ROLE OF POWER SERIES SPACES IN THE
STRUCTURE THEORY OF NUCLEAR FRECHET SPACES

T. Terzioglu
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Most of the locally convex spaces appearing in the theory of distributions, as well as spaces

of analytic functions of several variables, are nuclear. Many of the important examples of these
spaces are either Fréchet or duals of Fréchet spaces or they can be represented as inductive limits
of Fréchet spaces or their duals. The structure theory of nuclear Fréchet spaces has captured
the attention of analysts from the time of the introduction of the concept of nuclearity by A.
Grothendieck. An early theorem of Dynin and Mitiagin states that if a nuclear Fréchet space
has a Schauder basis, then it is canonically isomorphic to a nuclear Kothe space. Although
not every nuclear Fréchet space has a Schauder basis by a result of Mitiagin and Zobin, there
are many concrete examples which do. In these examples the basis is usually constructed by a
Taylor expansion. Therefore it is natural to try to understand the structure of nuclear Fréchet
spaces in terms of Kothe spaces. Of course among Kothe spaces, power series spaces have a
prominent place.

Subspaces and quotient spaces of stable power series spaces have been characterized com-

pletely in terms of diametral dimension and invariants of DN and Q-type introduced by Vogt.
Although power series spaces were the source of these invariants initially, DN and Q-type in-
variants were subsequenty used widely in tackling new and old problems, like the existence of
nuclear Fréchet spaces without the bounded approximation property.

This survey is divided into nine sections. In the first two sections we introduce diametral
dimension and Kothe spaces. We give the characterization of nuclearity in terms of diametral
dimension in section three. In section four, we discuss very shortly bases in nuclear Fréchet
spaces and also mention some open problems. Most of the results surveyed in these sections can
be found in research monographs.

In section five we discuss the pioneering work of Vogt in characterizing subspaces and quotient
spaces of stable power series spaces. Although we do not give full proofs in most cases, we tried
to point out the main ideas and methods. Sections six, seven and eight contain the results
obtained by Aytuna, Krone and Terzioglu. The concept of associated exponent sequence is
explained. The general results are exploited to determine the structure of certain spaces of
analytic functions and solution spaces of linear partial differential operators. The final section
contains some yet unpublished results.

A preliminary version of this article was written after the author delivered a series of talks

in the Istanbul Analysis Seminar in Karakdy some years ago. In revising the original version
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substantially, I benefitted from fruitful discussions with A. Aytuna and V.P. Zahariuta. Some
recent results were included in the final section. Needless to say most of the theorems had to be
given without complete proofs, but with references to the original articles.

M.M. Dragilev is a true pioneer in the theory of nuclear Fréchet spaces. Already in 1958 he

had proved that every basis in the space of functions analytic in the unit disc is absolute, thus
paving the path to the general theorem of Dynin and Mitiagin. He introduced the concepts of
regularity of bases, quasiequivalence bases and extendable bases. Dragilev used various versions
of linear topological invariants which was a source of inspiration for many mathematicians. A
class of Kothe spaces, more general than power series spaces, is named as Dragilev spaces. An
account of Dragilev’s contributions is given by V.P. Zahariuta in [53]. We hope that this survey
highlights some aspects of the rich theory of the structure of Fréchet spaces and serves as an
initial guide for further study and research.

1. DIAMETRAL DIMENSION

Let A and B be two absolutely convex subsets of a locally convex space F such that A C pB
for some p > 0. We define the n-th Kolmogorov diameter of A with respect to B as

dn(A,B) =infinf{d >0: A C dB+ L}

where the second infimum is taken over all subspaces L of E with dimension not exceeding n.
The n-th Gelfand number is similarly defined as

gn(A,B) =infinf{d >0: ANM C dB}

where the second infimum is taken over all closed subspaces M of E with codimension not
exceeding n.

Let U(FE) be a base of neighborhoods of E consisting of absolutely convex and closed subsets
and B(FE) all absolutely convex, closed and bounded subsets of E.

We define the diametral dimension A(E) of E as the set of all real sequences (&,) such that
for every U € U(FE) there is a V € U(F) with lim &,d,(V,U) = 0. Similarly, Ap(F) is the set of
all real sequences (&) such that lim¢,d,(B,U) = 0 for every B € B(F) and U € U(E).

If we replace the Kolmogorov diameters with Gelfand numbers in the above, what we have
will be denoted by I'(E) and I'p(FE) respectively.

Remarks 1.1. (1) A,Ap,I" and I' are independent of our choice of the base U (FE) and they
are isomorphic invariants. That is, if two locally convex spaces E and F are isomorphic
then, A(E) = A(F), Ap(E) = Ap(F),I'(E) =T(F) and I'g(FE) = I'p(F).
(2) We have ¢yp C A(E) C Ap(F) in general. For any infinite dimensional normed space E,
it is easy to see ¢ = A(FE) = Ap(FE). Therefore for normed spaces of infinite dimension,

these invariants are useless.
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(3) Let w = RN denote the space of all real sequences. Then we have A(w) = A(R*) = w
for any integer k > 1.

(4) Let U be the closed unit ball of a normed space F and A € B(E). A is precompact if
and only if limd,,(A,U) = 0. From this we can obtain that every bounded subset of a
locally convex space E is precompact if and only if {oo C Ap(E).

(5) Similarly, a locally convex space E is a Schwartz space if and only if £, C A(E).

(6) Let F' be a F'M-space which is not a Schwartz space ([21]; §30). Then A(F) = ¢y but
ls C Ap(F). Hence even for Fréchet spaces A and Ap do not coincide.

In the preceeding remarks, we can replace the Kolmogorov diameters with the Gelfand num-
bers or A with I', Ap with ['g and obtain the same results. All of these can be found for example
in [36]. For a general references to Fréchet spaces see Jarchow [19], Meise and Vogt [26], K6the
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2. KOTHE SPACES

Let A be a set of non-negative sequences with the following properties:
(1) Vi Ja € A with a; >0
(2) Va,b e A Jc € A with max{a,,b,} < ¢, for alln € N.
Such a set A is called a Kothe set.

We denote by A(A) the set of all scalar sequences & = (&) such that

pa(§) = Z |€nlan < oo
for all @ € A. It is easily seen that A(A) is a locally convex space when equipped with the

semi-norms p,(-),a € A.
Suppose each a € A satisfies 0 < a; <ap <--- andVa € A 3 b€ A with a2 = 0(b,). We
call the sequence space A(A) is this case a Goo-space ([36]) and we have

ANA) ={¢:Ja e A with &, =0(an)} = A(A)".

The notation a,, = 0(b,) simply means that there is some p > 0 with a, < pb,, ¥V n € N.
Somewhat dual to the concept of a G-space is G1-spaces, which is defined by:

Vae A wehave ap>apy; >0 and
YVacA Jbc A with a,=0(2).
In this case we have
A(NA)) = A(A).
G~ and Gi-spaces are called smooth sequence spaces of infinite or finite type respectively.
For further properties of these classes of sequence spaces we refer to [36], [37] and [38]. Let

0< afl < affl V k,n € N and for each i € N we assume af > 0 for some &k € N. Then the
sequence space A(A) is a Fréchet space and it will be called a Kdthe space in that follows.



