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Abstract The vast majority of the machine scheduling literature focuses on deter-

ministic problems, in which all data is known with certainty a priori. This may be a

reasonable assumption when the variability in the problem parameters is low. However,

as variability in the parameters increases incorporating this uncertainty explicitly into

a scheduling model is essential to mitigate the resulting adverse effects. In this paper,

we consider the celebrated single-machine total weighted tardiness (TWT) problem in

the presence of uncertain problem parameters. We impose a probabilistic constraint

on the random TWT and introduce a risk-averse stochastic programming model. In

particular, the objective of the proposed model is to find a non-preemptive static job

processing sequence that minimizes the value-at-risk (VaR) measure on the random

TWT at a specified confidence level. Furthermore, we develop a lower bound on the

optimal VaR that may also benefit alternate solution approaches in the future. In this

study, we implement a tabu-search heuristic to obtain reasonably good feasible solu-

tions and present results to demonstrate the effect of the risk parameter and the value

of the proposed model with respect to a corresponding risk-neutral approach.
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1 Introduction

The weighted tardiness objective is a classical due date related performance measure

in make-to-order environments. The goal is to find a job (order) processing sequence

in order to minimize the total cost incurred due to missed due dates. For a given job,

the cost is directly proportional to the associated tardiness. The unit tardiness cost

(weight) may either be associated with the perceived penalty due to a loss of customer

goodwill or may represent actual contractual penalties. The interested reader is referred

to Sen et al (2003) for a relatively recent survey on the topic.

In the traditional single-machine TWT problem described above, all processing

times, release dates, due dates, and weights are known in advance at time zero with

certainty when the job sequencing decision is taken. However, in many practical settings

the exact values of one or several of these parameter types may not be available at

the time the dispatcher determines a job processing sequence. In particular, possible

machine breakdowns, variable sequence-independent setup times, inconsistency of the

worker performance, or changes in tool quality may introduce uncertainty into the

processing times. The uncertainty in the processing time of a job is resolved at the

time of the job completion. The models developed in this paper are sufficiently general

to incorporate randomness into all parameters. However, from a practical point of

view it is reasonable to presume that a due date is quoted as a result of a mutual

agreement with the customer, and the unit tardiness weight associated with a customer

is also known based on either the internal priority of the customer or the contractual

agreement. Therefore, in our computational experiments the due dates and the unit

tardiness weights are deterministic. Furthermore, we assume that all jobs are ready to

be released at time zero. Consequently, we focus on the uncertainty in the processing

times which leads to uncertain completion times and tardiness values. Our objective is

to determine a risk-averse fixed job processing sequence at time zero that hedges against

the uncertainty in the processing times. In the stochastic scheduling terminology (see

Pinedo (2008)), we construct a non-preemptive static list policy.

Traditional models for decision making under uncertainty define optimality criteria

based on expected values and disregard variability inherent in the system. Following

this mainstream risk-neutral approach, most of the classical stochastic scheduling puts

a lot of effort into analyzing the expected performance by assuming that uncertain

parameters such as processing times follow specific distributions. See Pinedo (2008)

for an excellent overview of conventional stochastic scheduling. However, variability

typically implies a deterioration in performance, and risk-neutral models may provide

solutions that perform poorly under certain realizations of the random data. Capturing

the effect of variability can be accomplished by incorporating the appropriate risk

measures into the model that reflect the preferences of the decision maker. Several

criteria to select risk measures have been discussed in the literature (see, e.g., Ogryczak

and Ruszczyński (1999, 2002); Artzner et al (1999)). Considering the wide range of

criteria, there is no universally accepted single risk measure appropriate for all decision

making contexts. In this study, we consider the VaR measure which is a very popular

and widely applied risk measure in the finance literature. For the studies related to VaR

we refer to the chapter by Larsen et al (2002). In our context, we focus on the TWT as

the random outcome associated with a fixed job processing sequence selected at time

zero. The goal is to specify the smallest possible upper bound on the random TWT that

will be exceeded with at most a pre-specified small probability. Here, the selected upper

bound is the VaR of the random TWT at the desired probability level, and we minimize



VaR. The concept of VaR is closely related to probabilistic constraints. Stochastic

programming models with probabilistic constraints were introduced by Charnes et al

(1958) and have been employed successfully in a variety of fields. The interested reader

is referred to Prékopa (1995) and Dentcheva (2006) for reviews and a comprehensive

list of references. Our proposed approach is an intuitive and practical way of modeling

a service level requirement for the TWT under the stochastic setup and leads to a

novel risk-averse stochastic programming model. To the best of our knowledge, this is

a first in the machine scheduling literature.

