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Abstract—This paper presents an analytical approach for the
prediction of future motion to be used in input delay compensa-
tion of time-delayed motion control systems. The method makes
use of the current and previous input values given to a nominally
behaving system in order to realize the prediction of the future
motion of that system. The generation of the future input is made
through an integration which is realized in discrete time setting.
Once the future input signal is created, it is used as the reference
input of the remote system to enforce an input time delayed
system, conduct a delay-free motion. Following the theoretical
formulation, the proposed method is tested in experiments and
the validity of the approach is verified.

I. INTRODUCTION

Along with the growth of internet communication, the atten-
tion on applications of motion control over network became
more and more popular. Among such applications, an intense
focus has been put on the teleoperation systems, in particular
bilateral control systems that can work over the two ends
of a network [1]. A major problem of teleoperation systems
is the existence of time delay throughout the control and
measurement channels which has the potential to destabilize
an otherwise stable closed loop system.

Several studies have been proven to perform successfully
for teleoperation with time-delays. Among them, methods
based on passivity [2], [9], [10] and methods based on wave
variables and scattering theory [4]-[8] have frequently been
adopted in different studies. Many researchers proved the
stable operation of these methods in various settings. However,
both of these methods still lack in terms of transparency,
which is a must in teleoperation systems [3]. Quantitative and
analytical comparisons of those methods can be found in [11]
and [12]. For more detailed information, reader is referred to
the historical survey given in [1].

Besides the solutions related to passive power transfer and
scattering theory, methods based on Disturbance Observer
have also been popularized in the recent years [13], [14], [15].
Based on the concept of network disturbance, these methods
are shown to overcome the measurement delay in motion
control systems [16], [18].

On the other hand, in all of the above mentioned methods
although stabilization goal is achieved, full synchronization

of the motion between the separated systems cannot be
achieved due to the existing delay in the input channel. In
the literature, several methods have been proposed to deal
with input delay. In [19], a robust controller is proposed for
input time delay based on a nonminimum phase disturbance
observer. The proposed controller aimed to achieve stable
tracking after the input delay. Many other studies have focused
on the use of variable structure systems [21], [22], [23]. In
[20], a sliding mode controller is proposed to achieve robust
stabilization of uncertain input delay systems with nonlinear
perturbations. The sliding surface is constructed based on a
predictive state formulation which makes use of the past data
of system states for a period equal to the magnitude of input
time delay. Although this method performs relatively good
in the presented simulations, it makes use of past data for
the prediction of current motion and there is no discussion
about the prediction of future motion. In a recent study,
authors presented a structure for teleoperation systems based
on Bayesian Predictions [24]. However, their scheme is based
on the use of posterior probabilities from past data to enhance
the current estimate of a system again without any discussion
for the expected future motion of the system.

In this paper, we present an analytical approach to predict
the future motion of a system with a novel predictor structure.
The predictor is based on the use of convolution integral
along with the past and present inputs for a system of known
dynamics. Derivation of the predictor is made in a discrete
time setting based on the assumption of nominal behavior for
the remote system.

The organization of the paper is as follows. In section II,
a brief background on the system definition is made and the
concepts of disturbance observer (DOB) and Communication
Disturbance Observer (CDOB) are introduced for nominal
system behavior and stable tracking of given reference on
the remote system respectively. In section III, derivation of
the future data predictor is presented. In section IV, the
realization of the predictor structure in a motion control system
is formulated based on the assumption that the remote plant
has nominal behavior. Section V presents the experimental
results. Concluding remarks and possible future study are
given in sections VI and VII respectively.
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II. BACKGROUND

A. System Definition

In the following analysis, derivation of the predictor struc-
ture will be made on a single DOF motion control system for
which the plant dynamics can be given as

anq̈(t) = τ(t)− τdis(t) (1)

where, an, τdis(t) and q(t) represent the nominal plant inertia,
disturbance torque acting to the plant and the generalized
coordinate of motion respectively. The input torque τ(t) can
be modeled as a scaler multiple of the control (also referred
as input) current ic(t) with the nominal torque constant Kn.
This way the equation of motion for the plant can be recast
as;

anq̈(t) = Knic(t)− τdis(t) (2)