Smooth K&the spaces are equivalent to the spaces (D) and (D) defined originally by Dragilev
[14]. This was proved by Robinson [35].
Let 0 < a1 < ag -+ with lima,, = oco. If

P = {(eF*) : k,n e N}

the Kothe space A(P) will be called a power series space of infinite-type and it will be denoted
by Aso(a).

On the other hand, if we let Q@ = {(r;") : k,n € N} where 0 <r; < ... <7 <1, limry, = 1,
the Kothe space A\(Q) will be called a power series space of finite-type and denoted by Ai(«).

Ao (@) is an example of a G.-space and Aj(a) an example of a Gp-space. From comparison
of diametral dimensions, we can easily observe that Ay (a) is isomorphic to Ao (8) if and only if
an = 0(8,) and B, = 0(ay,). (See Prop. 2.3. below) Same result is true for power series spaces
of finite type. On the other hand, these two classes are essentially different, since we know that
each continuous linear map from Aj(a) into Ay (8) maps a neighborhood onto a precompact
subset ([54], [46]). Hence no infinite dimensional quotient space of Aj(«) is isomorphic to a
subspace of Axo (). However, Ax(8) can be isomorphic to a subspace of A1(3) ([15], [30]).

A linear map T : E — F is called compact (or bounded) if T(U) is a precompact (or bounded)
subset of F' for some U € U(FE). We write (E, F) € kor (£, F') € Bif every continuous linear map
T : FE — F is compact or bounded. Let us recall that a locally convex space has a precompact
neighborhood if and only if the space is finite dimensional. Also, we should remember that
only normed spaces admit bounded neighborhoods. Therefore it follows that if (£, F') € B and
neither & nor F are normed spaces, then FE cannot be isomorphic to a subspace of F' or F
cannot be isomorphic to a quotient space of F. It is trivial that (E,F) € k always implies
(E,F) € B. If every bounded subset of F' is precompact (that is F' is a quasi-Montel space), or
if F is a Schwartz space, then (E,F) € B implies conversely (E,F) € k. The relation x was
systematically utilized by Zahariuta in [54] to examine the isomorphisms of cartesian products
of locally convex spaces. There is quite an amount of literature where Zahariuta’s method was
used or generalized. We mention only [13] and its references. In [46] Vogt characterized pairs of
Fréchet spaces satisfying the relation (F, F') € B. His abstract characterization which depends
on the Grothendieck factorization theorem, yields complete answers when either F or F' is a
power series space.

The definition of Kothe spaces has been generalized in various directions. Following [41],
we will call a Banach space (¢, || ||) of scalar sequences admissible, if it satisfies the following
conditions:

(i) for a € l, = € € the sequence ax = (apzy,) € £ and |jaz| < ||a||so ||Z]|

(ii) |len|l = 1 for all n € N.

The classical sequence spaces £,,, 1 < p < oo, and ¢y are the best known examples of admissible
sequence spaces.

Here and throughout e, denotes that sequence with 1 as the n-th term and zero elsewhere.

One can construct many other classes of admissible spaces, for example by using Orlicz functions
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or by taking the a-dual of an admissible space ¢ where (* = {a : ux € {1, ¥ x € {} or by taking a
monotone norm | -|| defined on the space ¢ of sequences with ||e,,|| = 1 for all n. The completion
of (¢, || |I) gives us another admissible space.

For an admissible space ¢, we define \’(A) to be the space of all sequences 2 = (x,,) such that
xa = (xnay) € L for every a € A. With the seminorms

[#]la = [laz]]

M(A) is a complete locally convex space and if the Kothe set A is countable an F-space. The
usual Kothe space A(A) is of course A1 (A). There is an extensive literature for A (A4), 1 < p <
oo or M0(A). We refer to the bibliography in [14].

Let A be a Kothe set and a,b € A with a, < b, for all n € N. We assume a, /b, = 0 if
b, = 0. Let

Uy = {o € N(4) : [lalla < 1},
With this notation we have

Proposition 2.1. Let J C N with |J| = n+1 and ap, > 0 for alln € J. Let I C N with
l[I| <mn. Then

inf{% je J} < dp(Uy, U,) §sup{% g ¢I}.
7 i

For the proof of this basic inequality we refer again to [41]. In particular if (a,/b,) is a
decreasing sequence, this inequality yields
dn(Up, Uy) = ap/by.
Using the basic inequality one can prove that the diametral dimension of A‘(A) is independent

of the admissible space ¢ ([41]; Prop. 3).
Let A be a countable Kothe set and 0 < af < af*! for all n € N. We call X(A) regular if

k k
G/n+1 CLn

k+1 — _k+1°
an+1 an

For the simple proof of the following result we refer to [41] once more. In case ¢ = ¢, this was
already proved by Dragilev [14].

Proposition 2.2. A reqular Kithe space A'(A) is either a Schwartz space or it is isomorphic
to £ itself.

The diametral dimension is a complete invariant for the class of power series spaces of finite
type, as well as for the class of power series spaces of infinite type. This means that if A(F) =
A(F) for E and F both power series spaces of infinite type or both of finite type, then E and
F are isomorphic. This follows easily from the more general result (cf. [36], [37]].

Proposition 2.3. For a Gi-space A\(Q) we have A(A(Q)) = A°(Q). For a G -space A(P) we
have A(A(P)) = A(P)'.



For two exponent sequences a and 3 let v be the increasing rearrangement of the sequence
(a1, f1, a2, B2,...). The direct sum Ay () @ Axo(B) is isomorphic to Ax (). The same is true
for finite-type power series spaces. In particular, A () & Ay (@) is isomorphic to Ay () if
and only if as, = 0(y,). In this case we say « is stable. We have Ay (a) @ RF ~ Ay (a),
for k > 1, if and only if a1 = 0(ew,). In this case we say, « is shift-stable. In the above,
we can take finite type power series spaces instead of the infinite type and get the same re-
sults. More generally, for a Gu-space A(P) we have that A(P) & A(P) ~ A(P) if and only if
VpeP 3 p e P with ps, = 0(p},). Similarly for a Gi-space we have A\(Q) ~ A\(Q) & \Q)
ifandonly if Vg€ Q 3 ¢ € Q with ¢, = 0(¢5,,). All of these follow by diametral dimension

arguments.

3. NUCLEAR SPACES AND DIAMETRAL DIMENSION

Nuclear locally convex spaces were first defined and explored systematically by Grothendieck
in his thesis [18] His definition is in terms of topological tensor products and it is as follows:
A locally convex space F is called nuclear if the completion of the m-tensor product E@,F
is isomorphic to the completion of the e-tensor product EQ.F for every locally convex space
F. Even a superficial glance to this definition will show how difficult it is to check whether
a given locally convex space is nuclear or not. Later A. Pietsch reformulated the definition
of nuclearity in terms of summable families, absolutely summing maps, nuclear, quasi-nuclear
and Hilbert-Schmidt maps and thus the theory of nuclear locally convex spaces became much
more accesible. The original version of Pietsch’s book [33] was published in German in 1965,
where several equivalent definitions of nuclearity are stated starting at p. 62. His book also
contains the following characterization in terms of diametral dimension which is due to Dynin
and Mitiagin [17].

