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ABSTRACT 

 

 
This chapter examines whether the fund of hedge fund portfolios dominate the U.S. 
equity and bond markets based on alternative measures of reward-to-risk ratios. Standard 
deviation is used to measure total risk and both nonparametric and parametric value-at-
risk is used to measure downside risk when the reward-to-risk ratios are constructed. We 
find that the fund of funds index has higher reward-to-risk ratios compared to several 
stock and bond market indices. This result is especially strong when the risk measures are 
calculated from the most recent year’s data and is robust as the measurement window is 
extended to four years. 
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1. INTRODUCTION 

 

Investors base their portfolio asset allocation decisions on the interactions between risks 

and returns of available financial securities. The assumption of risk aversion implies that 

securities with greater risk should demand greater return. Although the trade-off between 

risk and return is well-established in financial economics, the ability to generate higher 

expected returns per unit risk can vary from one security to another. This chapter 

compares various reward-to-risk ratios for the Fund of Hedge Fund (FoHF) index with 

those of several bond and stock market indices.  

 

Traditional risk measures used in portfolio performance measurement assume that returns 

are normally distributed and therefore the standard deviation of the empirical return 

distribution is a good estimate of risk only if the underlying return distribution is close to 

normal. The first measure of reward-to-risk that we use is the Sharpe ratio (1966) which 

is equal to the ratio of the mean excess return of a portfolio to its standard deviation. The 

Sharpe ratio is the most common measure of how well the return of a portfolio 

compensates the investor for the risk taken. However, a common criticism is that it is too 

broad since it includes the total risk of a portfolio in its denominator. Another potential 

issue regarding the calculation of Sharpe ratios for the FoHF index is the non-normality 

of hedge fund return distributions. 

 

The hedge fund literature provides evidence that distributions of hedge fund returns tend 

to deviate from normality. Malkiel and Saha (2005) report that the distribution of hedge 
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fund returns generally have high kurtosis and negative skewness. The documented 

deviation from normality can be traced to the unique investment strategies that hedge 

funds follow. Fung and Hsieh (1997) observe that hedge fund managers are flexible to 

choose among a diverse set of asset classes and they can use dynamic trading strategies 

that involve short sales, leverage and derivatives. Such strategies have the potential to 

induce option-like payouts and exposure to tail events for hedge funds. In a follow-up 

study, Fung and Hsieh (2001) focus on hedge funds that use trend-following strategies. 

They construct several trend-following factors that can replicate key features of hedge 

fund returns such as skewness and positive returns during extreme market movements. 

Mitchell and Pulvino (2001) investigate merger arbitrage strategies and conjecture that 

returns to risk arbitrage are related to market returns in a nonlinear way. Their results 

indicate that merger risk arbitrage is similar to writing uncovered index put options. 

Agarwal and Naik (2004) find that nonlinear payoff structures exist for a wide range of 

hedge fund strategies including equity-oriented positions. They state that ignoring the 

downside risk of hedge funds can result in significantly higher losses during large market 

downturns. Brown, Gregoriou and Pascalau (2009) look at the diversification effect of 

investing in FoHFs and find that the magnitude of skewness is an increasing function of 

diversification offered by FoHFs. Their finding suggests that downside risk exposure may 

not be diversifiable. Finally, Bali, Gokcan and Liang (2007) and Liang and Park (2007) 

provide direct evidence that downside risk measures such as value-at-risk, expected 

shortfall and tail risk can explain the cross-section of hedge fund returns. 
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Downside risk is a function of the higher order moments of a return distribution and even 

without the existence of nonlinear payoffs, higher order moments such as skewness and 

kurtosis have been found to play an important role in asset pricing. The mean-variance 

portfolio theory of Markowitz (1952) has been extended by Arditti (1967) and Kraus and 

Litzenberger (1976) to incorporate the effect of skewness. These studies present three-

moment asset pricing models with investors that hold concave preferences and prefer 

positive skewness. The main implication of these models is that assets that increase a 

portfolio’s skewness are more desirable and should command lower expected returns. 

Harvey and Siddique (2000) extend these unconditional pricing models and incorporate 

conditional co-skewness. Again, the implication is that risk-averse investors prefer 

positively skewed assets to negatively skewed assets. As far as the fourth-moment is 

concerned, Dittmar (2002) builds on the theoretical works of Kimball (1993) and Pratt 

and Zeckhauser (1987) and finds preference for lower kurtosis. Asset distributions with 

lower probability mass in their tails are preferred and therefore assets that increase a 

portfolio’s kurtosis are less desirable and should command higher expected returns.  

