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a b s t r a c t

We study stable school formation among four students that differ in ability and income. In the presence of
ability complementarities and school costs to be shared, we identify the conditions under which a stable
allocation is efficient, inefficient, nonexistent, and tell who become peers.
1. Introduction

We consider a school formation game among four students: a
high-ability high-income, a high-ability low-income, a low-ability
high-income, and a low-ability low-income student. A school
consists of two students, and any two students can form a school
provided they agree on how to share the cost. A high-ability peer
enhances one’s educational achievement. Under what conditions
is there stable school formation? Who become peers? In this note
we give an exact description that answers these questions.

There are three possible formations in this four-student game,
one where peers are the same in ability, another where they are
the same in income, and a third where they are opposite in both
attributes. These we term the ability assortative, income assortative,
and cross assortative formations respectively.We show that each of
these formations may occur as a stable outcome, and that a stable
outcomeneednot exist, depending on the direction andmagnitude
of peer effects measured against income levels and school cost.
Interestingly, the ability assortative formation dominates the
picture, occurring whenever peer effects are supermodular, and
also when they are submodular but relatively high in magnitude.
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Stable ability assortative outcomes are efficient if and only if
peer effects are supermodular. Income assortative and cross
assortative stable formations do but coexist, exactly when peer
effects are submodular and the associated outcomes are efficient.
Nonexistence of stable outcomes is conditional on the size of the
income gap between the rich and the poor.

Our study is an exercise in stable matching theory1 in the less
treated one-sided market context and with a fairly general hybrid
transferable/nontransferable utility feature. In our model, each
pairwise utility possibility set has unit slope at its efficient frontier,
but the joint-minimum base of the efficient frontier is not at the
origin and not uniform: It varies with peers’ abilities. What we call
peer effects is precisely a differential of this variation.

In two-sidedmatching, a special hybrid utilitymodel that unites
the stable ‘‘marriage’’2 and ‘‘assignment’’3 games was introduced
by Sotomayor (2000) and Eriksson and Karlander (2000). The
more general model of Fujishige and Tamura (2007) allows for
the peer effects our study features. In one-sided matching, on
the other hand, the transferable-utility ‘‘assignment’’ game has
been considered only recently (Talman and Yang, 2011) although

1 See the classical reference Roth and Sotomayor (1990).
2 Gale and Shapley (1962).
3 Shapley and Shubik (1972).
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the nontransferable-utility ‘‘marriage/roommate’’ game has been
studied extensively for long (e.g., Gusfield and Irving, 1989).
Pycia (2012) has studied stable matching in a general one-sided
environment, allowing for peer effects under unrestricted coalition
size, but under specific division rules, e.g., the Nash bargaining or
the equal sharing rule.

A particular aim we carry is to understand assortativeness: In
two-sided one-to-one matching, when agents are described by a
one-dimensional attribute, positive (negative) assortativeness of
stable outcomes follows from supermodularity (submodularity)
of household production functions. There has been a search
for extending this celebrated result (Becker, 1973) and finding
conditions that give rise to assortativeness (e.g., Eeckhout, 2000,
Clark, 2006, Legros and Newman, 2007, 2010), but not explicitly in
the form of partially ordered attributes as in our exercise.

In a general equilibrium framework with fee-setting schools
and school-selecting students on two sides of a market, the school
competition literature4 treats a student population that is partially
ordered in income and ability. Utility of a student – a function of
own-income, own-ability and peer-ability – is generally assumed
to have the positive single-crossing-in-income property (amounting
to a positive income elasticity of demand for peer quality which in
our model is zero). Under this assumption, equilibrium outcomes
exhibit stratification in income. This literature typically assumes, in
addition, that utility functions have the positive single-crossing-in-
ability property, which is identical to peer effect supermodularity
in our model. Then, outcomes exhibit stratification in ability as
well. On the other hand, the casewith the negative single-crossing-
in-ability property (submodularity in our model) has remained
untreated.

Empirical evidence on the nature of peer effects, in fact, is
mixed and scarce5 and need for further research is documented
in several studies.6 Why the ‘‘submodular’’ peer effects case has
been neglected may have to do with the analytical difficulties
this case poses relative to the ‘‘supermodular’’ case but is not
altogether justified. Indeed, it is in this region that we find
the relatively more interesting occurrences in our exercise,
e.g., possible inefficiency or nonexistence of stable outcomes.
Extending our query to more general student populations could
contribute to a better understanding of the forces behind school
or partnership formation and assortativeness or stratification.