Theorem 3.1. The following conditions are equivalent for a locally conver space E.
(i) E is nuclear
(i) (n*) € A(E) for some k > 1
(iii) (n*) € A(E) for all k > 1.

It is easy to see that the Kéthe space A(A), A = {(n*) : k =1,2,...} is in fact equal to the
power series space Ay (log(n + 1)), which in turn is denoted by s. This is the space of rapidly
decreasing sequences. Hence s’ = M(A) = {(&,) : & = O(n*) for some k > 1}. Hence we can

reformulate our theorem as follows
Theorem 3.2. E is nuclear < s’ C A(E).

Since lo C §', we have that every nuclear space is a Schwartz space. In particular a nuclear
Fréchet space is a Montel space. Also, if E' is a nuclear locally convex space, then we can find a



base of neighborhoods U (F) such that each U € U(F) has a gauge
pu(z) =inf{d > 0:2 € dU}

is actually defined by a semi-inner product (| ), (cf. [33])

1/2

pulz) = (2|2),

This yields the following result

Proposition 3.3. If E is nuclear, then A(E) = T'(E). If F is a subspace or a quotient space
of E, then A(E) C A(F).

Let us consider now the special class of sequence spaces. Both of the following results can be
derived by using diametral dimension.

Proposition 3.4. \(A) is a Schwartz space <V a € A 3 b e A with a, = o(by,) a, = o(by,),
which means a, < £,by, for some sequence (&) which converges to zero.

Similar to the above we give a characterization of nuclear sequence spaces, which is called the
Grothendieck-Pietsch criterion (cf. [33]).

Theorem 3.5. A(A4) is a nuclear space <V a € A Ibe A and (&,) € {1 with a, < &,by.

In the definition of A(A), if we replace the £1-seminorm p,(-) by

[e'e] 1/17
(Z!fn]paﬁ) <o, 1<p<o
n=1

or
sSup ‘fn‘an < 00, ( case p = OO)

we get locally convex spaces denoted by AP(A), 1 < p < oo, which are different in general.
A rather simple, but highly useful consequence of the previous theorem states that in case of
nuclearity these spaces are the same. (cf. [41] and [14]).

Corollary 3.6. If \(A) is nuclear, then N'(A) = MA) for any admissible space £, and the
topologies are the same.

The converse is also true but this not very useful in applications. Finally we note that A (a)
is nuclear < log(n+ 1) = 0(ay,) < (¢*") € ¢; for some 0 < ¢ < 1. However in case of finite type
power series spaces, things are a little different: Aj(«) is nuclear < (¢®) € ¢1 for all 0 < ¢ < 1.
More generally, a Goo-space A(P) is nuclear < s C A(P) < n = O(py,) for some (p,) € P. A
G1-space A(Q) is nuclear & s’ C A(Q) < Q C s ([38)]).



4. BASES IN NUCLEAR FRECHET SPACES

In this section all locally convex spaces will be metrisable and complete, that is Fréchet spaces
(or F-spaces). A sequence (z,) in an F-space F is called a basisif V x € F 3 a unique sequence
(&) of scalars with

o
T = Z EnTn.
n=

In this case we can find u,, € E’ such that

oo
n=1

(un) is called the sequence of coordinate functionals. For the case of sequences spaces A(A), if
e, denotes that sequence which has 1 as the n-th term but all other terms are zero, (e,) is a
basis, called the canonical basis of A\(A). In case of nuclearity we have the following essential
and powerful result, which is called the Dynin-Mitiagin Theorem ([17], [27], [33]).

Theorem 4.1. Let (|- |x) be a sequence of seminorms defining the topology of a nuclear F-space
E. If (z,,) is a basis of E with coordinate functionals (u,) and A = {(|zn|k) : k= 1,2,...}, then
the map which sends each x € F to (un(x)) is an isomorphism of E onto A\(A).

A Fréchet space which has a basis is separable. Every Fréchet-Schwartz space and so every
nuclear F-space is also separable. Already Grothendieck had asked whether every F N-space

has a basis. In the light of the Dynin-Mitiagin theorem a positive answer to Grothendieck’s
question would reduce any problem about nuclear Fréchet spaces to a problem about nuclear
Kothe spaces. However in 1974 Mitiagin and Zobin ([56]) constructed an example of a nuclear
Fréchet space which has no basis. Subsequently Djakov and Mitiagin ([12]) gave a procedure for
constructing nuclear Fréchet spaces without bases. Several authors, including Bessaga, Dubinsky
and Mitiagin proved among other theorems the following result.

Proposition 4.2. Given any nuclear F-space E. There is a subspace of E which has no basis.

There is also a quotient space of E which has no basis.
However there is another problem posed by Pelczynski [32] which in general is still open.
Problem 4.3. Does every complemented subspace of a nuclear Kéthe space A\(A) have a basis?

We recall that F' is a complemented subspace of A(A) if there is a continuous projection
P : A(A) — A(A) with P(A(A)) = F. This is equivalent to A\(A) ~ F' & G where F and G are
closed subspaces of A\(A)

In special cases Pelczynski’s problem was solved positively. The earliest case was for power
series spaces of finite type, due to Mitiagin and Henkin [29]. (cf. [28]).

Theorem 4.4. FEvery complemented subspace of a nuclear power series space of finite type has

a basis.
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A rather simple consequence of this theorem is that if £’ is a complemented subspace of a
nuclear power series space Aq(«a), then F' is isomorphic to some A1(3), where o, = O(3,,). In his
thesis, J. Krone [22], [23] formulated an abstract version of the so-called dead-end space method
of Mitiagin-Henkin and refined their theorem in several directions. He proved, for example, that
if T: Ai(a) — A1(«) is a continuous linear operator, then the closure of T'(A1(a)) has a basis.
With his method it is also proved that for a nuclear power series spaces Ay (), Pelczynski’s
problem has a positive answer provided lim(ay41/a,) = co. (cf. [16]) However, the following

problem which is a special case of Pelczynski’s problem, is still unsolved in its generality.

Problem 4.5. Does every complemented subspace of a nuclear power series space of infinite

type have a basis?

We say two bases (x,,) and (yy,) of an F-space F are quasiequivalent if there is a permutation p
and 7, > 0 such that the map T : ' — E which is defined by T'z,, = Tny,(n) is an isomorphism.
In [27] Mitiagin asked whether any two bases of a nuclear F-space are quasiequivalent. A basis
(zn,) of an F-space is reqular if there is a sequence | | of seminorms defining the topology of E

such that
|Tp41]k < [Tk
[Znt1lksr [ Tnlktr

for all n € N. L. Crone and W.B. Robinson [9] proved that if a nuclear Fréchet space has
a regular basis, then all bases are quasiequivalent. By using the Dynin-Mitiagin theorem and
Kolmogorov diameters, P. Djakov gave a remarkably short proof of this theorem [10]. Dragilev’s

ground breaking contributions to quasiequivalence of bases is told in [55].

5. HIGHLIGHTS OF THE STRUCTURE THEORY

Throughout this section all locally convex spaces under consideration will be Fréchet spaces.

