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Abstract-Novel circularly polarized (CP) VHF SATCOM  antenna which was   based on Moxon antenna  (bent

dipole element over a ground plane) has been extended for RFID and GPS applications. A sequence of

topologies starting from a single vertical element to two vertical elements of the Moxon arms, then widened

strip arm elements were investigated to understand the effects on impedance match over the widened

bandwidth. The logic in this evolution was to obtain maximized gain based on Fano-Chu limits, which suggests

that more metallization in the radiating configuration  that fill the volume would yield higher gain for

electrically small antenna. Extending the width of the strip of the equivalent dipole elements lead to a wider

bandwidth and improved cross-polarization ratio. Furthermore, splitting the tapered bow tie elements increased

the volume filled with radiating elements leading to improved overall performance. Ultimately extended bends

at the tip of the tapered sections parallel to the ground plane helped to improve overall performance. In overall,

the antenna presented here produced lower physical height, higher gain, wider bandwidth,  better cross-

polarization and lower back lobe radiation compared to commercial counterparts such as an eggbeater currently

used in SATCOM practice as well as similar antennas in RFID and GPS applications.
Here, the concept is extended to cover RFID (850-1050 MHz) and GPS (centered at 1227 and 1575 MHz)

bands leading to new applications at a significant cost and size reductions and much improved performance.

Prototype antennas were built based on HFSS simulations yielded better than -25 dB return loss. During

simulations attention was paid to identify the effects of individual antenna elements as an optimization

parameter on the overall input impedance matching over the extended  bandwidth. Simulated and measured

results yielded higher than industrial counterpart antenna gain, bandwidth and cross-polarization  for much

reduced physical dimensions.

1. INTRODUCTION

Novel circularly polarized (CP) VHF SATCOM  antenna[1]  which was   based on Moxon antenna

[2](bent dipole element over a ground plane) has been extended for RFID and GPS applications. For RFID

mobile applications [3], tag reader antenna is required to have high performance including a broadband

operation, circular polarization as well as a large angular coverage from horizon to zenith. For systems at

these frequencies, wavelength could be on the order of third to quarter of a meter and conventional antennas

may be ‘’too big’’ for commercial use. For GPS applications [4], antennas are required to have very precise

narrow band performance at specific frequency bands (L1 and L2 bands). Novel tag reader RFID antenna

and another dual band GPS antenna  based on extended Moxon antenna  were proposed. Moxon antenna is

basically a two-element Yagi-Uda antenna [5], with a bent dipole element to reduce its height and is

commonly preferred antenna for HAM operators due to its size, forward gain and wide band impedance

match. A systematic sequence of topologies starting from a single vertical element to two cross vertical

elements of the Moxon arms fed through a hybrid coupler to achieve Circular Polarization is implemented.

Then widened strip arm elements were investigated to understand the effects on widening the bandwidth.

The logic in this evolution was to obtain maximized gain based on Fano-Chu limits, which suggests that

more metallization in the radiating configuration  that fills  the volume would yield higher gain for

electrically small antenna[6]-[7]. Extending the width of the strip into tapered shape and splitting of the

equivalent dipole elements with additional bends at the extended tips of these tapered bowtie  [8] arms lead

to a wider bandwidth and improved cross-polarization ratio. In overall, the antenna presented hereafter

experimental measurements produced lower physical height, higher gain, wider bandwidth, cross-

polarization and lower back lobe radiation compared to commercial counterparts such as an eggbeater

currently used in SATCOM practice as well as similar antennas in RFID and GPS applications.
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2. DESIGN AND OPTIMIZATION PARAMETERS OF THE MOXON BASED ANTENNA

The proposed antenna consists of two bent Moxon type split bowtie antennas. The two bent antennas are

located perpendicular to each other as shown in Figure 1and are fed at the center via differential input

through a hybrid coupler to produce Right Hand Circular Polarization (RHCP). An expanded view of an

arm (petal) is shown in Figure 2 marked with numbers to identify the optimization parameters used in

numerical simulations.

Figure 1. Moxon based RFID tag reader  antenna in 3D space.     Figure 2. Single triangular shaped antenna arm.

The detailed optimization observations are given in Table 1  based on numerical simulations carried out using

ANSOFT High Frequency Structure Simulator (HFSS).

III. MOXON BASED RFID TAG READER ANTENNA

RFID tag reader antenna is designed to operate in

850MHz to 1050MHz range. Characteristic dimensions

of a single triangular shaped antenna conductor are

shown on Fig. 4. Assembled antenna over a ground

plane is shown on Fig. 5. The Return Loss of the RFID

antenna is simulated (Fig. 6) and compared to measured

performance of the prototype (Fig. 7). RFID antenna has

simulated S11 3dB range of  710 MHz to 1200 MHz.

Measured S11 is better then 10dB in 800MHz to

1180MHz. Antenna gain is simulated to be

approximately 7dB and front to rear ratio is –15dB.

When assembled antenna is measured over a small

(compared to the size of the antenna) ground plane and

compared with a commercially available RFID of known

gain, the measured gain of the Moxon type RFID

antenna (4Xin area than the antenna developed here) can

be judged to be around 15dB to 17dB.
            Figure 3: RFID measured antenna pattern

                            comparison.
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No: Description RFID GPS

1 Wedge cutout length Moving wedge tip closer to the Z axis, effectively makes the first section

of the wedge◄►, shifts central  frequency ▼ and ►◄BW

2 Wedge cutout spread angle ►◄the angle, i.e. sharpening the wedge cutout, ◄► BW and shifts

central frequency (or resonance) ▲

Vertical length

Changing  the length ◄►

Low resonance point ▼ in frequency but ▲in S11, high resonance

point ▼ in frequency and ▼ in S11. Total bandwidth decreases.