It is well known that models incorporating VaR exhibit a non-convex structure

even if the underlying deterministic problem is convex. The existing solution methods

primarily deal with VaR integrated into a linear program (LP). Thus, the decision

variables are continuous, and VaR is introduced on a random outcome expressed as a

linear function of the decision variables. Larsen et al (2002) provides a review of the

algorithms available for solving such problems. Note that these studies are generally

concerned with portfolio optimization problems. Larsen et al (2002) also introduces

two heuristic algorithms which solve a series of problems involving a related risk mea-

sure known as conditional-value-at-risk (CVaR). In contrast to VaR, the problem of

minimizing CVaR can be formulated as an LP if the uncertainty is represented by a

set of scenarios, and the proposed heuristics use LP techniques iteratively. However, in

our study the underlying problem involves sequencing decisions that can only be ex-

pressed by employing binary variables; and therefore, even minimizing CVaR is hard.

Consequently, the existing solution methods do not apply in our case.

We characterize the randomness associated with the uncertain parameters by a

finite set of scenarios, where a scenario represents a joint realization of all random

parameters. It is important to point out that the scenario approach allows us to gen-

erate data from any distribution and to model, for instance, the correlation of the

random processing times among different jobs by considering their joint realizations.

In this sense, a scenario-based approach is more general than assuming specific dis-

tributions. On the down side, the computational complexity of solving the problem is

closely affected by the number of scenarios. There are only a few studies utilizing a

scenario-based approach for machine scheduling problems. For example, Gutjahr et al

(1999) minimize the expected TWT with stochastic processing times and propose a

stochastic branch-and-bound technique, where a sampling approach is embedded into

their bounding schemes. Alternatively, other existing scenario-based studies develop

robust optimization models in order to optimize the worst-case performance over all

scenarios. Such a worst-case analysis does not require the probabilities of the scenarios.

The sum of completion times is employed in Daniels and Kouvelis (1995); Yang and

Yu (2002), and the weighted sum of completion times is considered by de Farias et al

(2010), while Kasperski (2005) focuses on the maximum lateness as the random per-

formance criterion. One or several of the robustness measures known as the maximum

deviation from optimality, the maximum relative deviation from optimality, and the

maximum value over all scenarios are incorporated in these papers. Except de Farias

et al (2010), all these studies design specialized algorithms for the robustness measure

and random performance criterion of interest. de Farias et al (2010) identify a fam-

ily of valid inequalities to strengthen the mixed-integer formulation of their problem.

Furthermore, Alouloua and Croce (2008) provide several complexity results in the do-

main of robust scheduling. In contrast to robust approaches adopting a conservative

worst-case view, we define our optimality criterion based on VaR which is a quantile

of the random outcome at a specified probability level. That is, we utilize probabilis-



tic information and develop a risk-averse stochastic programming model alternative to

existing robust optimization models. Note that setting the required probability level to

one subsumes the robust optimization problem of minimizing the maximum TWT over

all scenarios. However, when the required probability level is specified as α < 1, we

minimize the maximum TWT over a subset of scenarios with an aggregate probability

of at least α. Our risk-averse model identifies the optimal subset of scenarios with the

specified minimum aggregate probability level and minimizes the maximum TWT over

this subset. Thus, it is less conservative than the robustness approach which considers

all scenarios.

The main contribution of this study is to develop a risk-averse model that is novel in

machine scheduling. We analyze the behavior of the proposed model in comparison to

that of the risk-neutral model and provide insights on the impact of the risk preference.

Furthermore, in all papers on robust scheduling mentioned above the corresponding

deterministic single-machine problems are polynomially solvable. However, the single-

machine TWT problem is strongly NP-hard (Lenstra et al (1977)), and incorporating

VaR poses additional computational difficulties. Thus, we also implement a tabu search

algorithm to solve the proposed model heuristically.

In the next section, we formally define the risk-averse TWT problem and present a

mathematical programming formulation. In Section 3, we introduce a lower bounding

scheme for our problem and also briefly discuss the implementation details of the tabu

search. Computational results are presented in Section 4, and we conclude in Section

5 with further research directions.

2 Stochastic Programming Model

In this section, we first present the underlying deterministic model of the stochastic

TWT problem. Then, we discuss how to model the uncertainty inherent in the system

and develop our risk-averse stochastic programming model.