We already know (3.2. Theorem) that E is nuclear if and only if A(s) = s’ C A(FE). Since
(log(n + 1)) is stable and sV is nuclear, we have A(s) = A(s"). So s is an FN-space.
Grothendieck has asked the question whether any F'N-space E is isomorphic to a subspace of
sN. This was answered positively by Komura and Komura [20]. Some years later Ramanujan
and Terzioglu [34] extended their result as follows:

Theorem 5.1. Let Ay () be nuclear and « a stable exponent sequence. Then Ay (o) =
A(As(a)) C A(E) < E is isomorphic to a subspace of Axo(a)V.

We can consider this theorem as a characterization of subspaces of Ay (). Certainly Ay ()
is a complemented subspace of A (a)Y, but whereas Ao (o) has no continuous norm, the
topology of A () is defined by an increasing sequence of norms. So to characterize subspaces
or quotient spaces of As () or of Aj(a), we need tools other than diametral dimension.



10

To simplify the argument in what follows let us assume o, < a1 ¥V m € N. Let

= (xn) € Uk+1 <~ Z ‘xn’e(k'i'l)an S 1

For each m, let y™ = (z1,..., 2, 0,0,...) and 2™ =z —y™ = (0,...,0,Zm+1,...). Then
ko °© e(k+1)az
[z k= 3 lwile™ = Y7 foil g < el
i=m+1 i=m+1
and for j > k

m m
Iyl = D laileor = 3 etk Dzt
S e(]—k—l)am

So we simply get for any m and j > k
1

etm+1

Uks1 C e(j_k_l)amUj + Uy.

For any r > e®!, let m be the smallest integer such that r < e®m+1. Here we are using the fact
lim o, = o0. Then we have the following

‘ 1
Ukl C CTJ_k_lUj + —=Uy
: T

for some constant C' > 0 and for all » > 0. The assumption «,, < a;;,+1 was really not necessary,

although it made our calculations neater.
Let Uy D Us D -+ D Ui be a base of neighborhoods of £. We say F satisfies the condition
(Q) if Vk IpVj p IC > 0 with

1
U, C Cr*U; + ;Uk, Vr > 0.

We have proved that Ay («) satisfies the condition (€2). Note that if £ has (2) and F is a
quotient space of F, then F has () also. This follows from the fact that (Q(U)) is a base of
neighborhoods of F'if () : ' — F is a quotient map.

Somewhat dual to (€2), we have the so-called dominating norm condition. Again E is an
F-space and (]| ||x) a sequence of seminorms defining its topology. We say F has property (DN)
if 3ko Yk Jp and C > 0 with ||z]|7 < C|lz|lk, |zlp.V 2 € E. It is easy to see that || - ||z, is
in fact a norm and without loss of generality we can assume the topology of F is defined by an
increasing sequence of norms, if £ has (DN). Further (DN) is inherited by subspaces. From
llenllx = ek, for (e,) in Aso(a), we can easily get that A () has property (DN).

Conditions (DN) and (€2) were introduced by Vogt [44] and Vogt and Wagner [50], [51] to
characterize subspaces and quotient spaces of nuclear, stable power series spaces. However these
and similar conditions are also essential in Vogt’s ground breaking work in lifting or extension
theorems in the category of F-spaces or more generally in examining when the functor Ext
vanishes ([48]).

Palamadov [31] pioneered in applying homological methods to the theory of locally convex
space. With Vogt’s work (cf. [48]) these methods became an indispensible tool in many problems
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of functional analysis. However a full discussion of this area lies outside the scope of this article.
We refer to Wengenroth’s book [52] for an excellent treatment of this topic. We will go into
this rich theory so far it is necessary to describe the characterizations of subspaces and quotient
spaces of nuclear, stable power series spaces of infinite type.

Given a short exact sequence of nuclear F-spaces
0—E-5G-5%F—o.

This means i : £ — G, ¢q : G — F are continuous linear maps, ¢~ !(0) = i(E), i~ *(0) = 0
and ¢(G) = F. Hence i : E — i(F) is an isomorphism by the open-mapping theorem, since
i(E) = ¢~ *(0) is a closed subspaces and F' is isomorphic to a quotient space of G. We have the
following lifting theorem of Vogt.

Theorem 5.2. Let 0 —» E — G % F — 0 be an exact sequence of nuclear Fréchet space.
Assume H is a nuclear Fréchet space which has (DN) and E has (). Then every continuous
linear map t : H — G can be lifted to a map t : H — E; that is qt = t.

Let a be a stable exponent sequence and A(a) a nuclear power series space, which can be
finite or infinite type. Then we have

Proposition 5.3. There is an exact sequence
0— Ae) 5 Ala) 5 A(@)N =0

The construction of this exact sequence is not so difficult in case A(«a) = s [44], but to prove it

in this generality quite a Iot of elaborate calculations are needed. We first note that this rather
technical looking result says that A(a) and A(a)” have same quotient spaces. Further stability
of o is necessary, since the result gives A(A(a)) = A(A(«)") which can be true only if « is
stable.

We can now prove in an elegant manner the following theorem ([44], [51]), characterizing
subspaces of power series spaces of infinite type.

Theorem 5.4. Let Aoo() be nuclear and stable. E is isomorphic to a subspace of Aoo(c) if
and only if Aso(a)’ C A(E) and E has (DN).

Proof. By 5.3. Proposition we have an exact sequence
0 — Aoo(@) = Aso(@) 5 Ass ()N — 0.

By 5.1 Theorem we have an imbedding t : E — Ay (), i.e. t is continuous, 1-1 and t(F)
is closed. Since E has (DN) and A () has () there is a continuous linear map ¢ : £ —
Ao (@) such that gt = t by Theorem 5.2. Clearly  is 1-1. Let lim#(x,) = y € Ax(c). Then
lim gt(x,) = limt(x,) = q(y). Since t : E — t(E) is an isomorphism, we know lim#(z,,) exists
& lim z, exists. Let = limx,,. Then lim#(z,) = #(z) = y. So ¢ has closed range and thus by
the open mapping theorem, t is an imbedding. U
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As an immediate corollary we get that a nuclear Fréchet space which has property (DN), is
isomorphic to a subspace of the space s of rapidly decreasing sequences ([44]).

Suppose we have the following diagram of F-spaces and continuous linear maps
0

1 T
0 — Fi — Ey Q 0

q2
t '\

Fy

19

Fy

|

0
such that the row and the column are both exact and the diagram is commutative, that is
q1t = q2. We will now do some diagram chasing as in homological algebra.

We first define ¢ : Iy — E1 @ F5 as follows.

Given z € Fy. qoia(2) = 0 = qutia(2). Since ¢;'(0) = i1(E}), there is a unique = € F; with
i1(x) = tis(z). Define now f : Fy — Ej by setting f(z) = x. Then i1(f(2)) = ti2(z). Now let us
define i : I} — E1 @ Fy by i(z) = (f(2), —i2(2)). i is certainly 1-1. Next, define q : E1 ® Fy — Eo
by setting q(x,y) = i1(x) + t(y). qi(z) = i1(f(2) — tia(z) = 0. So range of ¢ is contained in the
kernel of g. If g(x,y) = 0 then i1(z) = —t(y) so qri1(z) = 0 — ¢1t(y) = —q2(y2). So y = iz(2)
some z € Fy. Hence t(y) = tiz(2) = i1(f(2)) and since i1 is 1-1, z = f(z) and ¢~ *(0) is contained

in the range of 1.