 

Downside risk increases with kurtosis and decreases with skewness (Cornish and Fisher 

(1937)). Given the importance of these return moments for asset pricing and the 

prevalence of downside risk in hedge fund returns, we place special emphasis on the 

concept of downside risk in our reward-to-risk analysis. To investigate how much 

expected return each index commands per unit of downside risk, we use both a 

nonparametric and parametric measure of value-at-risk in the construction of the 

alternative reward-to-risk ratios. For the nonparametric VaRSharpe ratio, the 
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denominator is the absolute value of the minimum index return over various past sample 

windows. For the parametric reward-to-downside risk measure (PVaRSharpe), the 

denominator is based on the lower tail of Hansen’s (1994) skewed t-density. 

 

The results indicate that the FoHF index outperforms the bond and stock market indices 

based on traditional Sharpe ratios on average. Although the Sharpe ratios decrease for 

every index as the sampling window for the calculation of standard deviation is extended 

and this decline is most pronounced for the FoHF index, it has the highest Sharpe ratio 

regardless of the sampling window. When we take downside risk into account through 

nonparametric and parametric value-at-risk, the results are similar. The FoHF index has 

higher downside risk-adjusted Sharpe ratios compared to all bond and stock market 

indices and this result is especially strong at shorter sampling windows for value-at-risk 

measurement. 

 

The chapter is organized as follows. Section 2 discusses the methodology for calculating 

the reward-to-risk ratios. Section 3 explains the data and presents the summary statistics. 

Section 4 discusses the empirical results. Section 5 concludes. 

 

2. METHODOLOGY 

 

We estimate three reward-to-risk ratios that differ from each other based on the risk 

measure used in the denominator. The first of these ratios is the standard Sharpe ratio: 
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where Ri,t denotes the month t return on the fund of funds, bond or stock market index i 

and Rf is the risk-free rate as measured by the 1-month Treasury bill return. The standard 

deviation for index i is computed using the squared deviations of monthly returns from 

their means. For each month t and index i, past k months are used to compute the 

standard deviation where k takes the alternative values of 12, 24, 36 or 48. Specifically, 
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In order to take downside risk into account, we first use a nonparametric measure of 

value-at-risk which measures how much the value of a portfolio could decline in a fairly 

extreme outcome. In our analysis, we use the minimum index returns observed during 

past k months of daily data where k again takes the alternative values of 12, 24, 36 or 48. 

These original value-at-risk measures are multiplied by -1 before the construction of the 

reward-to-risk ratios so that higher magnitudes of the measure correspond to greater 

downside risk.  After we calculate nonparametric value-at-risk measures each month 

using rolling windows, Sharpe ratios that incorporate these nonparametric value-at-risk 

estimates are computed. Specifically, VaRSharpe is defined as: 
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where VaRi,t is the nonparametric value at risk. 

 

Finally, for the parametric measure of value-at-risk, we use the skewed t-density, which 

accounts for skewness and excess kurtosis in the data. Hansen (1994) introduces a 

generalization of the Student t-distribution where asymmetries may occur, while 

maintaining the assumption of a zero mean and unit variance. This skewed t (ST) density 

is given by: 
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The parametric approach to calculating value-at-risk is based on the lower tail of the ST 

distribution. Specifically, we estimate the parameters of the ST density (µ, σ, υ, λ) using 

the past 12, 24, 36 or 48 months of return data and then find the corresponding percentile 

of the estimated distribution. Assuming that )(, zfR vt λ=  follows an ST density, 

parametric value-at-risk is the solution to  
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where )(ΦΓST  is the value-at-risk threshold based on the ST density with a loss 

probability of Φ . Sharpe ratios that incorporate parametric value-at-risk are defined as: 
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3. DATA AND DESCRIPTIVE STATISTICS 

 

We gather the data for the FoHF index returns from the Hedge Fund Research (HFR) 

database. The database reports monthly index values for various hedge fund strategies 

beginning from January 1990 and the sample period used in the following analysis 

extends until December 2011. HFR indices are broken down into four main strategies, 

each with multiple sub-strategies. These strategies include equity hedge (equity market 

neutral, quantitative directional, short-bias, etc.), event driven (distressed / restructuring, 

merger arbitrage, etc.), macro (commodity, currency, etc.) and relative value (convertible 

arbitrage, fixed-income corporate, etc.). HFR also reports a Fund of Funds Composite 

index which includes over 650 constituent funds. FoHFs invest with multiple managers 

through funds or managed accounts and their main benefit is designing a diversified 

portfolio of managers to reduce the risk of investing with an individual manager. Fund of 

