

VMF 
3x3 VMF 5x5 VMF 7x7 VMF 

Correlation 1 0 0 0 0 0 0 

Correlation 2 2 2 2 1.546 x10
4
 1.4736 x10

4
 1.4028 x10

4
 

Correlation 3 12 40 84 9.276 x10
4
 2.9472 x10

5
 5.89176 x10

5
 

 

The computation reductions achieved by spatial correlation techniques for a 3x3 

filtering window are shown in Table 5.6 and Table 5.7. The simulations are done for the 

first 50 frames of the “Ducks” and “SthlmPan” video sequences and for the first 100 

frames of the other video sequences. The resolutions and frame rates of these video 

sequences are given in Table 5.6. The MVFs are obtained by FS algorithm with 16x16 

MB size on a search range of (±8,±8) pixels for CIF sized videos and on a search range 

of (±16,±16) pixels for remaining videos. The simulation results in Table 5.6 show the 

percentages of x dimensions and y dimensions of the 3 new vectors for all 3x3 filtering 

windows in these video frames for which the sum of absolute differences computations 

are avoided. 

 

The proposed spatial correlation techniques do not require the x dimension and y 

dimension of a new vector to be equal. They can avoid the sum of absolute differences 

computations for only x dimension or y dimension of a new vector. In order to quantify 

the impact of this, we modified the Correlation 1 and Correlation 2 techniques so that 

they require the equality of x dimension and y dimension of a new vector in order to 

avoid the sum of absolute differences computations for this vector. The simulation 

results in Table 5.7 show the percentages of x dimensions and y dimensions of the 3 new 

vectors for all 3x3 filtering windows in these video frames for which the sum of absolute 

differences computations are avoided by these modified correlation techniques. 
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Table 5.6 Computation reductions for 3x3 VMF 

Video Sequence Resolution fps Correlation 1 Correlation 2 Correlation  3 

CoastGuard (352x240) 30 44.980 %  64.366 % 78.028 % 

Flowers H (352x240) 29 41.027 % 55.163 % 74.050 % 

Foreman (352x288) 30 38.072 % 48.282 % 73.524 % 

M. Calendar L (352x240) 29 49.088 % 71.061 % 79.829 % 

Susie L (352x240) 29 37.524 % 48.398 % 72.016 % 

Table Tennis L (352x240) 29 50.912 % 73.085 % 79.082 % 

M. Calendar H (704x480) 29 48.249 % 67.501 % 84.591 % 

Susie H (704x480) 29 30.476 % 38.539 % 67.298 % 

Table Tennis H (704x480) 29 54.212 % 78.535 % 86.289 % 

Flowers H (704x480) 29 40.527 % 56.890 % 75.077 % 

Gladiator (720x576) 25 22.267 % 26.405 % 54.535 % 

Spiderman (720x576) 25 15.148 % 15.858 % 43.050 % 

Irobot (720x576) 25 25.357 % 33.081 % 61.834 % 

Spider3 (1280x528) 23 37.845 % 52.946 % 70.189 % 

Ducks (1280x720) 50 44.611 % 62.986 % 85.788 % 

SthlmPan (1280x720) 50 47.674 % 68.687 % 81.234 % 

 

Table 5.7 Computation reductions by modified correlation techniques for 3x3 VMF 

Video Sequence Correlation 1 Correlation 2 

CoastGuard 34.745 % 46.695 % 

Flowers L 31.204 % 39.329 % 

Foreman 29.134 % 35.188 % 

M. Calendar L 42.924 % 60.590 % 

Susie L 27.552 % 33.921 % 

Table Tennis L 48.136 % 68.252 % 

M. Calendar H 39.610 % 53.291 % 

Susie H 20.139 % 24.874 % 

Table Tennis H 50.599 % 72.935 % 

Flowers H 32.132 % 45.279 % 

Gladiator 9.212 % 11.945 % 

Spiderman 4.376 % 4.131 % 

Irobot 15.073 % 20.026 % 

Spider3 30.279 % 43.129 % 

Ducks 32.050 % 42.146 % 

SthlmPan 41.989 % 59.919 % 

 

We propose using a threshold, called “dif”, for increasing the computation 

reductions achieved by the proposed spatial correlation techniques. The proposed 

techniques require the dimensions of the compared vectors to be equal in order to avoid 

computations. The proposed techniques using “dif” avoid the computations for similar 

vectors as well by allowing a maximum difference of “dif” between the dimensions of 

the compared vectors. For example, when “dif” is set to 2, a reduction in computations 

will be achieved when the absolute value of the difference in any dimensions of the 

compared vectors is less than or equal to 2 pixels. The computation reductions achieved 

by the proposed spatial correlation techniques using “dif” for a 3x3 filtering window are 
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shown in Table 5.8. The computation reductions achieved by the proposed modified 

spatial correlations techniques using “dif” for a 3x3 filtering window are shown in 

Table 5.9. When “dif” is set to 2 for modified spatial correlations techniques, a 

reduction in computations will be achieved when the absolute value of the difference in 

both dimensions of the compared vectors is less than or equal to 2 pixels. The modified 

spatial correlations techniques achieve less computation reduction than the original 

spatial correlations techniques. The difference between the computation reductions 

achieved by the modified and the original spatial correlations techniques for various 

“dif” values are shown in Table 5.10.  

 

Table 5.8 Computation reductions for 3x3 VMF using “dif” 

Video Sequence 

dif = 2 dif = 4 

Correlation 

1 

Correlation 

2 

Correlation 

1 

Correlation 

2 

CoastGuard 54.790 % 82.129 % 55.817 % 83.639 % 

Flowers L 53.465 % 79.293 % 54.604 % 81.254 % 

Foreman 54.115 % 79.396 % 56.117 % 83.326 % 

M. Calendar L 55.704 % 83.379 % 56.157 % 84.160 % 

Susie L 53.982 % 79.630 % 55.301 % 82.237 % 

Table Tennis L 55.096 % 81.731 % 55.855 % 83.448 % 

M. Calendar H 58.895 % 87.492 % 59.902 % 89.141 % 

Susie H 49.734 % 71.195 % 54.156 % 78.508 % 

Table Tennis H 59.530 % 88.712 % 60.415 % 89.936 % 

Flowers H 52.989 % 77.214 % 55.727 % 81.881 % 

Gladiator 35.067 % 45.234 % 40.075 % 52.704 % 

Spiderman 26.456 % 30.027 % 32.910 % 38.770 % 

Irobot 39.693 % 55.391 % 44.493 % 63.011 % 

Spider3 46.487 % 66.401 % 49.734 % 71.198 % 

Ducks 61.554 % 92.060 % 63.088 % 94.534 % 

SthlmPan 56.742 % 83.411 % 58.796 % 86.812 % 

 