Further, if w € FEs, then ¢1(w) = g2(y) for some y € Fy. Since ¢1(ty) = q2(y) = q1(w). So
t(y) — w € i1(F£1) and therefore there is x € E; t(y) + i1(x) = w = ¢g(x,y). Therefore ¢ is a
surjection. Thus we have constructed by this procedure the following exact sequence

0—>F — E1®Fy, — Ey — 0.

Lemma 5.5. If Ao(a)’ C A(E), then there is a closed subspace E of As() and an ezact
sequence

0= Axl(a) > E—E—0
Proof. We go back to the exact sequence

0 = Aoo(@) = Aso(@) 5 Aso ()Y — 0.
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We have an imbedding t : E — Ay (o) by 5.3. Prop. Let E = ¢~ '(t(E)). Identifying F with
t(E) we have the result. O

We are now ready to characterize quotient spaces of Ay (a). In fact our result yields more

([51]).

Theorem 5.6. Let A (o) C A(E) where Aso() is a stable nuclear space. If E has property
(Q), then there is a subspace E of Aoo(at) and an exact sequence

0= Aso(a) = Aso(a) > E®E — 0.

In particular, E is isomorphic to a quotient space of Aoo(ct).

Proof. We imbed i : E — Ax(a)" by 5.1 Thm and let Q = Ay ()Y /i(E). We apply our lemma
to @ to get the column in the following commutative diagramm. Note that we have also used
Theorem 5.2.

We apply our homological algebra procedure to get the line in the following commutative
diagram
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Now once more we apply our homological algebra procedure to arrive at the conclusion. [

Let us continue the same line of argument further. Suppose F is isomorphic to a subspace
and a quotient space of As(a). We have then a subspace E of Ay (a) and an exact sequence

0= Ass(@) = Ao(@) = E® E — 0.

Since E @ E has (DN), this sequence splits. That is £ @ E and therefore E is a complemented
subspace of Ay (a). We have proved now the following result.

Theorem 5.7. Let Ayo(a) C A(E) where Axo () is a stable nuclear space. If E has properties
(DN) and (), then it is isomorphic to a complemented subspace of Ay ().

So far we have dealt with the problem of characterizing subspaces and quotient spaces of
nuclear, stable power series spaces of infinite type. We will now consider finite type power series
spaces and characterize again subspaces and quotient spaces. The results in this case are similar
to the case of power series spaces of infinite type, however the methods used in proving the
theorems characterizing subspaces or quotient spaces are somewhat different [45], [47].

We say E has property (DN) if

Jdkog VE 3 0< A <1 dp,3C >0
with
|zl < Cllzllp, =)y, =€ E.

Remarks 5.8. (1) It is easy to see that || ||z, is indeed a norm and so we can assume that
the topology of E is defined by an increasing sequence of norms. Also (DN) implies
(DN); hence we call (DN) the weak dominating norm property.
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(2) Ai(a) satisfies (DN). Again (DN) is inherited by subspaces. So a subspace of Aj(«)
also has (DN).

The following is the counterpart of Thm. 5.4., which is also due to Vogt [45].

Theorem 5.9. Let Ai(a) be stable and nuclear. Then E is isomorphic to a subspace of Ai(«)
if and only if Ai(a) C A(E) and E has (DN).

E has property (Q) if Vp 3¢ V& 3C > 0 such that
1
UqCCTUk—i‘;Up, r > 0.

Remarks 5.10. (1) We have (Q) implies () and (Q) is inherited by quotient spaces.

(2) We can also show that Aj(«) has property (£2) and therefore every quotient space of
A1(a) also has (Q).
(3) Characterization of stable finite power series spaces in terms of these invariants were

given in [45] (cf. [47]).

Theorem 5.11. Let Aq(«) be stable and nuclear. Then E is isomorphic to a quotient space of

A1 (@) if and only if Ai(a) C A(E) and E has (Q).

We have already noted that every continuous linear map 7' : Aj(a) — Ax(B) is compact.
Hence no infinite dimensional quotient space of Aj(a) can be isomorphic to a subspace of Ao (5).
In particular, although A (3) has (£2), it does not satisfy (Q). For subspaces things are quite
different. Since (DN) implies (DN), we have from Theorem 5.8. that A (f) is isomorphic to a
subspace of Aq(«) if Aj(a) C Axo(B)’, provided Aj(«) is nuclear and stable. In particular Ao ()
is isomorphic to a subspace of Ay (a). However we really do not need stability in this context
as shown by Nurlu [30].

6. COMPLEMENTED G o-SPACES

In general we shall deal with the following problem: Given a nuclear Fréchet space E and
assume A(FE) C Ay (), where « is stable. When can we say that A (a) is isomorphic to a
complemented subspace of £7 The results given in this section are due to Aytuna, Krone and
Terzioglu, starting with [3] and continuing in [4] [6].

Let A(A) be a nuclear G.-space and E a locally convex space. We call a linear, continuous
map i : A(A) — FE a local imbedding if there is a continuous seminorm || - || on E and a sequence
o = (0y,) which satisfies the following condition: o, >0 Vn, o, = 0(ay), 1/, = 0(b,) for
some a,b € A, such that

2o = [€alon < i@)ll, 2= (&) € A(A).
n=1
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Remarks 6.1. (1) Typically the sequence e = (1,1,...) satisfies the condition required

from o in the definition. In fact this is how local imbedding was defined originally in [3]

(2) A local imbedding is certainly 1-1 and so || - || is in fact a norm on the range of i.

(3) An imbedding of A\(A) into F is certainly a local imbedding, but the converse is false
as the following example shows. Take o = e and let i : Aso(a) — Aq(a) be defined by
(&) = (297&,). i is a local imbedding but it is a compact map.

(4) If i : A(A) — E is a local imbedding and j : E — F' an imbedding, then ji : A(4) — F
is a local imbedding.

Let i : A(A) — E be a local imbedding where |z|, < ||i(x)|. Given a € A, let ¢, = an/op.
From o,¢, = a, we have ¢, = 0(d,,) for some d = (d,,) € A. Define now D, : \(A) — A(A) by
D.(x) = (xncy). Then D, is continuous and |D.(z)|, = |x|, for every x € A(A). Then i, = iD,
and

|z]o = [De|s < [lia()]].
Hence if there is a local imbedding i : A\(A) — E, then there is a continuous seminorm || - ||
on E such that for every a € A we have a local imbedding i, : AN(A) — FE which satisfies
|zlo < |lig(2)|l, x € A(A). Then, if we define T'(z) = (is(z)), we have an imbedding of A(A)
into B4
Proposition 6.2. If there is a local imbedding of A(A) into E, then A(A) is isomorphic to a

subspace of EA. If M(A) is in particular a Fréchet space, then it is isomorphic to a subspace of
EN.

