
Efficient and Secure Ranked Multi-Keyword Search
on Encrypted Cloud Data

Cengiz Örencik
Faculty of Engineering & Natural Sciences
Sabanci University, Istanbul, 34956, Turkey

cengizo@sabanciuniv.edu

Erkay Savaş
Faculty of Engineering & Natural Sciences
Sabanci University, Istanbul, 34956, Turkey

erkays@sabanciuniv.edu

ABSTRACT
Information search and document retrieval from a remote
database (e.g. cloud server) requires submitting the search
terms to the database holder. However, the search terms
may contain sensitive information that must be kept secret
from the database holder. Moreover, the privacy concerns
apply to the relevant documents retrieved by the user in the
later stage since they may also contain sensitive data and
reveal information about sensitive search terms. A related
protocol, Private Information Retrieval (PIR), provides use-
ful cryptographic tools to hide the queried search terms and
the data retrieved from the database while returning most
relevant documents to the user. In this paper, we propose a
practical privacy-preserving ranked keyword search scheme
based on PIR that allows multi-keyword queries with rank-
ing capability. The proposed scheme increases the security
of the keyword search scheme while still satisfying efficient
computation and communication requirements. To the best
of our knowledge the majority of previous works are not ef-
ficient for assumed scenario where documents are large files.
Our scheme outperforms the most efficient proposals in liter-
ature in terms of time complexity by several orders of mag-
nitude.

1. INTRODUCTION
We are living in a highly networked environment, where

huge amounts of data are stored in remote, but not nec-
essarily trusted servers. There are several privacy issues
regarding to accessing data on such servers; two of them
can easily be identified: sensitivity of i) keywords sent in
queries and ii) the data retrieved; both need to be hidden.
A related protocol, Private Information Retrieval (PIR) [6]
enables the user to access public or private databases with-
out revealing which data he is extracting. Since privacy is of
a great concern, PIR protocols have been extensively studied
in the past [2, 6, 9, 11].

In today’s information technology landscape, customers
that need high storage and computation power tend to out-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PAIS 2012, March 30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-1143-4/12/03 ...$10.00.

source their data and services to clouds. Clouds enable cus-
tomers to remotely store and access their data by lowering
the cost of hardware ownership while providing robust and
fast services [12]. The importance and necessity of privacy
preserving search techniques are even more pronounced in
the cloud applications. Due to the fact that large compa-
nies that operate the public clouds like Google or Amazon
may access the sensitive data and search patterns, hiding
the query and the retrieved data has great importance in
ensuring the privacy and security of those using cloud ser-
vices.

We aim to achieve an efficient system where any autho-
rized user can perform a search on a remote database with
multiple keywords, without revealing neither the keywords
he searches for, nor the contents of the documents he re-
trieves. Our proposed system differs from the previous works
which assume that only the data owner queries the database
[2, 4]. In contrast to previous works, our proposal facilitate
that a group of users can query the database provided that
they possess trapdoors for search terms that authorize the
users to include them in their queries. Moreover, our pro-
posed system is able to perform multiple keyword search in
a single query and ranks the results so the user can retrieve
only the top matches.

The contributions of this paper can be summarized as fol-
lows. Firstly, we provide formal definitions for the security
and privacy requirements of keyword search on encrypted
cloud data. Secondly, we propose an efficient ranked multi-
keyword search scheme and formally prove that it is secure
in accordance with the defined requirements. Thirdly, we
propose a ranking method that proves to be efficient to im-
plement and effective in returning documents highly relevant
to submitted search terms. Lastly, we implement the pro-
posed scheme and demonstrate that it is much more efficient
than existing methods in literature.

The rest of this paper is organized as follows. In Section 2,
we discuss the related previous works. Section 3 gives the
system model and the basics of the scheme. The privacy re-
quirements are defined in Section 3.1. Then we provide de-
tailed description of the proposed scheme in Section 4. Sec-
tion 5 explains the ranking method. Query randomization,
along with its formal analysis is presented in Section 6. In
Section 7, we formally prove that the proposed method sat-
isfies the privacy requirements. An extensive cost analysis
of the proposed technique (in terms of both communication
and computation) and implementation details are presented
in Section 8. Finally, Section 9 gives the concluding remarks
of the paper.

186

2. RELATED WORK
The problem of Private Information Retrieval was first

introduced by Chor et al. [6]. Recently Groth et al. [9]
propose a multi-query PIR method with constant commu-
nication rate. However, any PIR-based technique requires
highly costly cryptographic operations in order to hide the
access pattern. This is inefficient in the large scale cloud
system and as an alternative approach, privacy preserving
search is employed which aims to hide the content of the
retrieved data instead of which data is retrieved.

Ogata and Kurosawa [10] show privacy preserving key-
word search protocol based on RSA blind signatures. The
scheme requires a public-key operation per item in the database
for every query and this operation must be performed on
the user side. Freedman et al. [8], proposed an alterna-
tive implementation for private keyword search that uses
homomorphic encryption and oblivious polynomial evalua-
tion methods. The computation and communication costs
of this method are quite large since every search term in a
query requires several homomorphic encryption operations
both on the server and the user side. A recent work proposed
by Wang et al. [13] allows ranked search over an encrypted
database by using inner product similarity. However, this
work is only limited to single keyword search queries.

One of the closest methods to our solution is proposed by
Cao et al. [3]. Similar to our approach presented here, it
proposes a method that allows multi-keyword ranked search
over encrypted database. In this method, the data owner
needs to distribute a symmetric-key which is used in trap-
door generation to all authorized users. Additionally, this
work requires keyword fields in the index. This means that
the user must know a list of all valid keywords and their posi-
tions as a compulsory information to generate a query. This
assumption may not be applicable in several cases. More-
over, it is not efficient due to matrix multiplication opera-
tions of square matrices where the number of rows are in the
order of several thousands.

Wang et al. [14] propose a trapdoorless private keyword
search scheme, where their model requires a trusted third
party which they named as the Group Manager. We adapt
their indexing method to our scheme, but we use a totally
different encryption methodology to increase the security
and efficiency of the scheme.