2.1 Underlying deterministic model

For single-machine scheduling problems, four frequently used alternate deterministic

formulations appear in the literature (see Keha et al (2009)): disjunctive (DF), time-

indexed (TIF), linear ordering (LOF), and the assignment and positional date for-

mulations (APDF). TIF has a tight LP relaxation and is the best contender among

these four formulations if the processing times are small. TIF, however, cannot be

adapted to our stochastic setting directly, because it infers the sequence from the com-

pletion times represented by binary decision variables. Recall that our goal is to find

a non-preemptive static job processing sequence at time zero. That is, the decisions

are independent of the random realizations of data, and therefore, relying on comple-

tion time information that is contingent on the random processing times (and random

release dates if applicable) is not appropriate to construct a static job processing se-

quence. Our preliminary results indicate that DF is outperformed by LOF and APDF.

This observation is also supported by the extensive computational study presented in

Keha et al (2009). Thus, among the common formulations only LOF and APDF are

viable options for our proposed risk-averse model. In this study, we work with LOF but

note that the proposed modeling framework would apply to APDF in a similar way.



We define the set of jobs to be processed as N := {1, . . . , n}, where n denotes the

number of jobs. Associated with each job j ∈ N are several parameters: a processing

time pj , a due date dj , and a tardiness cost per unit time wj if job j completes

processing after dj . The completion time of job j is represented by Cj , and the tardiness

Tj of job j is then expressed by Tj = max(0, Cj − dj). The binary variable δjk takes

the value 1, if job j precedes job k in the processing sequence, and is zero otherwise. By

convention, we set δjj = 1 for all j ∈ N . Assuming zero release dates, the deterministic

single-machine TWT problem, described as 1//
∑

j wjTj following the common three

field notation of Graham et al (1979), is formulated below:

min

n
∑

j=1

wjTj

subject to

δjk + δkj = 1, 1 ≤ j < k ≤ n, (1)

δjk + δkl + δlj ≤ 2, ∀j, k, l ∈ N : j 6= k, k 6= l, l 6= j, (2)

Cj =
∑

k∈N

pkδkj , ∀j ∈ N, (3)

Tj ≥ Cj − dj , ∀j ∈ N, (4)

Tj ≥ 0, ∀j ∈ N, (5)

δjk ∈ {0, 1}, ∀j, k ∈ N. (6)

Constraints (1) ensure that for each pair of jobs j and k either job j precedes

job k or vice versa. Constraints (2) represent the transitivity requirements for a linear

ordering of the jobs. In other words, they guarantee that for any triplet of jobs j, k, l, if

job j precedes job k and job k precedes job l then job j precedes job l. The completion

time Cj of job j is the sum of the processing times of all of its predecessors (recall that

δjj = 1 by convention) as prescribed by (3), and Tj is related to Cj by constraints (4)

and (5). Constraints (6) are the binary variable restrictions required for the sequencing

decisions.

In our setting, the actual values of the processing times are not certain at the time

we determine the job processing sequence, and the processing times can be represented

by random variables. This implies that the completion times and the tardiness val-

ues associated with a sequence are also random variables, since they are functions of

the random processing times. In this case, comparing alternate candidate sequences

requires comparing their respective random TWT values. In this paper, we propose

a risk-averse approach which evaluates a sequence with respect to a certain quantile

of the distribution of the associated random TWT. Let Υ and ξj denote the random

TWT and the random processing time of job j ∈ N , respectively. The random variable

Υ is a random outcome associated with a sequence δ ∈ {0, 1}n×n. We can represent it

as a function of the decision vector δ ∈ {0, 1}n×n as below:

Υ =

n
∑

j=1

wj max

(

n
∑

k=1

ξkδkj − dj , 0

)

. (7)

We intend to model the risk associated with the variability of the random outcome Υ

by introducing the following probabilistic constraint:

P (Υ ≤ θ) ≥ α, (8)



where α is a specified large probability such as 0.90 or 0.95. Here θ denotes an upper

bound on the TWT that is exceeded with at most a small probability of 1−α. If α = 1,

Υ ≤ θ holds almost surely. As discussed in more depth in Section 1, such a probabilistic

constraint is intuitive and allows us to model a service level requirement for the TWT

under the stochastic setup. We refer to α as the risk parameter which reflects the level

of risk-aversion of the decision maker. Clearly, increasing α results in allowing a higher

value of the upper bound θ. We propose not to specify the value of θ as an input, but

consider it as a decision variable with the purpose of identifying the sequence with the

smallest possible value of θ given the risk aversion of the decision maker. Thus, in our

model we minimize θ for a specified parameter α, which is equivalent to minimizing

the α-quantile of the random TWT. The α-quantile has a special name in risk theory

as presented in the next definition.

