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Abstract 

 

Engineered materials, such as new composites, electromagnetic bandgap and 

periodic structures have attracted considerable interest in recent years due to their 

remarkable and unique electromagnetic behavior. As a result, an extensive literature on 

the theory and application of artificially modified materials exists. Examples include 

photonic crystals (regular, degenerate or magnetic) illustrating that extraordinary gain 

and high transmittance can be achieved at specific frequencies. Of importance is that 

recent investigations of material loading demonstrate that substantial improvements in 

antenna performance (smaller size, larger bandwidth, higher gain etc.) can be attained 

by loading bulk materials such as ferrites or by simply grading the material subject to 

specific design objectives. Multi-tone ceramic materials have also been used for 

miniaturization and pliable polymers offer new possibilities in three dimensional 

antenna design and multilayer printed structures, including 3D electronics. However, as 

the variety of examples in the literature shows, the perfect combination of materials is 

unique and extremely difficult to determine without optimization. In addition, existing 

artificial dielectrics are mostly based on intuitive studies, i.e. a formal design framework 

to predict the exact spatial combination of dielectrics, magnetics and conductors does 

not exist.  

In the first part of this thesis, an inverse design framework integrating FE based 

analysis tool (COMSOL MULTIPHYSICS-PDE Coefficient Module) with an 

optimization technique (MATLAB-Genetic Algorithm and Direct Search toolbox) 

suitable for designing the microstructure of artificial magneto-dielectrics from isotropic 

material phases is proposed. Homogenizing Maxwell‟s Equations (MEQ) in order to 

estimate the effective material parameters of the desired composite made of periodic 

microstructures is the initial task of the framework. The FE analysis tool is used to 

evaluate intermediate fields at the „micro-scale‟ level of a unit cell that is integrated 

with the homogenized MEQ‟s in order to estimate the „macro-scale‟ effective 

constitutive parameters of the overall bulk periodic structure. Simulation of the periodic 

structure is an extremely challenging task due to the mesh at micro-level (inclusions 

much smaller than the periodic cell dimension) that spans over the entire bulk structure 

turning the computational problem into a very intensive one. Therefore, the proposed 

framework based on the solution of homogenized MEQ‟s via the micro-macro 
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approach, allows topology design capabilities of microstructures with desired 

properties. The goal is to achieve predefined material constitutive parameters via 

artificial electromagnetic substrates. Physical material bounds on the attainable 

properties are studied to avoid infeasible effective parameter requirements via available 

multi-constituents. The proposed framework is applied on examples such as 

microstructure layers of non-reciprocal magnetic photonic crystals. Results show that 

the homogenization technique along with topology optimization is able to design non-

intuitive material compositions with desired electromagnetic properties. 

In the second part of the thesis, approximation techniques to speed-up large scale 

topology optimization studies of devices with complex frequency responses are 

investigated. Miniaturization of microstrip antennas via topology optimization of both 

the conductor and material substrate via multi-tone ceramic shades is a typical example 

treated here. Long computational times required for both the electromagnetic analysis 

over a frequency range and the need for a heuristic based optimization tool to locate the 

global minima for complex devices present themselves as two important bottlenecks for 

practical design studies. In this thesis, two new techniques for speeding up the 

optimization process by reducing the number of frequency calls needed to accurately 

predict a multi-resonance type response of a candidate design are proposed. The 

proposed techniques employ adaptive sampling methods along with novel rational 

function interpolations. The first technique relies on a heuristic based rational 

interpolation using Bayes‟ theory and rational functions. Second, a rational function 

interpolation employing a new adaptive path based on Stoer-Bulirsch algorithm is used. 

Both techniques prove to efficiently predict resonances and significantly reduce the 

computational time by at least three folds. 
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Özet 

 

 

Elekromanyetik bant yapılarına sahip malzemeler ve periyodik yapılar gibi yeni 

malzeme bileşenleri üstün elektormanyetik davranışları dolayısıyla son yıllarda oldukça 

ilgi çekmiştir. Sonuç olarak, yapay olarak değiştirilmiş malzemelerin teori ve 

uygulaması ile ilgili kapsamlı bir literatür bulunmaktadır. Fotonik kristalleri (normal, 

bozulmuş veya manyetik) de içeren örnekler belirli frekanslarda olağanüstü bir kazanç 

ve yüksek enerji transferi elde edilebileceğini göstermektedir. Malzemelerin yüklenmesi 

(„loading‟) konuları ile ilgili son araştırmalar göstermiştir ki anten performasında (daha 

küçük ebat, daha geniş bant genişliği, daha yüksek kazanç vb.) önemli ilerlemeler ferrit 

gibi malzemelerin yüklenmesi veya basitçe malzemenin belirli tasarım amaçlarına göre 

çoklu malzeme sistemlerinden oluşturulması ile sağlanabilmektedir. Minyatürleştirme 

için çoklu seramik malzemeler ve esnek polimerler üç boyutlu anten tasarımı ve 

eletroniği içeren çoklu katmanlı baskı devre yapılarında da yeni olasılıklar sunmaktadır. 

Buna rağmen, literatürdeki bir çok örneğin de gösterdiği gibi malzemelerin istenilen 

mükemmel bileşimi tek bir yapıya işaret eder ve optimizasyon yöntemlerine 

başvurulmadan bu birleşenlerin belirlenmesi çok zordur. Ek olarak, varolan yapay 

dielektrikler daha çok deneme yanılma çalışmalarına dayanmaktadır, yani dielektrik, 

manyetik ve iletkenlerin istenilen uzaysal birleşimini belirleyebilen formel bir tasarım 

süreci bulunmamaktadır. 

Bu tezin ilk bölümünde, bu ihtiyaca cevap verebilmek için, sonlu eleman tabanlı 

analiz aracını (COMSOL MULTIPHYSICS-PDE Coefficient Module) yapay manyetik-

dielektriklerin mikro yapısını izotropik malzeme fazları kullanarak tasarlanmasına 

uygun olan bir optimizasyon yöntemiyle (MATLAB-Genetic Algorithm and Direct 

Search toolbox) entegre ederek bir tersine tasarım yöntemi önerilmiştir. Periyodik mikro 

yapılardan oluşan etkin elektromanyetik malzeme parametrelerinin hesaplanabilmesi 

için Maxwell denklemlerinin homojenleştirilmesi bu sürecin ilk adımıdır. Sonlu eleman 

analiz aracı periyodik yapının makro-ölçekteki efektif/etkin konstitütif parametrelerinin 

tahmin edilebilmesi için homojen Maxwell denklemlerine entegre edilerek birim 

hücresinin mikro-ölçek seviyesindeki bir ara vektör alanının belirlenmesi için 

kullanılmıştır. Periyodik yapının similasyonu nümerik olarak büyük ölçekte bir yapıyı 
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kapsadığı için hesaplamayı yoğun bir probleme dönüştüren mikro seviyedeki (ihtivaları 

periyodik hücre boyutlarından çok daha küçüktür) ağ yüzünden çok zorlu bir iştir. Bu 

nedenle önerilen tasarım süreci, mikro yapıların istenen malzeme özelliklerine göre 

topoloji tasarım yöntemi kullanılarak mikro-makro yaklaşımıyla elde edilen homojen 

Maxwell denklemlerinin çözümüne dayandırılmıştır. Amaç yapay elektromanyetik 

malzeme katmanlarının önceden tanımlanmış konstitütif malzme parametrelerini elde 

etmektir. Mevcut çoklu-bileşenler kullanılarak gerçekleştirilemeyecek efektif parametre 

tasarımlarını önlemek amacıyla erişilebilir özelliklerdeki fiziksel malzeme sınırları 

teorik olarak çalışılmıştır. Önerilen tasarım süreci „non-reciprocal‟ manyetik fotonik 

kristallerin mikro yapı katmanları gibi örneklere uygulanmıştır. Elde edilen sonuçlara 

göre homojenleştirme teknikleri topoloji optimizasyonu ile birlikte istenen 

elektromanyetik özelliklerde karmaşık malzeme bileşimlerini tasarlamaya uygundur. 

Tezin ikinci bölümünde, karmaşık frekans davranışına sahip çok bilinmeyenli 

topoloji optimizasyon çalışmalarını hızlandırmak için yaklaşım teknikleri üzerinde 

durulmuştur. Mikroşerit antenlerin hem iletken hem de dielektirk katmanların çoklu 

seramik malzeme birleşenlerinin topoloji optimizasyonuyla minyatürleştirilmesi burada 

konu edilen tipik bir örnektir. Frekansa dayalı elektromanyetik analizler ve karmaşık RF 

cihazların evrensel optimizasyon çalışmalarında uzun hesaplama zamanları tasarım 

süreçlerinin pratik olarak yapılamamasında iki önemli unsur olarak ortaya çıkmaktadır. 

Bu tezde, bir tasarım örneğinin çoklu-rezonans tipi davranışını yaklaşık şekilde ifade 

ederek gerekli frekans bazlı analiz çağrılarını azaltarak optimizasyon işlemini 

hızlandıran iki adet yeni teknik önerilmiştir. Önerilen teknikler adaptif örnekleme 

metodlarına dayalı yeni rasyonel fonksiyon interpolasyonlarını kullanmaktadır. İlk 

teknik Bayes teorisi ve rasyonel fonksiyonları kullanan buluşsal tabanlı rasyonel 

interpolasyona dayanmaktadır. İkinci teknikte ise, Stoer-Bulirsch algoritmasına dayalı 

yeni bir adaptif yol izlenerek rasyonel fonksiyon interpolasyonu kullanılmıştır. Her iki 

teknik ile de rezonansların etkin bir şekilde tahmin edilebildiği kanıtlanmış ve toplam 

hesaplama zamanını üçte bire düşürerek tasarım problemlerinde önemli şekilde avantaj 

sağlandığı gösterilmiştir. 
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1  INTRODUCTION 

 

1.1  Motivation 

Increasing demand for wideband devices and stringent metrics for multi-

functionality within the telecommunications and microwave industry led to significant 

developments in novel components and sub-systems required for re-configurable, 

multifunctional, and dynamic devices. Metamaterials (MTM) or engineered materials 

with unusual properties, possess technological potential that breaks the limitation of 

current technology and satisfy stringent needs by the potential for developing such 

novel components and subsystems. MTM‟s intrinsic unusual properties and their 

capability to guide and efficiently control electromagnetic waves make them an 

immense technological breakthrough. 

Interest in metamaterials has increased substantially since their discovery in the 

late 1980‟s. The immense potential of these structures in applications like 

communication and sensing systems is primarily due to their capability of controlling 

amplitudes, group and phase velocities, frequencies, wave-numbers, etc. of propagating 

and non-propagating electromagnetic modes to an extent that was not previously 

achievable. 

Some aspects in novel applications demonstrate MTM‟s potential mainly 

regarding their capability to control electromagnetic modes. Strong controllability of 

dispersion in waveguides is an extremely attractive MTM characteristic to realize 

compact and therefore cost efficient phase shifters and delay lines for various 

applications including communication systems [1]. In addition, MTMs can reduce the 

size and enhance the communication performance of integrated planar filter 

components, especially where loss and bandwidth issues of these components is critical 

[2]. Substrate designs for microstrip based patch antennas and filters [3, 4] and 

electromagnetic bandgap (EBG) structures [5] are such examples. Also, MTMs are used 

in frequency selective surfaces (FSS), e.g. for radomes, stealth planes, cellular phones. 

EBG, FSS, and other MTMs gives the opportunity to mold the radiation characteristics 

of antennas [6, 7]. Using MTMs, imaging applications became possible proving wide 
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benefits for sub-diffraction imaging applications [8, 9]. In addition, metamaterials 

enabled flexibility in controlling electromagnetic wave propagation that present us with 

the opportunity to optimize the radiation characteristics of light emitting diodes to 

couple light generated in high refractive index materials into air effectively. Similarly, 

metamaterial research efforts are made on lasers, where metamaterials (i.e. photonic 

crystal slab lasers with defect modes) are employed to lower the threshold of lasers [10]. 

This is not only important in terms of efficiency and modulation bandwidth 

enhancement, but also will be crucial to realize deterministic single photon sources for 

quantum computing/communication technologies. Besides, metamaterials, especially 

plasmonics, are widely used in leaky wave antennas [6, 7, 11] where recent research 

encourages the transmission of evanescent modes through sub-wavelength structures 

used in near-field imaging/sensing applications. Development of high-Q resonant 

structures are desired for efficient filters or for sensing applications; has therefore drawn 

large interest in the optical data storage community, in order to provide sub-wavelength 

writing and reading capabilities for future data storage technologies to enhance the 

capacity beyond 1 
2TB/in  [12, 13]. Another potential application is the capability of 

Left Handed Materials (LHM) to be used for super-resolution imaging lenses [8, 14]. 

Incorporating tunable materials into metamaterials or having materials with active and 

controllable inclusions leads to tunable properties, regardless of the origin of the 

modulation. Under proper metamaterial configurations, small variations of the 

constituents may lead to extreme changes of metamaterial characteristics. Consequently, 

tunable components can be realized effectively in metamaterials [6, 15-18]. Practical 

applications include highly flexible and nimble cellular phones and low-cost steerable 

antennas. 

As a result, the engineering of artificial materials in order to obtain attractive 

electromagnetic response has been an immense field of investigation over the past 

decades. To a broader extent, the intuitive or simulation based design of materials with 

engineered permeability and permittivity, through carefully designed inclusions and the 

possible use of electronic components have been expanding through the decade [19-23]. 

It is fair to say that these periodic structures are usually designed by theoretical 

consideration [24] based on equivalent circuit theory. Intuition of the expert designers at 

present is necessary for developing such efficient devices as theory alone provides only 

basic designs. Nevertheless, this approach encounters difficulties such as the challenge 

to tune parameters and includes a lot of guesswork and more importantly is very time 
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consuming. The need for a systematic design methodology for developing advanced 

microstructural devices became very important. Topology optimization is widely used 

as a systematic design method since it is the most versatile design method that can deal 

with geometrical and topological configuration changes at the same time. Hence, in this 

thesis the main objective is to develop a framework for designing the microstructure of 

materials with desired effective electromagnetic materials using topology optimization. 

This is the first formal step in the literature towards designing the microstructure of 

magneto-dielectric materials via topology optimization and should open new avenues 

for material design within the electromagnetic community. 

 

1.2  Metamaterials Modeling  

Modeling is a key factor that affects the accuracy and speed of the design process 

and is basically the backbone of simulation based design. Numerical modeling of 

metamaterials provided a temporary answer for simulation based verification for all the 

promising results proposed experimentally and bridged the gap between inhomogeneous 

metamaterials described by their discrete elements and the effective media. The need to 

improve simulation based modeling capabilities was motivated after a thorough 

numerical investigation of metamaterials‟ key properties such as transmission, 

backward phase, negative refraction, and focusing [25]. Efficient algorithms allowed for 

simulations of large models in 2D or 3D. Numerical simulation has been used rather 

than the experiment and has proven naturally to be a reliable and efficient way of 

studying metamaterials. 

There are two main metamaterial modeling approaches that stand out in the 

literature. The first approach is a full wave simulation that solves the electromagnetic 

wave propagation represented by Maxwell‟s equations subject to boundary conditions 

as presented in [26-29]. The second one is an effective simulation based approach that 

solves the homogenized form of the Maxwell‟s equations and retrieves the effective 

parameters [30-35]. Although the full wave simulation approach is quite stable and a lot 

of studies on accuracy and speed-up measures prove the reliability and efficiency to a 

satisfactory level, it may not be the best choice to simulate periodic structures as long as 

the effective bulky parameters or characteristics of the structure are of main concern. 

This is because meshing at the micro-level (unit cell level) turns the computational 
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problem into an intensive one. Alternatively, effective simulation based approach 

focuses on the unit cell alone at the simulation level and predicts the macro-level 

effective parameters. The effective modeling approach can be classified into three main 

categories: An equivalent circuit approach as highlighted in [36, 37] where the unit cell 

constituents are modeled by simple circuit elements; Effective medium theories/mixture 

formulas which are mainly empirical formulas derived for certain type and shaped 

inclusions inside a host medium such as Clausius-Mosotti, Maxwell-Garnett, Lorenz-

Lorentz relation [38] and Bruggeman [39]; and third is the homogenization based theory 

[31, 40-45]. Among them, mixing formulas and equivalent circuit approximations are 

not capable of handling arbitrary unit cell inclusion geometries and their applicability is 

constrained to only a few number of phase constituents whereas the theory of 

homogenization can handle any geometrical inclusions and it is unbounded in theory by 

the amount of unit cell constituents. The theory of homogenization is discussed next and 

presents the workhorse used as the material model within the design framework 

proposed in this thesis. 

 

1.2.1  Homogenization theory  

In this sub-section we explore key features of the homogenization technique 

applied within electromagnetic and major applications in literature. 

Homogenization refers to replacing the inhomogeneous, periodic material in the 

microscopic scale with its homogeneous effective equivalent that has the same 

macroscopic effect as the original inhomogeneous structure. Computation of the 

homogenized material property of such repetitive composites allows replacing them 

with their equivalent, single homogenized, material. Hence, the process of 

homogenization drastically speeds up the numerical simulation process especially when 

the inhomogeneous unit cells, building blocks, of the composites are much smaller 

when compared with the size of the entire structure since otherwise very fine meshing 

during numerical simulations such as in Finite Element Method (FEM) would be 

required. Homogenization of corrugated interfaces in electromagnetics was studied in 

[46] where authors treated the corrugated surface as an inhomogeneous transition region 

(slab) yielding the homogenized surface with the effective reflection dyadic or the 

surface impedance dyadic. Their model in 1D has an explicit expansion whereas the 2D 
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model turns into an elliptic problem to be solved. The calculation of effective 

constitutive parameters at the interface of different media ranging from isotropic to bi-

anisotropic was made possible in [47] by taking the boundary conditions of the field 

components into consideration that generalizes the previous approach. In 2002, the 

authors in. [48] introduced a method to retrieve the index of refraction (n=n’+in’’) and 

the constitutive impedance (z=z’+iz’’) or equivalently the effective constitutive 

parameters (ε=n/z and μ=nz) analytically via reflection and transmission coefficients 

(called scattering parameters, S-parameters) calculated from Transfer Matrix 

simulations on a finite length of electromagnetic metamaterials. Although this method is 

straightforward and gives an acceptable approximation, it does not exactly characterize 

metamaterials, and presents challenges in deciding upon the sign and branch of the 

solution (reference plane location in applying the boundary conditions) of the index of 

refraction and the impedance. Two years later, improvement on this method was made 

by assigning the reference plane as the first boundary and thickness of the effective slab 

and forcing n’’ to be positive for correct selection of z’ which must be positive, 

especially for cases where it is near zero that can lead to flip in sign [49]. Also, robust 

mathematical methods were proposed to choose the correct branch of the real part of n. 