Funds Composite index is an equally-weighted index and it is commonly used by hedge 

fund managers as a performance benchmark. A fund needs to report monthly gross 

returns and returns net of all fees to be included in the index. Moreover, the assets need to 

be reported in US dollars and the fund needs to have at least $50 million under 
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management or have been actively trading for at least twelve months. Funds are included 

in the composite index the month after their addition to the database.  

 

We also collect data for various bond and stock market indices for comparison purposes. 

Specifically, we collect price data for indices that track Treasury bonds with maturities of 

5, 10, 20 and 30 years. For equities, we focus on the S&P 500 index and the 

NYSE/AMEX/NASDAQ index with distributions. All the data for the bond and stock 

market indices come from the Center for Research in Security Prices (CRSP). The yield 

for the 1-month Treasury bill which is used to proxy for the risk-free rate is downloaded 

from Kenneth French’s online data library. 

 

Table 1 reports the descriptive statistics for all indices. A comparison of means shows 

that the NYSE/AMEX/NASDAQ index has the highest monthly return (0.78%), however 

the S&P 500 index has not generated as high an average return (0.58%). This difference 

can be explained by the greater returns generated by small stocks historically. The mean 

returns on the bond indices increase by time to maturity with the 5-year bond index 

delivering 0.56% per month and the 30-year bond index delivering 0.73% per month. In 

terms of means, the FoHF index sits somewhere in the middle in this picture with a 

monthly mean return of 0.61%. The medians tell a similar story with the biggest 

difference being that both stock market indices have generated higher median returns 

than all other indices. NYSE/AMEX/NASDAQ index had a median return of 1.34% over 

the sample period whereas S&P 500 index had a median return of 1.01%. Again, the 
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median returns for the bond indices increase by time to maturity and vary from 0.58% to 

0.89%. The FoHF index still positions itself in the middle with a median return of 0.77%. 

  

Table 1. Descriptive Statistics for Fund of Hedge Funds, Bond and Equity Indices 
 

This table presents descriptive statistics for the returns of various fund of hedge funds, bond and equity 
indices in the US. The four bond market indices are based on 5-year, 10-year, 20-year and 30-year maturity 
Treasury bonds. The two equity indices are the S&P 500 index and the NYSE/AMEX/NASDAQ 
Composite index. The descriptive statistics that are presented in the table are the mean, standard deviation, 
minimum, 25th percentile, median, 75th percentile, maximum, skewness and kurtosis. 

 
  
 Mean St Dev Min 25th Median 75th Max Skew Kurtosis 

Fund of Funds 0.0061 0.0171 -0.0747 -0.0021 0.0077 0.0159 0.0685 -0.6718 6.7061 

5-year bond 0.0056 0.0128 -0.0338 -0.0020 0.0058 0.0145 0.0452 -0.1755 3.3092 

10-year bond 0.0063 0.0203 -0.0668 -0.0058 0.0071 0.0190 0.0854 -0.0719 4.0789 

20-year bond 0.0077 0.0286 -0.1059 -0.0084 0.0087 0.0244 0.1445 0.0619 5.7720 

30-year bond 0.0073 0.0290 -0.1474 -0.0134 0.0089 0.0270 0.1741 0.2930 6.7463 

S&P 500 0.0058 0.0439 -0.1694 -0.0195 0.0101 0.0340 0.1116 -0.5630 3.9987 
NYSE/AMEX/ 
NASDAQ 

0.0078 0.0455 -0.1846 -0.0189 0.0134 0.0385 0.1153 -0.6827 4.2297 

 

 

With respect to the standard deviations, we find that the stock market indices are 

generally more volatile compared to the bond market indices. NYSE/AMEX/NASDAQ 

and S&P 500 indices have monthly standard deviations of 4.55% and 4.39%, 

respectively. The standard deviations of the bond market indices increase from 1.28% for 

the 5-year bond index to 2.90% for the 30-year bond index. This finding is in line with 

the higher interest rate sensitivities associated with bonds of longer durations. The FoHF 

index has the second lowest standard deviation which is equal to 1.71%. 