Table 5.9 Computation reductions by modified correlation techniques for 3x3 VMF 

using “dif” 

Video Sequence 

dif = 2 dif = 4 

Correlation 

1 

Correlation 

2 

Correlation 

1 

Correlation 

2 

CoastGuard 53.324 % 79.913 % 55.328 % 82.833 % 

Flowers L 51.377 % 75.644 % 53.306 % 78.936 % 

Foreman 52.131 % 76.031 % 54.861 % 81.255 % 

M. Calendar L 55.046 % 82.254 % 55.929 % 83.753 % 

Susie L 52.471 % 76.969 % 54.513 % 80.725 % 

Table Tennis L 54.224 % 79.808 % 55.489 % 82.664 % 

M. Calendar H 56.664 % 83.727 % 58.327 % 86.413 % 

Susie H 44.456 % 63.608 % 50.353 % 72.688 % 

Table Tennis H 58.392 % 86.057 % 59.596 % 88.410 % 

Flowers H 48.564 % 70.437 % 51.851 % 75.692 % 

Gladiator 22.171 % 30.312 % 27.285 % 36.664 % 

Spiderman 12.280 % 13.563 % 17.749 % 19.703 % 

Irobot 29.919 % 42.004 % 35.101 % 49.797 % 

Spider3 39.252 % 56.976 % 42.689 % 61.785 % 

Ducks 59.560 % 88.808 % 62.622 % 93.747 % 

SthlmPan 51.879 % 75.446 % 54.459 % 79.192 % 
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Table 5.10 Difference between the computation reductions achieved by the 

modified and the original spatial correlations techniques 

Video Sequence 
dif = 0 dif = 2 dif = 4 

Corr. 1 Corr. 2 Corr. 1 Corr. 2 Corr. 1 Corr. 2 

CoastGuard -22.754% -27.453% -2.675% -2.698% -0.876% -0.963% 

Flowers L -23.942% -28.704% -3.905% -4.601% -2.377% -2.852% 

Foreman -23.476% -27.119% -3.666% -4.238% -2.238% -2.485% 

M. Calendar L -12.557% -14.735% -1.181% -1.349% -0.406% -0.483% 

Susie L -26.575% -29.912% -2.799% -3.341% -1.424% -1.838% 

Table Tennis L -5.452% -6.612% -1.582% -2.352% -0.655% -0.939% 

M. Calendar H -17.905% -21.051% -3.788% -4.303% -2.629% -3.060% 

Susie H -33.918% -35.457% -10.612% -10.656% -7.022% -7.413% 

Table Tennis H -6.664% -7.130% -1.911% -2.992% -1.355% -1.696% 

Flowers H -20.714% -20.409% -8.350% -8.776% -6.955% -7.558% 

Gladiator -58.629% -54.762% -36.775% -32.988% -31.915% -30.434% 

Spiderman -71.111% -73.950% -53.583% -54.830% -46.068% -49.179% 

Irobot -40.556% -39.463% -24.624% -24.168% -21.108% -20.970% 

Spider3 -19.992% -18.541% -15.563% -14.194% -14.165% -13.220% 

Ducks -28.156% -33.086% -3.239% -3.532% -0.738% -0.832% 

SthlmPan -11.924% -12.765% -8.570% -9.549% -7.376% -8.777% 

 

Since the proposed spatial correlations techniques are scalable to larger window 

sizes, we obtained the performance results for larger filtering window sizes. The 

simulation results for 5x5 VMF and for 7x7 VMF are given in Table 5.11 and Table 

5.12, respectively. The simulation results for various “dif” values and filtering window 

sizes are given in Table 5.13. As “dif” value increases, computation reductions increase, 

especially for videos having large motions.  

 

Based on these results, Correlation 2 technique performs slightly better than 

Correlation 1 technique, especially for 3x3 filtering window. This is an expected result, 

because for stationary frames and for frames having a global motion Correlation 2 

should perform better. For these types of frames, MVs entering the filtering window 

will be equal, and therefore Correlation 2 will avoid the computations for all these MVs, 

whereas Correlation 1 will perform one computation. Because, Correlation 1 technique 

performs at least one computation independent of the new vectors entering the filtering 

window. Correlation 1 can avoid at most 2/3, 4/5, and 6/7 of the computations for 3x3, 

5x5, and 7x7 filtering windows, respectively. The performance difference between 

Correlation 1 and Correlation 2 techniques decreases for larger filtering windows. One 

reason for this is that in Correlation 2 for larger filtering windows, the difference 

between the physical locations of new vectors entering the filtering window and the old 
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vector compared with them, which is the vector in the middle of the filtering window, is 

large. Therefore, the compared vectors are less correlated.  

 

As the filtering window size gets larger, the performances of the proposed 

techniques decrease. Because for larger filtering windows, objects become smaller than 

the filtering window, and the correlation between compared vectors decrease. Because 

of this reason, FRC algorithms reported in the literature use a 3x3 filtering window. 

 