Starr et al. characterized composite metamaterial panels fabricated using commercial 

multilayer circuit-board lithography, employing a similar direct method (analytical) 

based on S-parameter measurements leading to complete information on the material 

parameters [46]. The S-parameter retrieval procedures along with indirect methods, 

such as Snell‟s law measurements which can provide complementary information, can 

form the basis of a semi-automated metamaterial characterization. S-parameter 

numerical retrieval approaches for lossy bi-anisotropic media was introduced in [50]. In 

addition to S-parameters‟ retrieval direct analytical and numerical approaches used in 

predicting the electromagnetic constitutive parameters, recently [51] proposed an 

approach based on optimization to reconstruct the frequency-dispersive constitutive 

parameters of general bi-anisotropic media that produce reflection and transmission data 

matching the measured ones. Two optimization algorithms were used in this approach, 

differential evolution, DE, and Nelder-Mead simplex method to obtain the solution at 

different frequencies. 

In addition to S-parameter based homogenization, equivalent circuit theory was 

often exploited. Equivalent circuit models were developed to calculate the effective 

constitutive EM parameters by modeling every split ring resonator column along the 
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axis of the rings as a quasi-solenoid under magnetic induction, hence allowing for 

calculation of the inductance per ring. The electromagnetic coupling between the split 

ring resonators equivalences, represented by quasi-solenoids, is integrated into circuit 

model where the frequency band of the negative permeability is predicted [52]. 

Effect of the periodicity of the structure on the effective medium model was 

studied in [53] in order to explain the origin or resonance/anti-resonance coupling and 

the negative imaginary parts of the constitutive parameters which cannot be explained 

by the resonance behavior of the EM parameters. This study demonstrates that in 

addition to the homogenization effective medium theory, periodic effective medium 

theory should be taken into consideration in composites where the lattice constant is 

greater than λ/30. 

Existing studies related to retrieval of the constitutive parameters of metamaterials 

can be collected in two main groups: 1) Via S-parameters either analytically by 

inverting the reflection and refraction equations (dependent and independent variables), 

or numerically by optimization and 2) Via large scale equivalents that are either 

homogeneous (brought about their effective values in a process called inverse 

homogenization) or circuit models. New approaches are proposed to increase the 

accuracy through the addition of a corrector term compensating for a possible 

microscopic effect loss [31]. More importantly, the process of homogenization allows 

for the approximate modeling of complex shaped inclusions and highly dense composite 

materials where standard mixing formulas and other existing material models usually 

fail. 

In 1994, Bossavit proposed to adopt homogenization to calculate the effective 

penetration depth in spatially periodic grids in [30]. This was based for the first time on 

homogenizing Maxwell‟s equations to obtain effective permittivity and permeability 

properties (and applied the results to the skin effect). The process relies on finding 

averaged parameters over a unit cell in the microscopic scale solving Maxwell‟s 

equation via FEM. This work explained the possibility of obtaining chiral or bi-

anisotropic materials from simple isotropic constituents and developed computer 

electromagnetic analysis codes that take this method into consideration from the onset 

for analyzing chiral materials. Also, these homogenization methods were applicable to 

steady state cases and not to transient ones where frequency f dependency should be 

replaced with time t. Bossavit also applied homogenization theory to a 3D Bean‟s model 

for superconductivity where he solved for the electric field e and the surface current j 
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over a “periodicity cell” with periodic boundary conditions iteratively to pass from local 

Bean‟s model to an increasingly larger space scale [54]. Bossavit applied this theory to 

study realization of chiral material via mixing simple constituents [55, 56] as well. The 

homogenization theory clarifies the cross-dependency of the electric and magnetic flux 

densities D and B, on the electric and magnetic field intensities E and H, respectively, 

resulting in a chiral material behavior (which rotate the polarization plane of waves) and 

shows how geometrical chirality at cell level is needed. Improvements on this method 

were made [57] via asymptotic multi-scale methods and with the unfolding method 

which were utilized in calculating the effective conductivity for square cylinders and 

cubes suspended in a host isotropic medium. At high frequencies, however, 

homogenization becomes harder to implement and a link with standard harmonic 

analysis must be established [58]. 

The theory of homogenization itself was introduced with studies conducted in at 

least three directions. The first one was focusing on a general theory of convergence of 

operators (namely the H- and G- convergence). The first contributions to this field are 

found in [59-61] and further developments were made and demonstrated in [62]. The 

second direction is the asymptotic study of perforated domains consisting of media with 

many holes [63]. The third direction corresponds to the systematic study of periodic 

structures by means of asymptotic analysis. Pioneering work in this direction has been 

done in [45, 64-70] 

Extensive efforts have been placed to develop algorithms based on the above three 

perspectives and researchers have come up with well established algorithms that are 

able to validate metamaterials‟ intrinsic properties. However, these have been mainly 

used to help the designer in adjusting mostly geometrical design parameters to improve 

desired electromagnetic performance. Quite a few studies have been established in this 

area and mainly focused on optimizing devices of already known volume and shapes 

(shape optimization). For example, in [4] numerical simulations and retrieval 

parameters were employed in a feedback loop to optimize and design dimensions of 

SRRs in order to improve gain and directivity of antennas and obtain new enhanced 

radiation patterns. Because of the fabrication constraints imposed on the building block 

or unit cells of metamaterials, especially for small elements used in high frequency 

applications where the dimension of the cell should be much smaller than the 

electromagnetic wave length λ, arbitrary shapes have not been investigated. It is 

explicitly noted by Yablanovitch [71], “The era of purely intuitive design may be 
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obsolete. We must now concentrate more on design software, rational design, and the 

numerical solution of inverse problems. Engineering design is formally a type of 

mathematical Inverse Problem. The design goal is a certain electromagnetic 

specification or desired electromagnetic performance. It is necessary to work backward 

from that goal to the exact design of the dielectric boundary that achieves the 

objective”. In that respect, topology optimization methods present us with an ideal 

inverse design tool which has not been applied earlier to explore the full potential of 

artificial magneto-dielectrics for novel applications. The variety of examples show that 

the perfect combination of materials is unique and extremely difficult to determine 

without a systematic design procedure [3, 72, 73], which is addressed in this thesis with 

a material design framework for materials with desired electromagnetic matrix 

properties 

In the next section we demonstrate one of the most flexible design optimization 

methods and its implementation to structural mechanics, where it emerged from and 

then within the electromagnetic community along with periodic structures. 

 

1.3  Topology Optimization 

Since the emergence of the finite element method (FEM) by Courant [74] and its 

systematic formulation setup in [75], it became the backbone of numerical optimization. 

The first integration of FEM with optimal structural design was made in [76] and later 

in [77, 78] then an intensive research was launched in the field of modern structural 

optimization including a variety of application in civil, mechanical and nuclear 

engineering. Structural optimization can be divided into three main sub-fields, i.e. size, 

shape, and topology optimization. The first structural topology optimization is found in 

1904 when important principles were established for truss like structures [79]. These 

principles were extended to grillages in [80]. The basic principles of optimal structural 

design were formulated in [81-83]. Bendsoe and Kikuchi [84] were the first to introduce 

a practical FE-based topology optimization for non-truss structures. They introduced the 

homogenized based topology optimization method (HTBO) to find the optimum layout 

of a linearly elastic structure to achieve global stiffness. The HBTO method is based on 

the assumption of a composite material with a micro structure whose properties are 



9 

 

homogenized by a rigorous mathematical procedure. Typically, an algorithm based on 

the optimality criteria is used to update the size and orientation of voids. 

So far, the most popular problem in topology optimization of linear elasticity is 

that of minimizing compliance. The design principles were also extended to non-linear 

constitutive models [85]. Although early efforts in structural topology optimization 

focused on global responses such as stiffness and frequency, later studies dealt with 

more specific engineering problems such as automotive design, welding for 

reinforcement, drilling holes for weight reduction. Also, structural topology 

optimization was extended to dynamical problems including vibration and noise 

reduction, maximizing safety, minimizing cost etc. In other words, the field of structural 

topology optimization has expanded significantly, addressing many practical 

engineering problems including maximum stiffness, maximum eigenvalues, optimum 

compliant mechanisms or piezoelectric actuators and extreme material properties. It has 

also been widely employed in industry, with several commercial software packages. 

Sigmund et al. [86] discussed the numerical instabilities in topology optimization 

related to checkerboarding, mesh dependence and local minima of topology 

optimization applications. Comprehensive reviews on the mechanical, structural and 

computational aspects have been given in the monographs [87-89] and the review 

articles [83, 84]. 

In electromagnetics, the concept of sensitivity for finite element analysis and its 

use in the optimization process for magnetic problems was first introduced in 1988 in 

[90]. Since then, design sensitivity analysis using the adjoint variable method has been 

applied almost routinely to the optimization of magnetic devices. Applications include 

linear [91], non-linear magnetic systems [92] and also linear electrostatic systems [93]. 

The optimization problems relying on the sensitivity information using the adjoint 

variable method (AVM) have been restricted to optimizing the shape of specific features 

of a complete device design. For instance, the pole shape of an electromagnet [94], slot 

shape in the rotor of an induction motor [95] or the shape of a defect in an aluminum 

block [91] are examples for such shape optimization problems. Topology optimization 

follows the exact same approach as in structural mechanics and was introduced to the 

EM community using Solid Isotropic Material with Penalization (SIMP). As an 

example, SIMP is applied to the design of a jumping ring, a typical simple magneto-

static problem. Although the application was restricted to simple magneto-static 

problems, it provided an approach for automated topology design in EM. Dyck and 
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Lowther studied how to interpret the resulting intermediate material distribution by 

relating it to composites of available materials [96]. 

Byun et al. [91] who also applied the SIMP method for the topology optimization 

in EM, dealt with the design of a transformer coil. The problem was to solve an eddy 

current problem, a simplified case of more common realistic EM applications 

demanding more complex analysis procedures. Later, the same authors extended the 

design method to a specific class of inverse problems, where their goal was to find the 

shape and location of the dielectric material embedded in a material of different 

permittivity [93]. Consequently, the application area of topology optimization in EM 

was expanded from magneto-static or eddy current systems to 3D linear electrostatic 

problems. Also, topology optimization has been extended to wave propagation 

problems, such as radio-frequency and optical problems. A waveguide was successfully 

designd for an optic wave propagation problem by [97]. Topology optimization was 

applied to a design of waveguide components by [98]. Kiziltas et al. [3] developed an 

optimal design method for enhancing the bandwidth of microstrip patch antennas using 

the finite element boundary integral method with vector wave propagation analysis. 

Extension of the topology optimization to vector wave propagation with finite-

difference time-domain method was made in [99]. 

In conclusion, literature reports only a few applications of topology optimization 

to electromagnetic problems but they are rarely applied to periodic structures and 

existing studies are strictly focusing on the optimal design targeting the performance of 

the device only instead of directly focusing on the design of the material itself. 

In this thesis, we incorporate the topology optimization with the homogenization 

theory based on asymptotic expansion analysis in order to design prescribed effective 

electromagnetic constitutive parameters, i.e. permittivity and permeability tensors. 

These materials with desired electromagnetic properties can be a part of size, shape, or 

even topology optimization studies targeting novel electromagnetic device performance. 

Among others, a typical device performance example relates to the optimal design of 

antennas with increased bandwidth. Electromagnetic performance is usually measured 

by the S-parameter responses over a defined range of working frequencies. During the 

optimization process, optimal design candidates with updated design variables are 

analyzed using one of the rigorous analysis tool mentioned in Section ‎1.2. Such a 

response requires sweeping over a lot of discrete frequency points that makes the 

analysis tool and consequently the optimization process computationally very costly. As 
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part of this thesis, this computational challenge arising in large-scale design 

optimization studies, such as topology optimization, is addressed by developing two 

different approximation techniques. Therefore, in the next section we review such 

interpolation techniques and adaptive sampling procedures that reduce the number of 

frequency calls needed to predict an accurate S-parameter response for complex devices 

optimized in large scale design studies. 

 

1.4  Interpolation Techniques for Speeding up Optimization Process 

As discussed in Section ‎1.3, design optimization has been a difficult, demanding 

but necessary task for the development of novel commercial radio frequency 

applications such as miniaturization of antennas without sacrifice in their bandwidth and 

radiation efficiency. The need for design, preferably design optimization, is pertinent to 

the competing physics of these metrics, which has been the focus of researchers for the 

past two decades. It is reasonable to expect that designs resulting from global design 

optimization studies that allow for full design space exploration including antenna 

shape, size, feed location and material will lead to novel configurations with enhanced 

performance. However, global synthesis via heuristic search techniques relies on fast 

and accurate reanalysis, which presents itself as a bottleneck in large scale 

electromagnetic search studies. Therefore, unless design studies are limited to only a 

few number of design variables [100], simulation based electromagnetic design studies 

can become impractical. To address this issue, two different approximation schemes 

suitable for the frequency response of electromagnetic systems such as multi-resonance 

return loss of antennas is investigated. The goal is to develop efficient and reliable 

schemes that allow for fast and accurate reanalysis within global electromagnetic design 

optimization studies.  

Surrogate modeling techniques [101] are approximation schemes typically used 

for efficient electromagnetic reanalysis. Most common surrogate modeling approaches 

rely on the use of polynomials, multiquadrics [102], kriging [103, 104] and artificial 

neural networks [105]. Surrogate models serve a common central purpose by providing 

a „virtual‟ objective function which can be called by the optimization solver within a 

design cycle. Variations in the surrogate models are due to training and/or tuning 

parameters. However, training a model of increased topological complexity leads to an 
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excessive computational effort and most of the time results in a model that is problem 

dependent. Also, the resulting approximate objective function is only valid in a 

constrained sub-domain which is likely to contain the optimum and therefore the 

approximate surrogate model is only valid in this region.  

Basis functions employed within the interpolation models have great influence on 

the quality of the surface approximation. Among alternatives, rational functions offer an 

attractive solution for providing approximate resonances due to their inherent pole 

predicting behavior. Therefore, they are likely to yield a more accurate approximation 

for a larger class of problems with a reduced computational effort. Hence, their use has 

resulted in various representations of resonance type responses with reasonable number 

of support points [106-112]. 

The first rational based approximation scheme proposed in this thesis employs an 

easy-to-train and simple decision making classifier based on Bayes‟ theorem to predict 

multi-resonance return loss curves of electromagnetic (EM) devices with complex 

topologies. Bayes‟ theorem has been extensively utilized for interpolation in signal 

processing problems [113-115]. For example in [113], Bayesian variational technique is 

used to successfully predict both the parameters of a linear-in-the parameter model and 

the form of the noise process to be used, namely Gaussian versus Student-t. This 

approach is implemented on synthetic data generated by the function     xxx sinsinc   

and results show that for a non-Gaussian noise distribution adaptive Student-t form 

outperforms the Gaussian especially when outliers exist. In [114], Bayesian technique 

with Gaussian apriori model is used to interpolate 3D x-ray crystallography data in the 

presence of icosahedral symmetry deteriorated by noise. Here, the Bayesian classifier is 

also used to determine the basis function used in the interpolators in terms of the 

statistical assumptions. Fearnhead [115] exhibits a novel algorithm for performing exact 

Bayesian inference for independent linear regression models on disjoint segments. This 

approach avoids the problem of diagnosing convergence associated with Markov Chain 

Monte Carlo method. The algorithm is successfully demonstrated on standard denoising 

problems, a piecewise constant auto-regression model, and a speech segmentation 

problem. Unlike many of Bayes interpolation uses in the literature, in this thesis, the 

proposed method employs the Bayesian classifier in order to infer a controlling 

parameter that controls the shape of the resulting resonances associated with a rational 

interpolator of quadratic numerator and denominator. The remaining rational function 
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parameters are determined by given boundary conditions of the interval of interest 

which are calculated using a finite element based analysis tool [28]. 

Selection of sample points adaptively is known to affect the interpolation quality. 

Nevertheless, most adaptive sampling schemes available are suitable for global curve 

fittings that, unlike the proposed piecewise rational function, interpolate the whole 

range with one interpolator [108, 116-118]. The proposed interpolation scheme here 

again employs the Bayesian classifier in order to adaptively sample the frequency range 

by bisecting and hence refining the interval under consideration that enhances the 

interpolation process. The Bayesian trained rational function proves to have a powerful 

yet, unlike other standard approaches such as Neural Networks, simple approximation 

capability based on statistics and just a single controlling parameter. Further 

enhancements in terms of speed are naturally expected if an effective gradient estimator 

such as the adjoint variable method is used allowing the calculation of sample derivative 

values at no extra computational cost [90]. In Chapter ‎4, an in-depth analysis of the 

proposed interpolation‟s efficiency and reliability is shown by an example of an 

individual of a generation in a genetic algorithm applied for designing concurrent 

dielectric and conductor topologies for miniaturized novel antennas [119].  