 

The patterns for standard deviations also manifest themselves when we look at the 

maximum and minimum returns. The highest (lowest) maximum (minimum) returns 

belong to the equity indices and the bond indices with longer times to maturity. For 

example, there has been a month in which the NYSE/AMEX/NASDAQ index has gained 
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11.53% in value and the 30-year bond index has gained 17.41% in value. Similarly, there 

has been a month during which the NYSE/AMEX/NASDAQ index has lost 18.46% of its 

value and the 30-year bond index has lost 14.74% of its value. The extreme returns for 

the FoHF index are milder with a minimum monthly return of -7.47% and a maximum 

monthly return of 6.85%. This finding is consistent with the diversification effects 

inherent in fund of funds strategies as argued in Fung and Hsieh (2000). 

 

Finally, we compare the higher order moments of the indices. The FoHF index has the 

second most negative skewness statistic (-0.67) after the NYSE/AMEX/NASDAQ index 

(-0.68). The other stock market index, S&P 500, also has negative skewness (-0.56). This 

is consistent with earlier findings in the literature that the tails of the hedge fund and 

equity return distributions are longer on the left side compared to the right side. The 

negative skewness associated with these indices was also foreshadowed by their higher 

medians compared to the means. For the bond market indices, the skewness statistic 

increases with time to maturity. The 5-year bond index has a skewness statistic of -0.18 

whereas the 30-year bond index distribution is positively skewed with a statistic of 0.29. 

 

The kurtosis of the FoHF index is again substantial and equal to 6.71. In other words, the 

FoHF return distribution has more mass on its tails compared to the normal distribution 

and thus, is leptokurtic. Kurtosis again increases with time to maturity for the bond 

market indices from 3.31 to 6.75. The kurtosis for stock market indices lie somewhere in 

the middle among the bond market indices with a kurtosis statistic for the 

NYSE/AMEX/NASDAQ (S&P 500) index equal to 4.00 (4.23). 
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4. EMPIRICAL RESULTS 

 

Table 2 presents the traditional Sharpe ratios that incorporate the standard deviation of a 

portfolio in its denominator. We calculate these monthly Sharpe ratios in a rolling 

window fashion and use different sampling windows to calculate the standard deviations. 

The length of the sampling windows ranges from 12 to 48 months. We present both the 

time-series mean and the standard deviations of the reward-to-risk ratios for all indices. 

 

 

Table 2. Standard Deviation-Based Sharpe Ratios for Fund of Hedge Funds,  

Bond and Equity Indices 

 
This table presents the standard deviation-based Sharpe ratios for various fund of hedge funds, bond and 
equity indices in the US. The four bond market indices are based on 5-year, 10-year, 20-year and 30-year 
maturity Treasury bonds. The two equity indices are the S&P 500 index and the NYSE/AMEX/NASDAQ 
Composite index. The numerator of the standard deviation-based Sharpe ratio is equal to the monthly return 
of the index minus the risk-free rate. The denominator is equal to the standard deviation of monthly returns 
over the past 12, 24, 36 or 48 months. Each row reports the means of each ratio and the standard deviations 
are presented in parentheses. 

 

  Sharpe12 Sharpe24 Sharpe36 Sharpe48 

Fund of Funds 0.3516 (0.5182) 0.2979 (0.3166) 0.2629 (0.2363) 0.2357 (0.1517) 

5-year bond 0.2223 (0.3709) 0.2127 (0.2823) 0.2088 (0.2338) 0.2037 (0.1857) 

10-year bond 0.1801 (0.3278) 0.1676 (0.2080) 0.1630 (0.1592) 0.1561 (0.1123) 

20-year bond 0.1949 (0.3024) 0.1766 (0.1639) 0.1724 (0.1204) 0.1674 (0.0821) 

30-year bond 0.1397 (0.3072) 0.1252 (0.1576) 0.1231 (0.1119) 0.1179 (0.0744) 

SP500 0.1653 (0.3601) 0.1292 (0.2472) 0.1104 (0.1988) 0.1054 (0.1719) 
NYSE/AMEX/ 
NASDAQ 

0.2324 (0.3703) 0.1904 (0.2443) 0.1679 (0.1967) 0.1583 (0.1656) 

 

