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Abstract

In this paper, we study a queueing system serving multiple classes of customers.

Each class has a finite-calling population. The customers are served according to the

preemptive-resume priority policy. We assume general distributions for the service

times. For each priority class, we derive the steady-state system size distributions at

departure/arrival, and arbitrary time epochs. We introduce the residual augmented

process completion times conditioned on the number of customers in the system to

obtain the system time distribution. We then extend the model by assuming that the

server is subject to operation-independent failures upon which a repair process with

random duration starts immediately. We also demonstrate how setup times, which

may be required before resuming interrupted service or picking up a new customer,

can be incorporated in the model.

Keywords and Phrases: Multi-class finite-source populations, priority queues, pro-

cess completion time, busy period analysis, operation-independent server disruptions



1 Introduction

In this paper, we analyze an M/G/1//N queueing system with an unreliable server serving

m finite-source populations/customer classes indexed by k = 1, ...,m. Each population k

consists of Nk customers (type k customer). Such queueing models traditionally consider

only a single finite-source population and a reliable server and, as such, are extensively

studied in the literature. For instance, in the machine interference problem (MIP), N can

be the number of machines in a fleet, each subject to failure; upon failure, they are repaired

by the repair facility, modeled as a single server. The repair facility may be unavailable

from time to time (see, e.g., [27]), thus increasing the wait times of failed machines in the

repair shop. In modeling telecommunication or computer networks, e.g., [4, 24], the finite

number (N) of potential customers might correspond to active terminals generating jobs for

the central processor unit (CPU), which can be modeled as a single server. The CPU might

be interrupted and become unavailable from time to time; jobs generated by the terminals

cannot be processed until the CPU is recovered.

We assume that customers from different classes are served according to the preemptive-

resume priority discipline. This setting can be modeled as a two-node closed queueing

network where the second node hosts infinite-server groups. Customers departing from the

single server queue occupies one of the infinite servers for an exponentially distributed amount

of time (possibly with different rates for different customer types), and, then, re-enter the

M/G/1//N queue placed at the first node (see Figure 1 and deliberations on it in Section 2

for more clarification). There is a rich literature on closed queueing networks where one node

hosts an infinite server group – as in our problem – capturing sojourn times of customers

out of the queueing system while each one of the other nodes hosts a single server queue. In

these studies, the focus is on the bottleneck single server system. We refer the reader to [18]

for a single finite-source population, and [28] for multiple finite-source populations served

under the first-come, first-served (FCFS) policy. Autonomous service at the bottleneck single

server system where customers are served at random instants is considered for single and
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multiple finite-source populations in [1] and [3], respectively. While exponential service times

are assumed for bottleneck single server in [1, 3, 18, 28], extension of [1] with general service

times can be found in [2].

In our problem, we first study the M/G/1//N queue without considering server failures

and setup times. A distinctive feature of our model is its capacity to include multiple classes

of customers served under the preemptive-resume priority policy. Since preemptive-resume

priority is used, the server becomes unavailable/disrupted for a class of customers because

of arrival of higher priority customers. Such periods of interruptions end when all higher

priority customers are cleared off the system. Preemptive-resume priority policy for finite-

source populations is analyzed in [16] where the generating function of the queue length

process is obtained. Assuming exponential service times for each class, a method to compute

the steady-state distributions of the queue lengths is designed by [26] as an alternative to

the computationally complex method in [16]. We also refer the reader to [21] that extends

the results in [26]. In this study, we assume that service time random variables (r.v.s) have

general distributions. We develop a recursive method to obtain the steady-state system size

distribution, and the Laplace transform (LT) of the system time for each class in Sections

4.2 and 4.3, respectively.

After the analysis of the multi-class M/G/1//N queue is completed, we consider having

setup times prior to picking up the next customer or resuming the service of an interrupted

customer. We also permit that the server can fail whether it is idle, under setup or serving

a customer. A repair process starts immediately upon failures. We define the times between

failures, or the ON periods, as the times between the end of one repair and the start of

the next. We assume that ON periods are exponentially distributed. This implies that

customers can experience “operation-independent disruptions (OID)” indicating that the

server can be disrupted for them at any time – even when it is idle or being set up – except

during the server’s own OFF periods. If we assume that the characteristics of times between

interruptions and down times experienced by an idle server differ from when it is serving

customers, we arrive at the ODD M/G/1//N queue where ODD stands for “operation-
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dependent disruptions”. Note that we adopt the definitions of OID and ODD from [5]

(p. 85). Since our paper is on the M/G/1//N queue with OID, for the sake of simplicity,

we simply refer to it as the M/G/1//N queue.

Queueing models with unreliable servers have been widely studied since the seminal paper

by White and Christie [31]. Although the nature and the context of the problems analyzed

vary considerably, the early body of work loosely revolves around two considerations: 1)

whether the customer population is infinite or finite, and 2) whether the ON periods of the

server(s) are operation-independent or operation-dependent.

We first summarize the papers that consider infinite populations. White and Christie

assume operation-independent exponential ON periods in the M/M/1 queue. Assuming that

OFF periods are also exponential r.v.s, they obtain the steady-state probability distribution

of the time a customer spends in the system. In [7, 14, 25], this model is extended by assuming

that service times and OFF periods have general distributions. In his analysis, Gaver [14]

considers operation-dependent ON periods and assumes that the customer whose service is

interrupted resumes its service from the moment of interruption once the OFF period is

over. He introduces the process completion time, the total time a customer spends on the

server including its actual service time plus possible OFF periods. Avt-Itzhak and Naor [7]

and Thiruvengadam [25] consider both operation-dependent and operation-independent ON

periods. The multi-server M/M/c queues with random breakdowns are studied in [19, 20].