Table 5.11 Computation reductions for 5x5 VMF 

Video Sequence 
dif = 0 dif = 2 dif = 4 

Corr. 1 Corr. 2 Corr. 1 Corr. 2 Corr. 1 Corr. 2 

CoastGuard 42.750 % 47.704 % 50.128 % 61.702 % 50.626 % 63.078 % 

Flowers L 37.810 % 36.924 % 48.039 % 58.003 % 49.089 % 59.940 % 

Foreman 40.184 % 36.491 % 53.417 % 62.924 % 55.310 % 67.005 % 

M. Calendar L 46.340 % 53.430 % 50.282 % 62.424 % 50.645 % 63.115 % 

Susie L 37.540 % 36.628 % 49.737 % 60.397 % 50.413 % 62.154 % 

Table Tennis L 45.101 % 50.522 % 49.771 % 60.486 % 50.475 % 62.468 % 

M. Calendar H 56.564 % 62.068 % 65.172 % 79.570 % 65.912 % 81.050 % 

Susie H 38.910 % 35.554 % 58.864 % 66.725 % 62.401 % 73.170 % 

Table Tennis H 60.476 % 50.522 % 65.472 % 79.565 % 66.336 % 81.524 % 

Flowers H 45.780 % 47.686 % 59.189 % 68.679 % 62.030 % 73.470 % 

Gladiator 27.430 % 19.664 % 43.647 % 38.273 % 49.840 % 45.511 % 

Spiderman 20.456 % 13.530 % 35.440 % 26.366 % 43.525 % 34.379 % 

Irobot 31.699 % 26.417 % 48.686 % 48.222 % 54.094 % 55.842 % 

Spider3 44.059 % 47.526 % 54.089 % 59.734 % 57.761 % 64.250 % 

Ducks 57.085 % 61.989 % 71.159 % 87.315 % 71.972 % 89.541 % 

SthlmPan 57.945 % 66.797 % 66.409 % 79.672 % 68.268 % 82.595 % 

 
Table 5.12 Computation reductions for 7x7 VMF 

Video Sequence 
dif = 0 dif = 2 dif = 4 

Corr. 1 Corr. 2 Corr. 1 Corr. 2 Corr. 1 Corr. 2 

CoastGuard 25.041 % 25.571 % 28.344 % 32.690 % 28.447 % 33.128 % 

Flowers L 21.381 % 16.631 % 26.833 % 28.842 % 27.496 % 30.320 % 

Foreman 30.823 % 24.184 % 39.590 % 42.231 % 41.182 % 45.877 % 

M. Calendar L 26.143 % 27.002 % 28.217 % 32.909 % 28.416 % 33.144 % 

Susie L 22.101 % 19.247 % 28.049 % 31.846 % 28.361 % 32.739 % 

Table Tennis L 25.753 % 27.128 % 27.999 % 31.939 % 28.364 % 32.847 % 

M. Calendar H 55.894 % 55.755 % 62.243 % 70.959 % 62.717 % 71.926 % 

Susie H 48.854 % 31.888 % 57.946 % 60.760 % 60.600 % 66.247 % 

Table Tennis H 57.334 % 60.399 % 62.129 % 69.333 % 63.002 % 71.596 % 

Flowers H 44.143 % 38.834 % 56.124 % 58.545 % 58.866 % 63.359 % 

Gladiator 28.616 % 15.913 % 45.245 % 32.942 % 51.534 % 39.865 % 

Spiderman 22.651 % 11.656 % 38.627 % 23.103 % 46.783 % 30.440 % 

Irobot 33.189 % 21.120 % 49.750 % 41.159 % 55.017 % 48.515 % 

Spider3 44.071 % 42.133 % 53.805 % 52.892 % 57.360 % 56.995 % 

Ducks 60.188 % 58.451 % 71.861 % 82.111 % 72.385 % 84.076 % 

SthlmPan 60.476 % 64.228 % 67.664 % 75.335 % 69.333 % 77.858 % 
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Table 5.13 Average computation reductions 

Filter Size 
dif = 0 dif = 2 dif = 4 

Corr 1 Corr 2 Corr 1 Corr  2 Corr 1 Corr  2 

3x3 39.2% 53.8% 50.8% 73.9% 53.3% 77.7% 

5x5 43.1% 43.3% 54.3% 62.5% 56.7% 66.1% 

7x7 37.9% 33.7% 46.5% 47.9% 48.7% 51.1 % 

 

MVFs with higher spatial consistency increase the quality of the frames 

interpolated by FRC. Therefore, we used the Sum of Absolute Minimum Neighboring 

Difference (SAMND) metric [64] in order to determine the impact of VMF on the 

spatial consistency of MVFs. SAMND metric determines the correlation between the 

motions of the neighboring MBs by calculating the difference between their MVs as 

shown in (5.4). Since this is an off-line operation, 2-norm is used to find the distances 

between the MVs. In (5.4), cx


 denotes the vector in the middle of the filtering window, 

ix


 denotes the remaining vectors in the filtering window, and N denotes the total 

number of MBs in a frame.  

 

Table 5.14 shows the SAMND results for 3x3 filtering window. FS algorithm is 

used to obtain MVFs. The results given in this table are average SAMND values per 

MB, for which VMF is applicable. In these simulations, smoothing is applied 

recursively which means that the VMF uses the existing smoothed MVs in the current 

filtering window. Since real-time video processing hardware work MB by MB rather 

than working frame by frame, this is suitable for hardware implementation. As it can be 

seen from Table 5.14, smoothing the MVF increases the spatial consistency between 

neighboring MVs. SAMND performance decreases for larger “dif” values. Because 

increasing “dif” increases the possibility of selecting the MV in the middle of the 

filtering window as the median MV, which is equal to not doing any smoothing 

operation.  

 





N

MB

ic xxSAMND
1

2
min


, where i ≠ c   (5.4) 

 

Since SAMND metric is based on the minimum difference between the current 

MV and its neighboring MVs, it may give incorrect results for exceptional cases, e.g. 

when two similar outlier MVs are in the same filtering window. Therefore, we  
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Table 5.14 SAMND results 

Video 

Sequence 

Without 

smoothing 

With 

smoothing 

dif = 2 dif = 4 

Corr 

1 

Corr 

2 

Corr 

1 

Corr 

2 

CoastGuard 0.1262 0.0075 0.0346 0.0439 0.0467 0.0654 

Flowers 0.2712 0.0155 0.0264 0.0609 0.0343 0.0890 

Foreman 0.3233 0.0313 0.0629 0.0876 0.0827 0.1303 

M.Calendar 0.0803 0.0015 0.0305 0.0370 0.0414 0.0508 

Susie 0.3232 0.0386 0.0771 0.1074 0.0954 0.1468 

TableTennis 0.1007 0.0061 0.0282 0.0302 0.0486 0.0507 

M.Calendar 0.3480 0.0107 0.0393 0.0611 0.0521 0.0861 

Susie 1.4038 0.1180 0.1258 0.1400 0.1680 0.2069 

TableTennis 0.2777 0.0129 0.0531 0.0567 0.0716 0.0762 

Flowers 0.8106 0.0610 0.0615 0.0755 0.0820 0.1084 

Gladiator 2.9077 0.2577 0.3294 0.3325 0.3621 0.3718 

Spiderman 4.4531 0.4605 0.5343 0.5418 0.5691 0.5852 

Irobot 1.9819 0.1506 0.2007 0.2068 0.2336 0.2426 

Spider3 1.6618 0.1282 0.2035 0.2073 0.2286 0.2369 

Ducks 0.1554 0.0109 0.0536 0.0721 0.0867 0.1178 

SthlmPan 0.6359 0.0580 0.0612 0.0706 0.0770 0.0956 

 

developed the Sum of Neighboring Differences (SND) metric which takes the 

difference of the current MV with all its neighboring MVs into account. The SND 

metric is calculated as shown in (5.5). Table 5.15 shows the SND results for 3x3 

filtering window. FS algorithm is used to obtain MVFs. The results given in this table 

are average SND values per MB, for which VMF is applicable.  