2. Model and result

A student s ∈ S is characterized by two endowments (y(s),
b(s)). One of these is income, y(s) ∈ {yH , yL}. It costs c > 0 to
form a school. Any two students s, s′ ∈ S can form a school by
making nonnegative contributions p(s), p(s′) from their incomes
that satisfy p(s) + p(s′) = c. We assume

c ≥ yH > yL ≥ c/2.7

The other endowment is ability, b(s) ∈ {h, l}. We study the case
S = {(H, h), (H, l), (L, h), (L, l)} and call these students Max, Rich,
Abel, Minn respectively.

Fundamental to our investigation are the complementarities in
abilities: The educational achievement of a student s in school with

4 E.g., Epple and Romano (1998); Epple et al.(2003,2006); Hanushek et al. (2011);
Sarpça (2010).
5 Summers andWolfe (1977) find some support for submodularity of peer effects.

The findings of Ding and Lehrer (2007) support supermodularity. Henderson et al.
(1978) and Hanushek et al. (2003) find an even effect.
6 E.g., Dale and Krueger (2002), Hoxby and Weingarth (2005), Sarpça (2010).
7 It is not difficult to see that a model with yH > c is equivalent to a model with

yH = c . We exclude treating the case yL < c
2 for expositional simplicity. Results are

qualitatively similar.
Fig. 1. Bargaining set for ss′ .

peer s′ depends on both their abilities b(s), b(s′). We assume this
achievement is a positive constant and denote it ab(s)b(s′). Utility of
s in school with s′ is simply the sum of educational achievement
and residual income, i.e.,

ab(s)b(s′) + y(s) − p(s).

For short, let us denote

vss′ = ab(s)b(s′).

Formation of a school by s and s′ requires mutual agreement on
their contributions p(s), p(s′) bounded by their incomes y(s), y(s′),
equivalently, agreement on d(s), d(s′) ∈ [0, 1] (satisfying d(s) +

d(s′) = 1) for sharing the surplus

Zss′ = Zs′s = y(s) + y(s′) − c,

and realizing the utilities

us = vss′ + d(s)Zss′ ,
us′ = vs′s + d(s′)Zss′ .

Fig. 1 illustrates a bargaining set andonepossible utility realization.
When seeking a partner to form a school, each student considers all
possible utility realizations with every potential partner.

An allocation is a triplet {µ, d, u}whereµ is a partition of S into
two pairs, the shares d(s), d(s′) ∈ [0, 1] satisfy d(s)+ d(s′) = 1 for
each ss′ ∈ µ, and us = vss′ + d(s)Zss′ is the utility of s with peer s′.
We denote the peer s′ by µ(s).

An allocation {µ, d, u} is blocked by a pair ss′ ∉ µ if there is a
λ ∈ [0, 1] such that

vss′ + λZss′ > vsµ(s) + d(s)Zsµ(s) = us,

vs′s + (1 − λ)Zss′ > vs′µ(s′) + d(s′)Zs′µ(s′) = us′ .

An allocation {µ, d, u} is individually rational if us ≥ y(s) for every
s, i.e., no student prefers standing alone.

Definition. An allocation {µ, d, u} is stable if it is individually
rational and not blocked by any pair.

We call

αh = ahh − ahl,
αl = alh − all,

the peer effect for a high-ability and low-ability student respec-
tively, assume

αh ≥ 0, αl ≥ 0,

and say peer effects are supermodular if αh ≥ αl and submodular if
αh < αl. We shall restrict our attention to stable allocations where
no student stands alone and to this end assume

ahl ≥ c/2, all ≥ yL.



Fig. 2. Regions of existence of stable allocations.

We call two allocations {µ, d, u} and {µ′, d′, u′
} equivalent if

u = u′. We say an allocation is ability assortative if Max Abel are
in one school and Rich Minn in the other, income assortative if the
partition is Max Rich and Abel Minn, cross assortative if it is Max
Minn and Rich Abel.

We shall denote

zH = yH − c/2, zL = yL − c/2.