Definition 1 Let X be a random variable. The α-quantile

inf{η ∈ R : FX(η) ≥ α}

is called the Value at Risk (VaR) at the confidence level α and denoted by VaRα(X),

α ∈ (0, 1].

The probabilistic constraint (8) can equivalently be formulated as a constraint on

the VaR of the random TWT:

VaRα(Υ ) ≤ θ. (9)

In other words, by considering the proposed probabilistic constraint (8) we specify the

VaR as the risk measure on the random TWT, and minimizing θ corresponds to seeking

the sequence with the smallest possible VaR measure for a specified α value.

A model with a probabilistic constraint similar to that in (8) with randomness on

the left hand side was first studied by de Panne and Popp (1963) and Kataoka (1963).

Kataoka introduces a transportation type model and Van de Panne and Popp present

a diet (cattle feed) optimization model with a single probabilistic constraint. In these

studies, the random outcome of interest is a linear function of the decision vector, and

in both studies the solution methods are specific to random coefficients with a joint

normal distribution. In contrast, the random outcome Υ in our work is not a linear

function of the decision vector as evident from (7), and we do not assume that it has

a special distribution.

We characterize the random processing times by a finite set of scenarios denoted

by S, where a scenario represents a joint realization of the processing times of all jobs.

To develop our stochastic programming formulation, previously introduced parameters

and variables are augmented with scenario indices:

psj : processing time of job j under scenario s, s ∈ S.

T s
j : tardiness of job j under scenario s, s ∈ S.

Cs
j : completion time of job j under scenario s, s ∈ S.

πs: probability of scenario s, s ∈ S.

Then, we formulate the problem of minimizing the VaR in the single-machine TWT

problem as follows:

min θ (10)

subject to δjk + δkj = 1, 1 ≤ j < k ≤ n, (11)



δjk + δkl + δlj ≤ 2, ∀j, k, l ∈ N : j 6= k, k 6= l, l 6= j, (12)

Cs
j =

∑

k∈N

pskδkj , ∀j ∈ N, s ∈ S, (13)

T s
j ≥ Cs

j − dj , ∀j ∈ N, s ∈ S, (14)

T s
j ≥ 0, ∀j ∈ N, s ∈ S, (15)
∑

j∈N

wjT
s
j − θ ≤ T s

maxβ
s, ∀s ∈ S, (16)

∑

s∈S

πsβs ≤ 1− α, (17)

βs ∈ {0, 1}, ∀s ∈ S, (18)

δjk ∈ {0, 1}, ∀j, k ∈ N. (19)

We emphasize that the constraints (11), (12), and (19) in the model above are identical

to the constraints (1), (2), and (6) in the deterministic model, respectively. That is,

the sequencing decisions are independent of the uncertainty. Constraints (13)-(15) are

the counterparts of the constraints (3)-(5) in the deterministic model, respectively, and

calculate the resulting job completion times under each joint realization of the process-

ing times. The parameter T s
max is a scenario-specific sufficiently large number which

guarantees that the binary variable βs is set to 1 by the corresponding constraint (16) if

the realization of the TWT under scenario s exceeds the threshold value θ. Constraint

(17) mandates that the probability of exceeding the threshold value θ for the random

TWT is no more than 1−α. At an optimal solution of the formulation above, T s
j may

be strictly larger than max{Cs
j − dj , 0} for some scenario s ∈ S because the tardiness

values are not associated with positive cost coefficients in the objective. Obviously,

we preserve optimality by setting T s
j = max{Cs

j − dj , 0}. For the validity of the for-

mulation (10)-(19), we must also ensure that T s
max is no smaller than the maximum

possible TWT under scenario s. In order to obtain a reasonably tight formulation, we

sort the processing times under scenario s in non-increasing order and denote the jth

largest processing time under scenario s by ps[j]. Then, the maximum possible comple-

tion time of the kth job in the sequence, k = 1, . . . , n, under scenario s is computed

as Cs
[k] =

∑k
j=1 p

s
[j]. Next, the due dates and the unit tardiness weights are assigned

to the completion times in non-increasing and non-decreasing order, respectively. A

standard pairwise interchange argument (not necessarily adjacent) demonstrates that

the resulting TWT is an upper bound on the TWT of any job processing sequence

under scenario s.