3. FRAMEWORK OF THE
PROPOSED METHOD

The problem that we consider is privacy-preserving key-
word search on private database model, where the docu-
ments are simply encrypted with the secret keys unknown
to the actual holder of the database (i.e. Cloud Server). We
consider three roles coherent with previous works [3, 14]:

• Data owner, who is the actual owner of the database.
The data owner collects and/or generates the informa-
tion in the database and lacks the means (or is unwill-
ing) to maintain/operate the database,

• Users are the members in a group who are entitled to
access (part of) the information of the database,

• Server, is a professional entity (e.g. cloud) to offer
information services to authorized users. It is often
required that the server is oblivious to content of the

	

	

	

	
 	
 	

Encrypted	
 file	

index	

2.	
 Query	
 index	

3.	
 Encrypted	
 results	

Data	
 Owner	

Users	

4.	
 Decryp;on	
 key	
 	

1.	
 trapdoors	
 (index)	
 	

Cloud	
 Server	

Figure 1: Architecture of the search method

database it maintains, the search terms in queries and
documents retrieved.

The overview of the proposed system is illustrated in Fig-
ure 1. We assume that the parties are semi-honest and do
not collude with each other to bypass the security measures.

In Figure 1, steps and typical interactions between the
participants of the system are illustrated. In an offline stage,
the data owner creates a search index for each document.
The search index file is created using a secret key based
trapdoor generation function where the secret keys1 are only
known by the data owner. Then, the data owner uploads
these search index files to the server together with the en-
crypted documents. We use symmetric-key encryption as
the encryption method since it can handle large document
sizes efficiently. This process is referred as the index gener-
ation henceforth and the trapdoor generation is considered
as its one of the steps.

When a user wants to perform a keyword search, he first
connects to the data owner. He learns the trapdoors (cf.
Step 1 in Figure 1) for the keywords he wants to search
for, without revealing the keyword information to the data
owner. Since the user can use the same trapdoor for many
queries containing the corresponding search term, this op-
eration does not need to be performed every time the user
performs a query. After learning the trapdoor information,
the user generates the query (referred as query generation
henceforth) and submits it to the server (cf. step 2 in Fig-
ure 1). In return, he receives metadata2 for the matched
documents in a rank ordered manner as will be explained in
subsequent sections. Then the user retrieves the encrypted
documents (cf. Step 3 in Figure 1) he chooses after analyzing
the metadata that basically conveys a relevancy level of the
each matched document, where the number of documents
returned is specified by the user. Finally, the user interacts
with the data owner in order to decrypt the documents and
get the corresponding plaintext (cf. Step 4 in Figure 1); and
in the process the data owner does not learn the documents

1More than one key can be used in trapdoors for the search
terms.
2Metadata does not contain useful information about the
content of the matched documents.

187

that it is assisting to decrypt.

3.1 Privacy Requirements
The privacy definition for search methods in the related

literature is that the server should learn nothing but the
search results [3]. We further tighten the privacy over this
general privacy definition and establish a set of privacy re-
quirements for privacy-preserving search protocols. A multi-
keyword search method must provide the following user and
data privacy properties (first intuitions and then formal def-
initions are given):

1. (Data Privacy) No one but the user can learn the ac-
tual retrieved data.

2. (Index Privacy) The search index or the query index
do not leak any information about the corresponding
keywords.

3. (Trapdoor Privacy) Given one trapdoor for a set of
keywords, the server cannot generate another valid
trapdoor.

4. (Non-Impersonation) No one can impersonate a legit-
imate user.

Definition 1. (Data Privacy) A multi-keyword search pro-
tocol has data privacy, if there is no polynomial time ad-
versary A that, given the retrieved encrypted data and the
corresponding encrypted secret key, learns any information
about the data.

Definition 2. (Index Privacy) A multi-keyword search
protocol has index privacy, if for all polynomial time adver-
saries A that, given two different keyword lists L1 and L2

and an index Ib generated from the keyword list Lb where
b ∈R {0, 1}, the advantage of A in finding b is negligible.
The advantage of A is the absolute value of the difference
between its success probability and 1/2.

Definition 3. (Trapdoor Privacy) A multi-keyword search
protocol has trapdoor privacy, if for all polynomial time ad-
versaries A that, given a valid trapdoor for a set of keywords,
A cannot generate a valid trapdoor for its subset.

Definition 4. (Non-Impersonation) A multi-keyword search
protocol has non-impersonation property, if there is no ad-
versary A that can impersonate a legitimate user U with
probability greater than ε where ε is the probability of break-
ing the underlying signature scheme.

Section 7 shows that the proposed method satisfies these
privacy requirements.

4. THE PRIVACY-PRESERVING RANKED
MULTI-KEYWORD SEARCH

In this section, we provide the details for the crucial steps
in our proposal, namely index generation, trapdoor genera-
tion, and query generation.

4.1 Index Generation
Recently Wang et al. [14] proposed a conjunctive key-

word search scheme that allows multiple-keyword search in
a single query. We use this scheme as the base of our index
creation scheme.

The original scheme uses forward indexing, which means
that a searchable index file for each document is maintained
to indicate the search terms existing in the document. In
the scheme of Wang et al. [14], a secret cryptographic hash
function that is secretly shared between all authorized users
is used to map every search term to a sequence of l bits
where l = rd for some integers r and d. Using a single secret
hash function shared by several users forms a security risk
since it can easily leak to the server. Once the server learns
the hash function, he can break the system if the input set
is small. There are approximately 25000 commonly used
keywords in English [1] and users usually search for a single
or two keywords. For such small input sets, given the hashed
index for a query, it will be easy for the server to identify
the queried keywords by performing a brute-force attack.
For instance, assuming that there are approximately 25000
possible keywords in a database and a query submitted by
a user involves two keywords, there will be 250002 < 228

possible keyword pairs. Therefore, approximately 227 trials
will be sufficient to break the system and learn the queried
keywords.