When the standard deviation is calculated from the most recent year’s data, the FoHF 

index generates the highest excess return per unit risk. The Sharpe ratio for FoHF is equal 

to 0.352 which implies that the index demands extra 35 basis points of expected return 

per 1% increase in standard deviation. The comparison between the bond and stock 
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market indices does not present any clear pattern. Although the NYSE/AMEX/NASDAQ 

index has a superior Sharpe ratio (0.232) compared to all the bond indices, the S&P index 

lags behind most of the bond indices with a Sharpe ratio of 0.165. There is a declining 

pattern for the bond indices with Sharpe ratios of 0.222 for the 5-year bond index and 

0.140 for the 30-year bond index. Another point to note is that the FoHF index also has 

the highest variation in Sharpe ratios. We observe this pattern for the other ratios as well. 

 

Extending the sampling window for calculating standard deviations to 24 months does 

not dramatically alter the results. The Sharpe ratio of the FoHF index declines to 0.298 

from 0.352, but it is still the index that generates the highest excess return per unit risk. 

Note that the reduction in the Sharpe ratio is mechanical due to the positive relation 

between standard deviation and time horizon and this reduction is encountered for all 

indices. The NYSE/AMEX/NASDAQ index has a greater Sharpe ratio (0.190) compared 

to all bond indices except the 5-year bond index (0.213). On the other hand, the S&P 500 

index has a smaller Sharpe ratio (0.129) compared to all bond indices except the 30-year 

bond index (0.125). For sampling windows of 36 and 48 months, the results are similar 

except that S&P 500 now has the lowest Sharpe ratios and the 20-year bond index begins 

to outperform the NYSE/AMEX/NASDAQ index. Most importantly, the FoHF index has 

the highest Sharpe ratio regardless of the sampling window for the standard deviation. 

 

One final point is that the decrease in the Sharpe ratios as the sampling window increases 

is sharper for the FoHF index compared to the other indices. For the 12-month window, 
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the Sharpe ratio of the FoHF index exceeds its closest follower by 0.120 (0.352 vs. 0.232) 

whereas the difference is reduced to 0.038 (0.236 vs. 0.204) for the 48-month window. 

 

These results collectively suggest that the FoHF index generates a higher excess return 

per unit risk when risk is measured by standard deviation. However, there is enough 

evidence in the literature to believe that the standard deviation is an incomplete measure 

of risk for hedge fund returns whose distribution deviates from normality. This is also 

evidenced by the negatively skewed and leptokurtic behavior of the FoHF index returns 

in Table 1. Therefore, to take the nonlinearities hedge fund returns into account, we 

calculate alternative Sharpe ratios based on nonparametric and parametric value-at-risk. 

 

Table 3 presents Sharpe ratios that are based on nonparametric value-at-risk. These 

VaRSharpe ratios scale expected excess returns by the absolute value of the minimum 

return of a portfolio during a recent sample window where the length of the window 

varies between 12 and 48 months. When we focus on VaRSharpe12, we find that the 

FoHF index generates the highest excess return per unit downside risk. The ratio for the 

FoHF index is equal to 2.207 and exceeds those of the other indices multiple-fold. We 

again note that the time-series standard deviation of the VaRSharpe measure is the 

greatest for the FoHF index. In other words, although the FoHF index easily outperforms 

the other indices based on this particular metric, this outperformance seems to be variable 

through time. VaRSharpe12 for the NYSE/AMEX/NASDAQ index is equal to 0.254) and 

greater than those of all bond market indices except the 5-year bond index which has a 

VaRSharpe12 of 0.320. We observe that the downside risk-adjusted Sharpe ratio has a 
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declining pattern for the bond market indices as the time to maturity increases and the 30-

year bond index has a VaRSharpe12 of 0.239. The S&P 500 index has a similar 

performance with a VaRSharpe12 of 0.245. To summarize, the FoHF index is the 

superior performer based on VaRSharpe12 and neither the bond nor the stock market 

indices clearly dominate each other. 

 

Table 3. Nonparametric Value at Risk-Based Sharpe Ratios for  

Fund of Hedge Funds, Bond and Equity Indices 
 

This table presents the nonparametric value at risk-based Sharpe ratios for various fund of hedge funds, 
bond and equity indices in the US. The four bond market indices are based on 5-year, 10-year, 20-year and 
30-year maturity Treasury bonds. The two equity indices are the S&P 500 index and the 
NYSE/AMEX/NASDAQ Composite index. The numerator of the nonparametric value at risk -based 
Sharpe ratio is equal to the monthly return of the index minus the risk-free rate. The denominator is equal to 
the minimum monthly index return over the past 12, 24, 36 or 48 months. Each row reports the means of 
each ratio and the standard deviations are presented in parentheses. 