The term τdis(t) in equation (2) is assumed to cover all unde-
sired effects including the viscous friction (b(q, q̇)), deviations
from the nominal values for torque constant (∆Kn) and inertia
(∆an), gravitation (g(q)) and all other non-modeled external
torques (τext). Hence, the overall disturbance can be modeled
as follows;

τdis = ∆anq̈ +∆Knic + b(q, q̇)q̇ + g(q) + τext (3)

B. Disturbance Observer and Acceleration Control

In order to obtain robust tracking, disturbances over the
system given in (2) should be removed. In order to cancel
the disturbance acting on the system a disturbance observer
(DOB) can be realized [25]. DOB can effectively increase the
robustness of a system. However, due to the low pass filter
used in DOB structure, the disturbance might not always be
fully compensated. In particular for cases based on an observer
structure over a time delayed loop, the controller is proven to
be blind against the divergence of the remote plant from its
corresponding reference [17]. Hence, a secondary controller
should be added over the DOB structure to further push the
remote plant into nominal behavior and to enforce tracking of
the desired reference. For further details about the use of DOB
in a time delayed control system, reader is referred to [16].
In this study, Disturbance Observer is used to make the slave
system behave with nominal parameters and hence utilization
of the prediction based controller derived in the following
sections is carried out in acceleration domain.

C. Overview of Time Delayed Effect and CDOB

A motion control system with time delay is one in which
real time signal transmission is hindered due to the network
between the remote plant and the controller. The time delay
can exist either in one of the channels (i.e. input channel or
measurement channel) or (more generally) in both channels.
The existing time delay in the signal transmission has dif-
ferent drawbacks for measurement and input channels. When
there is time delay in the measurement channel, controller

cannot obtain the information of remote plant states on time
and cannot generate the necessary control input. This is a
primary problem since with an uncompensated delay in the
measurement channel, it is impossible to talk about the overall
system stability. The solution for measurement delay can be
obtained by estimating the future states of the remote plant via
an observer structure. One such structure is Communication
Disturbance Observer (CDOB) presented in [14]. In CDOB
structure, the effect created by the measurement delay is
considered as a disturbance in acceleration dimension which
can be modeled as

τnwdis (t) = Knic(t)− anq̈s(t−Dm) (4)

where τnwdis (t) represents the network disturbance, Dm stands
for the delay in the measurement channel and qs(t) represents
the remote system (i.e. slave system) position. Under the
assumption that the remote system has a nominal structure,
the network disturbance can be estimated with a DOB which
is termed as the Communication Disturbance Observer due to
obvious reasons.

The estimated network disturbance stand for the torque that
is supposed to act on the slave plant during measurement
delay. Since the slave plant is enforced to behave nominal
with DOB, the estimated network disturbance can be divided
by the nominal inertia of slave plant and be integrated to give
the velocity difference that is supposed to exist during the
measurement delay time. Mathematically, we have;

∆q̇s(t) =
1

an

∫
τnwdis (φ)dφ (5)

Addition of this velocity difference to the delayed slave
velocity gives the estimated velocity of the slave plant as
shown below

ˆ̇qs(t) = q̇s(t−Dm) + ∆q̇s(t) (6)

The depiction of CDOB structure is given in Fig. 1 below.
Further information about CDOB can be found in [13] and
[14], whereas a stability analysis is given in [16].

Fig. 1. Structure of CDOB

The system compensated with the CDOB structure exhibits
stable behavior with the estimation of the real time slave
motion measurement. In other words, CDOB converts the
overall system to one without the measurement delay. Using
the estimation from CDOB, master side controller can generate



the necessary input reference that is supposed to act on the
slave system after the input channel delay. However, due to
the input channel of the network, slave system can track the
motion of master system only after an input delay.