We propose using a trapdoor based system where the trap-
door can only be generated by the data owner through the
utilization of secret keys. The usage of secret keys eliminates
the feasibility of a brute force attack. The rest of the index
creation is very similar to [14] as explained in the following.

While generating the search index for a document R that
has keywords {w1, . . . , wm}, we take HMAC (Hash-based
Message Authentication Code) of each keyword which gives
l = rd bits output (HMAC: {0, 1}∗ → {0, 1}l). Let xi be
the output of HMAC for input wi and index of a keyword
wi be denoted as Ii where Iji represents the jth bit of Ii, i.e.

Iji ∈ GF (2) where GF stands for Galois field [7]. The index

of a keyword wi, Ii = (Ir−1
i , . . . , Iji , . . . , I

1
i , I

0
i) is calculated

as follows.
The l-bit output of HMAC, xi can be seen as an r-digit

number in base-d, where each digit is d bits. Also let xji ∈
GF (2d) denotes the jth digit of xi and we can write

xi = xr−1
i , . . . x1i , x

0
i .

After this, each r-digit output is reduced to r-bit output with
the mapping from GF (2d) to GF (2) as shown in Equation 1.

Iji =

{
0 if xji = 0
1 otherwise

(1)

As a last step in index generation, the bitwise product of
indices of all keywords (Ii for i = 1 . . .m) in the document R
is used to obtain the final searchable index IR for document
R as shown in Equation 2.

IR = �mi=1Ii (2)

where � is bitwise product operation. The resulting index
IR is an r-bit binary sequence and its jth bit is 1 if for all
i, jth bit of Ii is 1 and 0 otherwise.

In the next subsection, we explain the technique used to
generate trapdoors from the index files of each document.

4.2 Trapdoor & Query Generation
Search index files for the documents in the database are

generated by the data owner using secret keys. A user who
wants to include a search term in his query, needs the cor-
responding trapdoor from the data owner since he does not

188

know the secret keys used in the index generation. Asking
for the trapdoor openly would violate the privacy of the user
against the data owner, therefore a technique is needed to
hide the trapdoor asked by the user from the data owner.

We adopt the idea from [8] to distribute keywords into a
fixed number of bins depending on their hash values. More
precisely, every keyword is hashed by a public hash function,
and certain number of bits in the hash value is used to assign
the keywords to these bins. The number of bins and the
number of keywords in each bin can be adjusted according
to security and efficiency requirements of the system.

In our proposal for obtaining trapdoors, we utilize a pub-
lic hash function with uniform distribution, named GetBin

that takes a keyword and returns a value in {0, . . . , (δ− 1)}
where δ is the number of bins. All the keywords that ex-
ist in a document are mapped by the data owner to one of
those bins using the GetBin function. Note that δ is smaller
than the number of indexed keywords so that each bin has
several elements in it to provide obfuscation. The GetBin

function has uniform distribution, therefore each bin will
have approximately equal number of items in it. Moreover,
δ must be chosen deliberately such that there are at least
$ items in each bin where $ is a security parameter. The
same key can be used in the index generation phase for all
the keywords in the same bin.

When the user connects to the data owner to obtain the
trapdoor for a keyword, he first calculates the bin IDs of key-
words and sends these values to the data owner. The data
owner then returns the secret keys of the bins requested for,
which can be used by the user to generate the trapdoors3 for
all keywords in these bins. Alternatively, the data owner can
send trapdoor of each keywords in corresponding bins result-
ing in an increase in the communication overhead. However,
the latter method relieves the user of computing the trap-
doors. After obtaining the trapdoors, the user can calculate
the query index in a similar manner to the method used by
the data owner to compute the search index files. More pre-
cisely, if there are n search terms in a user query, the follow-
ing formula is used to calculate the privacy-preserving query
given that the corresponding trapdoors (i.e. Ij1 , . . . , Ijn) are
available to the user:

Q = �ni=1Iji .

Finally the user sends this r-bit query index value to the
server.

The server receives the query of the user that hides the
users’ keywords. The users’ keywords are protected against
disclosure since the secret keys used in trapdoor generation
is chosen by the data owner and never revealed to the server.
In order to avoid impersonation, the user signs his messages.

4.3 Oblivious Search on the Database
A user’s query index, in fact, is just an r-bit binary se-

quence (independent of the number of search terms in it) and
therefore, index searching consists of as simple operations as
binary comparison only. If the search index of the document
(IR) has 0 for all the bits, for which the query index (Q) has
also 0, then the query matches to that document as shown

3In fact, Ii, which is calculated for the search term wi as
explained in Section 4.1 is the trapdoor for the keyword wi.

in Equation 3.

result(Q, IR) =

{
match if ∀j Qj = 0 ⇒ IjR = 0
not match otherwise

(3)
Note that given a query index, it should be compared with
search index of each document in the database.

Then the server sends metadata of the matching docu-
ments to the user. The metadata is the search index of
that document where the user can perform further analysis
to learn more about the relevancy of the document. After
analyzing the indices, the user retrieves ciphertexts of the
matching documents of his choice from the server. The user
obtains the key from the data owner and decrypts the re-
sults. The method employed by the user to learn decryption
keys is explained in Section 4.4.

For improving the security, the data owner can change the
HMAC keys periodically. Each trapdoor will have an expi-
ration time. After this time, the user needs to get a new
trapdoor for the keyword he previously used in his queries.
This will alleviate the risk when the HMAC keys are com-
promised.

4.4 Document Retrieval
The problem in retrieving the relevant documents is that

users may not want documents, which they request, to be
exposed, since their contents may be sensitive and they are
usually directly related to sensitive search terms in their
queries. In our scheme, the server can return the requested
documents to the user.