 


 


N

MB ci

ic xxSND
1

9

2


         (5.5) 

 

Table 5.15 SND results 

Video 

Sequence 

Without 

smoothing 

With 

smoothing 

dif = 2 dif = 4 

Corr 

1 

Corr 

2 

Corr 

1 

Corr 

2 

CoastGuard 6.1574 2.5855 4.7004 4.7300 5.2268 5.3790 

Flowers 7.7833 2.1327 3.8889 4.2306 4.3277 4.7518 

Foreman 10.2969 4.0322 6.4099 6.5707 7.3295 7.5359 

M.Calendar 3.5041 1.3238 2.6138 2.7027 3.0164 3.1185 

Susie 10.1784 4.9273 7.4894 7.6945 8.2058 8.4920 

TableTennis 3.1192 1.0538 1.7603 1.8031 2.2278 2.2640 

M.Calendar 10.6241 2.6353 4.4929 4.6107 5.0107 5.2168 

Susie 32.5122 10.1467 12.8724 12.9829 14.7590 15.0836 

TableTennis 6.9591 1.6999 3.1505 3.1698 3.5601 3.6048 

Flowers 20.8387 5.3685 6.5933 6.8530 7.6923 8.1461 

Gladiator 90.6198 46.0629 46.1256 46.5114 47.8577 47.8834 

Spiderman 122.0818 59.6276 59.7013 60.1205 61.7425 61.9127 

Irobot 63.2902 31.0584 31.8333 31.8711 33.5845 33.7574 

Spider3 49.7524 23.7022 23.7708 23.8530 25.0597 25.2509 

Ducks 7.4080 2.4609 5.7550 5.8512 6.9311 6.9999 

SthlmPan 20.1122 5.8201 6.8342 6.8986 7.7794 7.9782 
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As it can be seen from Table 5.15, smoothing the MVF increases the spatial 

consistency between neighboring MVs and improves the SND performance. Since 

increasing “dif” increases the possibility of selecting the MV in the middle of the 

filtering window as the median MV, which is equal to not doing any smoothing 

operation, SND performance decreases with larger “dif” values. 

 

 

5.2 Vector Median Filtering Hardware Architecture 

 

 

 

In this thesis, we also propose an efficient VMF hardware implementing the 

proposed computation reduction techniques exploiting the spatial correlations in the 

MVF [11]. To the best of our knowledge, a VMF hardware implementing these 

techniques is not presented in the literature. The proposed architecture is scalable to any 

window size. But, it is implemented for a 3x3 window size because of the FRC 

requirements. The top-level block diagram of the proposed hardware is shown in Figure 

5.7. The control unit generates the necessary control signals for datapaths and sends the 

MVs to them. It also controls the weighting and minimum selector module. VMF 

computations for a filtering window are overlapped with loading the new vectors for the 

next filtering window. 

 

 

Figure 5.7 Top-level block diagram of the VMF hardware 
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The proposed hardware has two datapaths working in parallel. The sum of 1-norm 

distances of a vector to the other vectors in the filtering window is computed by these 

two datapaths. One datapath computes the sum of absolute differences between the x 

dimension of this vector and the x dimensions of the other vectors, and the other 

datapath computes the sum of absolute differences between the y dimension of this 

vector and the y dimensions of the other vectors. 

 

When the start signal is asserted, the control unit gets the number of MVs per 

column and MVs per row information from the 9-bit (in order to support 1920x1080 

resolution) “MV_per_col” and “MV_per_row” signals. Then, control unit requests the 

vectors in the current filtering window by asserting “MV_req” signal. If the current 

filtering window is the first filtering window in a row, control unit asserts the 

“line_start” signal together with the “MV_req” signal. Because, VMF hardware should 

get 9 new vectors for the first filtering window in a row, whereas it should get 3 new 

vectors for the other filtering windows in the row. The VMF hardware receives one new 

16-bit vector (8-bit x dimension and 8-bit y dimension) in each clock cycle.   

 

The block diagram of a datapath is shown in Figure 5.8. Ping pong registers are 

used to overlap computing VMF for the current filtering window with receiving the new 

vectors for the next filtering window. Vectors are loaded to the registers column by 

column. For a 3x3 filtering window, loading a column of vectors takes 3 clock cycles. 

After the vectors in one column of the filtering window are loaded, they are shifted to 

left by one column. In the datapath, the multiplexer with 9 inputs is used to select the 

vector of which the sum of 1-norm distances with other vectors will be calculated. 

 

The block diagram of the weighting and minimum selector module is shown in 

Figure 5.9. After the results obtained by the two datapaths are weighted separately, they 

are added and the result is stored in a register. The results obtained for all 9 vectors in 

the current filtering window are compared and the vector with the minimum value is 

selected as the median vector. The weights are stored in a register file and they can be 

changed adaptively during run time. Therefore, the proposed hardware can implement 

adaptively weighted VMF.  
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Figure 5.8 Block diagram of the VMF datapath 

 

 

 

 

Figure 5.9 Block diagram of the weighting and minimum selector module 
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The spatial correlation techniques are implemented in the control unit using 6 8-

bit comparators. The number of comparators can be reduced by performing the 

comparisons serially. Since the proposed VMF hardware has two datapaths working in 

parallel, it requires the equality of x dimension and y dimension of a new vector in 

order to avoid the sum of absolute differences computations for this vector. Therefore, it 

can achieve the computation reduction percentages shown in Table 5.7. 

 

For the first filtering window in a row, loading 9 new vectors and computing 

VMF takes 22 clock cycles. For the other filtering windows in the row, computing VMF 

takes 12 cycles. Therefore, VMF for a frame without spatial correlation techniques 

takes ((MV_per_col-2) x 22 + (MV_per_col-2) x (MV_per_row – 3) x 12) clock cycles. 

Therefore, for 16x16 MB size, VMF for a 1920x1080 HD frame without spatial 

correlation techniques takes 92690 cycles. For 4x4 MB size, it takes 1539928 cycles. 