The aforementioned surrogate models serve a common central purpose: They 

provide a „virtual‟ objective function which can be called by the optimization solver 

within a design cycle. Variations exist in the training and/or tuning parameters when 

creating these surrogate models. Unfortunately, training a model of increased 

topological complexity leads to an excessive computational effort and most of the time 

results in a model that is problem dependent. Also, the resulting approximate objective 

function is only valid in a constrained design sub-domain which is likely to contain the 

possible optimum and therefore the original model can be replaced with an approximate 

surrogate model only in this region. For problems where the optimization model relies 

on the calculation of a frequency based electromagnetic response (such as bandwidth or 

input impedance) of topologically complex devices, the creation of a reliable surrogate 

model becomes questionable. This is the case particularly as the dimensionality of the 

design space increases such as in large-scale volumetric synthesis problems.  

However, rational functions offer an attractive solution for providing a more 

global approximation taking into account the entire band of the frequency response into 

consideration. They also provide additional advantages. First, they are well suited for 

approximating resonances due to their inherent pole predicting behavior. Also, unlike 
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surrogate models they do not rely on tuning parameters. Therefore, rational functions 

are likely to yield a more general approximation valid for a larger class of problems 

with a reduced computational effort and are more suitable to approximate frequency 

dependent electromagnetic responses. As a result, their use has resulted in various 

representations of resonance type curves with reasonable number of support points 

[106-112]. Solving for the coefficients of the rational function is known as the Cauchy 

method and is first introduced in [120].  

Cauchy method has been employed for the extraction of a circuital model [121], 

the response of which fits the microwave device reflection and transfer functions of 

non-lossy systems. Lamperez et al. [122] extended the Cauchy method in [121] to 

reduce the model order of systems which may be lossy. In addition to the complicated 

mathematics needed for deducing the resulting expression or equivalent circuits, this 

technique is restricted to electromagnetic optimization of devices such as filters and 

multiplexers. Moreover, the solution within a standard Cauchy based method with 

techniques such as direct inversion becomes more prone to numerical errors as the 

number of support points increases (by producing a system of linear equations which is 

ill-conditioned).  

A solution alternative to ill-conditioned systems is presented in [112], where 

Sarkar et al. made use of the Cauchy method by fitting a rational function to samples 

produced by the method of moment of the far field frequency response of a slit 

conducting cylinder and/or their derivatives. This technique has the potential of 

accurately predicting wide-band response utilizing narrow-band information via both 

interpolation and extrapolation. The computations have been automated later in [111] 

addressing the issue of adequacy of Cauchy method to certain data at hand. In both of 

these studies, the order of the optimum rational function is chosen such that the number 

of unknown coefficients is less than or equal to the rank of the corresponding stiffness 

matrix and hence the system to be solved becomes over-determined. Stiffness matrices 

are constructed via singular value decomposition and the total least squares method is 

employed to solve for the unknown coefficients. These studies show that singular values 

of the stiffness matrix determine the suitability of the rational interpolation. The 

proposed methodology allows for incorporating support point and derivative 

information. However, a frequency response with multi-resonances cannot be 

approximated via the rank constrained strategy as the rank of the system limits the order 

of the rational model. Also, since for each newly added point the system is re-solved, it 
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becomes computationally expensive when integrated with adaptive sampling 

techniques. An alternative approach to overcome these issues suitable for the solution of 

the unknown coefficients of a rational interpolation function is a support point recursive 

technique initially introduced by Stoer and Bulirsch [123] where the Neville approach is 

applied to rational functions.  

Stoer-Bulirsch technique is a recursive method that adds one support point at a 

time and solves for the unique rational interpolator that passes through all existing 

support points. This recursive strategy in turn enhances its suitability to adaptive 

sampling techniques. In adaptive sampling, each new support point is determined based 

on a certain error norm and its interpolator is found using the available data set. When 

compared with direct inversion solutions of rational interpolations, Stoer-Bulirsch 

technique is significantly less prone to numerical errors and is not constrained by the 

rank of the system.  

It is well known that the data set used for interpolation determines the quality of 

the resulting fitted curve. Therefore, adaptive sampling of a frequency response 

constitutes a key aspect in interpolation, hence, careful selection of these informative 

support points to serve as input data to the interpolation technique should result in a 

more successful interpolation [109, 116, 117]. Frequency data sets have been adaptively 

constructed and integrated to the proper choice of the rational function within Stoer-

Bulirsch technique to establish a fast interpolation scheme. Specifically, in [109] two 

adaptive sampling algorithms for rational interpolation are proposed. This technique 

relies on discretizing the frequency range into uniformly distributed intervals among 

which the appropriate frequency points will be selected from. As the algorithm 

progresses, uniformly distributed intervals are being refined if necessary. This uniform 

interval adaptive method alleviates drawbacks such as excessive sampling and 

outperforms other standard techniques such as the one used by Lehmensiek and Meyer 

[117]. Yan et al. [124] proposed adaptive sampling through rational functions created by 

following alternative Neville paths based on diagonal paths representing increments of 

the numerator and denominator by one after a specific switching grid is chosen so that 

that part of the resulting path is parallel to the main diagonal one.  

 One dimensional adaptive sampling within standard Stoer-Bulirsch technique has 

been upgraded to multi-dimensional fitting in [116]. Specific disadvantages still remain: 

The adaptive sampling parameters are not problem independent and need to be retuned 

for each new response, and the Stoer-Bulirsch interpolations are constructed based on a 



16 

 

pre-determined standard diagonal path which is not optimized, hence resulting 

interpolations even if adaptively constructed can be further improved for accuracy and 

computational efficiency. In this thesis, we propose as a second approximation 

technique, an adaptive sampling technique that works on a set of candidate support 

points which are generated only if necessary according to a chosen quality error norm 

unlike selecting it from a fixed predefined set of uniform data as proposed in [109]. The 

proposed technique is based on a generalized Neville algorithm which allows for an off-

diagonal path as suggested in [125] in opposition to the conventional diagonal paths in 

standard Stoer-Bulirsch technique. However, since both the path followed to construct 

the interpolator and the samples selected directly affect the quality and computational 

cost of the interpolation process, an optimized route is expected to result in more 

reliable and cost effective interpolations. To address this issue, the idea of a generalized 

Neville path is integrated here to an adaptive sampling strategy. Also, to further enhance 

the performance of an adaptive Neville path, the resulting algorithm is optimized for 

numerical stability and integrated to an initial diverse sampling. The resulting 

generalized Stoer-Bulirsch algorithm is analyzed and compared with standard Stoer-

Bulirsch technique and interpolation schemes with proposed enhancement features. 

Results demonstrate the capability of the optimized method to overcome three common 

problems of existing methods: premature convergence, catching significant resonances 

and avoiding spurious oscillations. As a result, the proposed generalized Stoer-Bulirsch 

algorithm leads to approximations with reduced number of samples and enhanced 

accuracy norms. 

 

1.5  Objective and Contributions of the Thesis 

In this thesis, a formal design scheme relying on integrating an accurate 

modeling/analysis tool that simulates the performance of heterogeneous material 

structures with spatial distribution of magneto-dielectric constituents with a versatile 

optimization method is proposed. The material model employed in the proposed design 

framework is based on the mathematical theory of homogenization using asymptotic 

expansion and is capable of calculating the effective constitutive parameters of a 

composite magneto-dielectric material. Consequently, the resulting framework allows 

for the design of material topologies with arbitrary inclusion geometries and multi-
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phases. This composite substrate is described by spatially periodic parameters and its 

effective constitutive parameter is calculated using the PDE-Coefficient Form module 

of the commercial FEA solver COMSOL. The material simulation model is linked with 

a global genetic algorithm tool to design the unit cell topology of the periodic structure. 

The goal is to design materials microstructures with desired constitutive parameters 

employing off-the-shelf isotropic constituents.  

A second objective is related to addressing a well-known computational 

bottleneck existing in large-scale optimization studies of complex electromagnetic 

devices with multi-resonance type frequency response. The goal here is to develop 

rational function interpolations integrated with adaptive sampling schemes capable of 

predicting multi-resonant type responses accurately and with a few number of frequency 

sampling points. This is expected to reduce the computational cost needed for re-

analysis in predicting the S-parameter response and consequently speed up the 

optimization process of novel electromagnetic devices. 

Contributions of this thesis can be summarized as follows: 

1) Develop a formal inverse design methodology for the microstructure of magneto-

dielectrics with desired effective constitutive parameters by 

a) Extending topology optimization to design the unit cell of the structure 

b) Implementing the asymptotic expansion based homogenization theory applied on 

Maxwell‟s equations in order to calculate the effective constitutive parameters 

2) Develop an efficient interpolation technique for accurately predicting multi-resonant 

type frequency scattering parameter responses of electromagnetic devices with 

minimum number of sampling frequency points by 

a) Heuristic based technique (implementing Bayes‟ theory) that infers resonances 

inside the interval of interest and adaptively samples frequency points. 

b) Extending Stoer-Bulirsch algorithm to follow a non-diagonal path 

incrementation of the rational function order and exploiting this scheme to 

increase the interpolation accuracy and reduce the number of sampling 

frequencies. 

Application areas of the thesis are 

1) Magneto-dielectric slabs with desired constitutive anisotropic parameters 

(permittivity/permeability tensors) 

2) Layers of non-reciprocal magnetic photonic crystals 

3) Large scale topology optimization of microstrip patch antennas 
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1.6  Outline of the Thesis 

The thesis is organized as follows: Chapter 2 comprises background on 

homogenization theory using asymptotic expansion applied to Maxwell‟s equations, 

implementation of the design framework with validation examples, and a study on 

bounds of effective parameters. Chapter 3 is devoted to the design of dielectric layers 

for non-reciprocal magnetic photonic crystals using the developed formal design 

methodology. Chapter 4 and Chapter 5 describe rational function interpolation schemes 

via Bayes‟ theory and Stoer-Bulirsh algorithm‟s non-diagonal path, respectively. 

Remarks and future work ideas are mentioned in Chapter 6. 
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2  HOMOGENIZATION THEORY APPLIED TO 

ELECTROMAGNETICS  

 

2.1  Homogenization of Maxwell’s Equations 

The theory of homogenization by the asymptotic method is well established in 

literature [45]. The homogenized constitutive parameters represented by the permittivity 

and permeability tensors of Maxwell‟s equations are derived in this chapter and will be 

used in this thesis as a part of developing a formal design framework with the goal of 

obtaining the homogenized/effective material tensors 
eff  and 

eff . The governing 

equations are manipulated as discussed next. 

 

 

 

x1

x2

x3

y3

y2

y1

Y1

Y2

Y3

X1=eY1

X2=eY2

X3=eY3

e << 1

 

Figure ‎2.1 Three dimensional unit cell represented in the microscale  TYYY 321y  

and the macroscale  TXXX 321x  coordinate systems where e is the lattice 

constant 
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If we assign a coordinate system  TXXX 321x  in 3
R  space to define the 

domain of the composite material σ , then assuming periodicity, the domain can be 

regarded as a collection of parallelepiped cells of identical dimensions 1eY , 2eY , and 

3eY  where 1Y , 2Y , and 3Y  are the sides of the base cell in a local (microscopic) 

coordinate system   eYYY
T

xy  321  and e  is a small quantity representing the 

lattice constant or the unit cell dimension, Figure ‎2.1. Therefore, any dependency on y  

can be considered y -periodic for a fixed x  in the macroscopic level. Moreover, it is 

assumed that the form and composition of the base cell varies in a smooth way with the 

macroscopic variable x . We consider two matrices 

       









e
ij

e

ij

e

ij

e x
axaxaxa  and  (‎2.1) 

 

       









e
ij

e

ij

e

ij

e x
axaxaxa 0000  and  (‎2.2) 

 

where both functions  yaij
 and  ya

ij0  are y -periodic. We consider the boundary value 

problem associated with the equation  

 

   σfuaua in  0  e

e

e

erotrot  (‎2.3) 

 

where ea  and e

0a are 33  matrices representing the constitutive parameters that can 

vary with respect to space and frequency, rot is the curl operator and f  is a vector 

representing the source term, and σ  is the unit cell domain. 

We will study the behavior of the vector variable eu  as e approaches zero. Let 

the operator working on the field quantity eu  called eA  be defined as follows 

 

  eee rotrot 0aaA   (‎2.4) 

 

Without loss of generality we will let Ia e

0
, where I  is the identity matrix, in which 

case the expression is incapable of representing full anisotropic properties but this 
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condition will be relaxed later. Using the chain rule of differentiation 

  1ffff,f 



 erotrot

x

y
rotrotyxrot yxyxx , the operator eA  can be rewritten as 

 

ee eee 03

0

2

1

1

2
aAAAA    (‎2.5) 

 

where the operators on the right hand side are given by 
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The field vector u  is expanded asymptotically as, 

 

       yxuyxuyxuu ,,, 2

2

1

1

0 ee  (‎2.7) 

 

Substituting the last equation along with the expanded operator given by (‎2.5) and (‎2.6) 

into the boundary value problem (‎2.3) and manipulating proves that 0u  is a function of 

x  alone and for simplicity is denoted by u  

 

  uxuu  00  (‎2.8) 

 

and the following relation is obtained 

 

  0uua  xy

e

y rotrotrot 1  (‎2.9) 

 

Now, let us define a vector quantity w  as 

 

 uuaw xy

e rotrot  1  (‎2.10) 
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Averaging w  over the problem domain σ , it becomes a function of x  alone 

because of the y -periodicity over the domain and can be written with the aid of the 

averaging operator M  or equivalently w~  as 

   xwww ~~ M  (‎2.11) 

 

Using (‎2.9), (‎2.10), (‎2.11) and noting that the rotation with respect to y for a function of 

x alone is zero,   0xw ~
yrot  we can write 

 

  0ww  ~
yrot  (‎2.12) 

 

Equation (‎2.11) can be rearranged as  

 

  0ww  ~M  (‎2.13) 

 

From equation (‎2.12), it can be deduced that there exists a scalar function  yx,Ψ  the 

gradient of which is equal to the quantity ww ~ . 

 

 yxww ,~ Ψgrad y  (‎2.14) 

 

Using (‎2.10) and recalling the identity   0vyy rotdiv  for any vector quantity v , the 

following relation can be obtained 

 

     01

1



uuwa xyy

e

y rotrotdivdiv  (‎2.15) 

 

Substituting (‎2.14) into (‎2.15) yields: 

 

     waa ~11 
 e

yy

e

y divΨgraddiv  (‎2.16) 

 

The solution of the last equation is crucial for calculating the effective parameters as 

will be shown later. The solution is simplified by introducing a field quantity parameter 

θ  according the following relation. 

 



23 

 

wθ ~Ψ  (‎2.17) 

 

Equation (‎2.16) can be rewritten using the last relation as 

 

     j

e

y

j

y

e

y divgraddiv eaa
11 

   (‎2.18) 

 

where 
je is an identity vector in the corresponding axis. Equation (‎2.18) is solved for 

each problem space dimension, i.e. for a three-dimensional problem, 3,2,1j . 

Using (‎2.14) and (‎2.17) and noting that  can be written as  

 

 wθIw ~
ygrad  (‎2.19) 

 

where θygrad  for a three-dimensional problem is defined as the following 
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θ  (‎2.20) 

 

Averaging   wa
1e  in (‎2.10) yields 

 

   uwa rote 
1

M  (‎2.21) 

 

Substituting (‎2.19) into the last equation gives: 

 

     uwθIa rotgrad y

e 
 ~1

M  (‎2.22) 

 

We will define a new operator which will account for homogenization, H , 

working on   1ea  as follows 

 

       θIaa y

ee grad
 11

MH  (‎2.23) 
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And hence w~  in (‎2.22) can be written in terms of the H  operator as 

 

   uaw rote
11~


H  (‎2.24) 

 

When the last equation is compared with (‎2.10), we conclude that the operator ℋ 

is the homogenization operator that yields the effective property as w~  and urot  in 

(‎2.24) are the average quantities of w  and  uu xy rotrot 1
, respectively, in (‎2.10). 

Applying (‎2.22) on the operator eA given by (‎2.4) we get the homogenized operator as 

follows: 

 

     










rotrot ee

11
aA HH  (‎2.25) 

 

According to Theorem 11.4 in [45], if the operator e

0a  is anisotropic which is a 

general case, the homogenized operator can be written as 

 

      eee rotrot 0

11
aaA HHH 











 (‎2.26) 

 

The wave equation is represented by 

 

   σJεEEμ in  21

ijrotrot    (‎2.27) 

 

where E  and iJ  are the electric field and the induced current, i.e. u  and f , 

respectively. In the above derivations when   1ea  and e

0a  are replaced by the 

permeability and permittivity tensors μ  and ε , respectively, the homogenized 

permittivity and permeability tensors can be finally defined as in equations (2.27) and 

(2.28) below. 

 

    θIμμ ygrad MH  (‎2.28) 
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    θIεε ygrad MH  (‎2.29) 

 

2.2  Numerical Implementation of the Homogenized Material Model 

In this section we make use of the homogenized form of the permeability and the 

permittivity dyads given by (‎2.28) and (‎2.29) and numerically implement them in order 

to calculate the effective properties at the macro-scale level. The operator M  is a 

straightforward operator since it is simply a volumetric averaging operator. 

Nevertheless, the intermediate field θ  requires careful consideration because it requires 

the solution of a partial differential equation given by (‎2.18). Towards that goal, we 

employ a finite element based solution environment using COMSOL MULTIPHYSICS 

and utilize the Coefficient Form module. The objective is to solve this boundary value 

problem that is periodic in θ  on the boundaries of the unit cell.  

Figure ‎2.2 shows a unit cell that is discretized into 9 x 9 discrete sub-cells filled 

with material phases of different properties. 