In order to have full synchronization of motion between
master and slave plants, the effect of input delay should also
be eliminated from the overall control loop. Conventionally,
the motion of master is imposed by an operator and it has
an arbitrary structure. Hence, it is impossible to construct a
causal estimator since the future input of the master operator
is unknown. So, a predictor for compensation of the input
delay can only be based on a (noncausal) structure that can
anticipate the behavior of master system. In the following
section, one such predictive structure is derived to estimate
the future motion of master system under a few practical
restrictions and assumptions.

III. DERIVATION OF PREDICTOR

In most physical systems, the nature of the source of
force does not imply continuity. However, in practice, the
force exerted on the manipulator by the human operator is
transmitted through a series of intermediate elements (i.e.
hands, fingers, skin and muscles in general) all of which
exhibit a continuum of connected mass-spring-damper like
structures. Having considered the transmission path through
several second order systems, it is usually a valid assumption
to take the structure of input force for the manipulator as being
continuously differentiable. In light of this assumption we can
continue our analysis.

Let u(t) be a continuously differentiable input function of
time. In order to anticipate the future behavior of such a
function, the well known Taylor Approximation can be used.
So, the following Taylor series expansion can be utilized for
the incremental anticipation of u(t);

u(t+δt) = u(t)+
u(1)(t)

1!
(δt)+

u(2)(t)

2!
(δt)2+

u(3)(t)

3!
(δt)3+...

(7)
where, u(n)(t) represents the nth derivative of function u(t)
and δt stands for an incremental time period. In equation (7),
without loss of generality, one can drop the higher order terms
(HOT) in the Taylor Series, truncating the expansion after the
first order derivative. The error made in disregarding the HOT
is directly correlated to the magnitude δt. Having a small
enough δt, the approximation error becomes negligible and
hence one can write;

u(t+ δt) ≈ u(t) +
du(t)

dt
(δt) (8)

Practical realization of a system is always made in discrete-
time. Hence, it is important to recast equation (8) in an
equivalent representation for the next step anticipation of a
discretized function u[kT ] which can be given as;

u[(k + 1)T ] ≈ u[kT ] +
du[kT ]

dt
T (9)

where kT is the kth sample of the discrete system with a
sampling time T . In (9), there are several ways to evaluate the
derivative of the discrete time function. One way of evaluating
the derivative is using the so called Backward Euler method.
Writing the derivative explicitly with Backward Euler, one can
rearrange (9) as follows;

u[(k + 1)T ] ≈ u[kT ] +

(
u[kT ]− u[(k − 1)T ]

T

)
T (10)

For simpler analysis, let us abbreviate one step further value
of the input function (i.e. u[(k+1)T ]) as u1, the current value
of function (i.e. u[kT ]) as uc and one step previous value of
the function (i.e. u[(k− 1)T ]) as up. Now, rewriting equation
(10), we can obtain the following identity to approximate the
next step value of function u;

u1 ≈ 2uc − up (11)

Equation (11) is of crucial importance since it can give a
prediction for the next step value of a function based only
on the information of the current and one step previous data.
Originating from this equation, one can propose an iteration
for the further future steps of the function u based on the
available data as follows;

u2 ≈ 2u1 − uc

u2 ≈ 2(2uc − up)− uc

u2 ≈ 3uc − 2up

u3 ≈ 2u2 − u1

u3 ≈ 2(3uc − 2up)− (2uc − up)

u3 ≈ 4uc − 3up (12)

Looking at the given iterations in equation (12), one can
express the prediction for the N th future step of the input
function u[kT ] (abbreviated as uN ) in terms of its current and
one step previous values as follows:

uN ≈ (N + 1)uc −Nup (13)

The approximated prediction given in equation (13) has two
major sources of error. One error is due to the assumption that
the higher order terms in the Taylor Expansion is neglected and
the second error is due to discretization. It is important to note
here that both of these errors tend to zero as the incremental
time step (δt for continuous and T for discrete representation)
becomes smaller. In other words, we have;

lim
T→0

uN = (N + 1)uc −Nup (14)

So, having a very low sampling time, one can obtain an
accurate estimation for the future behavior of the function u(t)
with the identity given in equation (14).