 

The proposed VMF hardware architecture is implemented in Verilog HDL, and 

mapped to a low cost Xilinx XC3S400A-5 FPGA using Xilinx ISE 10.1.03. The 

implementation is verified with post place and route simulations using Mentor Graphics 

Modelsim 6.1 PE. The FPGA implementation consumes 1426 slices and it can work at 

145 MHz. Since, for 4x4 MB size, VMF for a 1920x1080 HD frame without spatial 

correlation techniques takes 1539928 clock cycles, VMF for this frame takes 10.62 ms. 

Therefore, without spatial correlation techniques, the proposed VMF hardware can 

process 94 HD fps. When the spatial correlation techniques are used, it can process 

more than 94 HD fps. 
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CHAPTER 6 

 

 

FRAME INTERPOLATION HARDWARE 

 

 

 

FRC is the conversion of a lower frame rate video signal to a higher frame rate 

video signal. LCD panels used for HDTV have a frame rate up to 240 Hz, whereas 

video signals are usually recorded in 24 Hz, 25 Hz, or 30 Hz. Therefore, FRC is 

required in order to display the HDTV video signals in the LCD panels. FRC can be 

done by interpolating a new frame between every two consecutive original frames like 

in 25 Hz to 50 Hz, 30 Hz to 60 Hz, 50 Hz to 100 Hz, 60 Hz to 120 Hz conversions, and 

it can be done by interpolating three new frames between every two consecutive 

original frames like in 25 Hz to 100 Hz, 50 Hz to 200 Hz, 30 Hz to 120 Hz, 60 Hz to 

240 Hz conversions. In the case of 24 Hz to 60 Hz conversion 3:2 pull-down technique 

is used [65].  

 

Because of their low computational complexity, simple FRC techniques like 

frame repetition and Linear Interpolation (LI) are used in some consumer electronics 

products. But, these simple techniques often produce artifacts to which human eye is 

very sensitive. Frame repetition results in motion judder and LI causes blurring at object 

boundaries [66, 67]. To overcome these problems, FRC algorithms using motion 

information between consecutive frames are developed. For example, Motion 

Compensated Averaging (MCA) technique performs frame interpolation by using the 

MVs found by the ME process.  

 

The LI and MCA techniques perform frame interpolation as shown in equations 

(6.1) and (6.2), respectively. In these equations, “t” is the time instance the frame “F” 

belongs to, “ x


” is the spatial location of the current pixel in the frame and “τ” is the 

time slot the interpolated frame belongs to. For the conversion ratio 1:2, τ will be 0.5 for 

both interpolated frames, and for the conversion ratio 1:4, τ will be 0.25, 0.5, and 0.75 

for the three interpolated frames. 
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       txFtxFtxFLI ,1,1,


          (6.1) 

       tvxFtvxFtxFMCA ,11,
2

1
,


        (6.2) 

 

 

Figure 6.1 An example FRC system 

 

An example FRC system is shown in Figure 6.1. Analyzing the off-chip memory 

bandwidth requirement of this FRC system clearly shows that FRC systems require 

significant data transfer from the off-chip frame memory. This FRC system implements 

a 1:4 conversion ratio. It will interpolate new frames by using one MV per MB and 

accessing one MB from the current frame and one MB from the reference frame. Since 

each color channel is 10 bits, the RGB values of a pixel take 30 bits which can be stored 

in a 32 bit word in memory. A Full HD frame has 1920x1080 (1.98M) pixels which 

take 7.92MB. Therefore, 15.84MB (2x7.92MB) have to be accessed from the off-chip 

frame memory in order to interpolate one frame. Since three frames will be interpolated 

per original frame, 47.52MB have to be accessed from the off-chip frame memory.  

 

The received input frame and the interpolated frames will be stored in the frame 

memory and they will be sent to the LCD display from the frame memory. Storing 

interpolated frames in the frame memory requires accessing 23.76MB (3x7.92MB). 

Storing the received input frame in the frame memory and reading the output frames 

that will be sent to the display from the frame memory requires accessing 39.6MB 

(5x7.92MB). Therefore, 110.88MB per frame have to be accessed from the off-chip 

frame memory. In the case of 60 Hz to 240 Hz conversion, this process will be repeated 

60 times per second. Therefore, 6.5 GB/s memory bandwidth is required. As it can be 

seen from this example, FRC systems require significant off-chip memory bandwidth. 
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Although recent 16 bit wide DDR III memories with a data rate of 1600 MHz have a 

bandwidth up to 3.2 GB/s [68], and by using the 4:2:2 or 4:2:0 video formats the 

amount of chrominance data can be reduced, real-time implementation of FRC systems 

is very difficult. 

 

FRC algorithms such as Adaptive Motion Compensated Interpolation and 

Overlapped Block Adaptive Motion Compensated Interpolation (AMCI) [69] and 

Weighted Adaptive Motion Compensated Interpolation (WAMCI) [70] produce good 

quality results. However, for interpolating a MB, these algorithms do not only access 

the MBs in the current and previous frames pointed by the MV for the current MB, they 

also access the MBs pointed by the MVs of the eight spatially neighboring MBs of the 

current MB. The MVs required for interpolating MB(i,j) in AMCI and WAMCI 

algorithms are shown in Figure 6.2. In this figure, “i” and “j” denote the x and y 

coordinates of a MB, respectively. The dark shaded MB is the current MB(i,j) and 

dashed MBs are its non-causal neighboring MBs. Therefore, these FRC algorithms 

access 9 MBs from current frame and 9 MBs from reference frame for interpolating a 

MB. This significantly increases the off-chip memory bandwidth requirement of an 

FRC system. 

 

Figure 6.2 MVs required to interpolate the current MB(i,j) 

 

Even though the off-chip memory bandwidth required by these FRC algorithms 

can be reduced by using a large on-chip memory as proposed in [71], real-time 

implementation of these FRC algorithms for HDTV is very difficult and they require a 

significant area for the on-chip memory. Several complete FRC hardware 

implementations including these frame interpolation algorithms are proposed in [72-74]. 

However, they do not specify the details of the frame interpolation part of their 

hardware, and they do not propose a reconfigurable hardware architecture for 

implementing these frame interpolation algorithms.  
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6.1 Frame Interpolation Algorithms 

 

 

 

FRC by repetition of the original frames results in motion judder and LI causes 

blurring at object boundaries. MCA is used to overcome these artifacts. However, it 

introduces blocking artifacts. Blocking artifacts occur at object boundaries when a block 

contains multiple objects with different motions. An appropriate solution to these local 

problems is the graceful degradation [67]. 