In the proposed protocol, we need the data owner or its
delegate that does not collude with the server, to be ac-
tive. The usage of an active delegate for the data owner is
a common approach that is coherent with previous works
[3, 13]. As explained in Section 3, the data owner encrypts
documents with a symmetric-key encryption method using
a different secret key for each document. The server should
not be able to decrypt those ciphers since this would im-
ply that the server learns the content of the document the
user requests for. Therefore, the data owner encrypts the
symmetric-keys with a public-key encryption method, which
has blinding capability, and stores the encrypted symmetric-
keys in the server. In cryptography, blinding is a technique,
whereby an agent can compute a cryptographic function
(e.g. signing and decryption), without knowing either the
real input or the real output of the function [5]. We choose
the RSA as the public-key encryption, which supports blind-
ing.

Assume that the user requests the document R. He re-
ceives the RSA encryption of the symmetric-key (sk), namely
RSAe(sk), where e denotes the public-key of the data owner.
The user does not know the private key of the RSA (i.e. d),
therefore he needs the data owner to perform the decryption
of sk without showing y = RSAe(sk), which would reveal
the document he retrieves. The user employs the blinding
technique and interacts with the data owner for decrypt-
ing the RSA encryption without learning the private key d.
Firstly, y is blinded by a random blinding factor c chosen
by the user as z = cey mod N , where N is the RSA mod-
ulus. Then, the user sends the blinded result z to the data
owner, who decrypts it using his private key and returns the
result (z̄ = zd mod N) back to the user. Finally the user
un-blinds the result using the blinding factor as sk = z̄c−1

mod N . The data owner cannot determine which secret key

189

it is decrypting since the ciphertext is blinded, hence random
looking.

5. RANKED SEARCH
The multi-keyword search method explained in Section 3

checks whether queried keywords exist in a document or not.
If the user searches for a single or more keywords, there will
possibly be many correct matches where some of them may
not be useful for the user at all. Therefore, it is difficult
to decide as to which documents are the most relevant. We
add ranking capability to the system by adding extra index
information for frequently occurring keywords in a file. With
ranking, the user can retrieve only the top τ matches where
τ is chosen by the user.

In order to rank the documents, a ranking function is
required, which assigns relevancy scores to each document
matching to a given search query. One of the most widely
used metrics in information retrieval is the term frequency
[15]. Term frequency is defined as the number of times a
keyword appears in a document. Instead of using term fre-
quency itself, we assign relevancy levels based on the term
frequencies of keywords.

We assume that there are η levels of ranking in our pro-
posed method for some integer η ≥ 1. For each document,
each level stores an index for frequent keywords of that doc-
ument in a cumulative way in descending order. This basi-
cally means that ith level index includes all keywords in the
(i + 1)th level and the keywords that have term frequency
for the ith level. The higher the level, the higher the term
frequency of the keywords is. For instance, if η = 3, level
1 index includes keywords that occur at least once in the
document while levels 2 and 3 include keywords that occur
at least, say 5 times and 10 times4, respectively. There are
several variations for relevancy score calculations [15] and
we use a very basic method. The relevancy score of a doc-
ument is calculated as the number representing the highest
level search index that the query index matches.

All the keywords that exist in a document are included
in the first level search index of that document as explained
in Section 4.1. The other higher level indices include the
frequent keywords that also occur in its previous level, but
this time they have to occur the number of times, which
are at least the term frequency of the corresponding level.
The highest level includes only the keywords that have the
highest term frequency. In the oblivious search phase, the
server starts comparing the user query against the first level
indices of each document. The matching documents found as
a result of the comparison in the first level are then compared
with the search indices in the other levels according to the
Algorithm 1.

In this method, some information may be lost due to the
ranking method employed here. Rank of two documents
will be the same if one involves all the queried keywords in-
frequently and the other involves all the queried keywords
frequently except one infrequent one. The rank of the doc-
ument is identified with the least frequent keyword of the
query. We tested the correctness of our ranking method by
comparing with a commonly used formula for relevance score
calculation [13], which is given in the following:

4The number of levels and the term frequency of each level
can be chosen in any convenient way.

Algorithm 1 Ranked Search

for all documents Ri do
Compare(level1 index of Ri , query index)
j = 1
while match do

increment j
Compare (levelj indices of Ri, query index)

end while
rank of Ri = highest level that match with query index

end for

Score(W,R) =
∑
t∈W

1

|R| . (1 + lnfR,t) .ln

(
1 +

M

ft

)
. (4)

Here W , fR,t, ft, and M denote the set of searched key-
words, the term frequency of term t in file R, the number
of files that contain term t, and the number of files in the
database, respectively. |R| is the length of the file R.

We use a synthetic database to compare the two rank-
ing methods. We assume that there are 1000 files of equal
lengths in the database and 3 keywords are searched for.
We further assume that the number of files containing the
queried keywords (ft) is equal to 200 and only 20 of those
contain all 3 keywords. Term frequencies of the keywords
in the 20 matching files are chosen uniformly randomly be-
tween 1 and 15 and η = 5 in our proposed ranking method.

In 40% of the time, the top match for a given relevance
score in Equation 4, is also the top match for our proposed
ranking method, and 100% of the time in the top 3 matches
of our ranking method. Additionally in 80% of the time, at
least 4 of the top 5 matches for the given relevance score
is also in the top 5 of our proposed ranking method. Note
that since we assume ft is the same for all t ∈W , changing
ft has no effect on the performance of both methods. As
can be observed from these experimental figures, while the
performance of the proposed method is in acceptable levels,
the choice of the method parameters (especially η and term
frequency of each level) depends very much on the charac-
teristics of the database and the documents.

While this new method necessitates an additional r-bit
storage per level for a document, it reduces the communi-
cation overhead of the user since matches with low rank
documents will not be retrieved unless the user requests.
Considering η search indices are stored instead of a single
search index per document, storage overhead for indexing
mechanism increases η times due to ranking. This additional
cost is not a burden for the server since the index sizes are
usually negligibly small compared to actual document sizes.

6. QUERY RANDOMIZATION
Search pattern is the information that can be inferred from

the queries of a user by linking one of his queries to another
where both contain the identical keywords. The proposed
scheme fails to hide the search pattern since the search in-
dices are generated in a deterministic way. Any two search
indices created from the identical keywords will be exactly
the same. In order to hide the search pattern of a user we
introduce randomness into the index generation phase. This
process is known as query randomization, which should be
carefully implemented so that the indices do not leak infor-

190

mation about the search patterns. In this section we an-
alytically demonstrate the efficiency of the proposed query
randomization method.