We now state our generic theorem and at least indicate its proof [40].

Theorem 6.3. Let \(A) be a nuclear, stable Go-space and assume there is a local imbedding
of MA) into a locally convex space E. Then each one of the following conditions implies that

A(A) is isomorphic to a complemented subspace of E.

(1) X(A) is Fréchet and E is isomorphic to a closed subspace of A\(A).
(2) E is isomorphic to a closed subspace of A\(A)
(3) E is isomorphic to a sequentially complete quotient space of \(A).

Let i : A(A) — E be a local imbedding with
[2le = Y [&al < Ni@)Ill, @ = (&) € A(4)

where ||| - ||| is given by a semi-inner product (:|-). We can assume this since each one of our
assumptions implies that E is nuclear. Let E, be the subspace of E spanned by i(eq),...,i(eay).
We note that E, has dimension 2n. We let (f,) be a sequence in E which will be specified later
and by the usual Gram-Schmidt process choose g, € E,, such that

lgnlll =1
(gnlfs) =0, v=1,...,n.
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Let
2n
gn =i | D sie;
j=1
and so
2n
> il < llgnll = 1.
Further for each continuous seminorm || - || on E, we can find ¢ € A with
2n 2n
lgnll < 2 lujle; < p (Z \u}‘!) Can
< pan

for some p > 0, where a € A\(A), satisfying co,, = 0(ay,). So if we define a new map j : A(A) = F
by j(en) = gn, we see that j is continuous.

Now we have to select (f,) in each of the three cases. Let us only indicate how this in done
in case £ C A(A). In this case we simply let f, = e,. So if x = (§;) € E, then there is some
a € A with ||| f,]]| = 0(a,) and

[(gnlz)lan < Pz &olavan < Pz &5lavay.

v>n v>n

Using nuclearity we choose b € A with
. 1
Ay Qyy = 0 (ﬁbv>

K
[(gnla)lan < 5llzs.

to get

So if we define now P : ' — FE by

P(x) = > (gnl2)n

we see P(gn) = gn, P is a continuous projection with P(FE) equal to the closure of the span of
{gn : n € N}. It remains to prove that j : A(A) — E is an isomorphism onto P(FE).

To get some important but rather immediate consequences of our generic theorem, we spe-
cialize to power series spaces of infinite type. Throughout this section from now on, we assume
Aoo(@) is stable and nuclear. Our first result is a direct consequence of Theorem 5.1. and
Theorem 6.2.

Corollary 6.4. Let E be a Fréchet space with Aoo(a) C A(E). If there is a local imbedding
of Aso() into E, then E has a complemented subspace isomorphic to Ay (). In particular, if
there is a local imbedding of s into a nuclear Fréchet space E, E has a complemented subspace
isomorphic to s.
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Let E be a nuclear Fréchet space which has properties (DN) and (£2). We know that the
diametral dimension of F is equal to the diametral dimension of some power series space of
infinite type [39]. Assume A(E @ E) = A(FE). Then A(F) = A(Ax(a)) = Ax(@) and « is
stable. So by Theorem 5.7. E is isomorphic to a complemented subspace of A (). We have
also the following lemma ([4]). (cf. [40]).

Proposition 6.5. Let E be a nuclear space with (DN) and (2) and assume A(E) C A(MNB)),
where AN(B) is a Go-Kdthe space. Then there is a local imbedding of A(B) into E.

Going back to the previous set-up, we now know that there is a local imbedding of A ()
into £. Hence by Corollory 6.3., E has a complemented subspace which is isomorphic to A ().
Applying Vogt’s decomposition principle, we get the following result.

Corollary 6.6. Let E be isomorphic to a complemented subspace of s. If A(E x E) = A(E),
then E is isomorphic to some Aoo(t). In particular E has a basis.

7. DUALITY AND SMOOTH SEQUENCE SPACES
Let A(Q) be a nuclear G1-space and
Ag={zeXQ): 1<z <z <.+ |

Then A(Ag) is a nuclear Goo-space and the strong dual A(Q); is topologically isomorphic to a
subspace of A(Q). We have the following result.

Proposition 7.1. The dual A(Q)}, of a nuclear G1-space \(Q) is isomorphic to a dense subspace
of the nuclear Goo-space A(Ag). If N(Q) is stable then A\(AgQ) is also stable. A\(Q) is barrelled if
and only if N(Q);, = MAg). In particular, the dual of a nuclear power series space of finite type
is a nuclear Gso-space.

For the duals of G-spaces we have a result of the same nature. However there is a minor
point which requires some care. If we let A be the set of all positive non-decreasing sequences,
then the Go-space A\(A) is equal to ¢, the space of all sequences with only finitely many non-zero
terms. Its dual is w which cannot be represented as a 1 space. So we assume now A(A) # ¢
and let

Qa={reA): 0<zp1 <zn}

Then A(Q4) is a nuclear G-space.

Proposition 7.2. Let A(A) be a nuclear, Goo-space and ¢ # A(A). Then A(A)) is isomorphic
to a dense subspace of the nuclear G1-space AN(Q4). If A(A) is stable, then A\(Q4) is also stable.
A(A) is barrelled if and only if \(A), = AN(Qa). In particular the dual of a nuclear power series
space of infinite type is a nuclear G1-space.
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In this duality set-up, we seek the concept which is dual to the concept of local imbeddings.
Let A(Q) be a nuclear Gy-space, for z = (x;) € A(Q), x; > 0 let

By ={y:|yil <z Vje N}

It is easy to see that each such set is bounded. In fact one can obtain a base of bounded subsets
of A(Q) in this manner. Assume now z; > 0 Vj and x and (1/z;) € A(Q). A continuous linear
map h : E — A(Q) is called a local quotient if there is some B € B(E) with B, C h(B).

Proposition 7.3. Let A(Q) be a nuclear barrelled G1-space and h : E — A(Q) a local quotient.
Then its transpose h' : \(Q), — Ej} is a local imbedding.

After these preparations, we can now apply our generic result, Theorem 6.2., to obtain the
following theorem [40].

Theorem 7.4. Let Ai(«) be a stable and nuclear. Let E be an F-space such that there is a local
quotient from E into Ai(«). If E is either isomorphic to a subspace of Ai(a) or to a quotient
space of Ai(«), then E has a complemented subspace isomorphic to Aq(a) itself.

8. ASSOCIATED EXPONENT SEQUENCE

In this section we will summarize the highlights of a joint work by Aytuna, Krone and Terzioglu
[4]. Let E be a nuclear Fréchet space with properties (DN) and (2). Then we can find an
exponent sequence € = (€,) such that

A1(e) CA(E) C Ax(e).
Further
Ai(a) CA(E) < Ai(a) C Ai(e)
A(E) C Ax(a) < Ax(e) CAx(a).

We call € the exponent sequence associated to . From what we have stated above, we can see
that it is unique up to equivalence.

Lemma 8.1. Let E be a nuclear Fréchet space with (DN) and (). If A(A) is a Goo-Kdthe
space with A(E) C M(A)', then there is a local imbedding of A(A) into E. In particular, there is
a local imbedding of Ao (€) into E.