 

Graceful degradation methods are SMF, DMF, SS, and CMF. Their equations are 

shown in (6.3), (6.4), (6.5), and (6.6), respectively. Their advantages and drawbacks are 

discussed in detail in [67]. In general, SMF produces good results for stationary scenes; 

however it fails for detailed parts of the video. DMF performs better for these parts of 

video. The drawback of DMF is its tendency to cause serration of edges in highly 

detailed areas. The block diagrams of SMF and DMF are shown in Figure 6.3 and 

Figure 6.4, respectively.  

 

SS is an alternative to the rapid switching of DMF between LI and motion 

compensated pixels. SS takes the weighted average of motion compensated and non-

motion compensated pixels. As a result, switching between LI and MCA becomes 

softer. As shown in Equation (6.5), the weighting mechanism is controlled by a factor 

“k” which shows the reliability of the MVs. For reliable MVs, MCA will be preferred 

and for unreliable MVs, LI will be preferred. SS may result in local motion judder or 

local blur. CMF combines the strengths of SMF, DMF, and SS by taking the median of 

these methods. CMF can overcome the problems of these individual methods if 

controlled carefully.  

 

          txFtxFtxFmediantxF MCASMF ,,,,1,,


        (6.3) 

 

          txFtvxFtvxFmediantxF LIDMF ,,,)1(,1,,


  (6.4) 
 

         txFktxkFtxF MCALISS ,1,,


        (6.5) 

 

         txFtxFtxFmediantxF SSDMFSMFCMF ,,,,,,


       (6.6) 
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Figure 6.3 The block diagram of SMF 

 
 

      

 Figure 6.4 The block diagram of DMF 

 

 

We have compared the PSNR performance of various frame interpolation 

techniques. Table 6.1 shows PSNR results when FS is used as the ME algorithm and 

Table 6.2 shows PSNR results when DVSS is used as the ME algorithm. For these 

simulations, the ratio used in the SS is set to 0.5. The results showed that ME based 

frame interpolation techniques perform better than LI. When FS is used, MCA performs 

15.41% better than LI on the average. Similarly, SMF, DMF, SS and CMF perform 

9.34%, 15.85%, 10.62% and 13.18% better than LI on the average, respectively. The 

results also showed that the difference between the PSNR results of FS and DVSS 

algorithms is negligible. Although, DVSS checks much fewer search locations than FS, 

its performance is almost the same as the performance of FS. For MCA, the FS 

algorithm performs only 0.77% better than DVSS algorithm. The performance 

difference between FS and DVSS is only 0.01%, 0.37%, 0.34% and 0.23% for SMF, 

DMF, SS and CMF, respectively.  

 

 

 



 

 109 

Table 6.1 PSNR results of the FS algorithm  

Video LI MCA SMF DMF SS CMF 
CoastGuard 25.3869 29.3512 27.6633 28.6013 28.1044 28.3669 

Flowers 22.5259 27.1509 25.2657 26.2040 25.5612 25.9352 
Foreman 29.0562 30.9336 32.0160 32.5259 31.2801 32.4068 

M.Calendar L 22.5586 25.1749 24.4105 24.9861 24.6377 24.8840 
Susie 30.4907 34.4495 33.2389 34.3749 33.4113 33.9824 

TableTennis L 28.2165 32.3890 30.7374 32.0982 31.1210 31.5816 
M.Calendar H 19.0235 24.0895 21.8492 23.5409 22.4858 22.9549 

Susie 29.9640 33.9879 32.8294 34.2893 33.0780 33.7452 
TableTennis H 30.4426 34.2168 32.9888 34.4667 33.2847 33.8645 

Flowers 20.6369 28.8036 24.3785 27.0520 25.0289 25.8353 
Gladiator 20.6718 26.3470 23.3757 27.0797 24.5895 25.3301 

Spiderman 23.1200 27.2346 25.3174 26.9515 26.0612 26.3776 
Irobot 21.9556 26.5563 24.2142 26.8914 25.2759 25.8553 

Spider3 29.1199 25.6806 29.3254 29.4353 27.1299 29.4055 
Ducks 33.6571 34.0227 34.1742 34.1982 34.4229 34.4350 

SthlmPan 24.1271 33.8959 27.5507 33.4062 29.1224 30.1477 

 

 

Table 6.2 PSNR results of DVSS algorithm 

Video LI MCA SMF DMF SS CMF 
CoastGuard 25.3869 29.3876 27.6680 28.6071 28.1088 28.3702 

Flowers 22.5259 26.7278 25.2583 26.1943 25.4825 25.9267 
Foreman 29.0562 29.2466 32.0245 32.5206 30.7452 32.4098 

M.Calendar L 22.5586 25.2333 24.4124 24.9875 24.6363 24.8801 
Susie 30.4907 34.7535 33.2744 34.3455 33.4722 33.9978 

TableTennis L 28.2165 32.3997 30.7304 32.0198 31.0706 31.5227 
M.Calendar H 19.0235 24.4249 21.8711 23.5668 22.5436 22.9784 

Susie 29.9640 34.3474 32.8574 34.2781 33.1551 33.7598 
TableTennis H 30.4426 34.4332 32.9863 34.3809 33.2914 33.8242 

Flowers 20.6369 28.2882 24.3839 27.0656 24.9771 25.8437 
Gladiator 20.6718 25.3891 23.3495 26.7955 24.3361 25.2051 

Spiderman 23.1200 27.1854 25.2789 26.8401 26.0077 26.3021 
Irobot 21.9556 26.3661 24.1695 26.5634 25.1613 25.6951 

Spider3 29.1199 24.9613 29.2992 28.6499 26.5562 28.7680 
Ducks 33.6571 34.0392 34.1772 34.2004 34.4272 34.4375 

SthlmPan 24.1271 33.8959 27.5508 33.4063 29.1224 30.1477 

 

 

 

 



 

 110 

 (a)      (c)  

 
(b) 

Figure 6.5 Frames at consecutive time instances (a) t-1, (b) t, (c) t+1 

 

 

In addition to PSNR comparison, in order to visually compare the quality of the 

interpolated frames by these frame interpolation techniques, we interpolated a frame 

from the “Foreman” benchmark video. Figure 6.5 shows three consecutive frames from 

this video. The frame at time instance “t” in Figure 6.5 is interpolated with several 

frame interpolation techniques by using the MVs obtained by the FS algorithm and the 