 
  VaRSharpe12 VaRSharpe24 VaRSharpe36 VaRSharpe48 

Fund of Funds 2.2073 (5.8254) 0.9947 (3.9006) 0.2004 (0.2793) 0.1306 (0.1267) 

5-year bond 0.3198 (0.6192) 0.1565 (0.2003) 0.1260 (0.1352) 0.1104 (0.0973) 

10-year bond 0.2187 (0.4049) 0.1128 (0.1402) 0.0936 (0.0974) 0.0779 (0.0612) 

20-year bond 0.2473 (0.8470) 0.1055 (0.1091) 0.0825 (0.0676) 0.0738 (0.0415) 

30-year bond 0.2387 (1.4856) 0.0778 (0.1037) 0.0585 (0.0631) 0.0497 (0.0364) 

SP500 0.2452 (0.6728) 0.0831 (0.1398) 0.0608 (0.1050) 0.0513 (0.0825) 
NYSE/AMEX/ 
NASDAQ 

0.2544 (0.4572) 0.1206 (0.1473) 0.0897 (0.1124) 0.0742 (0.0874) 

 

 

When we extend the sampling window to calculate nonparametric value-at-risk, the 

VaRSharpe ratios again decline mechanically. The reason is that the absolute value of the 

minimum return during the last 48 months has to be equal to or greater than that during 

the last 12 months. Analyzing the longer horizon VaRSharpe ratios makes some patterns 

apparent. First, the FoHF index continues to be the best performer regardless of the 

sampling window. Second, the 5-year bond index continues to have the highest 

VaRSharpe ratio after the FoHF index and for the 36-month and 48-month horizons, the 
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10-year bond index also outperforms the NYSE/AMEX/NASDAQ index. Third, the S&P 

500 index continues to have the lowest excess return per unit downside risk after the 30-

year bond index. Finally, similar to the results from the traditional Sharpe ratio analysis, 

the margin by which the VaRSharpe ratio of the FoHF index exceeds those of the other 

indices declines as the sampling window increases. For example, VaRSharpe12 of the 

FoHF index is seven times as much as that of the 5-year bond index which its closest 

follower. However, as the sampling window is extended to 48 months, the difference 

between the VaRSharpe ratios decreases substantially. This is due to the fact that the 

reduction in the VarSharpe ratios is much steeper for the FoHF index compared to the 

other indices. VaRSharpe48 measures for the FoHF and the 5-year bond indices are equal 

to 0.131 and 0.110, respectively. 

 

Next, we investigate the reward-to-risk ratios that have parametric value-at-risk based on 

Hansen’s (1994) skewed t-density in their denominators. Table 4 presents the results. The 

inference from the analysis of PVaRSharpe ratios corroborates the findings from Table 3. 

When we focus on the 12-month sampling horizon for the construction of the parametric 

downside risk measure, we find that the FoHF index again has the highest reward-to-risk 

ratio with a PVaRSharpe12 of 1.104. One can also see that the 10-year bond index also 

performs well for this metric with a PVaRSharpe12 of 0.643. The stock market indices, 

namely the NYSE/AMEX/NASDAQ and S&P 500 indices have PVaRSharpe ratios of 

0.167 and 0.131, respectively. These values are lower than those of all bond market 

indices with the exception of the 30-year bond index. The extension of the sampling 

window again reduces the reward-to-risk ratios for all indices. The FoHF index continues 
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to be the best performer regardless of the length of the sampling window. However, as 

observed for the traditional and nonparametric value-at-risk based Sharpe ratios, the 

decline in the PVaRSharpe ratio is steeper than the other indices. For example, the ratio 

of PVaRSharpe12 of the FoHF index to that of the 5-year bond index is more than 4 

when the 12-month sampling window is used whereas for the 48-month sampling 

window, the FoHF and 5-year bond indices have PVaRSharpe ratios of 0.137 and 0.108, 

respectively. A closer look at the results reveals that the bond market indices generally 

outperform the stock market indices and there is a downward trend in the reward-to-risk 

ratios among the bond market indices especially for longer sampling windows. 