Our result is:

Theorem. There exists a stable ability assortative allocation iff

αh ≥ min {αl, zH ,max {zL, αl − zL}} ,

a stable cross assortative allocation, equivalent to a stable income
assortative allocation, iff

αh ≤ min {αl, zL} ,

no stable allocation iff

zL < αh < min {zH , αl − zL} .

Proof. See Appendix. �

We display our result in Fig. 2: The axes stand for the peer
effects αl and αh; the diagonal αl = αh divides the supermodular
and submodular regions.

We make the following observations:

(i) A stable allocation exists, except where peer effects are
submodular and zL < αh < zH , a region that shrinks as income
gap yH − yL = zH − zL narrows.

(ii) When peer effects are supermodular, a stable allocation is
ability assortative and efficient.

(iii) When peer effects are submodular and αh ≥ zL, a stable
allocation, provided it exists, is ability assortative and
inefficient.

(iv) When peer effects are submodular and αh ≤ zL, a stable
allocation is equivalently income or cross assortative and
efficient.

Appendix. Proof of theorem

We use the following lemma repeatedly in the proof of
Theorem, which is given in the five lemmas that follow.

Denote the maximum utility s can realize in school with s′ by
wss′ (= vss′ + Zss′ ) and the maximum total utility of ss′ together in
school byWss′ (= Ws′s = vss′ + vs′s + Zss′ ).
Blocking Lemma. A pair ss′ ∉ µ blocks an allocation {µ, d, u} if
and only if (i) us < wss′ , (ii) us′ < ws′s, (iii) us + us′ < Wss′ .

Proof. Suppose (i)–(iii) hold for a pair ss′. Let∆(λ) = vss′ +λZss′ −
us and∆′(λ) = vs′s + (1−λ)Zss′ −us′ . From (i) and (ii) respectively
∆(1) = wss′ −us > 0 and∆′(0) = ws′s −us′ > 0. If either∆′(1) ≥

∆(1) or ∆(0) ≥ ∆′(0), then s, s′ blocks {µ, d, u}. If on the other
hand, ∆′(1) < ∆(1) and ∆(0) < ∆′(0), since ∆(λ) is increasing,
∆′(λ) decreasing in λ, there exists a λ∗

∈ (0, 1) such that∆(λ∗) =

∆′(λ∗) and ∆(λ∗) = ∆′(λ∗) = (Wss′ − us − us′)/2 > 0 from (iii),
so that again ss′ blocks {µ, d, u}. This proves the if part. The only if
part is straightforward. �

Given an allocation {µ, d, u} and a pair ss′ ∉ µ, we will refer to
the inequalities (i) and (ii) in the Blocking Lemma as the constraint
of s and s′ respectively and to the inequality (iii) as their joint
constraint. We will say that s is open (closed) to s′ if us < wss′ (if
us ≥ wss′ ) and that ss′ can negotiate if us + us′ < Wss′ .

Note that

ZMaxAbel = ZMaxMinn = ZRichAbel = ZRichMinn = zH + zL,
ZMaxRich = 2zH , ZAbelMinn = 2zL.

Ability assortative allocations

We let AA(dM , dR) denote the ability assortative allocation
under which the shares of Max and Rich are dM and dR (and so the
shares of Abel andMinn are 1−dM and 1−dR) respectively.Wewill
make use of the following ‘‘blocking conditions’’ which are direct
applications of the Blocking Lemma:

Blocking conditions
Max Rich block AA(dM , dR) iff (i) dM(zH + zL) < 2zH − αh,

(ii) dR(zH + zL) < 2zH +αl, (iii) dM(zH + zL)+ dR(zH + zL) < 2zH −

(αh − αl). In this case, the constraint of Rich (ii) is vacuous. In other
words, Rich is open to Max for all dR ∈ [0, 1].

Max Minn block AA(dM , dR) iff (i) dM(zH + zL) < zH + zL − αh,
(ii) −αl < dR(zH + zL) (iii) αh − αl < dR(zH + zL) − dM(zH + zL).
The constraint of Minn (ii) is vacuous.

Abel Minn block AA(dM , dR) iff (i) zH − zL + αh < dM(zH + zL),
(ii) zH − zL − αl < dR(zH + zL), (iii) 2zH + αh − αl < dM(zH + zL) +

dR(zH+zL). The constraint ofMinn (ii) is implied by the joint constraint
dR(zH + zL) > αh − αl + 2zH − dM(zH + zL) ≥ αh − αl + zH − zL >
−αl+zH −zL. In otherwords, Minn is open to Abel at all AA(dM , dR)
where Abel Minn can negotiate.