IV. SYSTEM AND THE PREDICTOR

A. System

In order to implement the predictor proposed in the previous
section, it should be realized in a motion control system.
The mathematical representation of a 1-DOF system with
disturbance observer can be given as follows;

Kni
ref (t) = anq̈(t) + δτdis (15)

where, δτdis represent the uncompensated disturbance over
the system that can possibly exist due to the imperfections
in DOB. With additional compensation, it is possible to have
full disturbance rejection, making δτdis negligibly small [17].
Under the assumption that perfect disturbance cancelation
exists (i.e. δτdis ≈ 0), the system can behave linear. Hence,
one can recast the dynamics given in equation (15) in the
following state space canonical representation;

ẋ = Ax+Bu

y = Cx

where, the state vector x, state transition matrix A, input
matrix B and the system input u can be given as follows:

x =

[
q
q̇

]
, A =

[
0 1
0 0

]
, B =

[
0
Kn

an

]
, u = iref (t)

(16)
The output matrix C can be designed in correlation with the
measurement obtained from the system.

Utilizing the convolution integral from linear system theory,
it becomes possible to predict the future response of the system
given in (16) using the following predictive integration:

x(t+ ξ) = eAξx(t) +

∫ ξ

0

e−AθBu(t+ θ)dθ (17)

where, the future values of the system input u(t + θ) is
assumed to exist. Without loss of generality, equation (17)
can be rewritten in the discrete time setting for implementation
purposes as follows:

x[αT ] = eAαTx[0] +
α∑

m=1

e−AmTBu[mT ] (18)

where, x[0], u[mT ] and x[αT ] represent the current value of
the state vector, m step forward prediction of system input and
α step forward prediction of the state vector respectively. For
the system given in (16), the exponent of the matrix A can be
calculated by the following infinite series;

eA = I2 +
1

1!
A +

1

2!
A2 + ...+

1

n!
An + ... (19)

with I2 representing the 2×2 identity matrix. Since the system
of interest has; A2 = 0(2x2), the terms of equation (19) that
has higher power than one can all be neglected. Hence, for
a nominal second order system, one can simplify the matrix
exponent given in predictive integration as follows;

eAk = I2 +
1

1!
Ak =

[
1 k
0 1

]
(20)

Substituting this identity for the matrix exponent and the
system parameters given in (16) back to the equation (18),
we can obtain the following discrete-time dynamics for the
prediction of future motion:

q[αT ]
q̇[αT ]

=

[
1 αT
0 1

]
q[0]
q̇[0]

+

α∑
m=1

[
1 −mT
0 1

][
0

Kn
an

]
iref [mT ]

which can be further extended as follows:

q[αT ] = q[0] + αT q̇[0]− (Kn/an)
α∑

m=1

mTiref [mT ]

q̇[αT ] = q̇[0] + (Kn/an)

α∑
m=1

iref [mT ] (21)

B. Predictor

We now have all means of calculating the future states of
our system. In order to complete the derivation of predictor,
one has to incorporate the scheme proposed in equation (14)
for the term iref [mT ] of equation (21).

Assuming a velocity tracking control structure on the slave
system and observing that the prediction is made over an
envelope of [αT ] discrete time samples (i.e. the data from αT
seconds ago should be used in the predictor), one can write
down:

iref [mT ] = iref [(m− α+ 1)T ]− iref [(m− α)T ] (22)

Substituting this identity back to the equation (21), one can
finally obtain the m step forward velocity reference of the
slave system as follows:

q̇[αT ] = q̇[0] + (Kn/an)

α∑
m=1

(
iref [(m− α+ 1)T ]− iref [(m− α)T ]

)
(23)

which can further be integrated to obtain q[αT ].