 

Table 4. Parametric Value at Risk -Based Sharpe Ratios for  

Fund of Hedge Funds, Bond and Equity Indices 
 

This table presents the parametric value at risk-based Sharpe ratios for various fund of hedge funds, bond 
and equity indices in the US. The four bond market indices are based on 5-year, 10-year, 20-year and 30-
year maturity Treasury bonds. The two equity indices are the S&P 500 index and the 
NYSE/AMEX/NASDAQ Composite index. The numerator of the parametric value at risk-based Sharpe 
ratio is equal to the monthly return of the index minus the risk-free rate. The denominator is equal to the first 
percentile of Hansen’s (1994) skewed t-density estimated using the monthly returns from over the past 12, 
24, 36 or 48 months. Each row reports the means of each ratio and the standard deviations are presented in 
parentheses. 

 

 PVaRSharpe12 PVaRSharpe24 PVaRSharpe36 PVaRSharpe48 

Fund of Funds 1.1037 (4.3839) 0.6146 (1.7954) 0.2264 (0.4187) 0.1365 (0.1729) 

5-year bond 0.2456 (0.7375) 0.1326 (0.1711) 0.1168 (0.1265) 0.1082 (0.0956) 

10-year bond 0.6431 (7.6812) 0.0971 (0.1222) 0.0877 (0.0916) 0.0782 (0.0597) 

20-year bond 0.2614 (1.4548) 0.1058 (0.1848) 0.0840 (0.0739) 0.0761 (0.0422) 

30-year bond 0.1306 (0.2904) 0.0924 (0.3949) 0.0606 (0.0755) 0.0525 (0.0409) 

SP500 0.1314 (0.2936) 0.0722 (0.1218) 0.0554 (0.0942) 0.0490 (0.0769) 
NYSE/AMEX/ 
NASDAQ 

0.1666 (0.2965) 0.1035 (0.1253) 0.0833 (0.0993) 0.0726 (0.0799) 

  

Figures 1 and 2 present plots of traditional and nonparametric value-at-risk based Sharpe 

ratios, respectively. For these figures, we choose only one bond market and one stock 

market index to show the relative performance of the FoHF index to keep the exposition 
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clean. To be conservative, we focus on the 5-year bond and NYSE/AMEX/NASDAQ 

indices which have proved to be the bond and stock market indices that have performed 

the best over the sample period. Moreover, we present the graphs for the reward-to-risk 

measures that use standard deviation and nonparametric value-at-risk calculated from a 

48-month sampling window since the superior performance of the FoHF index becomes 

less pronounced as the sampling window is extended. 

 

Figure 1. Standard Deviation-Based Sharpe Ratios 
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This figure plots the standard deviation-based Sharpe ratios for the fund of hedge funds, 5-year bond and 
NYSE/AMEX/NASDAQ indices between January 1994 and December 2011. The numerator of the 
standard deviation-based Sharpe ratio is equal to the monthly return of the index minus the risk-free rate. 
The denominator is equal to the standard deviation of monthly returns over the past 48 months. 
 

 

The figures show that the FoHF index had a superior performance at the beginning of the 

sample period based on both reward-to-risk metrics, but the Sharpe ratios dropped to the 

level of the NYSE/AMEX/NASDAQ index by 1996. We see that the superior 

performance of the FoHF index is not uniform through time. This observation is 

consistent with the large volatility associated with the reward-to-risk ratios of the FoHF 
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index uncovered in the earlier analysis. There have been periods in which either the 5-

year bond or the NYSE/AMEX/NASDAQ or both have outperformed the FoHF index. 

One such period is the period after the recent global financial crisis and it can clearly be 

seen that the reward-to-risk ratios took a downward turn in the second half of 2008. 

During this period, the performance of the stock market has also been dismal and the 5-

year bond index has generated higher returns per unit risk. Both figures also capture the 

stock market crash of the early last decade after the internet bubble burst as evidenced by 

the steep decline in the reward-to-risk ratios of the NYSE/AMEX/NASDAQ after 2000. 