Uncertainty in the due dates and/or the unit tardiness weights may be incorporated

in our formulation in a straightforward manner by replacing the parameters dj and wj

by dsj and ws
j in the constraints (14) and (16), respectively. This modification does not

affect the number of variables and constraints. However, if the release dates are not

known in advance, then the completion time constraints (13) must be replaced by the

following set of constraints adapted from the deterministic formulation in Nemhauser

and Savelsbergh (1992):

Cs
j ≥ rsi δij +

∑

{k : rs
k
<rsi , k 6=j}

psk(δik + δkj − 1) +
∑

{k : rs
k
≥rsi }

pskδkj , ∀i, j ∈ N.

In the remainder of the paper, we refer to the formulation (10)-(19) as VaR-TWT.



3 On the Solution Method

The main intent of our work is to argue and illustrate the value of the risk-averse single-

machine TWT problem. Therefore, our efforts are focused primarily on modeling and

the insights provided by the computational results. Clearly, developing an effective

solution method to solve VaR-TWT is an ambitious endeavor that we will delve into

in the future. In this larger scheme, we first develop a lower bound on the optimal

VaR that may benefit prospective studies as well. This lower bounding mechanism is

employed for computing the optimality gaps in our computational study in Section 4

when it is too expensive to solve VaR-TWT to optimality. Then, we briefly discuss

some implementation details of a standard tabu search heuristic that yields reasonably

high-quality feasible solutions to the risk-averse single-machine TWT problem.

3.1 Lower Bounding Scheme

The relation of stochastic dominance is one of the fundamental concepts to compare

random variables (Mann and Whitney (1947); Lehmann (1955)). It introduces a pre-

order in the space of real random variables. We refer to Muller and Stoyan (2002) for a

detailed and comprehensive discussion on stochastic dominance relations. In a stochas-

tic dominance based approach, random variables are compared by a point-wise com-

parison of some performance functions constructed from their distribution functions.

In this study, we utilize the first-order stochastic dominance (FSD) which considers

the cumulative distribution function itself as the performance function. Let FX and

FY denote the distribution functions of the random variables X and Y , respectively.

The FSD relation between X and Y is defined as below:

Definition 2 A random variable X dominates another random variable Y in the first

order; that is, X is stochastically larger than Y , if

FX(η) ≤ FY (η) for all η ∈ R. (20)

This ordering is denoted by X �(1) Y .

It is easy to see that by the definition of the FSD relation we have

[

X �(1) Y
]

⇔
[

VaRα(X) ≥ VaRα(Y ) for all 0 < α ≤ 1
]

. (21)

We leverage on this fundamental relation between the concepts of VaR and FSD in

order to obtain a lower bound on the optimal objective value of VaR-TWT. We con-

sider a finite probability space where the sample space is given by Ω = {ω1, . . . , ωN}
with corresponding probabilities p1, . . . , pN . Let yi = Y (ωi), i = 1, . . . , N , and xi =

X(ωi), i = 1, . . . , N , denote the realizations of the random variables Y and X, re-

spectively. In our study, we are interested in the random TWT. In particular, the

realizations of the random variable Y are obtained by solving a single-machine TWT

problem independently for each scenario. On the other hand, the random variable X

denotes the random TWT associated with the optimal sequence of the problem VaR-

TWT. Next, we state formally that VaRα(Y ) is a lower bound on the optimal VaR

obtained by solving VaR-TWT for any given fixed α.



Proposition 1 Let Y represent a random variable, where the realization Y (ωi) is equal

to the TWT associated with the sequence that minimizes the TWT under scenario i, i =

1, . . . , N . Furthermore, the random variable X denotes the random TWT associated

with the optimal sequence δ∗ of the problem VaR-TWT. Then, VaRα(Y ) ≤ VaRα(X)

for all 0 < α ≤ 1.

Proof X(ωi) is the TWT associated with the sequence δ∗ under scenario i. Since δ∗ is

a feasible sequence for the problem of minimizing the TWT under scenario i, we have

X(ωi) ≥ Y (ωi) for all i = 1, . . . , N . It trivially follows that P (X ≤ η) ≤ P (Y ≤ η) for

all η ∈ R, i.e., X dominates Y in the first-order. Consequently, VaRα(Y ) ≤ VaRα(X)

for all 0 < α ≤ 1 by (21).