DVSS algorithm between the frames at time instances “t-1” and “t+1”. The resulting 

frames for the FS algorithm are shown in Figure 6.6, and the resulting frames for DVSS 

algorithm are shown in Figure 6.7. For LI, the resulting frames for FS and DVSS 

algorithms are the same. 
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(a) (b) 

 
     (c)           (d)   

 
         (e)               (f) 

Figure 6.6 Interpolated frames using MVs obtained by FS (a) LI, (b) MCA, (c) SMF, 

(d) DMF, (e) SS, (f) CMF 
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(a) 

 
        (b)               (c) 

 
       (d)                (e) 

Figure 6.7 Interpolated frames using MVs obtained by DVSS  (a) MCA, (b) SMF,      

(c) DMF, (d) SS, (e) CMF 
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6.2 Reconfigurable Frame Interpolation Hardware Architecture 

 

 

We propose a low cost reconfigurable hardware architecture for real-time 

implementation of frame interpolation algorithms requiring low off-chip memory 

bandwidth; LI, MCA, SMF, DMF, SS and CMF [67]. The top-level block diagram of 

the proposed frame interpolation hardware architecture is shown in Figure 6.8. The 

proposed hardware architecture implements LI, MCA, SMF, DMF, SS and CMF frame 

interpolation algorithms and it allows adaptive selection between these algorithms for 

each 16x16 MB. The proposed hardware interpolates frames MB by MB. It takes the 

selected interpolation algorithm and the MV for each 16x16 MB as inputs and performs 

the frame interpolation. In this thesis, we implemented the on-chip memory, the 

datapath, and the control unit parts of this hardware, which are shown in Figure 6.9.  

 

The input MV to the frame interpolation hardware points to a MB in the current 

frame and to a MB in the reference frame in a range of (±48, ±24) pixels. MVs used in 

the interpolation process correspond to a larger search range in the ME process. For 

example, for the conversion ratio 1:2, the MVs with a range of (±48, ±24) pixels used in 

the interpolation process correspond to a search range of (±96, ±48) pixels in the ME 

process. 

 

Figure 6.8 Top-level hardware architecture 
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Figure 6.9 On-chip memory and datapath 

 

As shown in Figure 6.9 and Figure 6.10, the on-chip memory consists of 32 

BRAMs, and it is used to store 112x64 pixels from the current frame and 112x64 pixels 

from the reference frame. BRAM 0 to BRAM 15 are used to store the appropriate area 

from the current frame and BRAM 16 to BRAM 31 are used to store the appropriate 

area from the reference frame. Since each color channel (R, G, B) is 10 bits wide, 

BRAMs are configured as 448x32-bit, and each BRAM is used to store 4 lines of the 

required area from the corresponding frame. 

 

 

Figure 6.10 Data stored in the on-chip memory 
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As shown in Figure 6.10, most of the data that should be stored in the on-chip 

memory for two consecutive MBs are the same. Therefore, for the next MB only the 

non-overlapping 64x16 pixels, shown with dashed lines in Figure 6.10, can be accessed 

from the frame memory by using data-reuse methodology. In addition, since the 

BRAMs in the FPGAs have dual ports, the interpolation of a MB can be overlapped 

with accessing the non-overlapping area required by the next MB from the frame 

memory as shown in Figure 6.11. However, this requires storing additional 16 pixels 

per line in each BRAM and it increases the complexity of the address generation 

module. 

 

 

Figure 6.11 MB schedule 

 

 

The proposed datapath includes 48 PEs. The boxes named as “R”, “G”, and “B” 

in Figure 6.9 represent the PEs. Each PE performs the interpolation of a color channel. 

Therefore, the datapath interpolates R, G, B channels of a pixel in parallel and it 

interpolates 16 pixels in each clock cycle. The rotator consists of 30 identical rotators 

each 16 bits long. Two rotators are used to align the interpolated pixels to match with 

their original positions where they must be in the current MB. The interpolated pixels 

can be stored in an output register file and sent to the off-chip frame memory by a top-

level memory controller. 

 

The block diagram of a PE is shown in Figure 6.12. In the first clock cycle of the 

interpolation process, the previous pixel  1, txF


 and the current pixel  txF ,


 will be 

stored in 10 bit registers “Reg. P.” and “Reg. C.”. In the second clock cycle, motion 

compensated values of the previous pixel  1,  tvxF

  and the current pixel 
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 tvxF ,)1(


  will be stored in the 10 bit registers “Reg. P. MC” and “Reg. C. MC”. 

Since loading from BRAMs can be implemented much faster than the datapath 

operations, we assume that loading these pixels can be done in a single clock cycle by 

using a clock twice faster the clock used in the datapath. “Reg. SMF”, “Reg. DMF” and 

“Reg. CMF” include three 10 bit registers. In the second cycle, outputs of “Reg. P.” and 

“Reg. C.” will be added and the least significant bit will be discarded so that their 

average will be calculated and stored in the register “Reg. DMF”. Similarly, in the third 

cycle MCA value will be calculated and stored in the register “Reg. SMF”. “Reg. CMF” 

stores the outputs of SMF, DMF and SS. 

 

 

Figure 6.12 Processing element 
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SS value is calculated by the “Soft Switching” module. The block diagram of the 

SS module is shown in Figure 6.13. This module takes LI and MCA values as inputs 

and multiplies them with “k” and “(1-k)” coefficients. In order to save area, no 

multiplier or divider is used in this module. Multiplying the input values with the “k” 

and “(1-k)” coefficients of 24/32:8/32, 20/32:12/32, 18/32:14/32, 16/32:16/32 are 

implemented by using only two adder/subtractors, one adder, and two multiplexers. For 

example, the SS ratio of 3:5 will be implemented as follows. The hardware will use the 

20/32 and 12/32 coefficients. Multiplying with the “k” coefficient of 20/32 will be 

implemented by adding the result of “<< 2” (x4) operation and the result of “<< 4” 

(x16) operation. Similarly, multiplying with “(1-k)” coefficient of 12/32 will be 

implemented by subtracting the result of “<< 2” operation from the result of “<< 4” 

operation. The least significant 5 bits of the results of adder/subtractors will be 

discarded to implement the divide by 32. The SS value will be obtained by adding these 

two values.  