 

Figure 2. Nonparametric Value at Risk-Based Sharpe Ratios 
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This figure plots the parametric value at risk-based Sharpe ratios for the fund of hedge funds, 5-year bond 
and NYSE/AMEX/NASDAQ indices between January 1994 and December 2011. The numerator of the 
parametric value at risk-based Sharpe ratio is equal to the monthly return of the index minus the risk-free 
rate. The denominator is equal to the first percentile of Hansen’s (1994) skewed t-density estimated using 

the monthly returns from over the past 48 months. 
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CONCLUSION 

 

We investigate whether the fund of hedge fund portfolios outperform various bond and 

stock market indices in terms of being able to generate higher returns per unit risk. Due to 

the potential non-normality associated with hedge fund returns, we give special emphasis 

to the concept of downside risk in our analysis. Consequently, apart from the traditional 

Sharpe ratio, we also construct reward-to-risk ratios that use non-parametric or 

parametric measures of value-at-risk in their denominator for various indices. Our main 

finding is that the FoHF index has superior reward-to-risk ratios compared to all bond 

and stock market indices. Although this superior performance is more pronounced when 

the risk measures are calculated using data from the last 12 months, the ability of the 

FoHF index to generate higher returns per unit risk is robust regardless of the sampling 

window. We also find that the documented outperformance is not a phenomenon that has 

been observed consistently through time and there have been periods in which the FoHF 

index has lagged behind the other indices. 



 21

REFERENCES 

 
Agarwal, V. and Naik, N.Y. (2004). Risks and Portfolio Decisions Involving Hedge 
Funds. Review of Financial Studies, 17(1): 63-98. 
 
Arditti, F.D. (1967). Risk and the Required Return on Equity. Journal of Finance, 22(1): 
19-36. 
 
Bali, T.G., Gokcan, S. and Liang, B. (2007). Value at Risk and the Cross Section of 
Hedge Fund Returns. Journal of Banking and Finance, 31(4): 1135-1166. 
 
Brown, S.J., Gregoriou, G. and Pascalau, R. (2012). Is It Possible to Overdiversify? The 
Case of Funds of Hedge Funds. Review of Asset Pricing Studies, forthcoming. 
 
Cornish, E.A. and Fisher, R.A. (1937). Moments and Cumulants in the Specification of 
Distributions. In: La Revue de l’Institute International de Statistique, 4. Reprinted in 
Fisher, R.A. (1950). In: Contributions to Mathematical Statistics. Wiley, New York, NY. 
 
Dittmar, R.F. (2002). Nonlinear Pricing Kernels, Kurtosis Preference, and Evidence from 
the Cross Section of Equity Returns. Journal of Finance, 57(1): 369-403. 
 
Fung, W. and Hsieh, D.A. (1997). Empirical Characteristics of Dynamic Trading 
Strategies: The Case of Hedge Funds. Review of Financial Studies, 10(2): 275-302. 
 
Fung, W. and Hsieh, D.A. (2000). Performance Characteristics of Hedge Funds and CTA 
Funds: Natural versus Spurious Biases. Journal of Financial and Quantitative Analysis, 
35(3): 291-307. 
 
Fung, W. and Hsieh, D.A. (2001). The Risk in Hedge Fund Strategies: Theory and 
Evidence from Trend Followers. Review of Financial Studies, 14(2): 313-341. 
 
Hansen, B.E. (1994). Autoregressive Conditional Density Estimation. International 

Economic Review, 35(3): 705-730. 
 
Harvey, C.R. and Siddique, A. (2000). Conditional Skewness in Asset Pricing Tests. 
Journal of Finance, 55(3): 1263-1295. 
 
Kimball, M. (1993). Standard Risk Aversion. Econometrica, 61(3): 589-611. 
 
Kraus, A. and Litzenberger, R.H. (1976). Skewness Preference and the Valuation of Risk 
Assets. Journal of Finance, 31(4): 1085-1100. 
 
Liang, B. and Park, H. (2007). Risk Measures for Hedge Funds: A Cross-sectional 
Approach. European Financial Management, 13(2): 333-370. 
 



 22

Malkiel, B.G. and Saha, A. (2005). Hedge Funds: Risk and Return. Financial Analysts 

Journal, 61(6): 80-88. 
 
Markowitz, H. (1952). Portfolio Selection. Journal of Finance, 7(1): 77-91. 
 
Mitchell, M. and Pulvino, T. (2001). Characteristics of Risk and Return in Risk 
Arbitrage. Journal of Finance, 56(6): 2135-2175. 
 
Pratt, J. and Zeckhauser, R. (1987). Proper Risk Aversion. Econometrica, 55(1): 143-154. 
 
Sharpe, W.F (1966). Mutual Fund Performance. Journal of Business, 39(1): 119-138. 