 

 
 

The most general form of the Coefficient Form module PDE in COMSOL is as: 

 

  fuβαuYauuc    gradgraddiv  (‎2.30) 

 

To emulate the PDE to be solved for in (‎2.18), α , β , and Y  correspond to zero 

matrices and εc  . Therefore, the coefficients of the PDE are discontinuous at the 

 

Figure ‎2.2 A typical two-dimensional periodic unit cell composed of four constituents 

with different permittivities  140,100,70,20  distributed discretely in a 9 x 9 cell 

configuration. 
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boundaries of two adjacent constituents inside the unit cell. The right hand side 

corresponds basically to the divergence of these discrete coefficients that are equivalent 

to Dirac delta functions at the constituents‟ boundaries with infinite values. The integral 

of the right hand side across a boundary equals the difference of the constituents‟ 

coefficients of the domains sharing that boundary. However, the Dirac δ distribution 

cannot be expressed as a function that COMSOL Multiphysics is able to calculate 

numerically. Therefore, this challenge is overcome by preserving the finite element 

method‟s weak formulation of the right hand side in its original form. The weak 

formulation is obtained by multiplying the partial differential equation by an 

approximate solution field, v , and manipulation using integration by parts over the 

solution domain. The right hand side of the weak formulation at the constituent 

boundaries is assigned the coefficient difference value   multiplied by the approximate 

solution field v  directly as indicated by (‎2.31). 

 

 
σ

vv  
(‎2.31) 

 

Practically, we set the source term f  on the right hand side of (2.29) to zero and assign 

the constituent boundaries with the corresponding coefficient difference  . 

Periodicity condition requires θ to be equal at opposite boundaries of the unit cell 

which completes the boundary value unit cell problem defined in (‎2.18). Figure ‎2.3 

depicts the solved intermediate θ field distribution for the material distribution of the 

unit cell in Figure ‎2.2. 

 

 

 

 

Figure ‎2.3 Intermediate 2θ  field distribution obtained via COMSOL for material 

distribution of unit cell in Figure ‎2.2 
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The field data is then post-processed in MATLAB and the homogenized constitutive 

parameter is solved using (‎2.29). The homogenized permittivity tensor 
effε  calculated 

for the unit cell example in Figure ‎2.2 is equal to, 








19.6923.0

22.028.46
 

 

2.2.1  Validation of the homogenized material model  

The material model based on homogenization was introduced and implemented in 

previous sections. In this section, results of the proposed material model are compared 

with results obtained from mixing formulas for different inclusions and unit cell 

configurations shown in Figure ‎2.5 and Figure ‎2.6. 

 

 

 

Figure ‎2.4 depicts a square shaped unit cell with (a) square and (b) circular 

inclusions, and (c) a honeycomb shaped unit cell with a honeycomb inclusion with a 

volume fraction of 0.4 each. The volume fraction is the ratio of the inclusion volume to 

the volume of the unit cell. 

Mixing formulas such as the Maxwell-Garnett and Bruggeman are discussed in 

detail in [126] and results obtained using these formulas are depicted in Figure ‎2.5. 

Results belong to unit cells with a host and inclusion permittivity of 1 and 80, 

respectively. Figure ‎2.6 presents results for the same mixing formulas for unit cells with 

reverse host and inclusion permittivities. Simulations to obtain homogenized material 

model results were run at a uniform volume fraction sampling with a stepsize of 0.025 

ranging from a volume fraction of 0, i.e. no inclusion, to 1 with no host configuration 

for the square and the honeycomb cases, and from 0 to 0.775 volume fraction for the 
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(c) 

Figure ‎2.4 A square shaped unit cell with (a) square and (b) circular inclusions, and (c) a 

honeycomb shaped unit cell with a honeycomb inclusion. Volume fraction of the 

inclusions is 0.4 
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circular inclusion since higher volume fractions are geometrically not attainable for 

circular inclusions. As the results show, proposed material model shows a close 

behavior to the Maxwell-Garnet curve for all volume fractions.  A small deviation is 

observed in the circular case at higher inclusion volume fractions with all results  

attaining values between predictions of the Maxwell-Garnet and Bruggeman curves. 

As a second validation, the numerical implementation of the material model is 

simulated with fabricated designs in literature. Figure ‎2.7 compares the proposed model 

with Banks et.al. [41] for unit cell configurations with 2.7 and 1.003 of host and circular 

inclusion dielectric constants and with results of Zouhdi et al. in Figure ‎2.8 for unit cells 

with 1 and 80 of host and square inclusion dielectric constants, respectively. A perfect 

match of the results as observed for both comparisons proves the reliability of the 

homogenization based modeling tool. 
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Figure ‎2.5 Effective dielectric constant vs. volume fraction of different inclusions in 

various unit cell configurations: Square in square, honeycomb in honeycomb and circles 

in square unit cells. Comparison is done with Maxwell Garnett, Bruggeman of host to 

inclusion ratio of 1-80 
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Figure ‎2.7 Comparison of proposed homogenized based method against model proposed 

by Banks et al. and Maxwell-Garnett formula 

 

Figure ‎2.6 Effective dielectric constant vs. volume fraction of different inclusions in 

various unit cell configurations. Comparison is done with Maxwell Garnett, Bruggeman 

of host to inclusion ratio of 80-1 
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2.3  Bounds on the Effective Tensor of Constitutive Parameters 

Before moving towards using the earlier derived material models in design studies 

targeting desired dielectric and/or magnetic properties of the material matrices 

represented by their permittivity and permeability matrices, one needs to assure that the 

constituent material phases are physically able to produce these characteristics. This can 

be done under certain conditions using the so called „bounds study‟ relying on the use of 

mixing formulas. The randomness of the constituents geometry inside the unit cell gave 

rise to the birth of different mixing formulas in literature to calculate the effective 

parameters and it is fair to say that no mixing rule can be claimed universal. The 

pioneers of the effective characterization include the Maxwell Garnett mixing rule 

[127], the Bruggeman mixing formula [39] and coherent potential. The general form of 

the mixing formula [126] is given by  

 

   eeffei

ei

eeffeeff

eeff
f


















22
 (‎2.32) 

 

 

Figure ‎2.8 Comparison of proposed homogenized based method against model proposed 

by Zouhdi et al. and Maxwell-Garnett formula. 
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where 
eff  is the effective permittivity, e  is the host permittivity, i is the inclusion 

permittivity, f  is the volume fraction of the inclusion in the unit cell and the non-

dimensional parameter   is the formula type deterministic parameter; 0  returns the 

Maxwell-Garnett formula, 3 results in the coherent potential formula ,and 1  

yields the Bruggeman mixing formula.  

There are still many other mixing formulas [128]. If the inclusions are not 

spherical, their average polarizaition is higher and the mixing rules have to be modified 

accordingly. As will be shown later in this thesis, for separate non-intervening 

inclusions, Maxwell Garnett is closer to the simulation results whereas other simulation 

studies in literature show that when clustering effect is allowed, Bruggeman formula is 

more precise. Also, one should bear in mind that these formulas are all applicable to two 

phase constituents only. 

The bounds are similar to the mixing formulas; they are functions of the dielectric 

constants of the constituents (host and inclusion) and the volume fractions of the 

inclusion. The intuitive bound on the effective parameter is the one limited by the 

constituent constitutive parameters; 

 

   eieffei  ,max,min   (‎2.33) 

 

A more restrictive material bound called the Wiener bound [129] is given as 

follows 

 

 
  eieff

ie

ei ff
ff








1

1
 (‎2.34) 

 

where the lower bound is the inverse of the volumetric average of the permittivity 

inverse and the upper bound is merely the volume averaging of the compound. This 

bound is only applicable to inclusion of aligned plates. The applied electric field must 

be parallel (perpendicular) to the plates giving rise to no (maximum) depolarization and 

maximum (minimum) contribution to the effective parameter. A more restrictive 

effective parameter limit is also available through the Hashin-Shtrikman bound [130] as 

follows 

 



32 

 

 

iie

ieff

eei

e f

f

f

f









3

1

1

3

11












  
(‎2.35) 

 

The lower limit here is basically the Maxwell Garnett formula whereas the upper bound 

is the inverse of the Maxwell Garnet obtained by exchanging the inclusion and the host 

in the formula. Research studies in the late 70‟s restricted the limits even further [131, 

132]. By assuming ie   high order bounds are derived with tuning parameters related 

to the unit cell shape and the symmetry of the inclusions.  

These formulas are restrictive and need much attention regarding their 

assumptions for practical applications. Sihvola [133] considers two main deviation 

examples where the effective permittivity can either be higher or lower than their 

constituents. The first one is due to cross-coupling effects where the real part of the 

effective permittivity is out of limits of its constitutive component values in both 

directions. For example, Sihvola shows that the effective permittivity can violate the 

upper limit for lossy mixtures (conductor inclusions where the coupling of the 

polarization and conduction currents affects the electrodynamic processes within the 

unit cell). He also presents an example where values violating the lower bounds are 

observed in a magnetoelectric example where the electric-electric interaction is not 

enough and the material response is a six-by-six-dyadic and a single component of this 

material matrix can display unexpected properties (exceeding the limits) in the 

homogenized form at the macroscale level. The permittivity in these examples is no 

longer scalar; either a complex number or a tensor. The bounds have to be reprinted in 

higher dimensions in order to treat these cases. The other cause of violation is due to the 

statistical character of random materials. Bounds, which are usually derived for special 

statistical topological configurations, can be broken due to the statistical nature of their 

constituent distribution inside the material. Bounds on the effective tensor of two phases 

parameters were derived and developed in [134-136] by putting limits on the Taylor 

expansion coefficients of the Pade Approximation of the effective parameter tensors. 

Nevertheless, the focus was on the structural limit represented by the volume fraction of 

a known calculated or measured effective permittivity. Beche et al. [137] derived the 

theoretical formulation of the bounds on effective dielectric tensors based on a 

composition method and a statistical discretization approach. In this thesis we follow 

their formulation with same notation given as: 
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where 1  and 2  are the dielectric constants of the two phase constituents with volume 

fractions 1f  and 2f , respectively. The superscripts 21 yy  ( 12 yy  )are mathematical 

representations denoting the composition of 1y - 2y ( 2y - 1y ) which is the integral over 

2y ( 1y ) of the limits in the 1y  ( 2y )-direction of infinitesimal perpendicular strips of the 

unit cell. For more details the reader is referred to [137]. Note that the volume fractions 

of the constituents must add up to unity relating 2f to 1f  through the following formula 

12 1 ff   (‎2.38) 

 

 Relations in (2.35) and (‎2.37) account for the bounds of the effective permittivity 

tensor. As an example, we examine theses bounds for commercially available shades of 

MCT powders, with lowest possible value of 201  and highest available value of 

1402  . Using the relations (‎2.36) and (‎2.37) we plot the corresponding effective 

permittivity tensors over the volume fraction  1  01 f  as shown in Figure ‎2.9. 
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The dashed and solid lines represent the lower and the upper bounds on 11  and 

22 , respectively. Hence, according to the bound plot, for instance an effective dielectric 

constant of 45 or 70 cannot be obtained using the shades 20 and 140 alone since it lies 

out of the bounds. In the next section we will present an example where this restriction 

is overcome by using additional shades that lie between the extreme limits given above. 

Although the bounds above are not valid for more than two phases and one cannot 

check for the feasibility of such anisotropic desired properties using more than two 

shades, the application of given bound formulations for all combinations of possible 

shades (20,70,100,140) as shown in Figure ‎2.10 point for the feasibility of an effective 

dielectric constant range of 45 and possibly 70 since intuitively the original bounds for 

shades 20 and 70 alone are practically enlarged with a larger combined/union region 

residing inside the limit curves by the addition of other phases such as constituents with 

dielectric constants of 70 and 100. 

 

 

Figure ‎2.9. Upper (solid) and lower (dashed) limits of the effective permittivity in the x-

y plane and the effective permittivity in the z direction where no material variation 

exists (dotted line) 
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2.4  Design Optimization Framework 

The design optimization framework is built by integrating the material model 

illustrated in the last section with a genetic algorithm optimizer using the Genetic 

Algorithm and Direct Search toolbox of MATLAB. The objective function within 

design studies corresponds to minimizing the error norm (
effe ) between the desired H

desε  

and calculated H
ε  effective parameter tensors as  

 

HH
deseffe εε   (‎2.39) 

 

The unit cell is discretized into design cells (see Figure ‎2.2) and the 

permeability/permittivity of each design cell is assigned as a design variable.  

The Genetic Algorithm and Direct Search toolbox include routines for solving 

genetic optimization problems using direct search, genetic algorithm, and simulated 

annealing. The genetic algorithm is a method for solving optimization problems that is 

based on natural selection, the process that drives biological evolution. The genetic 
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Figure ‎2.10. Upper (Solid) and lower (dashed) limits of the effective permittivity in the 

x-y plane for six constituent pairs (20,70), (20,100), (20,140), (70,100), (70,140), and 

(100,140) informally pointing for the feasibility of achieving effective elements of the 

dielectric constant of 45 and 70 using the four shades. 
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algorithm repeatedly modifies a population of individual solutions. At each step, the 

genetic algorithm selects individuals at random from the current population to be 

parents and uses them to produce children for the next generation. Over successive 

generations, the population "evolves" toward an optimal solution. One can apply the 

genetic algorithm to solve a variety of optimization problems that are not well suited for 

standard optimization algorithms, including problems in which the objective function is 

discontinuous, non-differentiable, stochastic, or highly nonlinear. The objective function 

at hand is complex and therefore using gradient based optimization tools the solution 

would likely get trapped in local minima. Therefore, genetic algorithm seems a good 

choice for locating the global minimum of the objective function (‎2.39). The genetic 

algorithm is performed by calling the function ga that in its simplest form is given as 

follows 

 

  options) nvars, ,n@fitnessfuga( =fvalx  (‎2.40) 

 

where @fitnessfun is the function to be minimized, nvars is the number of design 

variables and options is a structure that stores the genetic algorithm tuning parameters. 

The fitness function @fitnessfun calls a Matlab m-file that takes the design variable 

values from a set of continuous or discrete values that stand for the constituents 

constitutive parameters of the discretized design cells. The fitness function then 

prepares the COMSOL model and updates the PDE coefficients   1ea  and the weak 

form,   given by (‎2.31), of the boundary conditions between the design cells of the 

right hand side of (‎2.18) and also imposes periodicity at the unit cell boundaries. 

COMSOL PDE Coefficient Form Module then solves for the θ  field distribution and 

the results are then post-processd by another MatLab file to solve for the effective 

parameters according to (‎2.23). 

A typical list of tuned genetic algorithm parameters for this problem with 9x9=81 

design variables is given as the following: population size = 80; selection strategy 

function = remainder; scattered crossover function; scale parameter value = 0.75 and 

shrink mutation parameter value = 0.5. 
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2.4.1  Validation of the design framework 

In this subsection four validation examples are demonstrated including an initial 

sanity check which proves that the design framework has the capabilities to design 

electromagnetic materials with both desired isotropic and anisotropic constitutive 

parameters from isotropic constituents.  

 

2.4.1.1  Design of isotropic dielectric material tensor with homogenous phase 

The isotropic design case tackled here is intended to validate the design 

framework by targeting an isotropic permittivity 70H
desε  

using two material shades of 

 70,20  which includes the desired homogeneous phase itself, hence serves as a 

sanity check example. The design unit cell is discretized into a 20x20 design variable 

cells that will be occupied by the material shades. The genetic algorithm converges to 

the correct naïve solution 70H
ε  in 357 generations. The genetic algorithm tuning 

parameters are shown in Table ‎2.1. Figure ‎2.11 depicts the convergence history of the 

GA optimization process. 

 

Table ‎2.1Genetic algorithm tuning parameters of the validation examples of the 

proposed design framework 

  
Validation example 

  

isotropic 

homogeneous  

substrate 

isotropic 

Inhomogeneous  

substrate 

Anisotropc 

Population size 
 

60 20 80 

Elite count 
 

2 2 2 

Crossover fraction 
 

0.9 0.9 0.9 

Maximum generations 
 

500 500 500 

Selection function 
 

remainder remainder remainder 

Cross over function 
 

scattered scattered scattered 

Mutation function Scale 0.75 0.75 0.75 

 
Shrink 0.5 0.5 0.5 
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2.4.1.2  Design of isotropic dielectric material tensor with inhomogeneous phases 

In this design case conducted for the validation of the design framework, the same 

targeted isotropic permittivity of the last example 70H
desε  is desired with the 

constituents  100,1 , this time excluding the target phase dielectric constant of 70. 

The optimum design converged in 226 iterations as shown in the convergence history in 

Figure ‎2.14. The genetic algorithm tuning parameters used are given in Table ‎2.1. The 

error norm used in the optimization procedure according to relation (‎2.31) returns a 

value of 0.020908 for the optimum design with a homogenized dielectric tensor of 















00.7001.0

02.001.70H
ε . The resulting optimum material design distribution is shown in 

Figure ‎2.16. The volume fraction of the inclusion with 100  returns a perfect match 

with the Maxwell-Garnet mixture formula both predicting a value of 69.94 for the 

dielectric constant. 
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Figure ‎2.11 GA convergence history of a sanity check case of a unit cell with 20x20 

design variable cells. Two material shades of  70,20  with a desired isotropic 

70H
desε  returns a homogeneous phase substrate of 70H

ε  
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2.4.1.3Design of an anisotropic dielectric material tensor 

An anisotropic design case is conducted in this validation example for a desired 

permittivity tensor of 
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Figure ‎2.13 Resulting optimum material design of the example in Figure ‎2.12. Black 

and white shades are phases with dielectric constants 1 and 100, respectively 
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Figure ‎2.12 Genetic algorithm convergence history of a unit cell with 20x20 design 

variable cells: two material shades of  100,1  with a desired isotropic 70H
desε  

returns a material tensor of 













00.7001.0

02.001.70H
ε  
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









700

045H
desε . 