Let F be again a nuclear Fréchet space with (DN) and (2). Suppose now A(E) = Ay (€)
and e is stable. We then know that E' is isomorphic to a quotient space of A (€) (cf. Theorem
5.6.) and by our Lemma there is a local imbedding of Ay (€) into E. As a corollary of our
generic Theorem 6.2. we get the following result.

Theorem 8.2. Let E be a nuclear Fréchet space with (DN) and (). Assume A(E) = Ax(€)'.
If € is stable, then E has a complemented subspace isomorphic to A (€).
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Remarks 8.3. In the context of our theorem, the spaces F and Ay (€) have the same quotient

spaces.
We have now an imbedding theorem

Theorem 8.4. Let E be a nuclear Fréchet space with (DN) and (2) and let € be the associated
exponent sequence. Assume Ai(€) is nuclear. If Y is isomorphic to a subspace of Ai(e) and Y
has (DN), then Y is isomorphic to a subspace of E. If € is stable, then A (€) itself is isomorphic

to a subspace of .

Let us now apply our results first to spaces of analytic functions. For a Stein manifold M of
dimension d, let O(M) be the space of analytic functions on M with the topology of uniform

convergence on compact subsets of M. O(M) is a nuclear Fréchet space. Let
A={(zj)eCh: |z <1, j=1,2,...,d}.

In particular, O(A%) is isomorphic to the power series space Aj(n'/%) and the space of entire

functions O(C?) is isomorphic to A (n'/?). ([2]). Since O(M) is isomorphic to a subspace of

O(A?), it has property (DN). By the Oka-Cartan theorem, O(M) is isomorphic to a quotient

space of some O(C™) and so it has also (). In fact the space O(M) has (n'/?) as its associated
exponent sequence. Since (nl/ 4) is stable, we have the following consequence of Theorem 8.3.

Theorem 8.5. O(C?) is isomorphic to a subspace of O(M).

We can apply our previous results to the space of analytic functions and obtain the following

theorems

Theorem 8.6. If A(O(M)) = A(O(C?)) then the following are true:
a) O(M) is isomorphic to a subspace of O(CHN.
b) O(M) is isomorphic to a quotient space of O(CY).
c) O(M) is isomorphic to O(C%) @ F, where F is isomorphic to a quotient space of O(C?).

Let us examine the case it = A” x C*~" where 1 < r < k. By a theorem proved independently
by Djakov and Zahariuta (cf. [10]), we know that O(A” x C*~7) is isomorphic to O(A x CF~1).
A x CF1 is a k-dimensional complete Reinhardt domain and by a result in [6] (Theorem 1.5.)
its diametral dimension is equal to the diametral dimension of O(C*). In fact, O(A x CF~1) is
isomorphic to the complete tensor product O(A x C)@O(CF2).

Hence we can fix our attention on O(A x C). By Theorem 8.5. there is a certain quotient
space X of O(C?) such that O(A x C) is isomorphic to O(C?) @ X. When we examine the
nature of this space X, we can see that it does not have (DN), but we have the isomorphism

O(A™ x CF ) ~ O(CH) @ (X®0(CF2))  for 1<7r<k.

However in the one dimensional case, we have O(G) ~ O(C) if and only if A(O(G)) =
A(O(C)), where G is a domain in C ([4]; Cor. 1.7.)
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Going back to Stein manifolds, we know that if O(M) has property (DN), then its diametral
dimension is equal to As(n/%). ([39]) So we have the following result where (i) < (iii) was
proved independently by several authors including Zaharyuta, Aytuna, Vogt. (cf. also [2], [5]).

Theorem 8.7. For a d-dimensional Stein manifold M, the following conditions are equivalent
(i) O(M) has (DN).
(i) O(M) is isomorphic to O(C?).

(iii) Every bounded plurisubharmonic function on M is constant.

Let P(D) be an elliptic linear partial differential operator with constant coefficients on
RF k> 2. Let V C RF be open and connected and let

Np(V) ={f € C*(V): P(D)f = 0}.

The situation in this case resembles the spaces of analytic functions. First of all we have the
isomorphisms

Np(B) = M(nF7),  Ny(RY) = Ag(nT)
where B is any open, convex and bounded subset of R¥. N,(V') has properties (DN) and ()

and its associated exponent sequence is (nﬁ) (53], [24]. So we have the following result:

Theorem 8.8. Let V be an open connected subset of R¥. Then N,(V) is isomorphic to a
subspace of N,(B), where B is open, convexr and bounded. N,(RF) is isomorphic to a subspace
of Np(V)). N,(V') has property (DN) if and only if it is isomorphic to N,(RF).

Let E be a nuclear Fréchet space and H(E}) be the space of holomorphic functions on the dual
space I}, equipped with the topology of uniform convergence on compact subsets of ;. H([})
is a nuclear Fréchet space. (See for example [25]) Borgens, Meise and Vogt ([7], [8]) have proved
that H(Ax(a)}) is isomorphic to a power series space Aoo(5(cr)). This exponent sequence 3(«)
depends on a and it is always stable. Further S(log(n + 1)) is equivalent to (log(n + 1)) and so
H (s)) is isomorphic to s itself [8]. Further we can prove ([40]; 5.5. Prop.) that if there is a local
imbedding of A () into E, then there is a local imbedding of A (B()) into H(E}). With this
fact at our disposal we can prove that following surprising result.

Theorem 8.9. Let E be a complemented subspace of s. Then H(E}) is isomorphic to Ao (B(cx))
where A(E) = Ao ().

Note that in the theorem, we do not know whether F has a basis, but we get that the much
larger space H(E}) always has a basis. [E is certainly a complemented subspace of H(E}),
namely the functions which are linear. So we have the following problem.

Question. Let E be a complemented subspace of s. Can one find a tame projection on H(E})
whose range is isomorphic to £7

A positive answer to this question would mean a solution to the Problem 4.5. If F has
(DN), () and « is its associated exponent sequence. Then it can be shown that §(a) is the
associated exponent sequence of H(E}). This fact can yield more applications of our results in
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the context of infinite-dimensional holomorphy (see [40]). However the spaces H(V'),V an open
subset of E}, need to be researched further.

To conclude this section let us go back to the general setting where F is a nuclear space with
(DN) and (©2) and € the associated exponent sequence, we know

A(A1(€)) = A1(e) C A(E) C Aso(€) = A(Aso(€))

and these inclusions give the best fit. We usually have to assume that Aj(e) is also nuclear,
whereas nuclearity of A (€) follows from the assumption that E is nuclear. We assume € is
also stable. Our Theorem 7.4. gives us a sufficient condition in terms of the existence of a
local quotient from E into Ai(e) for the existence of a complemented subspace isomorphic to
Aq(€). Our generic theorem (Theorem 6.2.) or Theorem 8.2. gives us a sufficient condition
for the existence of a complemented subspace isomorphic to Ax(€). It may happen that F
is isomorphic to Aj(e) @ F and to A (€) & G for some Fréchet spaces F' and G. Since every
continuous linear map from Aj (€) into A (€) is compact, from the main theorem in [54] we obtain
that Ai(e) ~ E; ® C* and G ~ G1 @ E; for some Fréchet spaces E;. Since E; is isomorphic to
some Aj(a) by the theorem of Mitiagin and Henkin (Theorem 4.4.) and € is stable, it follows
easily that F; is isomorphic to Aj(e) itself. Hence in this case we have that E is isomorphic to
Aj(€) ® Ao (€) @ G for some Fréchet space G.