For M/G/1 queues with operation-independent ON times, bounds and approximations are

derived in [12] for the mean waiting time, probability of delay and steady-state system size

distribution when ON and OFF periods are general independent and identically distributed

(i.i.d.) r.v.s. Federgruen and Green [13] revisit the problem, this time assuming that ON

periods are phase-type r.v.s. They provide an exact algorithm to obtain the steady-state

system performance measures. For the M/G/1 queue with interruptions, we also refer the

reader to [6, 11, 30]. An accurate approximation is designed in [8] to obtain the mean

waiting time in the GI/D/1 queue with operation-dependent phase-type ON and general

OFF periods.
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Next we note the papers that consider finite-calling populations, which are part of the

MIP or alternatively the machine repairperson problem literature (see [15, 23] for an ex-

tensive bibliography on the MIP) with unreliable servers. The M/M/1//N queue with an

unreliable server is analyzed in [27] by assuming exponential ON and OFF periods for both

operation-dependent and operation-independent interruptions. This model is extended in

[29] by assuming exponential operation-independent ON periods, Erlangian service times

and Erlangian OFF periods. The results in [29] are generalized by considering phase-type

distributions for service times and OFF periods in [9].

As the literature review suggests, using non-exponential distributions for underlying r.v.s

in these queueing systems is challenging. Neither incorporating non-exponential times be-

tween customer arrivals nor assuming non-exponential ON period distributions is analyti-

cally tractable in systems with a finite-calling population, whether these systems experience

operation-dependent or operation-independent server disruptions (except in M/G/1 systems

with phase-type ON periods as in [8, 13]). Similar difficulties arise for general service time

and OFF period distributions. Among the three papers [9, 27, 29] that are relatively closest

to our problem, two have successfully incorporated either Erlang distribution [29] or phase-

type distributions [9] for both r.v.s. considering only a single finite population of customers

to be served by the unreliable server. These studies employ the matrix-analytic method to

find the steady-state system size distribution; this can be computationally intensive if the

structure of the phase-type distribution is complex.

After outlining the problem in Section 2 without considering server failures and setup

times, in Section 3 we conduct the busy period analysis of the system. Here, we derive its

LT and the mean length of the busy period. This enables us to obtain the steady-state

system size distribution at departure/arrival and arbitrary time epochs in Section 4. For

the probabilities at arbitrary time epochs, we need the LT of the residual time left until the

departure of the first customer in each class from the system. This is derived in Section 4.3.

We summarize our conclusions in Section 5. All proofs appear in Appendix A. We include

server failures in the model and redefine the process completion time r.v., this time including
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setup times, and obtain its LT for each class in Appendix B.

2 Problem Definition

In this paper, we analyze a queueing system with a single server serving m finite-source

populations/customer classes indexed by k = 1, . . . ,m. Each population k consists of Nk

customers (type k customer). The times between the completion of a type k customer’s ser-

vice and the next arrival of the same customer at the queueing system follow an exponential

distribution with rate λk. Customer classes are prioritized as class 1 to m from highest to

lowest and customers are served according to the preemptive-resume priority policy. There-

fore, if a “tagged” lower priority customer is preempted by a higher priority customer, the

time until it resumes its service from the moment of preemption is a disruption for this tagged

customer. The actual service times of type k customers – in the absence of disruptions – are

i.i.d. r.v.s with an LT, b̃k(s).

This problem can be represented as a two-node closed queueing network, a snapshot of

which is given in Figure 1. According to this representation, one of the nodes is a single

server system with two infinite capacity queues where service times are general i.i.d. r.v.s

dependent on the customer type (with the LT b̃k(s)). Customers that are served according

to the preemptive-resume priority policy depart from this node and high-priority type 1

(low-priority type 2) customers enter the infinite server group 1 (2) which is located at the

other node of the network. Here, a type k customer stays for an exponentially distributed

time with rate λk and is directed again to the queue reserved for its class at the single server

node. In Figure 1, we have m = 2 finite-source populations with N1 = N2 = 6. In this

snapshot, there are three type 1 customers in the M/G/1//N queue at node 1, one of which

is being served and two waiting in queue 1. Due to the preemptive-priority policy, type 2

customers have to wait until all type 1 customers are served. It is possible that all or some

type 1 customers may have arrived at node 1 after the first type 2 customer in the queue.

If this is the case, the service of the first type 2 customer was preempted, which will resume
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Figure 1: A two-node closed queueing network representation of the problem

from the moment of interruption only after no type 1 customers remain at node 1.

Since preemptive-resume priority policy is used, a class k customer can be serviced only

during the periods the server is not allocated to higher priority classes 1 to k − 1. The

presence of lower priority classes k+ 1 to m does not have any impact on type k customers.

In other words, from the point of view of type k customers, the server becomes unavailable/is

disrupted with an “effective” interruption rate of αk =
∑k−1

n=1Nnλn for a random interruption

period denoted by the r.v. Dk, k = 2, . . . ,m due to the arrivals of the higher priority

customers. The LT of the length of the interruption period Dk for type k customers, f̃k(s),

is obtained in Section 3. For class 1 customers, there are no such interruptions unless the

server can break down from time to time, an extension which we discuss in Appendix B.

Letting F k(y) = 1− Fk(y) where Fk(y) is the distribution function of Dk, the first moment

of Dk will be denoted by E[Dk] =
∫∞
0

F k(y)dy.

Due to these interruptions, instead of the actual service time, we need to consider the

process completion time (PCT) r.v. [14], which is the total time a customer spends on the

server; this includes the actual service time plus any possible interruption periods it may

experience. In our problem, Ck (with a density function of ck(z)) represents the PCT r.v.

for a type k customer, and it is the elapsed time between the instant a type k customer’s

service begins and the instant the same customer departs from the system. If interruptions
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occur, once the subsequent interruption period is over, the interrupted customer resumes its

service from the moment of interruption. The LT of Ck is found in the literature (e.g., [16],

p. 109)

c̃k(s) = b̃k(s+ αk − αkf̃k(s)), (1)

where, as noted before, f̃k(s), the LT of Dk, is found using a recursive algorithm developed

in Section 3. In the rest of the paper, we refer to the PCT for class k simply as the PCT.

We employ the following stochastic process to characterize the state of the system at

time t: Rk(t) equals 0 if the server is available, and 1 if it is unavailable/interrupted for class

k; Wk(t) ∈ {0, 1, ..., Nk} is the number of type k customers out of the queueing system. The

elapsed time since the server became unavailable for class k is another stochastic process, but

we do not need this information in our derivations. We do not use the stochastic process that

gives the number of type k customers in the queuing system at time t, which is Nk −Wk(t),

because it is easier to express the state dependent arrival rates via Wk(t) in our derivations.

All performance measures investigated in this paper are steady-state performance measures.