Rich Abel block AA(dM , dR) iff (i) dR(zH + zL) < zH + zL + αl,
(ii) αh < dM(zH + zL), (iii) αh −αl < dM(zH + zL)− dR(zH + zL). The
constraint of Rich (i) is vacuous.

Lemma 1. There is a stable ability assortative allocation when αh ≥

αl or αh ≥ min{zH ,max {zL, αl − zL}}.

Proof. When αh ≥ αl, the ability assortative allocation AA(dM , dR)
where

dM = dR = zH/(zH + zL)

cannot be blocked because no pair can negotiate. The utilities
under this allocation are

uMax = ahh + zH , uAbel = ahh + zL,
uRich = all + zH , uMinn = all + zL.

This allocation is individually rational if

ahh ≥ c/2, all ≥ c/2.

(Moreover, this allocation is the only stable ability assortative
allocation when (αh, αl) = (0, 0), so these bounds are necessary
for individual rationality.)



When zH ≤ αh ≤ αl (Case 1) or max {zL, αl − zL} ≤ αh ≤ min
{αl, zH} (Case 2), AA(dM , dR) where

dM = zH/(zH + zL), dR = 1

is not blocked: InCase1,Maxx andAbel are each closed to bothRich
and Minn. In Case 2, neither Max Rich nor Rich Abel can negotiate,
and Max and Abel are each closed to Minn. The utilities under this
allocation are

uMax = ahh + zH , uAbel = ahh + zL,
uRich = all + zH + zL, uMinn = all.

This allocation is individually rational if

ahh ≥ c/2, all ≥ yL.

(Moreover, this allocation is the only stable ability assortative
allocation when (αh, αl) = (zH , zH + zL), so these bounds are
necessary for individual rationality.) �

Lemma 2. There is no stable ability assortative allocation when αh <
min{αl, zL}.

Proof. Suppose AA(dM , dR) is stable.
If Rich Abel cannot negotiate, i.e., dM(zH + zL) ≤ dR(zH + zL) +

αh −αl, thenMaxMinn can negotiate since dR(zH + zL) ≥ dM(zH +

zL) − (αh − αl) > dM(zH + zL) + (αh − αl) (because αh < αl). So
Max must be closed to Minn, i.e., dM(zH + zL) ≥ zH + zL − αh. But
then Abel is open to Minn because dM(zH + zL) ≥ zH + zL − αh >
zH − zL + αh, and Abel Minn can negotiate since dM(zH + zL) +

dR(zH +zL) > 2dM(zH +zL)+αh−αl ≥ 2(zH +zL−αh)+αh−αl =

2zH + 2(zL − αh) + αh − αl > 2zH + αh − αl (because αh < zL). So
Abel Minn block AA(dM , dR). Contradiction.

If RichAbel cannegotiate, i.e., dM(zH+zL) > dR(zH+zL)+αh−αl,
then Abel must be closed to Rich, i.e., dM(zH + zL) ≤ αh. But then
Max is open to Rich since dM(zH +zL) ≤ αh < zH +zL−αh (because
αh < zL < zH ), and Max Rich can negotiate since dM(zH + zL) +

dR(zH + zL) < 2dM(zH + zL) − (αh − αl) ≤ 2αh − (αh − αl) <
2zH − (αh − αl). So Max Rich block AA(dM , dR). Contradiction. �

Lemma 3. There is no stable ability assortative allocation when αh <
min{zH , αl − zL}.

Proof. Suppose AA(dM , dR) is stable.
Note αh < αl − zL is equivalent to zH − (αh − αl) > zH + zL.
If Max Rich cannot negotiate, i.e., 2zH − (αh − αl) ≤ dM(zH +

zL) + dR(zH + zL) then Abel is open to Rich because dM(zH + zL) ≥

2zH −(αh−αl)−dR(zH +zL) = zH +(zH −(αh−αl))−dR(zH +zL) >
zH + ((zH + zL) − dR(zH + zL)) ≥ zH > αh. Moreover Rich Abel can
negotiate since dM(zH + zL) ≥ 2zH − (αh − αl) − dR(zH + zL) =

αh − αl + dR(zH + zL) + (2zH − 2(αh − αl)) − 2dR(zH + zL) > αh −

αl+dR(zH +zL)+2((zH +zL)−dR(zH +zL)) > αh−αl+dR(zH +zL).
So Rich Abel block AA(dM , dR). Contradiction.