If FE has the stronger dominating norm property (DN), we have F is isomorphic to A (€).
If £ has (), which is stronger than (£2), we know that E in this case is isomorphic to A (e).

In a rather comprehensive work [49] Vogt generalized most of these results to the setting where
A (@) is a Schwartz space and F a Fréchet space whose topology is generated by a sequence of
semi-inner products. He has used some intricate arguments about operators on Hilbert space to
obtain new interpolation theorems and applied these to extend the structure theory. However
he has been unable to extend Theorem 5.1. to this setting. If this can be done, then [49] will
be shortened considerably. So we have the following open problem.

Question. Let Ag)(a) be a Schwartz space and « is stable. Let £ be a Fréchet-Hilbert space.
If A(A% (a)) C A(E), does it follow that E is isomorphic to a subspace of AQ (a)N?

Finally, we note that invariants (DN), (DN), () and (2) and other similar invariants used
by Vogt and others have been generalized to locally convex spaces by Terzioglu, Yurdakul and
Zahariuta [43].
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9. SOME RECENT RESULTS

Aytuna has recently proved that the diametral dimension A(O(M)) of the space of holomor-

phic functions O(M) defined on a Stein manifold of dimension d is either equal to As(n'/?) or
to Aj(n'/%). If the first case holds, we have that O(C%) is isomorphic to a complemented sub-
space of O(M) (Thm. 8.5). Aytuna has posed the question whether O(M) has a complemented
subspace isomorphic to O(A%) if A(O(M)) = A(O(A%)) = A1 (n'/?). Our Theorem 7.4 suggests
to seek a local quotient from O(M) into Aj(n'/?) in this case. For this purpose we shall look at

the diametral dimension more closely.
For motivation let us consider the diametral dimension of Aj(a). We know

A(Ar(@)) = {(&n) : lim Engy = 0}

where 0 < q1 < g2 < --- < 1, with limg, = 1. If By is the closed unit ball of ¢1, then B, is a
bounded subset of Aj(a) and it is easily proved that

dn(B1, Vi) = ¢;"
where
Vi ={(&) : Y lénlgpm < 1}
n=1
In particular
A(Ai(a)) = Ap(Ai(a))
= {(gn) : limgndn(Blyvk) =0 Vk}
In general for any lcs. E we have A(E) C Ap(F). In [27] Mitiagin claimed that for a Fréchet
space E one has A(E) = Ap(F) referring for the proof to a forthcoming paper. However this

claim is false as we remarked in Section 1. If F is an F'M-space which is not a Schwartz space,

we have
A(E) =y Cly C AB(E)

An FM-space is a Schwartz space if and only if it is quasinormable. Quasinormable spaces
were defined by Grothendieck. We recall that a Ics. F is quasinormable if for every neighborhood
U contains a neighborhood V so that for each r there is a bounded subset B with

VcB+rU.
Let us assume that L is some subspace with
BcCcdéU+L

for some § > 0. Then
VCc(@+rU+L.
So this implies
d,(V,U) < dp(B,U)+r
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but of course B depends on our choice of r. However in the context of Fréchet spaces one can
prove the following result

Proposition 9.1. If E is a quasinormable F-space then A(E) = Ay(E).

So A(FE) is not equal to Ay(F) if and only if E is a Montel space which is not a Schwartz
space.

In case E is quasinormable, we now know A(E) = Ap(FE). As a sequence space, Ap(FE) has
a natural topology as a projective limit of the Fréchet spaces

Aa ={(&n) : limd, (A, Uy) = Ok}
where B is some bounded subset. So

Ap(E)={NA4: A bounded }.
On the other hand, if

Apm = {(&)  lim&,dp (Un, Uy) = 0}
since dn(Upm+1, Ui) < dp(Um, Uy) we have Ay, C Ag g1 and so

Ak = U Ak,m

m>k

is an LB-space. Therefore the sequence space
A(B) = (] Ak
k=1

has a natural topology as the projective limit of a sequence of LB-spaces.
Let us go back to power series spaces of finite type. Since Aj(«a) is a Schwartz space, we have
A(A1(a)) = Ap(A1(a)); however much more is true, because

Ap(Ar(@)) = {(&) : lim &ndn(B1, Vi) =0V k).

This means that in this particular case it is sufficient to consider a single bounded subset B, to get
Ap. In particular, A has a natural Fréchet space topology. Motivated by these considerations,
we say a bounded subset B of a quasinormable F-space F is a prominent set if

A(E) = {(&n) : lim&nd, (B, Uy) = 0,V k}.
The following result generalizes the above example.

Proposition 9.2. Let A(A) be a Gy-space and € an admissible space with closed unit ball By.
Then By is a prominent set of A{A).

We can give a necessary and sufficient condition for a bounded subset to be prominent. In
the proof we compare the natural topologies on A(F) and use the factorization theorem of
Grothendieck.
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Proposition 9.3. A bounded subset B of an F-space E is prominent if and only if for each k

there is an m and p > 0 such that
dn(Un, Uy) < p dn(B,Up,)
for alln € N.

A natural question is whether every quasinormable F-space has a prominent set. An appli-
cation of Prop. 9.3. shows that in a power series space of infinite type there is no prominent
subset, settling this question in the negative.

Suppose a nuclear F-space F has a prominent set B. Since any bounded subset, which
contains a prominent set, is itself prominent we can assume B is absolutely convex, closed,
Hilbertian and total. We also assume || |1 < | |l2 < --- is a sequence of Hilbertian norms
defining the topology of £ and

U = {2 : [[z]p < 1}.

By passing to a subsequence we can further assume

dn(Uks1,Ux) < pdy (B, Ug1).

Let
ikr1k : Errr = B, Jer1: E[B] = By
be the canonical imbeddings, which are compact. So we can write
i1k = Ao (Upyr, Up) (2, 25 )yl
where (zF+1), (y¥) are orthonormal sequences in Ej,1 and Ej respectively. Also
Jer1® =Y dn(B, Upgr)(w, 262t
where (z£*1) and (2F*1) are orthonormal sequences in E[B] and Ey,;. Now define
Uk : Eyq1 — [B]

by Uy (zE*1) = 2k+1, This is a unitary operator from the Hilbert space Ej_; into E[B]. Similarly
define

Vk : Ek+1 — Ek
by
dn(Ug 41, Ug)
\% xﬁ“ =7 fb
W) = B O !
Then

Uk+1,k = Vk 0 Jky1 0 Ug
and since V}, and U are invertible,
Vi loi =Ul=j
r CUW+1,k = Up = Jk+1

Recalling that the projective spectrum of £ is (ix41 %, Ex). In case E has a prominent set B,
this shows that £ has an equivalent projective spectrum involving only one Hilbert space E[B].
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The results of this section are contained in a paper entitled ” Quasinormability and diametral

dimension” which is to appear in the Turkish Journal of Mathematics.
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