The design unit cell is discretized into two different mesh sizes of 20x20 and 9x9 

design variable cells. The design variables are selected from a subset of four material 

shades with different dielectric constant values of  140,100,70,20 . The  genetic 

algorithm converges when the average change in the fitness value is less than a chosen 

tolerance value of 610 . The genetic algorithm returns an optimum dielectric material 

tensor of 









47.6903.0

00.052.45H
ε  for the 20x20 discretization case with an error norm of 

0.54 and 









88.6910.0

09.011.45H
ε  for the 9x9 discretization case with an error norm of 0.15 

defined according to (‎2.31). The convergence history of each run is depicted in Figure 

‎2.14. As expected, the 9x9 configuration with 81 design variables converges faster than 

the 20x20 design configuration with 400 design variable cells (84 vs. 206 generations, 

respectively) because it has less number of design variables and consequently spans 

much smaller design search space. Nevertheless, the small error norm of the optimum 

design of the 9x9 cell proves that this number of discrete cells is enough to fulfill the 

design target requirements. The optimum material design obtained using the 20x20 

discretization is shown in Figure ‎2.15. The material distribution of the optimum design 

using the 9x9 discretization is shown in Figure ‎2.16 (a) as a single unit cell and its 3x3 

array configuration in Figure ‎2.16 (b) that was also fabricated. More specifically, a 3x3 

array configuration obtained using a repetition of the unit cell design resulting from the 

first scheme is fabricated as shown in Figure 4 using Dry Powder Deposition (DPD) and 

commercial MCT ceramic powders (Trans-Tech Inc.) [138]. The resulting fabricated 

substrate in pressed form is shown in Figure ‎2.16 (b). 
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Figure ‎2.15 Optimum design of the 20x20 design example explained in Figure ‎2.14 
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Figure ‎2.14 Genetic algorithm convergence history of a unit cell discretized with 20x20 

and 9x9 design variable cells. Shades of  140,100,70,20  with a desired anisotropic 











700

045H
desε  returns a homogenized substrate with 










47.6903.0

00.052.45H
ε  of the 

20x20 case and 









88.6910.0

09.011.45H
ε  of the 9x9 case. 
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(a) 

 

(b) 

Figure ‎2.17 Automated dispensing machine in action when depositing available ceramic 

powder shades into a grid box ( cm 10cm 10  ) with desired material distribution of the 

3x3 array of the 9x9 design variable configuration shown in Figure ‎2.16 (b) resulting in 

a desired deposited substrate 
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(b) 

Figure ‎2.16 (a) Optimally designed unit cell for a homogenized substrate of the 9x9 

design case explained in Figure ‎2.14 and (b) a 3x3 array of the design unit cell to be 

fabricated  
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3  DESIGN OF MAGNETIC PHOTONIC CRYSTALS VIA 

HOMOGENIZED DIELECTRIC LAYERS 

 

In this chapter we present an example of the application of the proposed synthesis 

framework to magnetic photonic crystals. Photonic crystals have been utilized in radio-

frequency applications due to their extraordinary propagation characteristics [139-142]. 

Recently, a new class of photonic crystals was introduced from available material 

structures of rutile (TiO2) and CVGs (Calcium Vanadium Garnett) [143]. When 

compared with photonic bandgap structures, they exhibit much larger gain and less 

volume. In what follows we briefly review the characteristics of these photonic crystals 

and present their key advantages. 

Any photonic crystal supports slow electromagnetic modes associated with a 

vanishing group velocity 0 k  as shown in Figure ‎3.1. Regular band-edge (RBE) 

photonic crystals display this slow electromagnetic mode as the operational frequency 

approaches the band-edge frequency after which the propagation is prohibited. This 

slow down is associated with accumulation of electromagnetic energy and consequently 

radiating power. 

Photonic bandgap materials gained attention after their introduction by 

Yablonovich [144] where an experiment was conducted and the modes of the well-

known wood-pile structures were studied. Since the analytical formulation being 

established by Figotin et al. [145, 146] in 1996, a lot of research focused on the 

experimental investigation of various periodic dielectric structures (woodpiles, buried 

dots, cubic lattices, gratings, etc). Matching and total transmittance is difficult to 

achieve specifically for near the band edge frequency. Recent studies on photonic 

crystals overcome this drawback by working at frequencies far from the band edge or 

exhibit a degenerate band edge that flattens the k  band diagram and therefore a 

group velocity of zero is obtained at a wider range or bandwidth. More specifically, two 

types of crystals were proposed for near perfect matching of the incident wave at the 

interface of the crystal, namely degenerate band edge crystals (DBE) and magnetic 

photonic crystal (MPC) with a single inflection point (SIP). The DBE crystal (Figure 

‎3.1 b) consists of dielectric layers only and has a transmittance rate of 
4/1

d  
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compared with 
2/1

d of the regular band edge material (RBE) where d  is the 

difference between the operational and band edge frequencies. Also the group velocity 

decreases faster in DBE‟s and is proportional to 
4/3

d  as compared with 
2/1

d  in 

RBE crystals. The latter, non-reciprocal Magnetic Photonic Crystals (MPC) are crystals 

with two misaligned anisotropic dielectric layers and one magnetic layer. They possess 

a transmittance coefficient of unity and a slower group velocity (
3/2

d ). Figure ‎3.1 (a) 

– (c) depicts the band diagram of typical regular band edge crystals (RBEs), DBEs, and 

non-reciprocal MPCs. 

 

 

 

Non-reciprocal magnetic photonic crystals as shown posses a single inflection 

point around which the group velocity and its first derivative with respect to the 

wavelength are zero and the third derivative is a finite non-zero value in order to force it 

to be as far as possible from the band edge frequency and enhance the transmittance; 

more details about the analytical formulation of the concept is discussed in [147, 148]. 

One-directional photonic crystals have been investigated in several studies by 

Mumcu et al. [5, 143, 149-151]. They also proposed to realize them by anisotropic 

layers of dielectrics such as rutile and a ferromagnetic layer of CVG, as demonstrated in 

Figure ‎3.2. The permittivity and permeability tensors of rutile are given as follows 

 

   

(a) (b) (c) 

Figure ‎3.1 Band diagrams of typical (a) regular band edge (RBE), (b) degenerate band 

edge (DBE), and (c) magnetic photonic crystals (MPC‟s) associated with single 

inflection point (SIP) 
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

















100

010

001

0 A
 (‎3.2) 

 

where 12 A  is the misalignment angle between the principal axes of the two 

dielectric layers, 125a , 40 , and 0  and 0  are the free-space permittivity and 

permeability constants, respectively. 

 

 

 

Optimization of these structures is attempted by chirping the layers thicknesses 

shown in Figure ‎3.2 or shuffling them as discussed in [149, 150, 152, 153] in order to 

enhance the single inflection point behavior or harness the amplitude growth inside the 

crystal in order to achieve higher gain. In these studies, optimal designs were restricted 

to the only available anisotropic material found in nature such as rutile. Since it will 

allow for larger choices of materials for their realization with possibly improved 

performances, the material layers themselves of the MPC are targeted within the design. 

Our goal in this chapter is to prove that we can realize anisotropic dielectric layers that 

A1 A2 F

LA1 LA2 LF
 

Figure ‎3.2 One-directional magnetic photonic crystal unit cell structure. 
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are macroscopically equivalent to rutile from off-the-shelf isotropic materials using the 

material design framework proposed in this thesis.  

 

3.1  Realization of an Effective MPC Dielectric Tensor  

A unit cell of a one-dimensional magnetic photonic crystal consisting of two 

dielectric layers A1 and A2 and a magnetic layer F is shown in Figure ‎3.2. The 

periodicity of the unit cell of the photonic crystal is in the z-direction which is also the 

propagation direction. The layers are assumed homogeneous and infinite in the x and y-

directions. The electric and magnetic fields occupy the plane perpendicular to the plane 

of propagation, i.e. the x-y plane. Therefore, the key parameters that affect the 

propagation characteristics (and therefore are to be designed for) have no z-coupled 

components in the dielectric permittivity tensor and therefore can be written as a 22  

matrix as follows 

 















AaA

AAa

A





2cos2sin

2sin2cos
0ε  (‎3.3) 

 

The misalignment angle A  of each layer is given in [143]: 0A  for the first layer, 

A1, and 12 A  for the second layer, A2, 125a , and 40  in (‎3.3) the 

following matrices are obtained 

 











850

0165
1Aε  and 














36.9020

2064.159
2Aε  (‎3.4) 

 

Although the second layer can be obtained by the rotation of the first layer by 
15  

around the z-axis in the clockwise direction, we treat it as a separate design problem in 

order to assess the capability of the framework to design fully anisotropic matrices and 

negative entries. To start with, in the next section we first apply the bound study 

introduced in Section ‎2.3 to investigate feasible designs. 
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3.1.1  Bound investigations of effective MPC tensors with off-the-shelf dielectrics 

Within the available off-the-shelf dielectric shades, we start with 4 available 

constituents of  240,140,70,20 . Using (‎2.36) and (‎2.37) we calculate the lower and 

upper limits of the effective constitutive parameters of the following shade-pair 

combinations:  70,20 ,  140,20   240,20 ,  140,70 ,  240,70 , and 

 240,140 . As can be deferred from the calculated bound curves in Figure ‎3.4, the 

desired anisotropic dielectric properties of 165 and 85 per the MPC material matrices in 

(‎2.36) and (‎2.37) cannot be obtained using any of these shade-pairs only. However, it 

can be seen that the desired values lie between the maximum and minimum limits of a 

couple of shade pairs (20,70), (20,140), (20,240), (70,140), (70,240), and (140,240). For 

instance, if we examine the (20,140) and (20,240) shade limits we can see that desired 

values of 165 and 85 lie between the lower and upper bounds. Although this is not a 

rigorous method of determining the achievability of desired constitutive matrices with 

more than two shades, it gives an intuitive idea about the feasibility to obtain these 

properties. In addition, it directly indicates that a two-shade composite of the mentioned 

permittivities does not meet specified needs for the realization of MPC crystals. 
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Figure ‎3.3. Upper (solid) and lower (dashed) limits of the effective permittivity in the x-

y plane for six constituent pairs (20,70), (20,140), (20,240), (70,140), (70,240), and 

(140,240): informally pointing for the feasibility of achieving an effective elements of 

the dielectric constant of 165 and 85 using the four shades. 
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3.1.2  Design results of an MPC material tensor using off-the-shelf dielectrics 

Similar to the bound study in Section ‎2.3, the actual design process starts with the 

available 4 shades of dielectric constants  240,140,70,20 . The design unit cell is 

discretized into 9x9 variable cells. The design variables are selected from a subset of 

four material shades with different dielectric constant values of  240,140,70,20 . 

The genetic algorithm using the material model proposed here converges when the 

average change in the fitness value is less than a set tolerance value of 
610
. As a result, 

the genetic algorithm returned an effective dielectric tensor of 









85.070.01-

0.01-165.04
 H

ε  

for the first layer A1 with an error norm of 0.08 and an effective dielectric tensor of 











94.2414.74-

14.68-155.80
 H

ε  for the second layer A2 with an error norm of 6.5825. It is noted 

that the error norm (calculated according to (‎2.39)) of the „optimally‟ designed A2 layer 

is relatively larger than zero. Alternatively, instead of using the resulting A2 layer as is, 

it is known that by rotating the resulting A1 layer by 15 degrees in the clockwise 

direction, the desired optimum material tensor given by (‎3.3) should be achieved. 

Hence, re-investigating the resulting design topologies given by Figure ‎3.4 and Figure 

‎3.5, the design cell size seems to be too large turning the design domain resolution not 

fine enough to represent the second layer A2 by a 15 degrees rotation of the designed 

layer A1. In order to overcome this problem, the number of design cells was increased to 

18x18 and the optimization process was restarted with the last generation of the earlier 

algorithm that resulted in the design shown in Figure ‎3.6 for layer A2 with a 9x9 cell 

discretization. The design with finer discretization converged to an effective dielectric 

tensor of 









37.9019.97-

19.96-159.55H
ε  with an error norm of 0.10. The resulting optimum 

material design is shown in Figure ‎3.6. Convergence histories of the three design cases 

for layers A1 and A2 mentioned above are depicted in Figure ‎3.7. It is noted that the 

diagonal matrix with only 9x9 design variable cells has the fastest convergence history 

around 160 generations. 
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Figure ‎3.5 Optimum design of layer A2 with a 9x9 discretization using dielectric shades 

of  240,140,70,20  
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Figure ‎3.4 Optimum design of layer A1 with a 9x9 discretization using dielectric shades 

of  240,140,70,20  
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3.2  Analysis of the Non-Reciprocal MPC with Designed Dielectric Material Tensor 

In this section the magnetic photonic crystal made of layers A1 and A2 designed in 

Section ‎3.1.2 (shown in Figure ‎3.4 and Figure ‎3.6, respectively) is analyzed via 

simulations in order to validate its desired performance exhibiting a single inflection 

point at the frequency of interest. We first validate the simulation results for the MPC 

studied in Figure 6 of reference [149] with dielectric material tensors corresponding to 
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Figure ‎3.7 Genetic algorithm convergence history of the design for layers A1 and A2 

via 9x9 discretization (blue and green) and for layer A2 via 18x18 discretizaiton (black) 
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Figure ‎3.6 Optimum design of layer A2 with 18x18 design variable cells and using 

dielectric shades of  240,140,70,20  
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designed layers A1 and A2 integrated to ferromagnetic layers with Lf=0.3975 LA and 

LA=0.5695 mm, as shown in Figure ‎3.2. All the dielectric and magnetic dielectric 

tensors are assumed to be invariant with frequency as the frequency range of interest 

where the design is shown to exhibit a single inflection point is very narrow and around 

10 GHz. In order to simulate the MPC, COMSOL Multiphysics RF module was used. 

More specifically, first an eigenvalue analysis is conducted in order to determine the 

eigenfrequency to start with and then the simulation is swept over the wave vector k 

using harmonic analysis to obtain the dispersion diagram. Figure ‎3.8 shows the total 

energy density distribution for an MPC unit cell model with an eigenfrequency of 9.987 

GHz at Bloch wavenumber of 3. It is noted that the thickness in the x-y directions (1/20 

of the unit cell length) are much shorter than the in the wave propagation direction (z-

direction) in order to prevent modes in the eigenfrequency analysis from forming along 

the x or y-direction. The MPC is homogeneous in the x-y plane and the periodicity at 

the boundary directions of the finite thickness in this plane ensures this assumption. A 

simulation model in 3D is required to be able to express the layers‟ constitutive 

parameters in an appropriate tensorial form. 
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Figure ‎3.8 Time averaged total energy density distribution  [J/m
3
] for a non-reciprocal 

magnetic photonic crystal unit cell modeled in COMSOL Multiphysics RF module 
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The results of the simulated band diagram of the original MPC with rutile dielectric 

layers of A1 and A2 and the designed layers with isotropic constituents obtained in 

Section ‎3.1.2 shows a perfect agreement as shown in Figure ‎3.9.  

 

 

 

3.3  Conclusion 

This chapter presented an application of the material design framework developed 

in Chapter ‎2 to design dielectric layers for MPC‟s. Results show that this method is 

capable of realizing desired anisotropic electromagnetic constitutive parameters using 

simple off-the-shelf isotropic materials. This is the first step towards opening a new 

avenue where novel material designs are no longer restricted to a limited number of 

available materials. In short, desired properties or device performances can be directly 

linked to material constitutive parameters that are not readily available nor can be easily 

realized but designed from scratch for their alternatives via the proposed design tool. 

Future work includes realization and measurement of designed MPC‟s. 
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Figure ‎3.9 Comparison of the dispersion relation of the non-reciprocal MPC with 

original dielectric layers (made of rutile) vs. the designed layers (from off the shelf 

materials) 
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4  SPEED-UP TECHNIQUES BASED ON BAYESIAN 

TRAINED RATIONAL FUNCTIONS 

 

Design optimization has been a difficult, demanding but necessary task for the 

development of novel commercial radio frequency applications such as miniaturization 

of antennas without sacrifice in their bandwidth and radiation efficiency. The need for 

design, preferably design optimization, is pertinent to the competing physics of these 

metrics, which has been the focus of researchers for the past two decades. However, 

global synthesis via heuristic search techniques relies on fast and accurate reanalysis, 

which presents itself as a bottleneck in large scale electromagnetic search studies. 

Therefore, unless design studies are limited to only a few number of design variables 

[100], simulation based electromagnetic design studies can become impractical. In this 

chapter, an approximation scheme suitable for the frequency response of 

electromagnetic systems such as multi-resonance return loss of antennas is investigated 

The proposed technique allows for fast and accurate reanalysis within electromagnetic 

design optimization studies.  

Basis functions employed within the interpolation models have great influence on 

the quality of the surface approximation. Among alternatives, rational functions offer an 

attractive solution for providing approximate resonances due to their inherent pole 

predicting behavior. Therefore, they are likely to yield a more accurate approximation 

for a larger class of problems with a reduced computational effort. Hence, their use has 

resulted in various representations of resonance type responses with reasonable number 

of support points (points where the functional values are known) [106-112]. 

The rational approximation scheme proposed in this chapter employs an easy-to-

train and simple decision making classifier based on Bayes‟ theorem to predict multi-

resonance return loss curves of electromagnetic (EM) devices with complex topologies. 

 The Bayesian classifier infers a controlling parameter that controls the shape of 

the resulting resonances associated with a rational interpolator of quadratic numerator 

and denominator. The remaining rational function parameters are determined by given 

boundary conditions of the interval of interest. In addition, selection of sample points 

adaptively is known to affect the interpolation quality. The Bayesian classifier is also 
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used in adaptively sampling the frequency range by bisecting and hence refining the 

interval under consideration. The Bayesian trained rational function proves to have a 

powerful yet, unlike other standard approaches such as Neural Networks, simple 

approximation capability based on statistics and just a single controlling parameter.  

This chapter is organized as follows: Section ‎4.1 presents the theory of Bayesian 

based rational functions. The method is applied on a design optimization example of a 

patch antenna with multi-resonant return loss response in Section ‎4.2. Results and 

conclusion follow in Sections ‎4.3 and ‎4.4. 

4.1  Background on Bayesian Trained Rational Functions 

In this section, the theoretical background of the proposed rational function 

interpolation scheme based on the Bayesian classifier is presented. In the following 

subsections we introduce the reader to rational functions in Section ‎4.1.1 and Bayes‟ 

theory in Section ‎4.1.2. The proposed Bayesian trained rational function is presented 

later. 