In the rest of the paper, we denote the mean for any r.v. X by E[X].

3 Busy Period Analysis for Type 1 to Type k Cus-

tomers

A busy period for type 1 to type k customers starts with either one of the following two

events: Event A: A probable interruption for class k initiates the busy period if a customer

of type 1 to k − 1 arrives when there are no customers of type 1 to k in the system. Event

B: The arrival of a type k customer initiates the busy period when there are no customers

of type 1 to k in the system. Thus, each busy period starts with an “initial delay” either

in the form of a probable interruption for type k customers (Dk) in case of Event A, or a

PCT (Ck) in case of Event B. Due to the preemptive-priority policy, presence of customers

of types k+1 to m in the system during the busy period is irrelevant from the point of view
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of class k (or higher priority) customers. If there are no type k customers waiting for service

at the end of an initial delay, the busy period of type 1 to type k customers ends; otherwise,

it continues until the server clears all type k (or higher priority) customers from the system.

In the remainder of this section and the related proofs given in Appendix A, we refer to the

busy period for type 1 to type k customers simply as the busy period.

Let pDk
Nk

(n) (pCk
Nk−1(n)) be the probability of having 0 ≤ n ≤ Nk (0 ≤ n ≤ Nk − 1) type k

customers present in the M/G/1//N system at the end of an interruption (PCT) initiating

a busy period. Unlike the systems with constant customer arrival rates, in this system, state

dependent arrival rates must be taken into account.

Before presenting the following Theorem, we define PDk
Nk

(n|d) (PCk
Nk−1(n|c)) as the prob-

ability of having n type k customers at the end of the interruption (PCT) initiating a

busy period given that Dk = d (Ck = c). Further, P̃Dk
Nk

(n, s) =
∫∞
0

PDk
Nk

(n|y)e−syfk(y)dy

(P̃Ck
Nk−1(n, s) =

∫∞
0

PCk
Nk−1(n|z)e−szck(z)dz).

Theorem 1 The LT P̃Dk
Nk

(n, s) is given by

P̃Dk
Nk

(0, s) = f̃k(s+Nkλk), (2)

P̃Dk
Nk

(n, s) =

Nk∑
i=Nk−n

(−1)i−(Nk−n+1)

(
Nk

i

)(
i

Nk − n

)
(f̃k(s)− f̃k(s+ iλk)), 0 < n < Nk,

(3)

P̃Dk
Nk

(N, s) =

Nk∑
i=1

(−1)i−1

(
Nk

i

)
(f̃k(s)− f̃k(s+ iλk)). (4)

Note that Theorem 1 can be adjusted to obtain P̃Ck
Nk−1(n, s) (see the proof of Corollary

2). The following Corollary directly follows from Theorem 1 since PDk
Nk

(n) = P̃Dk
Nk

(n, 0).

Corollary 1 The steady-state probability of having n type k customers in the M/G/1//N
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system at the end of the interruption initiating a busy period is given by

PDk
Nk

(0) = f̃k(Nkλk),

PDk
Nk

(n) =

Nk∑
i=Nk−n

(−1)i−(Nk−n+1)

(
Nk

i

)(
i

Nk − n

)
(1− f̃k(iλk)), 0 < n < Nk,

PDk
Nk

(N) =

Nk∑
i=1

(−1)i−1

(
Nk

i

)
(1− f̃k(iλk)).

Similarly,

Corollary 2 The steady-state probability of having n type k customers in the M/G/1//N

system at the end of the PCT initiating a busy period is given by

PCk
Nk−1(0) = c̃k((Nk − 1)λk), (5)

PCk
Nk−1(n) =

Nk−1∑
i=Nk−1−n

(−1)i−(Nk−n)

(
Nk − 1

i

)(
i

Nk − 1− n

)
(1− c̃k(iλk)),

0 < n < Nk − 1, (6)

PCk
Nk−1(Nk − 1) =

Nk−1∑
i=1

(−1)i−1

(
Nk − 1

i

)
(1− c̃k(iλk)). (7)

In the remainder of this section, we employ “auxiliary” M/G/1//N systems serving j

type k customers, which we call the auxiliary system j, j = 1, . . . , Nk. The M/G/1//N

system studied in this paper is referred to as the “original system”. An auxiliary system j

has the same underlying stochastic processes and serves the same finite populations as those

of the original system except that the finite population k it serves consists of j (instead of

Nk) customers. Accordingly, the original system is nothing but the auxiliary system Nk.

If there are n > 0 type k customers present in the original system at the end of an initial

delay (1 ≤ n ≤ Nk if the initial delay is an interruption, and 1 ≤ n ≤ Nk − 1 if it is a PCT),

in addition to the initial delay, the busy period for type k customers consists of n sub-cycles.

Each sub-cycle starting with i type k customers in the original system (1 ≤ i ≤ n) is the

time it takes until i − 1 type k customers remain in the original system and is identical in

distribution to the busy period in the auxiliary system Nk − i + 1 initiated by a PCT (see

[22] for a similar approach analyzing the single-class M/G/1//N queue).
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Let Tj be the length of the busy period (of type 1 to type k customers) in the auxiliary

system j. Furthermore, in the auxiliary system j, we denote the length of the busy periods

initiated by an interruption and a PCT by TDk
j and TCk

j , and denote their LT’s by h̃Dk
j (s)

and h̃Ck
j (s), respectively. Recalling that the original M/G/1//N system we analyze in this

paper is the auxiliary system Nk, we have

TDk
Nk

=


Dk, if there are no type k customers at the end of Dk,

Dk +
∑Nk

j=Nk−n+1 T
Ck
j , if 0 < n ≤ Nk type k customers at at the end of Dk,

TCk
Nk

=


Ck, if there are no type k customers at the end of Ck,

Ck +
∑Nk

j=Nk−n+1 T
Ck
j , if 0 < n ≤ Nk − 1 type k customers at the end of Ck,

from which their LT’s can be obtained using Theorem 1, respectively, as

h̃Dk
Nk

(s) = f̃k(s+Nkλk) +

Nk∑
n=1

P̃Dk
Nk

(n, s)

Nk∏
j=Nk−n+1

h̃Ck
j (s), (8)

h̃Ck
Nk
(s) = c̃k(s+ (Nk − 1)λk) +

Nk−1∑
n=1

P̃Ck
Nk−1(n, s)

Nk∏
j=Nk−n+1

h̃Ck
j (s).