Note that the random variable Y does not have a special interpretation in the context

of our problem. It only serves the purpose of obtaining a valid lower bound on the

optimal objective function value of our problem.

Calculating the lower bound in Proposition 1 is strongly NP-hard because it re-

quires solving |S| instances of the deterministic single-machine TWT problem. A rem-

edy to this issue is constructing a lower bound on the optimal TWT under each sce-

nario. Then, the realizations Y (ωi), i = 1, . . . , N, in Proposition 1 are replaced with

these lower bounds. The interested reader is referred to Tanaka et al (2009); Pan and

Shi (2007); Sen (2010) for a variety of lower bounds for the deterministic single-machine

TWT problem.

3.2 Tabu Search

For many combinatorial optimization problems in scheduling and routing, local search

algorithms, and in particular metaheuristics, provide us with established and viable so-

lution methods. Given the additional complexity stemming from the consideration of

risk in the single-machine TWT problem, it is of interest to gauge the potential of local

search algorithms for this problem. Thus, in this study we implemented a basic tabu

search algorithm for a preliminary assessment. A further important consideration is

whether this tabu search algorithm fares well compared to a risk-neutral optimization

model to be introduced in Section 4. In other words, we intend to figure out whether

we can do at least as good as an expectation-based model even with a simple meta-

heuristic. In the rest of this section we briefly discuss some details of the tabu search

implementation.

The feasible region of the risk-averse single-machine TWT problem is identical to

that of its deterministic counterpart with n! feasible sequences. Therefore, it suffices

to conduct a search over the job processing sequence. In the deterministic version, a

well-known dominance rule (see Pinedo (2008)) mandates that there exists an optimal

sequence in which job i precedes job j if di ≤ dj , pi ≤ pj , and wi ≥ wj . We adapt this

rule to our problem by replacing the processing times by their expected values, where

the expected processing time of job j is given by p̄j =
∑

s∈S πspsj . We determine the

priority of job j as
wj

p̄j×dj
and pick the jobs in non-increasing order of their priorities

to construct an initial feasible sequence. Clearly, in the future we need to conceive and

incorporate dominance rules that are more tailored toward the risk-averse nature of

our problem.



The neighborhood generator is adjacent pairwise interchange. Note that function

evaluations are expensive for our problem. Even for this basic neighborhood, the ran-

domness in the processing times (and possibly in the other parameters of the problem)

does not allow to calculate the objective value of a neighboring solution in a straight-

forward way based on the objective value of the current solution. Therefore, the small

size of this neighborhood makes it attractive from a computational speed point of view.

Features such as approximate move evaluations may need to be incorporated for an

effective local search heuristic for larger instances.

The search is guided with a best-improve strategy. That is, at each iteration we

pick the best of the n− 1 neighboring solutions. The tabu list keeps track of the jobs

not to be interchanged for a number of iterations. The size of the tabu list is limited

to d5n/2e. A tabu move is accepted only if the associated objective value exceeds the

best solution found so far. We terminate the algorithm at 500n iterations or if the

best objective value does not improve for 15n iterations, or if all moves in the current

neighborhood are tabu.

4 Computational Study

The goals of our computational study are two-fold. In the first part, we demonstrate

that the lower bounding procedure developed in Section 3.1 provides good bounds in

this preliminary computational study. Furthermore, the results indicate that the basic

tabu search algorithm of Section 3.2 yields feasible solutions of reasonable quality for

the risk-averse single-machine TWT problem for instances with up to 20 jobs. In the

second part, the value of the proposed risk-averse model is investigated with respect

to that of a risk-neutral model.

All runs were conducted on a single core of an HP Linux workstation with two

IntelR©XeonR©W5580 3.20GHz CPU’s and 32 GB of memory. The integer programming

formulations were solved by CPLEX 11.2, and the tabu search was implemented in C++.

4.1 Generation of problem instances

While our modeling framework allows for randomness in all problem parameters, we

focus on the uncertainty in the processing times in our computational study as justified

by the discussion in Section 1. For each instance, we generate a set of equally likely

scenarios representing the joint realizations of the processing times by adding negative

or positive perturbations to each estimated processing time p̂j , where p̂j follows an

integer uniform distribution U [1, 100] for j = 1, . . . , n. To this end, let εj denote the

random perturbation for job j, where εsj is the realization of εj for scenario s. Then,

the processing time of job j under scenario s is given by psj = p̂j +εsj . In our first set of

experiments, we set εj ∼ U(−p̂j/4, p̂j/3), which results in E(p̂j +εj) = p̂j + p̂j/24 and

a coefficient of variation (CV) of 0.16. CV is a normalized measure of dispersion and

is defined as CV (p̂j + εj) = standard deviation(p̂j + εj)/E(p̂j + εj) for the processing

time of job j. Additional data with different CV values are generated to further analyze

the value of the risk-averse model in Section 4.3. The details are presented in Table 2.