 

4.1.1  Rational functions 

Rational functions provide the advantage of well approximating resonances due to 

their inherent pole predicting behavior. Therefore, they are likely to yield an accurate 

approximation valid for a larger class of problems with a reduced computational effort 

and therefore are well suited for approximating frequency dependent electromagnetic 

responses. As a result, their use has resulted in various representations of resonance type 

curves with reasonable number of support points [106-112].  

The general form of the rational function is given by a ratio of two polynomials of 

orders N  and D  respectively and is given as follows: 

 

 


















D

d

d

d

N

n

n

n

xb

xaa

xbxb

xaxaa
x

1

10

2

21

2

210

11 


  (‎4.1) 

 

where x  is the independent variable (usually frequency in EM applications),   is the 

rational interpolation of the response, and  Naa 0  and  Nbb 1  are coefficients to be 
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solved for that determine the rational function response. The roots of the denominator 

(also called poles of the rational function) give rise to the rational function attaining 

infinite value, which physically corresponds to a sharp resonance. As will be explained 

later in Section ‎4.1.3, complex roots correspond to less sharp resonances than real roots.  

 

4.1.2  Bayes theorem 

The Bayes theorem shows how one conditional probability (such as the 

probability of a hypothesis given observed evidence) depends on its inverse (in this 

case, the probability of that evidence given the hypothesis). The theorem expresses the 

posterior probability (i.e. after evidence E is observed) of a hypothesis H in terms of the 

prior probabilities of H and E, and the probability of E given H. In its simplest setting 

involving only discrete distributions, Bayes' theorem relates the conditional and prior 

probabilities of events A and B, where B has a non-vanishing probability P  with the 

following formula: 
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 A classifier is a mapping from a feature/evidence x  to a discrete set of 

classes/hypotheses. A naive Bayes classifier is a simple probabilistic classifier based on 

applying Bayes' theorem (from Bayesian statistics) with strong (naive) independence 

assumptions. A more descriptive term for the underlying probability model would be 

„independent feature model‟. Estimating the prior probabilities of the feature x  and the 

probability of x  given class C  and noting that the probability of the class C  is the 

same for all classes, the likelihood or posterior probability of the evidence x  in its most 

general form is given as follows 

 

 
 

   







 
μxΣμx

Σ
x

1

2/12/ 2

1
exp

2

1
p

T

d


 (‎4.3) 

 

where x  is the attribute‟s variable vector and  μ  and Σ  are the mean vector and 

covariance matrix of evidence of the training set belonging to each class C , 
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respectively, and d  refers to the dimension of the problem. Despite their naive designs 

and apparently over-simplified assumptions, naive Bayes classifiers often work much 

better in many complex real-world situations than one might expect. 

 

4.1.3  Bayesian trained rational function 

The numerator and denominator of the selected rational function y  as expressed 

in equation (‎4.4) for the proposed interpolation scheme here are polynomials of second 

order. The order of the denominator is chosen to closely follow the behavior of the 

return loss curve by allowing for a pole existence that emulates a resonance for each 

interval. To ensure smooth interpolations of successive intervals for a multi-resonance 

response curve (see Figure ‎4.8 in Section ‎4.2), function values and first order 

derivatives are imposed as constraints at the interval endpoints. The rational function‟s 

general form is given as 
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where the coefficients 
51    are solved such that 4 boundary conditions within the 

interval of interest are satisfied. The fifth coefficient is left out and could be determined 

based on another imposed interpolation constraint such as a second derivative 

requirement. Here, instead of following the standard approach to determine the 

remaining coefficient, a heuristic based approach is followed by employing the Bayes‟ 

theorem such that the control of a possible existence of a pole inside the interval is 

possible. For mathematical convenience, the fifth parameter 
5  is linked to the forth 

parameter 4  by the following relation 

 

2

45
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coef

  (‎4.5) 

 

This relation yields a new parameter, coef , which essentially replaces 
5  and 

can be tuned such that the rational function possesses a pole (a resonance) by enforcing 

the real part of the denominator root to lie inside the interval of interest. In addition, it is 
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responsible for creating an imaginary part of the pole that in turn determines the 

sharpness of the resonance as will be discussed later. 

In a normalized interval with endpoints 00 x  and 11 x , the boundary 

conditions are given by   00 yy  ,   '

0

' 0 yy  ,   11 yy  ,   '

1

' 1 yy   as shown in Figure 

‎4.1. Solving for these boundary conditions using (‎4.4) and (‎4.5), the coefficients 

41    are analytically determined as: 
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(‎4.6) 

 

Complex value solutions for these coefficients are allowed as they still yield real 

values for function and derivatives at endpoints and hence satisfy the imposed boundary 

conditions.  
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The poles of the rational function are determined by the roots of the denominator, 

denoted by r , and therefore result in singularities in the form of sharp resonances. 

Moreover, certain function characteristics can be easily deferred based on the 

characteristics of the root denominator r . If the real part of r attains a value between 0 

and 1, i.e. falls inside the normalized interval, then the rational function naturally 

possesses a pole inside the interval of interest. Whenever the function variable  equals 

the real part of the complex pole r , the denominator approaches a minimum value 

without changing sign. Hence, the rational function is highly likely to attain a resonance 

since this x value with a zero imaginary part is the closest to the complex root. If the 

interval contains a resonance, complex roots are desired since they do not allow the 

denominator to change sign and consequently enforce occurrence of poles as depicted in 

the response shown with the dashed curve in Figure ‎4.2 as opposed to the solid curve 

behavior observed in the case of real valued roots. Although a possible remedy to the 

sign change problem of the real root is simply to take the negative of the norm, the poles 

still cause singularities which physically correspond to existence of very sharp 

resonances attaining infinite values and are not common in electromagnetic responses of 

practical devices. Therefore, the selection of the parameter coef  plays a significant role 

in determining three important behavior characteristics: 1) The existence of the root 

inside the normalized interval, 2) the data type of the root (complex versus real), and 3) 

the imaginary to real part ratio of the complex root that controls the sharpness of the 

resonance. The effect of the parameter coef on the resulting interpolation response 

function is depicted in Figure ‎4.3. 
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Figure ‎4.1 Enforced boundary conditions in normalized frequency intervals 
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 Using the rational function in (‎4.5) and the   coefficient descriptions in (‎4.6) 

,the roots of the denominator of the rational function given by (‎4.4) can be represented 

in terms of coef , '

1y , b  and c as shown in (‎4.7). Since the objective is to solve the 

inverse problem, i.e. assign the root to a certain value, (‎4.7) is solved for coef which is 

a nonlinear relation and hence requires suitable iterative solvers such as Newton-
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Figure ‎4.3 Effect of parameter coef on the interpolation response 

 

(a) 

 

(b) 

Figure ‎4.2 Typical rational function responses with a) real poles and b) complex poles 
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Raphson, Levenbrg-Marquardt, etc. The parameters 1
sgn  and 2

sgn  can be either positive 

or negative and hence their sign combinations give rise to four different root 

possibilities given by (‎4.7). The roots 
2,1

r  are assigned to each endpoint of the scaled 

interval  1  0  and the resulting coefficients 1
coef  and  2

coef  refer to the left and right 

endpoints with 0r   and 1r , respectively. These are responsible for attaining real 

roots at the endpoints. Among possible solutions for 1
coef ‟s and 2

coef ‟s, the chosen 

solution set is the one within the range  
21

  coefcoef  that does not allow for a 

coef solution at the endpoints and hence a real root inside the interval does not exist. 

Moreover, complex root findings are ensured by satisfying the condition 1coef as can 

be easily shown using (‎4.7). 
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If the original data is not available inside the interval, tuning the parameter 

coef to closely follow the response is not possible. This problem can be overcome by 

heuristically determining the optimum value for the parameter coef using Bayesian 

classifier [154]. The training set consists of optimum coef values for different response 

curve intervals and imposed boundary conditions, similar to the representative interval 

response shown in Figure ‎4.1. The optimum coef values are found using brute-force 

calculations by sweeping intervals  21  coefcoef  with small increments in order to 

minimize the error square norm between the interpolated and simulated/original 

response. The Bayesian classifier learns from the probabilistic nature of the training set 

and assigns classes of discrete coef values to test sets accordingly. The goal is to 

classify boundary conditions of intervals in order to minimize the probability of coef ‟s 

misclassification. In d -dimensions the general multivariate normal probability density 

function can is given by (‎4.3). The coef  parameter to be assigned to the interval is 
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appointed to the class with maximum likelihood. The classes are assigned discrete 

coef values closest to the optimum before the classifier is trained. 

Since adaptive selection of sample points is known to affect the interpolation 

quality, a semi-adaptive procedure is employed here that allows for selecting sample 

points by bisecting the interval of interest. This, although restricted by only bisecting 

the interval under consideration, allows for non-uniform sampling and hence creation of 

uneven interval lengths. Therefore, another classifier „bisect‟, relying on the same 

attributes used in training the coef  classifier is defined for producing an unevenly 

distributed sample data within the semi-adaptive scheme.  

Additional attributes such as interval length or a combination of attributes are also 

considered in order to enhance the training process. Similarly, occurrence of positive 

and negative slopes at the boundaries is taken into account by considering the norm of 

the attributes leading to a better training performance. This improvement is linked to the 

symmetry characteristics of an interval containing a resonance. For example, a highly 

positive slope followed by a slightly negative slope is likely to contain a similar 

resonance to that interval which has a symmetric behavior, namely an interval with a 

slightly positive slope followed by a highly negative slope.  To take this characteristic 

into account, a new attribute is used in the form of the product of the maximum slope 

norm of intervals and the interval length, i.e. xy '

max . Figure ‎4.4 (a) depicts the resulting 

likelihood of the two classes of the „bisect‟ classifier x, namely „bisect the interval‟ 

(blue) and „do not bisect the interval‟ classifier (red) versus the attribute xy '

max .  As a 

result, a high overlap between the classes‟ likelihood can be observed. Figure ‎4.4 (b) 

shows the attribute distribution across various intervals used in the training set.  
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Based on experiments, the original plane attributes represented by the boundary 

conditions suffer from even more overlaps and consequently exhibit worse 

performance. One way to account for this problem is to scale the attribute by a factor 

that depends on the attribute value itself. The aim is to suppress the values that are 

significantly lower than some threshold value. The chosen suppression formula is given 

in (‎4.8). 

Since the boundary conditions imposed at interval endpoints are used to predict 

the response behavior inside the interval, the attribute likelihoods are highly overlapping 

which results in a more complicated classifier training process and deteriorates the 

classification results. The overlapping problem can be detected by investigating the 

likelihood distribution of both classes of the „bisect‟ classifier versus an attribute value. 

Several improvements are performed on the attributes in order to separate their 
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Figure ‎4.4 (a) Likelihood distribution versus attribute and (b) attribute distribution 

versus interval number for attribute xy '

max  of „Bisect‟ classifier with (blue) and 

without (red) bisect classes. 
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likelihoods and enhance the classification results. For example, the training data of each 

attribute for the coef  Bayesian classifier is scaled with respect to the mean value.  

 

 supfaccbxy   (‎4.8) 

 

Figure ‎4.5 depicts the response of a linear function input according to relation 

(‎4.8) with a selected threshold value of 8.0x  around which the output is observed to 

be suppressed more for values below the threshold and less suppressed otherwise. The 

suppression increases as the penalty factor supfac  increases and the parameters b  and 

c  are determined according to the threshold value. Implementation of this suppression 

formula to the attribute of xy '

max shown in Figure ‎4.4 resulted in a significant reduction 

of the earlier overlap and a more robust training set attribute as shown in Figure ‎4.6.  
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Figure ‎4.5 Effect of penalization factor supfac  on the response of a linear function 

input according to the relation (‎4.8). The threshold around which the values are 

suppressed is chosen as 8.0x . 
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4.2  Example Application of Interpolation Scheme 

In this section the proposed Bayesian based rational interpolation scheme is 

applied to approximately predict the return loss response of a microstrip antenna. The 

resulting approximation is used in a heuristic/global based optimization scheme 

integrated to a topology optimization method in order to find the optimum conductor 

patch and material distribution of the substrate that maximizes the antenna bandwidth 

[3] subject to given size requirements.  

The design domain for the material is comprised of the volumetric space that the 

dielectric material of the antenna substrate occupies, see Figure ‎4.7. It is 0.3715 cm 

thick and covers a surface area of cm 5.2cm 5.2  . The design domain of the printed 

surface conductor comprises the entire top surface of the substrate. The substrate is 
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Figure ‎4.6 Suppressing the attribute xy '

max   in Figure ‎4.4 yields more separate classes 

represented by (a) their likelihood and (b) attribute value distribution 
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discretized into 80020202   triangular-prism-shaped finite elements. A design cell 

is considered to be a square prism composed of two adjacent triangular prisms and 

therefore reduces to a total of 400 design cells. The permittivity of each volumetric 

design cell is taken as a material design variable. The design domain for the conductor 

is similarly discretized into 80020202   triangular finite element cells 

corresponding to a total of 400 square conductor design cells. Each design cell is 

essentially a design variable of on/off type representing presence or absence of 

conductor material in that specified design cell. 

 

 

The training data set of the classifier belongs to the return loss response of the 

microstrip antenna. Genetic Algorithm is used in the optimization process and during 

the design process will call for multiple reanalysis of the full-wave bandwidth response 

of the large scale design problem. In order to accurately predict the return loss response 

used for calculating the fitness function represented by the bandwidth, a frequency 

sampling with 10 MHz intervals is needed. Figure ‎4.8 depicts the return loss curve of an 

arbitrary individual generated during a trial GA optimization process. The dashed line is 

a wrong prediction of the return loss curve that would lead to a wrong fitness value of 

the candidate individual because of insufficient sampling of the frequency range with 

100 MHz intervals. The analysis tool used in generating simulated bandwidth response 

curves is a Finite Element Boundary Integral model based on a Fast Spectral Domain 

Algorithm, FSDA. It has been successfully validated in various radiation and scattering 

problems [3, 26]. The design process with simulations for 101 frequency points within 

the desired frequency range and N individuals of a micro-GA algorithm would call the 
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Figure ‎4.7 Patch antenna: a) with homogeneous substrate (left) b) with arbitrary 

metallization and dielectric distribution (right) 
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FSDA model N101  times for each generation until the optimization algorithm 

converges. Hence, the computational time to reach convergence is likely to correspond 

to impractical timespans.  

 

 

 

 The proposed Bayesian based rational fitting scheme is integrated to the full wave 

simulator in order to interpolate the return loss response over a 1- 2 GHz frequency 

range for each design candidate. The optimization process is performed based on return 

loss analysis using the proposed Bayesian based rational interpolation with either a 

frequency sweep of 50 MHz or the semi-adaptive scheme using the „bisect‟ classifier. 

The results of the interpolation scheme employed within the design process are 

presented in the next section.  

 

4.3  Results 

The resulting rational interpolation response relies on the use of first order 

derivative values at sampled data points. These are computed numerically with 1% 

variable perturbation via forward finite differences. Alternatively, they can be computed 
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Figure ‎4.8 Simulated return loss response of a microstrip patch antenna with multiple 

sharp resonances in a [1 2] GHz working frequency range linearly interpolated with 

1001 (solid) and 11 uniform samplings (dashed) 
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analytically via the adjoint method [90] to reduce the computation time further. To 

isolate the effect of gradient calculations on the computational savings via 

interpolations, Bayesian based interpolation results are compared with both naïve linear 

interpolation and linear interpolation using double number of sample data. Former case 

is equivalent to the computational time savings if the adjoint variable method was used 

and the latter is representative for the case of forward differencing. The error norm for 

comparing resulting fittings in terms of their accuracy is chosen as the standard root 

mean square between interpolated and original return loss values. Original curves 

correspond to linear interpolations with a frequency sampling interval of 1 MHz with a 

total of 1001 sample points in the working frequency range of 1-2 GHz. A total of 220 

intervals with known boundary conditions and interval lengths belong to return loss 

curves of 22 different design candidates that were used to train the Bayesian classifier 

and predict the optimum parameter coef of the fitted curves. The accuracy of the three 

interpolation schemes are compared in Figure ‎4.9 indicating an overall error increase of 

the proposed interpolation by 14% over the double sampled linear fitting and an 

increase by 1% when compared with naïve linear interpolation. However, despite the 

seemingly poor performance of the Bayesian based interpolation, better matched poles 

and hence qualitatively better approximated responses are observed for that fitting 

scheme calling for a reinvestigation of the chosen error norm. In fact, a more 

appropriate error measure to predict occurrence of poles and the actual bandwidth 

response of various designs would be the bandwidth measure itself. Hence, the error 

norm is re-defined as a bandwidth (GHz) based measure which also takes directly 

matched pole occurrence into account in the original and fitted responses. The 

differences between bandwidths are summed over the entire frequency range of 

 2  1 GHz to calculate the overall error. The results obtained based on the updated error 

norm are shown in Figure ‎4.10 and indicate an overall error decrease by 25% and 54% 

for Bayesian based rational fitting results when compared with double sampled and 

naïve linear fittings, respectively. This is a significant improvement in favor of the 

Bayesian fitting according to the new error norm. Figure ‎4.11 compares the root mean 

square error norms of the approximated responses belonging to the 11 design cases with 

respect to linear interpolation, linear interpolation with double sampling, and the semi-

adaptive Bayesian based rational interpolation scheme.  
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Based on these results, the Bayesian based fittings show a further improvement 

via use of the „bisect‟ classifier by decreasing the root mean square error norm by 28% 

and 14.5% when compared with the naïve linear and double sampled linear 

 

Figure ‎4.10 Interpolation error (bandwidth difference) of Bayesian based and linear 

interpolations for 11 different designs 
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Figure ‎4.9 Interpolation error (square of return loss data difference) of Bayesian based 

and linear interpolations for 11 different designs 
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interpolation, respectively. Despite the existence of rare cases where the Bayesian based 

fitting is very close to the accuracy performance of the linear interpolation (such as in 

designs 2, 4 and 5), there is another robustness aspect of this fitting scheme where it 

outperforms standard linear interpolation schemes and needs to be considered in 

addition to its overall accuracy advantage. Design cases with relatively larger Bayesian 

based interpolation errors are re-examined and a representative interval is displayed in 

Figure ‎4.12. Although the center plot (Figure ‎4.12 (b)) is in favor of the double sampled 

linear interpolation, perturbation of sample data to the left (Figure ‎4.12 (a)) and to the 

right (Figure ‎4.12 (c)) reveals that linear interpolation (with double number of sample 

data in this case) is more viable to sampling data as opposed to the Bayesian based 

rational fitting that consistently predicts the pole and approximates the bandwidth with 

better accuracy. This behavior is observed for all other design cases and is a clear 

indication of the latter being more robust to uniformly sampled data than naïve linear 

interpolation.  