 

 

Figure 6.13 Soft switching module 
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The “Median” module is shown in Figure 6.14. It takes three 10 bit inputs “A”, 

“B”, “C” and calculates the median of these inputs. The median module has three 

comparators, two 2-to-1 multiplexers and two logic gates for generating the select 

signals of these two multiplexers. In order to increase its clock frequency, pipelining 

registers shown in Figure 6.12 are used at its inputs and output. First, the median value 

for SMF is calculated. Then, the median value for DMF is calculated in the next clock 

cycle. Finally, the median value for CMF is calculated. In order to calculate CMF, the 

result of the median module for SMF and DMF are stored in “Reg. CMF” together with 

the result of SS module. 

 

 

Figure 6.14 Median module 

 

 

The “Output Mux” shown in Figure 6.12 is used to select the result of the 

interpolation algorithm specified by the “Interpolation Algorithm” input. This 

multiplexer selects either results of LI, MCA, SS or the result of the median module. 

The results of LI and MCA will be ready in the second and third clock cycles. The SS 

result will be calculated and registered in the fourth clock cycle. SMF, DMF, and CMF 

results will be ready in the 5th, 6th, and 8th clock cycles, respectively. When operated 

in LI, MCA, SMF, DMF, or SS modes, there is no need to stall the pipeline assuming 

that four input pixels are loaded in one clock cycle. CMF mode requires stalling the 

pipeline for two clock cycles. Therefore, when operated in any mode except CMF, the 

proposed hardware interpolates a 16x16 MB in 16 clock cycles after the first result is 

ready. When operated in CMF mode, it interpolates a 16x16 MB in 48 clock cycles 

after the first result is ready. 
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The proposed hardware architecture is implemented in VHDL and mapped to a 

low cost Xilinx Spartan XC3SD3400A-4 FPGA using Xilinx ISE 9.2.04. It is verified 

with RTL simulations using Mentor Graphics Modelsim. The implementation results 

show that the proposed hardware can work at 101 MHz and it consumes 15592 slices 

and 32 BRAMs. A PE consumes 222 slices. SS and median modules consume 38 and 

25 slices, respectively.  
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CHAPTER 7 

 

 

CONCLUSIONS 

 

 

 

 

Since the input source and display have different frame rates, FRC systems are 

required in current consumer electronic devices. An ME based FRC system has three 

parts; ME, MVF post-processing to obtain the true motion, and frame interpolation 

Each part has a significant computational complexity. Therefore, in this thesis, we 

proposed ME algorithms and hardware architectures for implementing these algorithms. 

In addition, we proposed techniques for reducing the computational complexity of VMF 

and a hardware architecture for implementing VMF. Finally, we proposed a hardware 

architecture for frame interpolation. 

  

For the first part of an FRC system, we first developed a HEXBS ME algorithm 

and two hardware architectures, the generic architecture and the systolic architecture, to 

implement it [7]. The proposed HEXBS ME algorithm has lower computational 

complexity than the FS algorithm. The simulation results showed that the PSNR 

obtained by this algorithm is better than the PSNR obtained by other fast search 

algorithms. The generic architecture and the systolic architecture are implemented in 

VHDL and mapped to Xilinx FPGAs. Both hardware architectures can run at 144 MHz 

when implemented on an XC3S1200E-5 FPGA, and they can process 25 1920x1080 fps 

for the search range of (±32,±16) pixels. Various fast search ME algorithms can be 

implemented using the generic hardware architecture. However, it uses 80 BRAMs. On 

the other hand, only the proposed HEXBS algorithm can be efficiently implemented 

using the systolic hardware architecture. Since it uses 16 BRAMs, it fits into 

XC3S1200E-5, a low cost Xilinx Spartan-3E FPGA.  
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We proposed the DVSS ME algorithm to improve the results obtained by the 

proposed HEXBS ME algorithm [9]. The simulation results showed that the DVSS 

algorithm performs very close to the FS algorithm by searching much fewer search 

locations than the FS algorithm and it outperforms successful fast search ME algorithms 

by searching more search locations than these algorithms. A high performance 

dynamically reconfigurable systolic ME hardware architecture for efficiently 

implementing the DVSS algorithm is proposed. The proposed hardware architecture is 

implemented in VHDL and mapped to an XC3S1500-5 FPGA. On this FPGA, it works 

at 130MHz and consumes 9128 slices and 16 BRAMs. It requires on the average 467 

clock cycles to find the MV of a MB when the early search termination threshold value 

is set to 256. The proposed ME hardware consumes less area than the implementation 

of one of the best performing fast search ME algorithms in the same FPGA. The 

proposed ME hardware is capable of processing HD video formats in real-time and its 

throughput is much higher than the FS hardware implementations reported in the 

literature.  

 

We proposed the RDVSS algorithm to further improve the results obtained by the 

DVSS algorithm [10]. The RDVSS algorithm can be implemented on the hardware 

architecture proposed for the DVSS algorithm with a slight modification. To the best of 

our knowledge, no ME algorithm utilizing the difference of the MVs of the temporal 

neighboring MBs as proposed in the RDVSS algorithm is presented in the literature. 

The simulation results showed that for the same search range, the RDVSS algorithm 

searches much less search locations than the DVSS algorithm. For videos with large 

motions, the performance of the RDVSS algorithm is better than the DVSS algorithm. 

For videos containing very small motions, the DVSS algorithm gives slightly better 

results by checking more search locations. 

 

For the second part of an FRC system, we proposed several techniques to reduce 

the computational complexity of VMFs by using data reuse methodology and by 

exploiting the spatial correlations in the MVF [11]. To the best of our knowledge, there 

is no paper in the literature which reduces the amount of computations performed by 

VMFs by analyzing the spatial correlations between neighboring MVs. In addition, we 

designed and implemented an efficient VMF hardware including the computation 

reduction techniques exploiting the spatial correlations in the MVF on a low cost Xilinx 
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XC3S400A-5 FPGA. The FPGA implementation can work at 145 MHz and it can 

process more than 94 HD fps.   

 

For the third part of an FRC system, we proposed a low cost reconfigurable frame 

interpolation hardware [12]. The proposed hardware improves the quality of the 

interpolated frames by implementing LI, MCA, SMF, DMF, SS and CMF frame 

interpolation algorithms and by allowing adaptive selection between these algorithms 

for each 16x16 MB. The proposed hardware architecture is implemented in VHDL and 

mapped to a low cost Xilinx XC3SD3400A-4 FPGA. The implementation results show 

that the proposed hardware can run at 101 MHz on this FPGA, and it consumes 32 

BRAMs and 15592 slices. 
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