V. EXPERIMENTS

A. Experimental Setup

Verification of the proposed predictor is made on an exper-
imental setup consisting of linear motors. Two Hitachi-ADA
series linear AC motors and drivers are used as the exper-
imental platform. The linear motors had Renishaw RGH41
type incremental encoders with 1µm resolution. The imple-
mentation of the algorithm is made over C code and real
time processing was enabled by a D-Space DS1103 card. The
experiments are conducted with constant time delays in both
measurement and control channels and the prediction is made
based on the magnitude of that constant delay. A sampling
frequency of 1KHz was used for the overall system. A picture
of the experimental setup is provided in Fig. 2.



Fig. 2. Experimental Setup

B. Experiment Results

The proposed predictor is tested in a series of experiments.
In order to see the performance of the observer, three different
sets of experiments are made. In the first two sets, computer
generated references were used to drive the master system
while in the third set random references generated by a human
operator are used as the input of master system. Each set of
experiment included one experiment with 100ms delay and
one experiment with 50ms delay for all of the input channel,
control channel and the predictor respectively

1) Experiment Set I (Sinusoidal Computer Reference): For
this set of experiments, a computer generated reference of
sin(2t) is imposed on the master system. The tracking of
that reference on the master manipulator is achieved via the
use of DOB in the inner loop and PD control in the outer
loop. In order to generate the slave system motion prediction,
the velocity response from the master system is used. The
results of sinusoidal system reference is shown in Fig. 3. An
important fact about the sinusoidal reference is that, due to
the continuous structure of motion, the overshoots are in the
minimal level.

2) Experiment Set II (Triangular Computer Reference): For
this set of experiments, a computer generated triangular refer-
ence with a slope of 0.02m/s is used on the master system.
Like the sinusoidal experiments, tracking of the reference is
attained by PD+DOB controller structure. In order to generate
the slave system motion prediction, the velocity response from
the master system is used.

Selection of triangular reference trajectory has a special
purpose. Since the predictor acts like an accumulator for a
period equal to the time delay, it becomes sluggish when the
master system exhibits a constant velocity behavior for a long
time (i.e. for a period greater than the time delay). Once this
sluggish form is settled in the predictor, the reflection of the
change in motion can only be seen after the period of time
delay. So, unlike the sinusoidal case, in the triangular reference
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Fig. 3. System Response for Sinusoidal Reference

the change in the structure of motion creates an overshoot that
is directly proportional to the slope of constant velocity regime
and the amount of time delay used in the predictor. Right after
the delay time, however, the predictor converges to the correct
prediction of new reference and hence master-slave tracking
can be achieved. The results of triangular system reference is
shown in Fig. 4.
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3) Experiment Set III (Random Operator Reference): For
this set of experiments, random references generated by a hu-
man operator is used. So, the master system is left without any
computer input and the operator is allowed to move the master
robot. Like the two other experiments, velocity response of
the master system is used to generate the slave system motion
prediction. The results of random system reference, shown in
Fig. 5, clearly indicate the power of the proposed structure in
predicting the motion for a predefined period of time delay.
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VI. CONCLUSION

In this paper, a structure is proposed for the prediction of
the master system motion to be used in time delayed control
systems. The proposed structure makes use of the current and
past system data and a discrete predictor to integrate further the
system input for period equal to the time delay. Derivation of
the predictor is made with the assumption of a nominal system
enforced by DOB. The results obtained from the proposed
structure is validated via a series of experiments including
different motion structures and different amounts of time delay.

VII. FUTURE STUDY

Further work is planned to investigate the implementation of
the proposed predictor over a bilateral control system and carry
out the corresponding analysis to have full synchronization
between master and slave systems in time delayed bilateral
control.
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