Solving the equation above for h̃Ck
Nk
(s) we get

h̃Ck
Nk
(s) =

c̃k(s+ (Nk − 1)λk)

1−
∑Nk−1

n=1 P̃Ck
Nk−1(n, s)

∏Nk−1
j=Nk−n+1 h̃

Ck
j (s)

.

Since a busy period starts either with an interruption or a type k customer arrival when

there are no type 1 to k customers in the system, the LT of the length of the busy period

r.v. TNk
for a type 1 to type k customer, k = 1, . . . ,m, in the original M/G/1//N system is

h̃Nk
(s) =

αk

αk +Nkλk

h̃Dk
Nk

(s) +
Nkλk

αk +Nkλk

h̃Ck
Nk
(s). (9)

Then, the mean length of the busy period for type 1 to type k customers in the original

system is

E[TNk
] =

αk

αk +Nkλk

E[TDk
Nk

] +
Nkλk

αk +Nkλk

E[TCk
Nk

],
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where

E[TDk
Nk

] = −
dh̃Dk

Nk
(s)

ds
|s=0 = E[Dk] +

Nk∑
n=1

E[TCk
n ]

Nk∑
j=Nk−n+1

PDk
Nk

(j),

E[TCk
Nk

] = −
dh̃Ck

Nk
(s)

ds
|s=0 =

E[Ck] +
∑Nk−1

n=2 E[TCk
n ]
∑Nk−1

j=Nk−n+1 P
Ck
Nk−1(j)

PCk
Nk−1(0)

.

We conclude this section by observing that in the original system the interruption period

for type k > 1 customers is the busy period of type 1 to type k − 1 customers; in other

words, f̃k(s) = h̃Nk−1
(s). Considering this, we present our recursive algorithm as follows:

Algorithm 1 This algorithm explains how f̃k(s) is obtained, k = 1, . . . ,m:

Step 0. For class 1 customers, since there is no interruption, f̃1(s) is 1 (if the server

experiences failures, f̃1(s) is the LT of the repair time, see the extension in Appendix

B).

Step 1. Use f̃1(s) in Eqs. (8) and (9) to obtain h̃N1(s), which is the LT of the busy period

for type 1 customers. To do this,

• Start by setting h̃C1
1 (s) = b̃1(s), the LT of the busy period in the auxiliary system

1, i.e., M/G/1//N queue with a single type 1 customer.

• Obtain h̃C1
j (s) in Eq. (8) recursively where P̃Ck

Nk−1(n, s) is obtained from Theorem

1 (by making appropriate adjustments as in the proof of Corollary 2). When

j = N1, we have h̃C1
N1
(s) .

• When the server does not experience failures, h̃N1(s) = h̃C1
N1
(s). Otherwise, use Eq.

(9) to obtain h̃N1(s). Set f̃2(s) = h̃N1(s), which is the LT of D2, the interruption

time for class 2 customers.

Step k.For classes k > 1, having h̃Nk−1
(s) from the earlier iteration, substitute f̃k(s) =

h̃Nk−1
(s) in Eqs.(8) and (9) to obtain h̃Nk

(s).

Note that the times between two busy periods of type 1 to type k customers follow an

exponential distribution with rate αk+Nkλk. By invoking the renewal theorem, the fraction
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of time there are no type 1 to k customers in the original system is (1+E[TNk
](αk+Nkλk))

−1,

and the fraction of time there are no type 1 to k − 1 customers in the original system is

(1 + αkE[Dk])
−1. Thus, the fraction of time the server is in-service for type k customers is

(1 + αkE[Dk])
−1 − (1 + E[Tk,Nk

](αk +Nkλk))
−1.

4 System Size Distribution for Type k Customers

In this section, we obtain the steady-state probabilities of having i type k customers out

of the system at departure/arrival epochs in Section 4.1; we then provide the system size

distribution of type k customers at an arbitrary instant in Section 4.2.

4.1 System Size Distribution at Arrival/Departure Epochs

In this section, in order to avoid unnecessary repetitions, we refer to “type k customer/arrival/

departure” simply as the “customer/arrival/departure” since other classes are not part of

the discussion. Occasionally, we specifically use “type k customer/arrival/ departure” when

we believe that the emphasis makes the explanation clearer. As in the previous section, the

PCT stands for the PCT for type k customers.

We start our analysis by studying the embedded Markov chain of the number of type

k customers left in the system after a type k customer departs. Let pki,j be the transition

probability that the next departure leaves j customers in the system, given that the last

departure left i customers. If the last departure left i customers, 0 < i < Nk, in the

system, the steady-state probability of the next departure leaving j customers behind (j =

i−1, . . . , Nk−1) is the probability of having j−i+1 arrivals during the PCT. This probability

is the same as the steady-state probability of having j − i + 1 customers at the end of the

PCT that initiates a busy period in the auxiliary system Nk − i+1 as introduced in Section

3, and can be obtained by invoking Corollary 2 in this system. Any other transition from

i, 0 < i < Nk, is not possible. After a type k departure leaves the original system empty of

12



type k customers, the next type k arrival can find the server unavailable/interrupted (serving

a higher priority customer), or available (if there are lower priority customers being served,

their services are preempted). If the server is found to be interrupted, in steady-state, this

arrival waits for the residual interruption period before its service starts. We denote this r.v.

by Dk,R. Following [11], the LT of Dk,R can be found as

f̃k,R(s) =
Nkλk(Nkλk − s) +Nkλkαk(f̃k(s)− f̃k(Nkλk))

(Nkλk + αk − αkf̃k(Nkλk))(Nkλk − s)
,

with

f̃k,R(Nkλk) = lim
s→Nkλk

f̃k,R(s) =
Nkλk

(
1− αkf̃

′

k(Nkλk)
)

Nkλk + αk − αkf̃k(Nkλk)
,

where f̃
′

k(s) is the derivative of f̃k(s) with respect to s. Only then does the PCT of the

customer arriving during an interruption period start. In order for such a customer to leave

j customers behind (j = 0, 1, . . . , Nk − 1), there should be j arrivals during the interval

Lk = Dk,R + Ck, with an LT of l̃k(s) = f̃k,R(s)c̃k(s), and a mean of

E[Lk] = −dl̃k(s)

ds
|s=0 = E[Dk,R] + E[Ck].