For introducing non-determinacy into the search index
generation, we choose U random keywords that do not ex-
ist in the dictionary (i.e. they are simply random strings).
We add these U random keywords in every document in-
dex along with the genuine keywords. When generating the
query (i.e. query index), the user adds randomly selected V
keywords (V ≤ U) together with the genuine search terms.
The number of different choices of V keywords out of a to-
tal of U keywords is calculated as

(
U
V

)
, which is maximized

when U = 2V .
We can formalize the problem as follows. Let

Qi = {Qi1, Qi2, . . . , Qiµ}

be the set of query indices that are generated from the same
search terms using different random keywords. Furthermore,
let Qx be the set of all possible other query indices. Given
two query indices Qi ∈ Qi and Qj , identifying whether Qj ∈
Qi or Qj ∈ Qx should be hard.

We use the Hamming distance metric for evaluating the
similarity of two query indices, which is defined as the num-
ber of different bits in the corresponding positions in the
queries. We define two new functions to calculate analyti-
cally the Hamming distance.

• F (x) is the expected number of 0’s in an index with x
keywords.

• C(x) is the expected number of 0’s that overlap in a
x keyword query index (Qa) compared with a single
keyword query index (Qb).

Note that r is the size of an index, d is the reduction value
(cf. Section 4.1) and Q[i] is the ith bit of Q.
The functions are calculated as follows:

F (1) =
r

2d

F (x) = F (x− 1) + F (1)− C(x− 1)

C(x) =

r−1∑
i=0

P (Qa[i] = 0 && Qb[i] = 0)

= r
F (x)

r

F (1)

r
=
F (x)

2d

The expected Hamming distance between two query in-
dices (i.e. Q1 and Q2) with x keywords each, where they
have x̄ common keywords and x − x̄ different keywords is

calculated as

∆(Q1, Q2) =

r−1∑
i=0

P (Q1[i] 6= Q2[i])

= rP (Q1[1] 6= Q2[1])

= r [P (Q1[1] = 0)P (Q2[1] = 1|Q1[1] = 0)

+ P (Q1[1] = 1)P (Q2[1] = 0|Q1[1] = 1)]

= r

[
F (x)

r

(
F (x̄)

F (x)
.0 +

F (x)− F (x̄)

F (x)
.
r − F (x)

r

)
+
r − F (x)

r

(
F (x)

r

)]
=

(F (x)− F (x̄)) (r − F (x))

r
+
F (x)(r − F (x))

r
(5)

where P (A|B) is the conditional probability of A given B.
Each query index chooses V keywords out of U = 2V

random keywords. While comparing two arbitrary queries,
the expected number of keywords that exist in both of them
(EO) is calculated as

EO =

V∑
i=0

(
V
i

)(
V
V−i

)(
2V
V

) i =
V

2
. (6)

The first query chooses V keywords and the probability
that i (i ≤ V) keywords chosen by the second query also
exist in the first query is calculated as follows: i keywords
are chosen from the set of keywords that is selected also by
the first query and V −i are chosen from the set of unselected
keywords. Then we use summation to calculate the expected
value in (6).

Using the formulae in (5) and (6), one can demonstrate
that the distance between two query indices Qi ∈ Qi and
Qj /∈ Qi is sufficiently close to the distance between Qiα ∈
Qi and Qiβ ∈ Qi for the parameters V = 30 and U = 60.

To demonstrate the usefulness of our analysis, we con-
ducted an experiment using synthetic data for the case,
where adversary does not know the number of genuine key-
words in a query. We generate a synthetic data for a set
of query indices with the parameters V = 30 and U = 60
being fixed. The set contains a total of 250 query indices,
where the first 50 indices contain 2 genuine keywords each,
the second 50 indices contain 3 genuine keywords each, and
so on. And finally, the last set of 50 indices contains 6 gen-
uine keywords each. We create another set which contains
only 6 query indices, which include 2, 3, 4, 5, and 6 gen-
uine keywords, respectively. The distances between pairs of
query indices, in which one query is chosen from the former
set and the second one from the latter, are measured to ob-
tain a histogram as shown in Figure 2(a). Consequently, a
total of 250 × 5 = 1250 distances are measured. We also
obtain another histogram featuring a total of 1250 distances
between pairs of query indices, whereby query indices in a
pair contain the same genuine search terms with different
random keywords. Both of the histograms are given in Fig-
ure 2(a), where it can be observed that adversary basically
needs to make a random guess whether given two query in-
dices contain the same keywords or not.

We also conducted a similar experiment, in which we as-
sume that the adversary has the knowledge of the number of
search terms in a query index. We generate a set containing
a total of 1000 indices, whose subsets with 200 indices each

191

0	

50	

100	

150	

200	

250	

300	

350	

100	
 110	
 120	
 130	
 140	
 150	
 160	
 170	
 180	
 190	

fr
eq

ue
nc
y	

distance	
 between	
 two	
 queries	

different	
 qry	

same	
 qry	

(a) Histogram for the distances for two arbi-
trary query indices and for two query indices
that are generated from the same search terms

0	

50	

100	

150	

200	

250	

100	
 110	
 120	
 130	
 140	
 150	
 160	
 170	
 180	
 190	

fr
eq

ue
nc
y	

distance	
 between	
 two	
 queries	

different	
 qry	

same	
 qry	

(b) Histogram for the distances for two arbitrary
query indices and for two query indices that are
generated from the same search terms where the
number of search terms in the query is 5

Figure 2: Histograms

contain 2, 3, 4, 5 and 6 genuine keywords, respectively. We
then create a single query index with 5 genuine keywords.
We measured the distances of the single query to all 1000
indices in the former set of indices to create a histogram (i.e.
a total of 200× 5 = 1000 distances are measured). We com-
pared this with the histogram for 1000 measurements of the
distance between two query indices with five identical search
terms as shown in Figure 2(b). As can be observed from the
histogram in Figure 2(b), 20% of the time, distances between
two queries are 150 and they are totally indistinguishable. In
45% of the time, the distances are smaller than 150, where
the adversary can guess Qj ∈ Qi with 0.6 confidence. In
35% of the time, the distances are greater than 150 and the
adversary can guess Qj /∈ Qi with 0.7 confidence. In accor-
dance with these results, one can guess whether the query
indices are generated from the same search terms or not
correctly with 0.6 confidence under the assumption that the
number of genuine keywords in the query is known. Hence,
this information should be kept secret which is the case in
our proposed method. Note that the query randomization
does not change the response, which needs to be sent over a
secure channel.