If Max Rich can negotiate, i.e., dM(zH + zL) + dR(zH + zL) <
2zH −(αh−αl), thenMaxmust be closed to Rich, i.e., dM(zH +zL) ≥

2zH − αh. But then Abel is open to Rich since dM(zH + zL) ≥

2zH − αh > αh (because αh < zH ). Moreover, 2zH − αh ≤ dM(zH +

zL) < 2zH − (αh − αl) − dR(zH + zL) so dR(zH + zL) < αl so
(αh − αl) + dR(zH + zL) < αh < dM(zH + zL) thus Rich Abel can
negotiate and block AA(dM , dR). Contradiction. �

Cross assortative and income assortative allocations

Denote by CA(dM , dR) the cross assortative allocation under
which the shares of Max and Rich are dM and dR (and so the shares
ofMinn and Abel are 1−dM and 1−dR) respectively. FromBlocking
Lemma:
Blocking conditions
Max Rich block CA(dM , dR) iff (i) dM(zH + zL) < 2zH , (ii) dR(zH +

zL) < 2zH , (iii) dM(zH + zL) + dR(zH + zL) < 2zH . The (first two)
individual constraints are implied by the (third) joint constraint.

Abel Minn block CA(dM , dR) iff (i) 2zH < dR(zH + zL), (ii) 2zH <
dM(zH + zL), (iii) 2zH < dR(zH + zL) + dM(zH + zL). Again the
individual constraints are implied by the joint constraint.

Rich Minn block CA(dM , dR) iff (i) dR(zH + zL) < zH + zL −αl, (ii)
αl < dM(zH + zL), (iii) 2αl < dM(zH + zL) − dR(zH + zL). Again the
individual constraints are implied by the joint constraint.

Max Abel block CA(dM , dR) iff (i) dM(zH + zL) < αh + zH + zL,
(ii) −dR(zH + zL) < αh, (iii) dM(zH + zL) − dR(zH + zL) < 2αh. The
individual constraints are vacuous.

Thus a cross assortative allocation CA(dM , dR) is stable iff no pair
can negotiate.

Lemma 4. There exists a stable cross assortative allocation if and only
if αh ≤ min{αl, zL}.

Proof. If αh ≤ min{αl, zL} then CA(dM , dR) with

dM = (zH + αh)/(zH + zL), dR = (zH − αh)/(zH + zL)

is not blocked because no pair can negotiate. The utilities under
this allocation are

uMax = ahl + zH + αh, uRich = alh + zH − αh,

uAbel = ahl + zL + αh, uMinn = alh + zL − αh.

This allocation is individually rational if

ahl ≥ c/2, alh ≥ yL.

(Moreover, this allocation is the only stable cross assortative
allocation when (αh, αl) = (0, 0), so these bounds are necessary
for individual rationality.)

In the other direction, from the blocking conditions above, a
cross assortative allocation CA(dM , dR) is blocked by neither Max
Rich nor Abel Minn iff dM(zH + zL) + dR(zH + zL) = 2zH , and it is
blocked by neither RichMinn norMax Abel iff 2αh ≤ dM(zH +zL)−
dR(zH +zL) ≤ 2αl. Thus CA(dM , dR) is blocked by no pair if and only
if αh ≤ αl and αh ≤ dM(zH + zL) − zH ≤ zL. �

Lemma 5. If αh ≤ min{αl, zL}, a stable cross assortative allocation
is equivalent to a stable income assortative allocation.

Proof. Take a stable CA(dM , dR). Observe that Max’s contribu-
tion p(Max) = yH − dM(zH + zL) is equal to Abel’s contribution
p(Abel) = yL − (1 − dR)(zH + zL) (because 2zH = dM(zH + zL) +

dR(zH + zL)). Therefore there is an income assortative allocation
equivalent to CA(dM , dR). This income assortative allocation is sta-
ble: For otherwise it is blocked by either Max Abel or Rich Minn;
but then CA(dM , dR) is blocked by the same pair; contradiction. �
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