Using Corollary 2 by substituting l̃k(s) for c̃k(s), P
Lk
Nk−1(j) = pk0,j (j = 0, 1, . . . , Nk − 1) can

be obtained. In summary, we have

pki,j =


PLk
Nk−1(j), i = 0, 0 ≤ j ≤ Nk − 1,

PCk
Nk−i(j − i+ 1), 1 ≤ i < Nk, i− 1 ≤ j ≤ Nk − 1,

0, otherwise.

Now that we have pki,j, we can construct the Nk × Nk transition probability matrix

Pk. From Πk = ΠkPk and
∑Nk

i=1 πk,i = 1, we can solve for the 1 × Nk vector Πk=

[πk,Nk
, πk,Nk−1, . . . , πk,1]. Here, πk,i is the steady-state probability of having i type k cus-

tomers (including the departing customer) out of the queueing system at departure instants

(or equivalently having Nk − i type k customers left behind in the queueing system). Since

this is an ergodic Markov chain, πk,i is also the steady-state probability that an arrival finds

Nk − i type k customers in the system.
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4.2 System Size Distribution at an Arbitrary Instant

In this section, we obtain P k,i, the steady-state probability of having i type k customers out

of the system.

Lemma 1 With E[TNk
] as the mean length of the busy period of type 1 to type k customers,

P k,Nk
=

Nkλk + αk − αkf̃k(Nkλk)

Nkλk(1 + E[TNk
](αk +Nkλk))

.

To obtain the entire distribution, we introduce the “augmented PCT” (APCT) r.v. for

type k customers denoted by Ĉk, which is the PCT for all type k customers (i.e. Ĉk = Ck)

except for those arriving as the first type k customers during an interruption period that

initiates a busy period. In the latter case, the APCT is the residual interruption period

such customers wait plus their PCT, that is Ĉk = Lk. Then, the residual APCT r.v. Ĉk,R

with ĉk,R(x) as its density function is the time left until the departure of the first type k

customer (that may be waiting for the interruption period that initiates a busy period, or

is in service, or is preempted) in the system. It is known that P (Ĉk,R = 0) = P k,Nk
, i.e.,

the probability that there are no type k customers in the queueing system, but we define

ĉk,R(0) = limx→0 ĉk,R(x).

Let Ĉk,R(t) denote the residual APCT at time t and

Pk,i(t, x)dx = P{Wk(t) = i, x < Ĉk,R(t) < x+ dx}, 0 ≤ i ≤ Nk − 1,

denote the joint probability distribution of having i type k customers out of the queueing

system at time t (Wk(t) = i), and the residual APCT of the customer (preempted or currently

receiving service) being in the interval [x, x+dx]. Observe that from t to t+∆t, the residual

APCT will decrease by ∆t. Assuming that the probability of having more than one arrival

is o(∆t) and Pk,−1(t, x) and its limiting probability are 0,

Pk,Nk−1(t+∆t, x) = (1− (Nk − 1)λk∆t)Pk,Nk−1(t, x+∆t) +Nkλk∆tP k,Nk
(t)lk(x)

+Pk,Nk−2(t, 0)ck(x)∆t+ o(∆t),

Pk,i(t+∆t, x) = (1− iλk∆t)Pk,i(t, x+∆t) + (i+ 1)λk∆tPk,i+1(t, x+∆t)

+Pk,i−1(t, 0)ck(x)∆t+ o(∆t), 0 ≤ i ≤ Nk − 2,
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where P k,Nk
(t) is the probability of having Nk type k customers out of the system at time

t. Here lk(x), and ck(x) are the density functions of the r.v.s Lk and Ck, respectively, and

ck(x)∆t = P (x ≤ Ck ≤ x+∆t). Re-arranging the equations given above, we obtain(
∂

∂t
− ∂

∂x

)
Pk,Nk−1(t, x) = −(Nk − 1)λkPk,Nk−1(t, x) +NkλkP k,Nk

(t)l(x) + Pk,Nk−2(t, 0)ck(x),

(
∂

∂t
− ∂

∂x

)
Pk,i(t, x) = −iλkPk,i(t, x) + (i+ 1)λkPk,i+1(t, x) + Pk,i−1(t, 0)ck(x), 0 ≤ i ≤ Nk − 2.

Letting Pk,i(x) = limt→∞ Pk,i(t, x), if we take the limit of the equations given above as

t → ∞,

d

dx
Pk,Nk−1(x) = (Nk − 1)λPk,Nk−1(x)−NkλkP k,Nk

l(x)− Pk,Nk−2(0)ck(x), (10)

d

dx
Pk,i(x) = iλPk,i(x)− (i+ 1)λPk,i+1(x)− Pk,i−1(0)ck(x), 0 ≤ i ≤ Nk − 2. (11)

Observe that Pk,i(x) is the density function of the residual APCT and i type k customers

are out of the queueing system. When i = 0, integrating both sides of Eq. (11) gives

Pk,0(∞)− Pk,0(0) = −λkP k,1

Pk,0(0) = λkP k,1.

Recursively, we can show that

Pk,i(0) = (i+ 1)λkP k,i+1, 0 ≤ i ≤ Nk − 1. (12)

Note that Pk,i(0) is the probability that a type k customer is about to leave the server and

there are i type k customers out of the queueing system. Then, using Bayes’ theorem

πk,i+1 ≡ P{i type k customers out of the system|a type k departure is about to occur}

=
Pk,i(0)

ĉk,R(0)
=

Pk,i(0)∑Nk−1
i=0 Pk,i(0)

, 0 ≤ i ≤ Nk − 1,

πk,i =
iλkP k,i∑Nk

i=1 iλkP k,i

, 1 ≤ i ≤ Nk,

P k,i =
NkP k,Nk

iπk,Nk

πk,i, 1 ≤ i ≤ Nk. (13)
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Using Eq. (13) together with Lemma 1, we derive the solution for P k,i, which is also the

steady-state probability of having Nk − i customers in the system. Eq. (13) also helps us

obtain ĉk,R(0) = NkλkPNk
/πk,Nk

.