6.1 Error Rates
The indexing method that we employ includes all the in-

formation on keywords in a single r-bit index file. Despite
the fact that the hash function employed in the implementa-
tions is collision-free, after the reduction and bitwise product
operations there is a possibility that index of a query may
wrongly match with an irrelevant document which is called
as a false accept. The false accept rates given in Figure 3
are calculated as

FAR =
number of incorrect matches

number of all matches

0%	

2%	

4%	

6%	

8%	

10%	

12%	

14%	

16%	

18%	

20%	

10+60	
 20+60	
 30+60	
 40+60	

FA
R	

#	
 keywords	
 per	
 doc	

2	
 keywords	
 in	
 query	

3	
 keywords	
 in	
 query	

4	
 keywords	
 in	
 query	

5	
 keywords	
 in	
 query	

Figure 3: False Accept Rates: d = 6, r = 448 bits,
U = 60, V = 30

for queries with 2, 3, 4 and 5 keywords where index size
(r) is 448 bits. The false accept rates rapidly increase af-
ter 40 keywords per document; but we assume that there
are less than 40 keywords per document in our experiments.
If more keywords are required per document, false accept
rates can be reduced by increasing the reduction parameter
d while keeping the final index size r constant (i.e. choos-
ing a longer HMAC function). Although computing longer
HMAC functions will also increase the cost of the index gen-
eration, since the index size r is constant the communication
cost and storage requirements do not increase. Optimized
value for index size should be chosen considering the require-
ments of the applications, for which the proposed method is
used.

7. PRIVACY OF THE METHOD
The privacy-preserving multi-keyword search (MKS)

method must provide the user and data privacy require-
ments specified by definitions in Section 3.1. This section
is devoted for the formal proofs that the proposed method
satisfies these privacy requirements.

Theorem 1 (Data Privacy). The proposed MKS
method satisfies data privacy in accordance with Definition 1.

Proof. The security of the encrypted data relies on the
underlying symmetric-key encryption method. The secret
key of the encryption is known by the data owner and it is
privately shared with the user by employing blinding as ex-
plained in Section 4.4. The adversary can listen the channel
and learn the RSA encrypted secret key (y = RSAe(sk)),
the blinded version of y (z = cey mod N) and the blinded
version of the secret key (z̄ = c(sk) mod N). Since c is a
random number, z and z̄ are treated as random values. As-
suming that the data owner’s private key d and the chosen
random number c are not compromised, the knowledge of
z and z̄ does not reveal any information on the symmetric-
key sk. Without the knowledge of sk, adversary cannot
learn any information about the actual data. Additionally,
the data owner cannot learn sk without knowing c. Given
(z̄ = c(sk) mod N), without the knowledge of the blind-
ing factor c, it is a random looking number, and hence
is indistinguishable from any z̄2 = c2(sk2) mod N where
c 6= c2.

Theorem 2 (Index Privacy). The proposed MKS
method satisfies index privacy in accordance with Defini-
tion 2.

192

Proof. Assuming that the adversary A is not an autho-
rized user, A cannot ask the data owner for the trapdoors
of keywords in L1 and L2. Additionally, since the trapdoor
information is sent to the authorized users in an encrypted
form, A cannot learn that information through channel lis-
tening. First assume L1 = L2 such that they have exactly
the same genuine keywords with different random keywords.
As shown in Section 6, indices for such two keyword lists
are indistinguishable from indices with different keywords.
Assume L1 6= L2 such that they have different genuine key-
words and different random keywords. In the worst case,
let L1 and L2 include only a single genuine keyword. The
HMAC function uses a randomly chosen 128 bit key which
implies A needs to try 2127 different hash functions for each(
U
V

)
possible random choice on average to guess b with a con-

fidence greater than 0.5, which is infeasible for all practical
purposes.

Theorem 3 (Trapdoor Privacy). The proposed MKS
method satisfies trapdoor privacy in accordance with Defini-
tion 3.

Proof. Assuming that the adversary A is not an au-
thorized user, A is not allowed to acquire query index for
his search terms. Specifically, let A learns a query index
Q(wi,wj) for two keywords (wi, wj) and V random keywords,
A cannot deduce the search index Qwi for a single keyword
wi from the received index. Let x of the r bits are 0 in
Q(wi,wj) where xi, xj and xR are the number of 0 bits re-
sulting from keywords wi, wj and random keywords, respec-
tively. Note that A does not know the values of xi or xj ,
but without loss of generality, let xi = xj = r

2d
and further-

more let they do not overlap. On average, there will be 20
times more 0’s resulting from random keywords than xi (i.e.
F (V)/F (1)). A valid search index Qwi must contain all the
xi 0 bits and must not contain any of the xj 0 bits corre-
sponding to the trapdoor of wj . The probability of finding
a valid trapdoor Qwi which is denoted as P (vT), is smaller
than choosing xi 0’s from x where none of them are from
the xj 0’s.

P (vT) <

(
xi
xi

)(
xj
0

)(
x−(xi+xj)

y

)(
x

xi+y

) ≈
(
18xi
y

)(
20xi
xi+y

) ≈ 2−9 (7)

where y is the number of 0’s chosen from random keywords.
Note that the adversary cannot verify whether a trapdoor is
valid for wi, hence brute-force search is not possible.

Theorem 4 (Non-Impersonation). The proposed MKS
method satisfies non-impersonation property in accordance
with Definition 4.