 

 

 

 

Figure ‎4.11 Interpolation error (bandwidth difference) of linear interpolations and 

Bayesian based interpolation integrated with semi-adaptive sampling using the „bisect‟ 

classifier for 11 different designs. 
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4.4  Conclusion 

This chapter presented an interpolation scheme based on Bayesian trained 

quadratic rational functions for approximating frequency based electromagnetic return 

loss responses. Results indicate that this scheme is an efficient tool in predicting poles 

and characterizing resonance based behavior such as bandwidth of RF devices. 

Although the application of the proposed strategy with uniform sampling does not 

outperform naïve linear interpolations, when a standard root mean square error norm 

measure is used, it outperforms when a more reliable error norm associated with the 

direct response of the designs (here the bandwidth difference measurement is 

employed). It is also observed that when the proposed semi–adaptive sampling based on 

the „bisect‟ classifier is integrated with the proposed Bayesian rational interpolation 

scheme, the results are highly enhanced for both error norm measurements. Future work 

includes application of the Bayes‟ theorem on higher order rational functions allowing 

for multi-resonance detections inside the interval of interest and its integration with a 
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Figure ‎4.12 Effect of frequency sampling perturbation on rational interpolation (red) 

and linear interpolation (dashed green) and linear interpolation using double sampled 

data (black) with a) perturbation at interval [1.220 1.245] of the b) initial interval [1.224 

1.249] and with c) perturbation at interval [1.300 1.325] 
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fully adaptive sampling scheme. This would require additional work for preparing an 

ideal training set of adaptively sampled frequencies and interpolations of arbitrary order 

rational functions.  
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5 SPEED-UP TECHNIQUES BASED ON GENERALIZED 

STOER-BULIRSCH ALGORITHM WITH ADAPTIVE 

SAMPLING  

 

As discussed in the previous chapter, global design optimization studies via 

heuristic search techniques relies on fast and accurate reanalysis with enhanced 

performance. In this chapter, another approximation scheme suitable for the frequency 

response of electromagnetic systems with multi-resonance behavior is investigated. The 

proposed technique allows for fast and accurate reanalysis within global 

electromagnetic design optimization studies.  

Rational functions offer an attractive solution for providing a more global 

approximation taking into account the entire band of the frequency response into 

consideration when compared with standard interpolation techniques such as linear 

interpolation, higher order polynomials, cubic splines, etc. They also provide the 

advantage of well approximating resonances due to their inherent pole predicting 

behavior. Therefore, rational functions are likely to yield a more general approximation 

valid for a larger class of problems with a reduced computational effort and are more 

suitable to approximate frequency dependent electromagnetic responses. As a result, 

their use has resulted in various representations of resonance type curves with 

reasonable number of support points (points where the functional values are known) 

[106-112].  

Solving for the coefficients of the rational function is known as the Cauchy 

method and is first introduced in [120]. The solution within a standard Cauchy based 

method with techniques such as direct inversion becomes more prone to numerical 

errors as the number of support points increases (by producing a system of linear 

equations which is ill-conditioned). A solution alternative to ill-conditioned systems is 

presented in [112]. The order of the optimum rational function is chosen such that the 

number of unknown coefficients is less than or equal to the rank of the corresponding 

stiffness matrix and hence the system to be solved becomes over-determined. Stiffness 

matrices are constructed via singular value decomposition and the total least squares 

method is employed to solve for the unknown coefficients. However, a frequency 
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response with multi-resonances cannot be approximated via the rank constrained 

strategy as the rank of the system limits the order of the rational model. In addition, 

each newly added point requires resolving the system and therefore the computational 

time becomes expensive when integrated with adaptive sampling techniques. An 

alternative approach to overcome these issues suitable for the solution of the unknown 

coefficients of a rational interpolation function is a recursive technique initially 

introduced by Stoer and Bulirsch [123] where the Neville approach is applied to rational 

functions.  

Stoer-Bulirsch technique is a recursive method that adds one support point at a 

time and solves for the unique rational interpolator that passes through all existing 

support points. This recursive strategy in turn enhances its suitability to adaptive 

sampling techniques. When compared with direct inversion solutions of rational 

interpolations, Stoer-Bulirsch technique is significantly less prone to numerical errors 

and is not constrained by the rank of the system.  

It is well known that adaptive sampling of a frequency response constitutes a key 

aspect in interpolation and therefore careful selection of sampling points should result in 

a more successful interpolation. Frequency data sets have been adaptively constructed 

and integrated to the proper choice of the rational function within Stoer-Bulirsch 

technique to establish a fast interpolation scheme. Specifically, in [109] two adaptive 

sampling algorithms for rational interpolation are proposed. Yan et al. [124] proposed 

an adaptive sampling through rational functions created by following alternative Neville 

paths based on diagonal paths representing increments of the numerator and 

denominator by one after a specific switching grid is chosen so that that part of the 

resulting path is parallel to the main diagonal one. The Stoer-Bulirsch interpolations are 

constructed based on a pre-determined standard diagonal path which is not optimized. 

Resulting interpolations can still be further improved for accuracy and computational 

efficiency exploiting another adaptive path.  

In this chapter, we propose an approximation technique with an adaptive sampling 

scheme. The proposed technique is based on a developed generalized Neville algorithm 

which allows for an off-diagonal path as suggested in [125] in opposition to the 

conventional diagonal paths in standard Stoer-Bulirsch technique. However, since both 

the path followed to construct the interpolator and the samples selected directly affect 

the quality and computational cost of the interpolation process, an optimized route is 

expected to result in more reliable and cost effective interpolations. To address this 
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issue, the idea of a generalized Neville path is integrated here to an adaptive sampling 

strategy. Also, to further enhance the performance of an adaptive Neville path, the 

resulting algorithm is optimized for numerical stability. Results demonstrate the 

capability of the optimized method to overcome three common problems of existing 

methods: premature convergence, catching significant resonances and avoiding spurious 

oscillations. As a result, the proposed generalized Stoer-Bulirsch algorithm leads to 

approximations with reduced number of samples and enhanced accuracy norms. 

This chapter is organized as follows: Background of the proposed generalized 

Stoer-Bulirsch algorithm along with numerical stability measures, initial diverse 

sampling, and adaptive sampling are presented in Section ‎5.1. Implementation of the 

proposed scheme to a design optimization problem is given in Section ‎5.2. The resulting 

generalized Stoer-Bulirsch algorithm is analyzed and compared with standard Stoer-

Bulirsch technique and interpolation schemes with proposed enhancement features in 

Section ‎5.3. Discussions and conclusions follow in Section ‎5.4. 

 

5.1  Background on Generalized Stoer-Bulirsch Technique with Adaptive 

Sampling 

5.1.1  Solutions of rational function interpolations 

Occurrence of nulls/poles in the frequency response of electromagnetic systems 

such as return loss, gain, and efficiency motivate the use of rational functions to 

approximate these quantities as explained in the previous chapter (see Section ‎4.1.1). In 

its general form, a rational function can be described via a fractional polynomial with a 

numerator of order N  and a denominator of order D  as 
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The Cauchy method deals with approximating a function by a ratio of two 

polynomials given by (‎5.1). Given the values of the function and its derivatives at a few 

points, the order of the polynomials and their coefficients are evaluated. Once the 
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coefficients of the two polynomials are known, they can be used to generate the 

parameter over the entire band of interest. 

The solution of coefficients  Naa 0  and  Nbb 1  of a frequency response 

function in the above form (‎5.1), requires 1 DNk  boundary conditions in the 

form of function values and/or their derivatives. 

Various solution techniques such as direct inversion and total least squares as 

reviewed in the introduction can be used to solve the resulting linear system of 

equations. In order to overcome problems such as ill-conditioning for highly nonlinear 

or large systems associated with these methods, in this thesis, as a second interpolation 

scheme, an alternative technique that efficiently interpolates frequency response data 

with reduced number of points and increased accuracy is proposed. This scheme is 

based on Stoer-Bulirsch algorithm relying on a Neville path that in its most general 

form is not diagonal as explained in the next section. 

 

5.1.2  Generalized Stoer-Bulirsch technique 

Stoer and Bulirsch extended the recursive Neville algorithm (for interpolation 

using polynomials) to rational functions. Let  ii fx ,  denote the 
thi  support point and 

     xQxPxΦ sss

 ,,,   define a rational function with   iis fxΦ  ,  for 

  ssssi ,,2,1,   where  xPs

 ,  and  xQs

 ,  are polynomials of degrees not 

exceeding   and  , respectively. Stoer-Bulirsch algorithm is used recursively to 

generate rational interpolators for 1  and 1  according to the following formulas  
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(‎5.3) 

 

where ii xx   For details and derivation the reader is referred to [123]. 
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Following a pre-determined diagonal path in the recursion (Known as the Neville 

path) as shown in Figure ‎5.1, calculation of successive interpolators,  ,

sΦ , required for 

each newly added support point becomes straightforward as shown by diagonal 

branches of the interpolator construction tree in Figure ‎5.2. As an example, consider the 

addition of the third support point; the algorithm starts by calculating the function 

1,0

3Φ using (‎5.3) (interpolator of order 0,1 passing through the third support point), 

followed by 
1,1

2Φ using (‎5.2) (order 1,1 passing through support points 2 and 3), and 

finally 
2,1

1Φ using (‎5.3) (order 1,2 passing through the support points 1, 2, and 3) as 

demonstrated graphically in Figure ‎5.2. Newly constructed interpolators at the third 

level, 1,0

3Φ  and 
1,1

2Φ , in addition to interpolators at lower levels are available for the 

calculation of the last interpolator 
2,1

1Φ  as a result of following the diagonal Neville 

path. However, if the interpolators are formed following a non-diagonal path, (e.g. 

dashed line in Figure ‎5.1), the calculation of the final rational function becomes a 

difficult task since necessary interpolators are not available. More specifically, based on 

the recursive scheme as suggested by formulas (‎5.2) and (‎5.3), additional intermediate 

interpolators, „intermediates‟
1
, are needed which can be evaluated recursively via the 

use of old support points. It is noted that these intermediates also depend on how far the 

path is from the diagonal. 

 

 

                                                 
1
 In this context intermediates refer to any interpolator that is different from the final 

interpolator 
NMΦ ,

1  

 

Figure ‎5.1 Neville path used in constructing a rational function of order 5  and 

5  following diagonal (solid) and non-diagonal (dashed) paths 
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Once Stoer-Bulirsch technique attains an interpolator with order NM  ,  with 

1 NMk  sample points depending on a certain error criterion, the new direction is 

chosen as either  NM ,1  or  1, NM . Consequently, a new sample point is added 

and the recursive iteration of the newly added point continues. Starting with 

2 NMs , 0  and 0  the adaptive path is calculated until the following 

criteria are met 1s , M  and 1 N , or alternatively 1s , 1 M  and 

N . It is noted that according to recursive algorithm stated by (‎5.2) and (‎5.3), the 

calculation of the last interpolation function  xΦ NM ,1

1


 or  xΦ NM 1,

1


 requires all 

intermediate interpolation functions such as  xΦ NM ,

1 ,  xΦ NM ,

2 , and (  xΦ NM 1,

2


 or 

 xΦ NM ,1

2


) to be known a priori. Regardless of the path, 

NMΦ ,

1  and 
NMΦ ,

2  are always 

available but 
1,

2

NMΦ  and/or     
NMΦ ,1

2


are in general not available unless a diagonal path 

is followed. The path norm r  used in determining these intermediates is equal to 

 

    ,min,max r  (‎5.4) 

 

The missing intermediates are evaluated at the recursive iteration level 

1 NMs  by evaluating the terms 
1,

2

NMΦ , 2,

3

NMΦ , , 
1, rNM

rΦ  using (‎5.3) if 

1,

2

NMΦ  is part of the adaptive path or evaluating 
NMΦ ,1

2


, NMΦ ,2

3

 , , 
NrM

rΦ
,1

using 

(‎5.2) if 
NMΦ ,1

2


 is on the adaptive path. The intermediates calculated are shown 

 

Figure ‎5.2 Construction tree for interpolators  ,

sΦ  based on diagonal Neville path 

algorithm; each branch corresponds to a newly added support point. 
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graphically in Figure ‎5.3 for the special case of 2r . In addition to being 

computationally costly and more complicated, following such an arbitrary trajectory of 

the Neville path leads to numerical difficulties not encountered when a conventional 

diagonal path is followed. Next section deals with proposed remedies to overcome these 

numerical instabilities. 

 

 

5.1.3  Numerical stability issues 

To avoid numerical instability problems during movement along the horizontal 

axis   at 0  (increase of numerator order) or along the vertical axis   at 0  

(increase of denominator order), pure polynomial Neville‟s approach is employed, 

instead of constructing interpolators using (‎5.2) and (‎5.3), with support points  ii fx ,  

and  ii fx 1,  along the   and   directions, respectively. Here, interpolators are 

constructed according to the following formulas 
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Figure ‎5.3 Representative interpolators and orders necessary for following alternative 

paths with path norm 2r . Paths to be followed are associated with points and 

corresponding interpolators with the same type (dashed or solid) 



79 

 

Also, measures are taken to overcome a second instability that arises during the 

calculation of the intermediates with a comparatively high order numerator and low 

order denominator (e.g. for 8  and 2 ). This type of instability is a result of an 

effort to fit pure polynomials with high order differences to responses in regions that 

contain significant resonances. In essence, polynomials are virtually forced to pass 

through sharp resonances, i.e. interpolate through abrupt functional value changes. This 

leads to loss of accuracy in the form of significant digits when high and low 

intermediates are being subtracted in (‎5.2) and (‎5.3). Therefore, instead of following an 

adaptive path throughout for calculating intermediates, a diagonal path is followed until 

the minimum value of numerator or denominator order is attained followed by a 

horizontal or vertical line movement to the final desired interpolator. The proposed 

stable alternative path for calculating intermediates and the adaptive path used for 

sampling are shown in Figure ‎5.4. 

 

 

 

In the following two sections we discuss an adaptive sampling technique using the 

generalized Stoer-Bulirsch technique to improve the performance of the approximation 

scheme further. 

 

 

Figure ‎5.4 Path used for sampling (solid) and for calculating stable intermediates 

(dashed) 
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5.1.4  Initialization with diverse sampling 

In this section we introduce the sampling property of the proposed scheme, 

namely the initial diverse sampling algorithm. The algorithm basically divides the 

frequency domain into sub-regions based on information related to occurrence of 

pronounced resonances such that each resonance is confined in one region as shown in 

Figure ‎5.5. Diverse sampling is achieved by using pure polynomial interpolations 

(observed to spread the sampling points) until convergence based on a chosen error 

norm, Pol , is satisfied. 

 

 

 

 

The flowchart, shown in Figure ‎5.6, demonstrates this initialization procedure 

with diverse sampling. Here, the normalized error norm of two successive interpolators 

 x  and  x is defined as  
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Figure ‎5.5 Diverse sampling based on pure polynomial interpolation used in initial 

sampling  
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1  , M and N  being the numerator and the 

denominator order, respectively. Here, the iteration number or the number of support 

points K  is 1NM ; 

 

 

 

Also, the next support point is selected to be the argument that maximizes the 

second error norm 2e

 

as follows 

 

 2argmax e
x

 (‎5.8) 

 

where    xxe  2 . 

The algorithm starts with pure polynomial interpolation until the error norm 1e  

drops below a certain threshold Pol , that ensures diversity of initial support points. 

 

Figure ‎5.6 Step I: Initial diverse sampling algorithm 
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5.1.5  Adaptive sampling with generalized Neville path 

The generalized interpolation algorithm that accounts for the non-diagonal Neville 

path was introduced in the beginning of Section ‎5.1. Having established the diverse 

sampling scheme, this section focuses on a novel technique for integrating frequency 

adaptive sampling to the generalized Stoer-Bulirsch algorithm. It is noted that once a 

resonance is correctly interpolated, the proposed method aims to drive the search 

towards sample data in regions which are likely to exhibit a new resonance. 

 

 

 

Figure ‎5.7 Step II: Adaptive sampling with generalized Neville path 
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The flowchart of the generalized Stoer-Bulirsch technique is shown in Figure ‎5.7. 

The algorithm starts with step II by constructing interpolations with previously found 

support points by following a diagonal path of the Stoer-Bulirsch technique. A diagonal 

path simply corresponds to a rational function the numerator order of which is equal to 

the denominator order or one less (first block of step II in Figure ‎5.7). The next 

sampling point, as in Step I, is selected according to (‎5.8). There are two alternative 

rational functions to be continued with along the non-diagonal Neville path. More 

specifically, the error norms 1e  given by (‎5.7) of two rational functions   of order 

 NM ,1 and  1, NM  passing through 2 NMK  points are compared against 

each other. The choice determines the next branch of the adaptive path. Interpolation 

trials suggest that following a path that minimizes the error norm, 1e , between 

successive interpolators has the effect of decreasing the computational time required to 

obtain the final interpolation function with the convergence criterion Rate 1  

successively occurring 3 times. Nevertheless, this fast convergence may turn out to be 

local, in terms of predicting a specific region possibly encapsulating a resonance, 

causing additional resonances of the overall response to be left out in the final 

interpolation. On the contrary, following a maximum error path enforces sampling at 

out-of-local regions that potentially possess resonances. Therefore, a hybrid method is 

expected to effectively capture maximum number of resonances by allowing for jumps 

between regions based on the maximum error path once a local convergence based on 

the minimum error path is reached. This procedure is repeated until the convergence 

criterion, Rate 1 , successively occurs 4 times. 