The following theorem provides an alternative solution. Before presenting it, we introduce

the conditional residual APCT, given that there are i type k customers out of the system.

By definition, its density function is (the LT c̃k,R|i(s) is obtained in Section 4.3)

ĉk,R|i(x) =
Pk,i(x)

P k,i

. (14)

Theorem 2 There is a recursive relationship between the steady-state probabilities P k,i so

that

P k,Nk−1 =
Nk

(Nk − 1)

1− l̃k((Nk − 1)λk)

c̃k((Nk − 1)λk)
P k,Nk

, (15)

P k,i =
(i+ 1)P k,i+1

ic̃k(iλk)
(1− c̃k,R|i+1(iλk)), 0 < i ≤ Nk − 2. (16)

4.3 The System Time Distribution for Type k Customers

In this section, we obtain the LT c̃k,R|i(s) of the conditional residual APCT of type k cus-

tomers given that there are i type k customers out of the system.

Theorem 3 There is a recursive relationship for ĉk,R|i(x) such that

ĉk,R|Nk−1(x) =
(Nk − 1)λke

(Nk−1)λkx

1− l̃k((Nk − 1)λk)
{c̃k((Nk − 1)λk)

∫ ∞

x

e−(Nk−1)λkulk(u)du

+(1− l̃k((Nk − 1)λk))

∫ ∞

x

e−(Nk−1)λkuck(u)du}, (17)

ĉk,R|i(x) = iλeiλkx

∫ +∞

x

e−iλku

(
c̃k(iλk)

ĉk,R|i+1(u)

1− c̃k,R|i+1(iλk)
+ ck(u)

)
du, 0 < i ≤ Nk − 2.

(18)

And,
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Theorem 4 There is a recursive relationship for c̃k,R|i(s) such that

c̃k,R|Nk−1(s) =
(Nk − 1)λk

s− (Nk − 1)λk

c̃k((Nk − 1)λk)
(
1− l̃k(s)

)
− c̃k(s)

(
(1− l̃k((Nk − 1)λk))

)
1− l̃k((Nk − 1)λk))

,

(19)

c̃k,R|i(s) =
iλk

s− iλk

(
c̃k(iλk)

1− c̃k,R|i+1(s)

1− c̃k,R|i+1(iλk)
− c̃k(s)

)
, 0 < i ≤ Nk − 2, (20)

c̃k,R|0(s) =
P k,1

P k,0

λk

(
1− c̃k,R|1(s)

)
s

. (21)

The following Theorem is presented without a proof since its proof is, in principle, the same

as that of Theorem 2.2.2 in [17] which exploits Theorem 1 in [10].

Theorem 5 The conditional residual APCT of type k customers at an arrival epoch given

that there are i type k customers out of the system has ĉk,R|i(x) as its density function.

Recall from Section 4.1 that in steady-state a type k arrival finds Nk − i type k customers

in the system with probability πk,i. Using Theorem 5, the system time of such a customer

is the residual APCT of the type k customer first in line plus the sum of Nk − i PCT’s of

the type k customers waiting behind it in the queue and the new arrival; this has the LT of

w̃k,i(s) = c̃k,R|i(s)c̃
Nk−i
k (s), 1 ≤ i ≤ Nk − 1.

With probability πk,Nk
, the type k customer finds no type k customers in the system and its

system time is Lk. By the law of total probability, the LT of the system time of a type k

customer is given by

w̃k(s) =

Nk−1∑
i=1

πk,iw̃k,i(s) + πk,Nk
l̃k(s).

5 Conclusions

In this paper, we develop a method to obtain the exact steady-state system size distribution

and conduct the busy period analysis of the M/G/1//N queue where multiple classes of cus-

tomers are served according to the preemptive-resume priority policy. Eventually, we extend

17



the model to capture an unreliable server subject to operation-independent interruptions.

We demonstrate how setup times that may be required before resuming interrupted service

or picking up a new customer can be included in the PCT analysis. We assume general

OFF period, service, and setup time distributions. Including non-exponential distributions

to model times between customer arrivals and/or times between server interruptions remains

challenging and is an open research question. In addition to the steady-state system size

distribution obtained, we also provide the LT’s for the PCT and system time for each class,

and that of the busy period r.v. for class 1 to class k from which one can obtain the higher

moments of the r.v.s of interest. This may help see the impact of the characteristics of the

underlying r.v.s on system performance measures more clearly.
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Appendix A Proofs

Proof. Theorem 1. To prove Theorem 1, we need the following Lemma.
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Lemma A.1 During the interruption period initiating a busy period, the time-to-arrival r.v.

Tk,Nk,n of the nth type k customer has the following cumulative distribution function:

Hk,Nk,n(t) = (Nk − n+ 1)

Nk∑
i=Nk−n+1

(−1)i−(Nk−n+1)

(
Nk

i

)(
i

Nk − n+ 1

)
(1− e−iλkt)

i
. (A.1)

Proof. Lemma A.1. Note that if an interruption initiates a busy period, at the beginning

of the interruption, Nk type k customers are not yet in the queueing system. During the

interruption period initiating a busy period, when Wk(t) = Nk−n, the time-to-arrival of the

next type k customer is exponentially distributed with rate of (Nk −n)λk, and Tk,Nk,n is the

sum of n exponentially distributed r.v.s with rates ofNkλk, (Nk−1)λk, . . . , and (Nk−n+1)λk,

i.e.,

Tk,Nk,n =

Nk∑
i=Nk−n+1

Tk,i,

where Tk,i follows an exponential distribution with rate iλk. Let h̃k,Nk,n(s) be the LT of

Tk,Nk,n, then

h̃k,Nk,n(s) =
Nkλk

Nkλk + s

(Nk − 1)λk

(Nk − 1)λk + s
· · · (Nk − n+ 1)λk

(Nk − n+ 1)λk + s
,

=
Nk!λk

n

(Nk − n)!

Nk∏
i=Nk−n+1

1

iλk + s
. (A.2)

Using

Nk!λk
n−1

(Nk − n+ 1)!

Nk∏
i=Nk−n+1

1

iλk + s
=

Nk∑
i=Nk−n+1

(−1)i−(Nk−n+1)

(
Nk

i

)(
i

Nk − n+ 1

)
1

iλk + s
,

in Eq. (A.2), we arrive at

h̃k,Nk,n(s) = (Nk − n+ 1)λk

Nk∑
i=Nk−n+1

(−1)i−(Nk−n+1)

(
Nk

i

)(
i

Nk − n+ 1

)
1

iλk + s
,

the inversion of which gives Eq. (A.1).