In the literature, it is well established that the tightness and the range of the due

dates is a primary determinant of difficulty for due date related problems. Thus, by

following the popular scheme of Potts and van Wassenhove (1982), we first generate



the due dates from a discrete uniform distribution [d(1 − TF − RDD/2) × P̄ e, d(1 −
TF + RDD/2)× P̄ e], where P̄ is the sum of the expected processing times, i.e., P̄ =
∑n

j=1

∑

s∈S πspsj . The tardiness factor TF is a rough estimate of the proportion of jobs

that might be expected to be tardy in an arbitrary sequence (Srinivasan (1971)) and

is set to 0.3. Hard instances generally result from such small values of TF (see Bulbul

et al (2007); Sen (2010)). The due date range factor RDD is set to 0.2 to increase the

contention around the mean due date. The weights are drawn from an integer uniform

distribution U [1, 100].

4.2 Computational performance of the Lower Bound and the Tabu Search

In the first part of our study, we generate 5 instances for each combination of n =

10, 20, 30, and |S| = 100, 150, 200, 250, 300, as described in the previous section. The

risk parameter α = 0.90. For each instance, we calculate the lower bound presented

in Section 3.1 and then solve it by both VaR-TWT and the tabu search implemented.

The results averaged over 5 instances appear in Table 1.

Table 1 Effectiveness of the tabu search and the lower bound (α = 0.90).

| S |
100 150 200 250 300

n = 10 UB on Gap - Tabu 1.93% 0.00% 3.95% 1.29% 1.02%
UB on Gap - Var-TWT 0.00% 0.00% 0.00% 0.37% 1.02%
CPU - Tabu 0.16 0.24 0.34 0.41 0.48
CPU - Var-TWT 439.54 446.44 1263.48 5231.41 5195.23

n = 20 UB on Gap - Tabu 6.88% 7.27% 10.55% 1.80% 4.63%
UB on Gap - Var-TWT 0.80% 2.50% 3.13% 2.76% 4.05%
CPU - Tabu 1.29 1.94 2.40 3.11 3.60
CPU - Var-TWT 7194.83 7195.69 7195.35 7197.25 7197.70

n = 30 UB on Gap - Tabu 5.91% 25.25% 14.46% 12.47% 8.20%
UB on Gap - Var-TWT 3.71% 6.45% 6.76% 16.20% 16.80%
CPU - Tabu 4.39 6.49 9.04 10.07 12.17
CPU - Var-TWT 7199.31 7199.43 7199.34 7199.53 7198.64

The time limit for VaR-TWT is set to 7200 seconds, and if optimality is not proven

in the time allotted, then we record both the best lower bound and the incumbent

solution available from CPLEX. For a given instance and an algorithm, the optimality

gap is computed with respect to the optimal solution if it is available. Otherwise, the

best known lower bound is determined by taking the maximum of our lower bound and

the best lower bound retrieved from CPLEX, and the optimality gap is computed with

respect to this lower bound. For each n, the first two rows specify the average upper

bounds on the optimality gaps (“UB on Gap - Tabu” and “UB on Gap - VaR-TWT”),

and the associated average CPU times in seconds are reported in the last two rows.

Several conclusions may be drawn from Table 1. First, solving VaR-TWT is very

time consuming even for small n as the number of scenarios grows. Only half of the

instances with n = 10 and | S |= 250, 300, and none of instances with n = 20, 30 can

be solved to optimality within the time limit. Second, our lower bounding scheme is

quite tight for this data set. Note that for n = 20, 30, CPLEX returns a trivial lower



bound of 0 for all instances. That is, all optimality gaps for instances with 20 and 30

jobs are computed with respect to our lower bound. Furthermore, note that a standard

time-indexed formulation is applied to the single-machine TWT problems to be solved

for our lower bounding scheme, and if optimality is not achieved in 1000 seconds, then

we use the best available lower bound instead of the optimal solution for calculating

the lower bound based on Proposition 1. Third, the quality of solutions obtained from

the tabu search is relatively high for n = 10, 20. However, the performance degrades

considerably for n = 30.