 

5.2  Example Application of Interpolation Scheme 

The proposed Stoer Burlisch algorithm with adaptive sampling is tested on return 

loss responses of various representative complex conductor topologies supported by 

heterogeneous material substrates. Since these are highly likely to produce complex 

multi-resonance curves during design iterations, speed-up techniques play a critical role 

to achieve formal design studies within practical timespan. One such design candidate 

in a topology optimization problem of a broad band patch antenna is shown in Figure 
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‎5.8. The goal of the design problem is to improve the bandwidth of an initially 

unmatched antenna structure via changing the material and conductor distribution. Each 

substrate layer of the patch antenna is discretized into ( 2020 ) 400 design cells or 800 

finite triangular prism elements. Each cell‟s relative permittivity can range from 0 to 

100 and is represented by a design variable in a different color. Also, the radiating 

conductor‟s topology varies via the on or off (conductor or no conductor) nature of 

design cells. Consequently, another 400 cells constitute design variables which are on or 

off to search for the optimal topology of the conductor. Therefore, total number of 

design variables N

 

can be evaluated via 400 x number of layers +400 turning the 

design problem into a large scale one that could be solved using a micro-genetic 

algorithm (typically running for 100 generations with an average population of 40 

individuals).  

Computational time for a single layer geometry using a full wave finite element 

analysis such as the fast spectral domain algorithm [28] and standard linear interpolation 

through 101 uniformly distributed frequency points within 1-2 GHz corresponds to 

approximately 1 week. More specifically, the required computational time can be 

calculated as follows: 

 

  layer/ week112000layers×#layer×#supp.point×iterations 3

×point supp 100×on40)iterati×(101timeiteration ×pointssupport ×#Iterations#





s

 

 

 

 

Figure ‎5.8 Conductor patch (white) distribution (left) on substrate with heterogeneous 

material composition where ε ranges from 0-100 (right). 
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The computational time of the design process becomes prohibitively long as the 

number of layers increases. In the next section, results of variations in the interpolation 

scheme based on Stoer-Bulirsch technique developed in this thesis are presented. 

 

5.3  Results 

In this section we will present and compare results of five different interpolation 

techniques that are combinations of features such as numerical instability measures, 

initial diverse sampling strategy, and adaptive sampling with generalized Neville path as 

proposed and introduced in Section ‎5.1. Their short descriptions are given below. 

M1: Stoer-Bulirsch technique: Standard Stoer-Bulirsch Algorithm with diagonal 

Neville path is implemented. 

M2: Stoer-Bulirsch technique with diverse sampling: An initializing diverse 

sampling criterion (see Section ‎5.1.4) is integrated with standard Stoer-Bulirsch 

technique (employing diagonal Neville path). Convergence criterion is defined as the 

condition 1001 Pole   to be met two times successively. The conventional diagonal 

path is followed until 41 Rate   is met 3 times successively. The error norm 1e  is 

given in (‎5.7). 

M3: Generalized Neville path with diverse sampling: The adaptive sampling 

according to the generalized Neville path suggested in Section ‎5.1.5 is integrated with 

diverse sampling strategy in Section ‎5.1.4. The error tolerance of the diverse sampling 

and generalized Stoer-Bulirsch technique are 100Pol  and 4Rat , respectively. 

Stopping criterion of the generalized Stoer-Bulirsch technique is explained in Section 

‎5.1.5. 

M4: Generalized Neville path with diverse sampling and numerical instability 

measures: Same as in 3 with equations (‎5.5) and (‎5.6) used for calculating polynomials 

with zero order numerator and denominator. Diagonal path is followed for calculating 

intermediates whenever possible (Details are given in Section ‎5.1.3). 

M5: Generalized Neville path and numerical instability measures: Same as in M4 

with no diverse sampling. 

Table ‎5.1 summarizes the five interpolation strategies. 
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Table ‎5.1 Interpolation techniques based on strategies in Section ‎5.3 of the proposed 

generalized Stoer-Bulirsch algorithm 

 

 
Diverse Sampling 

Standard Stoer-

Bulirsch 

technique 

Generalized  

Neville path 

Numerical 

Stability 

M1  *   

M2 * *   

M3 *  *  

M4 *  * * 

M5   * * 

 

All five strategies were used to construct interpolations to approximate the return 

loss response of antennas with various material and conductor topologies. Results are 

shown in Figure ‎5.9-Figure ‎5.13. Each interpolation curve is compared to the original 

response which is numerically calculated using a fine sampling rate of 1 MHz, i.e. 1001 

uniformly distributed frequency points are sampled between 1-2 GHz. Since finer 

sampling does not improve the response further, it can be accepted as the original 

antenna simulation response. 

Our objective being to approximate return loss curves with similar accuracy but 

reduced number of support points to the original response, the proposed interpolations 

of return loss curves belonging to eleven different antenna design candidates were 

compared. These responses vary from smooth single resonance broad bandwidth curves 

to narrow multi-resonant responses. Figure ‎5.9-Figure ‎5.13 summarizes results for the 

five interpolation strategies in Table ‎5.1 with the same stopping criterion threshold of 

4Rat . According to the results shown in Figure ‎5.9, when a standard diagonal path is 

followed, major resonances of the response could not be captured. Starting with a 

diverse sampling as proposed in method 2 allows of recovering the major first 

resonance as shown in Figure ‎5.10. However, this time, there is a shift in the narrower 

band resonance. Results adopting the proposed hybrid technique based on generalized 

Neville path plotted in Figure ‎5.11 show that all major resonances (< -2dB) are 

successfully captured. However, numerical instabilities in the form of oscillations are 

observed at the far end of the frequency based response. Upon adopting proposed 

numerical instability measures, the interpolation of method 4 yields a response as shown 

in Figure ‎5.12. Hence, all resonances are finally captured and auxiliary oscillations do 

not exist. To clearly assess the effect of the initial sampling scheme, interpolation 

scheme 4 is used without adapting the initial sampling scheme. Corresponding results 

plotted in Figure ‎5.13 prompt for an increase in the number of support points (from 33 
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to 44) with only ~0.1 dB improvement on the accuracy of the fitted curve. A full 

comparison of each interpolation method for eleven antenna design responses is 

conducted and quantified using the root mean square (RMS) error. Comparative results 

are given in Figure ‎5.14. 
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Figure ‎5.10 Interpolation scheme M2 in Table ‎5.1: Standard Stoer-Bulirsch technique 

with diverse sampling 
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Figure ‎5.9 Interpolation scheme M1 in Table ‎5.1: Standard Stoer-Bulirsch technique 
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Figure ‎5.12 Interpolation scheme M4 in Table ‎5.1: Generalized Neville path with 

diverse sampling and numerical instability measures 

 

Figure ‎5.11 Interpolation scheme M3 in Table ‎5.1: Generalized Neville path with 

diverse sampling 
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Also, in order to compare each interpolation scheme‟s overall performance, the 

average sum of the RMS error of all eleven designs is plotted in Figure ‎5.15 using the 5 

interpolation methods. Results show that the error in using the naïve diagonal Stoer-

Bulirsch algorithm (method 1) has dropped by almost 54% when compared with the 

proposed numerically stable adaptive Stoer-Bulirsch interpolation scheme (method 4).   

 

 

Figure ‎5.14 Accuracy (root mean square error) of schemes in Table ‎5.1 for eleven 

designs 

 

Figure ‎5.13 Interpolation scheme M5 in Table ‎5.1: Generalized Neville path with 

numerical instability measures (no diverse sampling) 
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An alternative measure, taking both computational time (number of support 

points) and accuracy (error norm) into account, refers to the product of the total number 

of support points with the total error as shown in Figure ‎5.16.  

 

 

 

 

Figure ‎5.15 Average sum of the error square norm of 11 designs using 5 different 

interpolation schemes in Table ‎5.1 

 

Figure ‎5.16 Product of the total number of support points with the average sum of the 

error square norm vs. interpolation scheme number in Table ‎5.1 



91 

 

Results prove that the proposed interpolation scheme (method 4) is outperforming 

others with an overall improvement of 22.5% over the standard Stoer-Bulirsch scheme. 

In addition, the average total number of required support points has dropped from 89 to 

39 points based on the same error norm that correspond to computational time savings 

of 56% when compared with conventional uniform linear interpolation schemes. 

5.4  Discussion and Conclusion 

In this chapter a generalized Stoer-Bulirsch approach for adaptively interpolating 

complex multi-resonant response curves with reduced number of support points and 

improved accuracy of existing methods was presented. The method relies on upgrading 

the standard Stoer-Bulirsch technique with a non-diagonal Neville path and makes use 

of this relaxation in shaping the best path that minimizes error and number of data 

samples needed. A hybrid technique following a path that minimizes the square error 

norm, 1e  given by (‎5.7), allowing for reduced number of support points followed by a 

path maximizing 1e  that enhances accuracy ensures a compromise between these 

conflicting merits and outperforms conventional adaptive sampling techniques. The 

proposed method has been implemented on return loss responses of various antennas 

with complex conductor shapes with heterogeneous material substrate configurations 

and resulted in an overall accuracy increase of 54% when compared with the naïve 

Stoer-Bulirsch interpolation technique. In addition, when compared with conventional 

uniform linear interpolation schemes, the average total number of required support 

points has dropped from 89 to 39 points based on the same error norm. This result 

indicates computational time savings of 56%. It is noted that the proposed technique is 

perfectly applicable to other electromagnetic response functions and versatile frequency 

response curves making it an ideal interpolation tool for large scale frequency response 

type optimization design problems. This is expected to open up new paths for large 

scale optimization studies of complex electromagnetic structures such as multi-physics 

responses of metamaterials based devices. 
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6  CONCLUSIONS AND FUTURE WORK 

 

In this thesis the optimal topology optimization based on the theory of 

homogenization using asymptotic analysis was applied to the design of electromagnetic 

materials with desired dielectric constitutive matrices. Unlike other optimal design 

approaches that target electromagnetic device performance, the proposed tool is capable 

of designing the material or preferably „metamaterials‟ directly by determining its 

microstructure which is the periodic building block or in formal terms the unit cell of 

the resulting desired overall structure. The design framework relies on three key 

modules: 1) Homogenized material model integrated to 2) an effective FEA based 

analysis framework and 3) a formal design optimization algorithm. The applicability of 

the resulting design framework is verified by designing materials with various desired 

isotropic and anisotropic permittivity tensors from available off-the-shelf isotropic 

constituents. Computational time of the proposed design framework which relies on a 

heuristic based optimization technique (genetic algorithm) can be effectively reduced in 

order to find the global optimum (that is usually unique and difficult to find by gradient 

based techniques without getting trapped in local minima) if the initial available shades 

are carefully chosen. Therefore, a bound analysis study was applied to the developed 

homogenized material model to check for feasibility of realizing the desired properties 

from available constituents before integrating it to the design framework. This bound 

study is based on a composition method and a statistical discretization approach and is 

applied on the effective dielectric tensors that are composed of two constituents. The 

method although restricted to two components can also provide a basis for qualitative 

feasibility estimations for more than two component materials as discussed in Sections 

‎2.3 and ‎3.1.1. 

The proposed design framework has the potential to open a new era of „material 

design‟ by relaxing the standard device design optimization problem for various 

electromagnetic performances to a direct consideration of the materials themselves. The 

proposed framework was applied to an example in literature by designing anisotropic 

layers of non-reciprocal magnetic photonic crystals that allow for the propagation of 

electromagnetic waves in one direction only at a specific frequency where the unusual 

phenomenon of single inflection point takes place. This property has the advantage of 
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slowing down the group velocity and increasing the wave amplitude drastically 

allowing for higher Q and gain inside the crystal. What makes this single inflection 

point unique is that it allows this phenomenon to occur at a frequency far from the band 

edge and therefore enhances transmittance of waves at the interface of the crystal. The 

design of the layers for such an MPC is made in this thesis from commercially available 

ceramic powders with specific isotropic dielectric constants  240,140,70,20  in 

order to achieve anisotropic dielectric layers desired for the MPC with 









850

0165
1Aε  

and fully anisotropic 













36.9020

2064.159
2Aε  permittivity matrices. Although the design 

of the first tensor was easily obtained via the design framework because it simply is a 

diagonal material tensor, the second design with non-zero off diagonal elements did not 

converge to a solution until the resolution of the design domain was increased. The 

resolution is an important optimization parameter that determines both the convergence 

and the resulting microstructure. As it is increased the design convergence becomes 

more challenging as the originally ill-conditioned on-off problem turns into a more 

complicated design problem with an enlarged design space where the search takes 

place. As the design resolution is decreased, the design space may turn out be too 

narrow for the desired material tensor and the design problem may not be able to 

topologically find the optimum design. The proposed design framework was 

successfully implemented to the design of isotropic, anisotropic and fully anisotropic 

two dimensional electromagnetic constitutive tensors.  

The rest of the thesis dealt with another way of effectively reducing the 

computational time of large scale design optimization problems especially for device 

performance problems associated with frequency based multi-resonant responses. To 

address this issue, in Chapter ‎4 a rational function of second order polynomials and a 

heuristic based inference method (Bayes theorem) was proposed. As an alternative, in 

chapter ‎5 a second method based on a generalized Stoer-Bulirsch algorithm with 

adaptive sampling was proposed. 

Regarding the former, five parameters are in general needed to solve for unknown 

rational function of this type; four of which are determined by the boundary conditions 

of the subinterval to be interpolated and the fifth parameter is determined heuristically 

using the Bayesian classifier. The classifier is trained using a training set of subintervals 
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with known boundary conditions that determine four parameters and the fifth parameter 

is calculated optimally. An adaptive frequency sampling scheme was also proposed 

based on Bayesian theory again for the same boundary conditions. Several mathematical 

remedies were performed on the boundary conditions attributes in order to separate 

them as much as possible and enhance the classification procedure. Results indicate that 

this scheme is an efficient tool in predicting poles and characterizing resonance based 

behavior such as bandwidth of RF devices. This approach outperforms standard 

interpolation schemes based on a reliable error norm associated with the direct response 

of the designs, here the bandwidth difference measurement. It is also observed that 

when the semi–adaptive sampling is integrated with the proposed Bayesian rational 

interpolation scheme, the results are enhanced further. 

Regarding the second interpolation scheme proposed in Chapter ‎5 it is based on a 

generalized Bulirsch-Stoer approach for adaptively interpolating complex multi-

resonant response curves with reduced number of support points and higher accuracy. 

The method relies on upgrading the standard Stoer-Bulirsch technique with a non-

diagonal Neville path and makes use of this relaxation in shaping the best path that 

minimizes error and number of data samples needed. A hybrid technique following a 

path that minimizes the square error norm, 1e  given by (‎5.7), allowing for reduced 

number of support points followed by a path maximizing 1e  that enhances accuracy 

ensures a compromise between these conflicting merits and outperforms conventional 

adaptive sampling techniques. The proposed method has been implemented on return 

loss responses of various complex antenna conductor shapes with heterogeneous 

material substrate configurations and resulted in an overall root mean square error 

reduction of 54% when compared with the naïve Stoer-Bulirsch interpolation technique. 

In addition, when compared with conventional uniform linear interpolation schemes, the 

average total number of required support points has dropped from 89 to 39 points based 

on the same error norm. This result indicates computational time savings of 56%. It is 

noted that the proposed technique is perfectly applicable to other electromagnetic 

response functions and versatile frequency response curves making it an ideal 

interpolation tool for large scale frequency response type optimization design problems. 

This is expected to open up new paths for large scale optimization studies of complex 

electromagnetic structures such as multi-physics responses of metamaterials based 

devices. 
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Contribution of the thesis can be summarized as follows 

 Extension of topology optimization method based on the theory of 

homogenization and asymptotic analysis to the design of electromagnetic 

materials with desired constitutive parameters  

 Design of materials with prescribed isotropic and anisotropic permittivity 

tensors from available off-the-shelf isotropic constituents  

 Design of anisotropic dielectric layers for non-reciprocal magnetic 

photonic crystals  

 Development of two rational interpolation schemes for frequency 

responses of large scale design studies 

o Bayesian based rational interpolation that infers a parameter 

controlling resonance detection and samples semi-adaptively. 

o Generalization of Stoer-Bulirsch algorithm with a non-diagonal 

Neville path to speed up convergence and effectively detect 

resonances 

Future work related to the design methodology includes extending it to three 

dimensional structures by updating the analysis model in COMSOL Multiphysics-

Coefficient Form module. The critical task is related to automatically defining the dirac 

delta function of the right hand side of (‎2.18) at the interface of the constituents which 

are surfaces in three dimensions. In addition, the model could be updated to account for 

frequency dependency in order to model left handed media. Another extension can be 

performed on the topology optimization framework by implementing the level set 

method or adaptive mesh method to yield smoother constituent topologies inside the 

unit cell. Nevertheless, fabrication of these materials needs to be considered during the 

design problem definition as realization of complex material distributions might still be 

restricted to dry powder deposition using grids as presented in Section ‎2.4.1.3. Also, the 

method of moment shows to be a valuable tool in image processing to define objects in 

three-dimensions and can be considered as good candidate to be integrated with 

topology optimization. In addition to these, the design methodology can be integrated to 

device performance studies where the optimum of the device could be linked to the 

design of the optimal electromagnetic material.  

Regarding the first approximation technique, application of the Bayes‟ theorem on 

higher order rational functions allowing for multi-resonance detections inside the 

interval of interest and its integration with a fully adaptive sampling scheme are among 
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potential future work. This would require efforts to prepare an ideal training set of 

adaptively sampled frequencies and rational interpolations of arbitrary order.  

In the second approximation scheme, the generalized Stoer-Bulirsch algorithm 

based on the non-diagonal Neville path can be extended to multi-dimensional 

independent variables. In addition, comparing it with vector fitting schemes can be 

considered in order to obtain an effective fitting convergence measure. 
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