To prove Theorem 1, given that Dk = d, and using Lemma A.1, we have

PDk
Nk

(0|d) = P{Tk,1 > d} = 1−Hk,Nk,1(d) = e−Nkλkd, (A.3)
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and for 0 < n < Nk

PDk
Nk

(n|d) = P{Tk,n < d < Tk,n+1} = Hk,Nk,n(d)−Hk,Nk,n+1(d)

=

Nk∑
i=Nk−n

(−1)i−(Nk−n+1)

(
Nk

i

)(
i

Nk − n

)
(1− e−iλkd), (A.4)

and finally,

PDk
Nk

(Nk|d) = P{Tk,Nk
< d} = Hk,Nk,Nk

(d) =

Nk∑
i=1

(−1)i−1

(
Nk

i

)
(1− e−iλkd). (A.5)

Taking the LT of Eqs.(A.3)-(A.5) yields Eqs. (2)-(4), respectively.

Proof. Corollary 2. The fundamental difference between an interruption period initiating

a busy period and a PCT initiating a busy period are the following. The PCT has a different

distribution from that of the interruption time, and at the beginning of the busy period

initiated by PCT, Nk − 1 type k customers are not yet in the queueing system. Therefore,

Lemma A.1 and Theorem 1 can be adjusted reflecting these differences and Eqs. (5)-(7) can

be obtained.

Proof. Lemma 1.The probability of the system being empty of type k customers is

P k,Nk
= lim

t→∞
P {(Wk(t) = Nk) ∩Rk(t) = 0}+ lim

t→∞
P {(Wk(t) = Nk) ∩Rk(t) = 1} . (A.6)

The probability of having no type k customers in the system and the server being available

for class k (without any higher priority customers in the system, as discussed at the end of

Section 3) is

lim
t→∞

P {(Wk(t) = Nk) ∩Rk(t) = 0} =
1

1 + E[TNk
](αk +Nkλk)

.

Observe that only during the interruption period which initiates a busy period can the

server be unavailable while no type k customer exists in the system; the average time the

system remains empty of type k customers during such an interruption period is given by∫ ∞

0

(∫ y

0

tNkλke
−Nkλktdt+ y

∫ ∞

y

Nkλke
−Nkλktdt

)
fk(y)dy =

1− f̃k(Nkλk)

Nkλk

.
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For type k customers, the fraction of time the system is in a busy period initiated by an

interruption is

αkE[TDk
Nk

]

1 + E[TNk
](αk +Nkλk)

,

thus, the fraction of time the server is unavailable for and empty of type k customers is

lim
t→∞

P {(Wk(t) = Nk) ∩Rk(t) = 1} =
αk

1−f̃k(Nkλk)
Nkλk

1 + E[TNk
](αk +Nkλk)

.

The summation of these in Eq. (A.6) gives P k,Nk
in Lemma 1.

Proof. Theorem 2. After substituting Pk,Nk−2(0) = (Nk − 1)λkP k,Nk−1 from Eq. (12) into

Eq. (10) and multiplying both sides by e−(Nk−1)λkx, eventually, we have

d

dx

(
e−(Nk−1)λkxPk,Nk−1(x)

)
= −Nkλke

−(Nk−1)λkxP k,Nk
lk(x)− (Nk − 1)λke

−(Nk−1)λkxP k,Nk−1ck(x).

Integrating both sides gives

−e−(Nk−1)λkxPk,Nk−1(x) = −NkλkP k,Nk

∫ ∞

x

e−(Nk−1)λkulk(u)du

− (Nk − 1)λkP k,Nk−1

∫ ∞

x

e−(Nk−1)λkuck(u)du. (A.7)

At x = 0, Eq. (A.7) is

Pk,Nk−1(0) = NkλkP k,Nk
l̃k((Nk − 1)λk) + (Nk − 1)λkP k,Nk−1c̃k((Nk − 1)λk).

The equation above together with Eq. (12) for Pk,Nk−1(0) gives Eq. (15).

Similarly, by multiplying both sides of Eq. (11) by e−iλkx, and skipping similar steps as

in the first part of the proof, we arrive at

Pk,i(x) = eiλkx

(∫ ∞

x

λke
−iλku(i+ 1)Pk,i+1(u)du+ iλkP k,i

∫ ∞

x

e−iλkuck(u)du

)
. (A.8)

For x = 0, Eq. (A.8) is

Pk,i(0) =

∫ ∞

0

λke
−iλku(i+ 1)Pk,i+1(u)du+ iλkP k,i

∫ ∞

0

e−iλkuck(u)du.
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Note that by the definition given in Eq. (14), P̃k,i+1(s) = P k,i+1ĉk,R|i(s), which together with

Eq. (12), leads us to

Pk,i(0) = (i+ 1)λkP k,i+1 = (i+ 1)λkP k,i+1c̃k,R|i+1(iλk) + iλkP k,ic̃k(iλk),

from which Eq. (16) follows.

Proof. Theorem 3. Eq. (17) follows directly by substituting Eq. (15) in Eq. (A.7). Eq.

(18), which is the same as Eq. (2) in [17], is obtained by substituting Eq. (16) in Eq. (A.8).

Proof. Theorem 4. After multiplying both sides of Eq. (10) with e−sx and integrating,

we have∫ ∞

0

e−sxdPk,Nk−1(x) = (Nk − 1)λk

∫ ∞

0

e−sxPk,Nk−1(x)dx−NkλkP k,Nk

∫ ∞

0

e−sxlk(x)dx

−Pk,Nk−2(0)

∫ ∞

0

e−sxck(x)dx,

sP̃k,Nk−1(s)− Pk,Nk−1(0) = (Nk − 1)λkP̃k,Nk−1(s)−NkλkP k,Nk
l̃k(s)− Pk,Nk−2(0)c̃k(s),

P̃k,Nk−1(s) =
NkλkP k,Nk

(1− l̃k(s))− (Nk − 1)λkP k,Nk−1c̃k(s)

s− (Nk − 1)λk

.