Proof. All the communication that is from the user to
the data owner is authenticated by a signature with the
user’s private key. We assume that the private key infor-
mation of the authorized users is not compromised and we
further assume that the server is semi-honest. In order to
impersonate an authorized user with an RSA public-key
eu, A needs to learn the private key du where eudu = 1
mod φ(N). Therefore, the probability of impersonating an
authorized user is ε where ε is the probability of breaking
the underlying RSA signature scheme. The communication
between the user and the server does not require any au-
thentication. Since the user does not provide his identity
during the communication with the server, impersonation is
not an issue.

8. COMPLEXITY
In this section, we present an extensive cost analysis of the

proposed technique. The communication and computation
costs will be analyzed separately. Especially, low costs on
the user side are crucial for rendering the proposed technique
feasible for mobile applications, where the users usually per-
form the search through resource-constrained devices such
as smart phones.

• Communication Costs:

Three steps in the proposed method are identified,
where communication is required: i) for learning the
trapdoor, ii) for sending the query and receiving the
results, and iii) finally for learning the decryption key.

1. Between the user and the data owner, for learning
the trapdoor: To build the query, the user first
determines the bin IDs of the keywords he wants
to search for and send these values to the data
owner. Let γ be the number of the keywords the
user wants to search for. Then the user sends
at most 32 · γ bits to the data owner together
with a signature since each bin ID is represented
by a 32 bit integer. The data owner replies with
the HMAC keys that belongs to those bins. The
reply is encrypted with the user’s public-key, so
the size of the result is logN . Note that if two
query keywords happen to map to the same bin,
then sending only one of them will be sufficient
since their responses will be the same.

2. Between the user and the server, for query: After
learning the trapdoor keys, the user calculates the
query index and transmits it to the server. The
size of the index is r bits, independent from γ, so
the user transmits only r bits. Let α be the num-
ber of documents matched with the query and N
be the RSA modulus. The server returns the in-
dices of the matching documents which is α · r
bits in total. If the user requests θ of those doc-
uments where θ ≤ α, then the server returns the
symmetric-key encryption of the documents and
the RSA encryption of the corresponding sym-
metric keys. The size of the former is approxi-
mately the same as document size itself, while the
latter is logN bits. Therefore, the total amount of
data sent from the server is θ · (doc size+ logN).
Note that the additional communication cost of
the proposed method is θ · logN + α · r bits and
the rest is the data part which must be sent even
no security is used. In the case where the ranking
is used, only the top τ matches are returned to
the user by the server instead of α where τ ≤ α.

3. Between the user and the data owner, for decryp-
tion: In order to decrypt the symmetric-key en-
cryption of the document, the user should first
blinds the corresponding key which is encrypted
with RSA. The user first transmits the blinded
ciphertext to the data owner, which is logN -bit
long and receives decryption of it, which is again
logN -bit long.

The communication costs are summarized in Table 1.

193

Trapdoor Search Decrypt
User 32 · γ + logN r logN
Data
Owner logN 0 logN
Server α · r+

0 θ · (doc size+ logN) 0

Table 1: Communication costs incurred by each
party (in bits)

• Computation Costs:

Among the three parties participated in the protocol,
computation cost of the user is the most crucial one.
The data owner and the server can be implemented
on quite powerful machines, however the users may be
using resource-constrained devices.

1. User: After receiving trapdoor keys from the data
owner, query index is generated as explained in
Section 4.1, which is essentially equivalent to per-
forming hash operations5. Subsequent to the re-
trieval of encrypted documents, the user should
perform one blinding operation over an RSA en-
cryption, one signing for authentication purposes
and symmetric-key decryption operations as ex-
plained in Section 4.4. These operations are equiv-
alent to 3 modular exponentiations, 2 modular
multiplications and one symmetric-key decryption
operation per document retrieved.

2. Server: The server only does the search opera-
tion, which is binary comparison of r-bit query
index with σ database indices, each of which is
again r-bit binary sequence. If the ranking is
used, the query index should also be compared
with indices of the matching documents. So the
server performs η additional binary comparison of
r-bit indices for each matching document, where
η is the number of levels.

3. Data Owner: The data owner creates the indices
and symmetric-key encryptions of all documents;
but these operations are performed only once in
the initialization phase. Other than this, data
owner is active while the user learns the trapdoors
and decryption keys, which requires 2 modular
exponentiations for each.

The computation costs are summarized in Table 2.

1 hash and bitwise product
User 2 modular multiplication

3 modular exponentiation
1 symmetric-key decryption

Data Owner initialization phase
4 modular exponentiation per search

Server σ η binary comparison over r bit indices

Table 2: Computation costs incurred by each party

5Computing bitwise product is negligible compared the over-
all operations the user performs.

8.1 Implementation Results
The entire system is implemented by Java language us-

ing socket programming on an iMac with Intel Core i7 pro-
cessor of 2.93 GHz. Considering analyzing a document for
finding the keywords in it, is out of the scope of this work,
a synthetic database is created by assigning random key-
words with random term frequencies for each document.
The HMAC function produces outputs, whose size (l) is 336
bytes (2688 bit), which is generated by concatenating differ-
ent SHA2-based HMAC functions. We choose d = 6 so that
after the reduction phase the result is reduced to one-sixth
of the original result; therefore the index size (r) is 56 bytes
(448 bits). In the RSA encryption, modulus N is chosen
as a 1024-bit integer which is the product of two randomly
chosen 512-bit prime numbers.

In our experiments, we used different databases with dif-
ferent number of documents (from 2000 to 10000 documents).
The timing results for creating the search indices are ob-
tained for documents with 20 genuine and 60 random key-
words each using ranking technique with different rank levels
in Figure 4(a). Considering that index generation is per-
formed only occasionally (if not once) by the data owner
and that index calculation problem is of highly parallelized
nature, the proposed technique presents highly efficient and
practical solution to the described problem.