3

►◄  Low resonance point ▲ in frequency but ▼in S11, high resonance

point ▲in frequency and ▲in S11. Total bandwidth increases.

Length of the first bend
◄►

Low resonance point ▼ in

frequency but ▲in S11, high

resonance point ▼in frequency

and ▲in S11. Total BW ▲

Low resonance point ▼ in

frequency but ▲in S11, high

resonance point ▼in frequency and

▲in S11. Total BW▼

4

►◄ Low resonance point ▲in

frequency but ▼in S11, high

resonance point ▲in frequency

and ▼in S11. Total BW▼

Low resonance point ▲in

frequency but ▼in S11, high

resonance point ▲in frequency and

▼in S11. Total BW▲.
5 Outer angle of the first bend

Bigger:

Low resonance point ▼ in

frequency but ▲in S11, high

resonance point ▼in frequency

and ▼in S11. Total BW▼

Low resonance point ▲ in

frequency but ▼in S11, high

resonance point ▼in frequency and

▼in S11. Total BW▼

Sharpen Low resonance point ▲in

frequency but ▼in S11, high

resonance point ▲in frequency

and ▲in S11. Total BW ▲.

Low resonance point ▼n frequency

but ▲in S11, high resonance point

▲in frequency and ▲in S11. Total

BW ▲.
6 Outer angle of the vertical

section (90 degrees)

►◄ outer angle of the vertical section, i.e. sharpening the angle,

improves Reflection Impedance around lower resonance frequency,

while looses some match around higher resonance frequency. No

significant loss of bandwidth is observed with sharper outer angle.
7 Inner angle of the vertical

section
◄►

Low resonance point ▼in

frequency but ▼in S11, high

resonance point ▼in frequency

and ▼in S11. Total BW stays

Low resonance point ▲ in

frequency but ▼in S11, high

resonance point ▼in frequency and

▲in S11. Total BW▼.

►◄ Low resonance point ▲ in

frequency but ▲ in S11, high

resonance point ▲in frequency

and ▲in S11. Total BW stays.

Low resonance point ▼in

frequency but ▲in S11, high

resonance point ▲in frequency and

▼in S11. Total BW▲.

8 Horizontal length (no tip)  ◄► Low resonance point ▼ in frequency but▲ in S11, high resonance

point▼ in frequency and ▼ S11. Total BW ▼.

►◄ Low resonance point▲ in frequency but ▼ S11, high resonance point

▲ in frequency and ▲in S11. Total BW ▲.
9 Outer angle of the horizontal

section◄►

Low resonance point ▲ in frequency but ▼ S11, high resonance point

▼in frequency and ▲ in S11. Total BW▼ .
►◄ Low resonance point ▼ in frequency but ▲in S11, high resonance

point ▲in frequency and ▼in S11. Total BW▲

Table 1. Optimization of geometrical parameters in numerical simulations. Only 9 out of 14 parameters

used are presented here.( ◄► -longer(larger), ►◄- shorter(smaller), ▲-higher (increase), ▼-lower (decrease))
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Figure 4: Dimensions of a single triangular shaped RFID tag

reader antenna arm.

Figure 5: Assembled RFID tag reader antenna

over a ground plane.

Figure 6: Simulated return loss of the RFID antenna. Figure 7: Measured return loss of the RFID antenna.

4 .  MOXON BASED GPS ANTENNA

Moxon based type antenna for GPS applications is

designed to work in two GPS bands, 1227 +/-10.23

MHz and 1575+/-10.23 MHz. Characteristic

dimensions of a single triangular shaped antenna

arm are shown in Figure 10. Assembled antenna

over a ground plane is shown on Fig. 9. The Return

Loss of the GPS antenna is simulated (Fig. 11) and

compared to measured performance of the prototype

(Fig. 12). GPS antenna has simulated S11 3dB range

of. 1000MHz to 1720MHz. Measured S11 is better

then 10dB in 1000MHz to 1600MHz and features

deep resonances around both bands of interest,

where RL is better then –30dB. Antenna gain is

simulated to be approximately 6.6dB at 1227MHz

and 8.25dB at 1575MHz, while front to rear ratio is

better then –14dB. Measured relative power

delivered by the antennna is shown on Fig. 8 for

both ranges. Higher band shows somewhat lower

power then the lower band due to mismatch and

alignment issues during the experiment.

     Figure 8: Measured radiation patterns of the GPS

t                     antenna at L1 and L2 bands.  
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Figure 9:Assembled GPS antenna over ground plane Figure 10: Dimensions (in mm)of a single antenna arm.

Figure 11: Simulated Return Loss of the GPS antenna. Figure 12: Measured Return Loss of the GPS antenna.

5. CONCLUSIONS

Moxon based RFID and GPS antennas were proposed.  Extensive numerical simulations based on

optimization of various parameters on the antenna structure were carried out to achieve higher gain,

wide band impedance match, high cross-polarization and low profile. Prototype antennas were built and

tested confirming good agreements between simulation and experimental results. Furthermore,

prototype antennas were compared with commercial counterparts and were observed that RFID tag

reader antenna was almost 4 times smaller in physical dimensions for a higher gain of 17 dB.  In case

of GPS antenna the overall gain was observed to increase for the comparable dimensions.
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