Note that for the last equation above, we used Eq. (12). After multiplying both sides of

Eq. (15) by λk, we re-arranged it to express NkλkP k,Nk
. When this is substituted in the last

equation above, we get

P̃k,Nk−1(s) =
(Nk − 1)λkP k,Nk−1

(
c̃k((Nk − 1)λk)(1− l̃k(s))− c̃k(s)

(
1− l̃k((Nk − 1)λk)

))
(1− l̃k((Nk − 1)λk))(s− (Nk − 1)λk)

.

Dividing the equation given above by P k,Nk−1 according to Eq. (14) gives Eq. (19). Similarly,

Eq. (20) can be found by starting with Eq. (11) and is the same as Eq. (4) in [17]. When

i = 0, multiplying both sides of Eq. (11) by e−sx, integrating the results, and then using Eq.

(14), gives

P̃k,0(s) =
λk(P k,1 − P̃k,1(s))

s

=
λkP k,1(1− c̃k,R|1(s))

s
.

Dividing this equation by P k,0 according to Eq. (14) gives Eq. (21).
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Appendix B Incorporating Server Failures and the Pro-

cess Completion Time Analysis with Setup

Times for Type k Customers

One can easily incorporate server failures in the model studied where times to failures are

exponentially distributed with a rate of α1. This is the case in which the server is subject to

“operation-independent” failures; this differentiates the problem from those where a server

can fail only when it is serving a customer. Thus, the server can fail even when it is idle.

When a failure occurs, the server becomes “down” (thus, unavailable), and a repair process

starts at once. The length of each server down/repair time is an i.i.d. r.v., denoted by D1;

this follows a general continuous distribution F1(y) =
∫ y

0
f1(u)du with density function f1(y),

and has an LT f̃1(s). Such failures can be easily included in the model by assuming a single

highest priority customer with an arrival rate of α1 and D1 as its service time. Note that the

process that counts the total number of failures forms a renewal process with inter-renewal

times X1, X2, . . ., where Xi = Di+Yi, Di is the ith repair time, and Yi follows an exponential

distribution with rate α1. Thus, α1 is the interruption rate, and D1 the interruption r.v. for

class 1 customers. For classes k > 2, we adjust interruption rates as αk = α1 +
∑k−1

n=1 Nnλn.

In Algorithm 1, in Step 1, we use f̃1(s) of D1 in Eqs. (8) and (9). The rest of the

algorithm follows in the same way but this time making use of αk = α1 +
∑k−1

n=1Nnλn.

Next we discuss how we can incorporate setup times in the model. We can consider the

possibility that each time the server attempts to serve a type k customer (for the first time

or after an interruption), it undergoes a setup/loading time which is denoted by the i.i.d.

r.v. Uk with a density function gk(y) that is independent of both Dk and the (remaining)

service time r.v. Interruptions can occur during setup time. At the end of the ensuing

interruption period, a new setup time is generated from the same distribution until one is

not interrupted. Only then does the server start or resume serving the type k customer. If

the server is interrupted during a setup time, the remaining service time of an interrupted
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customer does not change. Only the amount of work done after an uninterrupted setup time

reduces the remaining service time.

When the server is not down, it is considered to be “up”, which means that it is either

idle and ready to serve, or is being set up (and the server is considered to be “loading”),

or is serving a customer (and the server is “in-service”). Therefore, at any given time, the

server is in one of the following four states: idle, in-service, loading, or down.

Let Ck(Uk, Zk|y) be the r.v. denoting the PCT for a type k customer as a function of the

setup time r.v., Uk, the service time r.v., Zk, (Zk can also be the remaining service time of

an interrupted customer), and the time until the next interruption, y. Then,

Ck(Uk, Zk|y) =


Uk + Zk, if y ≥ Uk + Zk,

y +Dk + C
′

k(Uk, Zk − (y − Uk)|y
′
), if Uk ≤ y < Zk + Uk,

y +Dk + C
′

k(Uk, Zk|y
′
), if 0 ≤ y < Uk,

where C
′

k(Uk, Zk|y
′
), given Uk and Zk, is i.i.d as Ck(Uk, Zk|y). This equation assures that an

arrival seeing an up and idle server also undergoes a loading/setup period. For notational

convenience, index k is removed in the following derivations. Given that U = u and Z = z,

the LT of C(U = u, Z = z), c̃(s|u, z) is given by

c̃(s|u, z) = e−s(z+u)e−α(z+u) + αf̃(s)

∫ z

0

e−(s+α)(z+u−ω)c̃(s|u, ω)dω

+f̃(s)c̃(s|u, z)
∫ u

0

αe−(α+s)ydy,

which, after being rearranged and by letting ω = z + u− y, becomes

c̃(s|u, z)e(s+α)(z+u) = 1 + αf̃(s)

∫ z

0

e(s+α)ω c̃(s|u, ω)dω

+
α

α + s

(
e(s+α)u − 1

)
e(s+α)zf̃(s)c̃(s|u, z),(

e(s+α)u +
α

s+ α
(1− e(s+α)u)f̃(s)

)
e(s+α)z c̃(s|u, z) = 1 + αf̃(s)

∫ z

0

e(s+α)ω c̃(s|u, ω)dω.

After taking the derivative of both sides with respect to z,

∂ln e(s+α)z c̃(s|u, z)
∂z

=
αf̃(s)

e(s+α)u + α
s+α

(1− e(s+α)u)f̃(s)
,
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we obtain the following solution

c̃(s|u, z) = e
−
(
s+α− αf̃(s)

e(s+α)u+ α
s+α (1−e(s+α)u)f̃(s)

)
z

.

If we remove the condition on z by integrating c̃(s|u, z) over all possible values of z, we

obtain

c̃(s|u) = b̃

(
s+ α− αf̃(s)

e(s+α)u + α
s+α

(1− e(s+α)u)f̃(s)

)
.

Similarly, when we remove the condition on u, and reintroduce index k, we obtain the LT of

Ck as

c̃k(s) =

∫ ∞

0

b̃k

(
s+ αk −

αkf̃k(s)

e(s+αk)u + αk

s+αk
(1− e(s+αk)u)f̃k(s)

)
gk(u)du.

Note that when there is no setup time, from the equations given above we arrive at Eq. (1).
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