0	

20	

40	

60	

80	

100	

120	

2000	
 4000	
 6000	
 8000	
 10000	

!m
e	

of
	
 b
ui
ld
in
g	

in
de

x	

(s
)	

#	
 of	
 documents	

without	
 ranking	

rank	
 with	
 3	
 levels	

rank	
 with	
 5	
 levels	

(a) Timings for index construction with 20 gen-
uine and 60 random keywords per document
(on data owner side)

0	

0.5	

1	

1.5	

2	

2.5	

3	

2000	
 4000	
 6000	
 8000	
 10000	

!m
e	

of
	
 se

ar
ch
	
 (m

s)
	

#	
 of	
 documents	

without	
 ranking	

rank	
 with	
 3	
 levels	

rank	
 with	
 5	
 levels	

(b) Timings for query search (on server side)

Figure 4: Timing results

Figure 4(b) demonstrates the server timings for a search
with different rank levels. As can be observed from the
graphic in Figure 4(b), time spent by the server per query
is quite low rendering high-throughput processing of user
queries possible. By parallelization and native language sup-
port, the throughput can be increased several orders of mag-
nitude.

In the work of Cao et al. [3] index construction for 6000
documents takes about 4500 s where we need 60 s in the

194

highest rank level. Similarly they require 600 ms to search
over 6000 documents where we need only 1.5 ms. The tests
in [3] was done on an equivalent computer, Intel Xeon pro-
cessor 2.93 GHz.

The total time the user spends on all computations after
learning the trapdoor information is 10 ms per document
retrieved. The time that the data owner spends for decryp-
tion and signature check is about 5 ms per query. The low
time requirements on the data owner side enables process-
ing multiple requests with high-throughput. Note that the
programs used in the experiments are developed in Java lan-
guage for portability reasons and unoptimized. Further op-
timization or support of native code will further increase the
performance of the proposed system.

9. CONCLUSION AND FUTURE WORK
In this paper, we motivate and solve the problem of effi-

cient and secure ranked multi-keyword search on remotely
stored encrypted database model where the database users
are protected against privacy violations. We first define the
security requirements for the given problem. We then em-
ploy a secure usage of the method given in [14] for practical
application scenarios where total number of keywords that
can be searched is relatively limited and there are only few
search terms in a query by using a trapdoor based system
where the trapdoor can only be generated by the data owner.
We appropriately increase the efficiency of the scheme by
using symmetric-key encryption method rather than public-
key encryption for document encryption. We also propose
to use the blinded encryption technique in accessing the con-
tents of the retrieved documents without revealing them to
other parties. We prove that our proposed method satisfies
the security requirements. The proposed ranking method
proves to be efficient to return highly relevant documents
corresponding to submitted search terms. We implement
the entire scheme and extensive experimental results on the
implementation demonstrate the effectiveness and efficiency
of our solution.

Following the current research, there are possible improve-
ments and undergoing efforts that will appear in the future
work. Firstly, the user side of proposed system will be imple-
mented on mobile devices running Android and iOS operat-
ing systems since the potential application scenario envisions
that users access the data anywhere and anytime. And sec-
ondly, the proposed method will be tested on a real dataset
in order to compare the performance of our ranking method
with the ranking methods used in plain datasets that do not
involve any security or privacy-preserving techniques.

10. ACKNOWLEDGMENTS
The work was in part supported by the European Union

project UBIPOL (Ubiquitous Participation Platform for Pol-
icy Making). We would like to thank TUBITAK (The Scien-
tific and Technological Research Council of Turkey) for the
Ph.D. fellowship supports granted to Cengiz Orencik.

11. REFERENCES
[1] Oxford dictionaries, the oec: Facts about the

language. http://oxforddictionaries.com/page/
oecfactslanguage/

the-oec-facts-about-the-language, June 2011.

[2] D. Boneh, E. Kushilevitz, R. Ostrovsky, and
W. Skeith. Public key encryption that allows pir
queries. In Advances in Cryptology - CRYPTO 2007,
volume 4622 of Lecture Notes in Computer Science,
pages 50–67. Springer Berlin / Heidelberg, 2007.

[3] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou.
Privacy-preserving multi-keyword ranked search over
encrypted cloud data. In IEEE INFOCOM, 2011.

[4] Y.-C. Chang and M. Mitzenmacher. Privacy
Preserving Keyword Searches on Remote Encrypted
Data. In Applied Cryptography and Network Security,
pages 442–455. Springer, 2005.

[5] D. Chaum. Blind signatures for untraceable payments.
In Advances in Cryptology: Proceedings of
CRYPTO’82, pages 199–203, 1982.

[6] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan.
Private information retrieval. J. ACM, 45:965–981,
November 1998.

[7] L. E. Dickson. Linear Groups with an Exposition of
Galois Field Theory. Dover Publications, New York,
2003.

[8] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold.
Keyword search and oblivious pseudorandom
functions. In Theory of Cryptography Conference -
TCC 2005, pages 303–324, 2005.

[9] J. Groth, A. Kiayias, and H. Lipmaa. Multi-query
computationally-private information retrieval with
constant communication rate. In PKC, pages 107–123,
2010.

[10] W. Ogata and K. Kurosawa. Oblivious keyword
search. In Journal of Complexity, Vol.20, pages
356–371, 2004.

[11] J. T. Trostle and A. Parrish. Efficient computationally
private information retrieval from anonymity or
trapdoor groups. In ISC’10, pages 114–128, 2010.

[12] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and
M. Lindner. A break in the clouds: towards a cloud
definition. SIGCOMM Comput. Commun. Rev.,
39:50–55, December 2008.

[13] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou. Secure
ranked keyword search over encrypted cloud data. In
ICDCS’10, pages 253–262, 2010.

[14] P. Wang, H. Wang, and J. Pieprzyk. An efficient
scheme of common secure indices for conjunctive
keyword-based retrieval on encrypted data. In
Information Security Applications, Lecture Notes in
Computer Science, pages 145–159. Springer, 2009.

[15] J. Zobel and A. Moffat. Exploring the similarity space.
SIGIR FORUM, 32:18–34, 1998.

195