4.3 Value of the Risk-Averse Model

The value of a risk-averse solution depends on the relative performance of the corre-

sponding deterministic and risk-neutral solutions as a function of the risk appetite.

Therefore, in this part, we benchmark VaR-TWT against corresponding deterministic

and risk-averse models as the risk parameter α is varied. The deterministic counterpart

of our problem is the conventional single-machine TWT problem, in which all process-

ing times take on their expected values; that is, we have pj = p̄j =
∑

s∈S πspsj . In the

risk-neutral version of our problem, we minimize the expected TWT by solving the

following formulation:

min

n
∑

j=1

wj

∑

s∈S

πsT s
j (22)

subject to (11)− (15) and (19). (23)

In Figure 1, we zoom into two instances from Table 1 to illustrate how the VaR

changes as α is varied. For this data set we obtain risk-averse solutions without sacrific-

ing much from the expected TWT as α increases. Finally, we create data with different

variability in the processing times. To this end, we consider the uniform distribution

and a mixture of two exponential distributions to generate perturbations. We specify

the parameters of these distributions such that the resulting processing times have

different CV values. The details are summarized in Table 2. All scenarios are assumed

to be equally likely. A total of 10 instances for n = 10, 20 are solved by the risk-neutral

model and tabu search for α = 0.90. For these 10 instances, the entries in Table 3

indicate the relative decrease in VaR and the relative increase in the expected TWT

for the solution of the tabu search in comparison to that of the risk-neutral model. The

risk-averse solution exhibits significant improvements over the risk-neutral solution,

albeit at times at the expense of the expected TWT to hedge against the uncertainty.

Random Perturbation Resulting Processing Times
E(p̂j + εj) CV (p̂j + εj)

DataSet 1 εj ∼ U(−p̂j/4, p̂j) p̂j + 3p̂j/8 0.26
DataSet 2 εj ∼ U(−p̂j/4, 2p̂j) p̂j + 7p̂j/8 0.35

DataSet 3 εj ∼

{

exp(13p̂j/24) with prob of 0.75
exp(−p̂j/8) with prob of 0.25

p̂j + 3p̂j/8 0.40

DataSet 4 εj ∼

{

exp(6p̂j/5) with prob of 0.75
exp(−p̂j/10) with prob of 0.25

p̂j + 7p̂j/8 0.63

Table 2 Summary of parameters for creating processing times.
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Fig. 1 Comparison of the risk-averse model to its deterministic and risk-neutral counterparts.

Table 3 The risk-averse model (tabu search) versus the risk-neutral model (α = 0.90).

n = 10
DataSet 1 DataSet 2 DataSet 3 DataSet 4

| S | θ E(TWT) θ E(TWT) θ E(TWT) θ E(TWT)

100 -17.44% 3.08% -14.82% 0.13% -13.37% 5.54% -21.39% 7.93%
150 -5.64% 21.21% -9.72% 12.07% -21.25% 9.10% -8.73% 15.27%
200 -28.07% 5.40% -7.27% 24.64% -25.25% 13.84% -15.83% 27.94%
250 -4.11% 0.32% -5.40% 1.86% -5.89% 0.39% -11.32% 11.11%
300 -6.81% 18.77% -5.47% 12.63% -10.02% 6.38% -11.90% 5.02%

n = 20
DataSet 1 DataSet 2 DataSet 3 DataSet 4

| S | θ E(TWT) θ E(TWT) θ E(TWT) θ E(TWT)

100 -17.98% 7.10% -5.14% 16.99% -25.77% 12.41% -6.22% 15.27%
150 -15.81% 4.02% -23.89% 0.88% -12.07% 4.69% -9.09% 5.36%
200 -2.62% 8.12% -4.03% 4.06% -2.99% 8.72% -12.33% 22.70%
250 -3.87% 8.75% -14.02% 12.81% -5.16% 13.08% -8.97% 5.93%
300 -14.19% 4.65% -6.13% 7.33% -12.97% 9.48% -9.51% 11.43%



5 Conclusion

In this paper, we modeled the problem of minimizing VaR in the single-machine TWT

problem under the presence of uncertainty and illustrated the value of the proposed

risk-averse model. Furthermore, we presented a promising lower bounding scheme.

As part of our ongoing research, we focus on developing an efficient mathematical

programming based method to solve the proposed model VaR-TWT. In particular, we

intend to incorporate a Lagrangian method to decompose the problem over scenarios.
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