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Abstract—The configuration spaces of modern software sys- which each possible combination of option settings for gver
tems are often too large to test exhaustively. Combinatoria  combination oft options appears at least once [6].

interaction testing approaches (CIT), such as covering aays, The basic justification for covering arrays is that they can
systematically sample the configuration space and test only

the selected configurations. Traditional t-way covering arays ~ coSt-effectively exercise all system behaviors causechby t
aim to cover all t-way combinations of option settings in a  Settings oft or fewer options. The results of many empirical
minimum number of configurations. By doing so, they assume  studies strongly suggest that a majority of option-related
that the testing cost of a configuration is the same for all  fajjuresin practice are caused by the interactions amotyg on

configurations. In this work, we however argue that, in pracice, 5 gma| humber of configuration options and that traditional
the actual testing cost may differ from one configuration to

another and that accounting for these differences can impree "Wy covering arrays, where is much smaller than the
the cost-effectiveness of covering arrays. In this work, wéirst ~ number of options, are an effective and efficient way of
introduce a novel combinatorial object, called acost-aware revealing such failures [6], [2], [10], [9].

covering array A t-way cost-aware covering array is a t-way Existing approaches construct a t-way covering array in

covering array that minimizes a given cost function. We then i I .
provide a framework for defining the cost function. Finally, we such a way that all valid t-way combinations of option

present an algorithm to compute cost-aware covering arrays Setti_ngs are CO\_/ered by using a minimum_nurr_]b_er of config-
for a simple, yet important scenario, and empirically evallate  urations. By doing so, these approaches implicitly assume a
the cost-effectiveness of the proposed approach. The resibf  simple cost model where the cost of configuring the system
our empirical studies suggest that cost-aware covering aays, under test is the same for all configurations.

depending on the configuration space model used, can greatl . .
redpuce tr?e actual cos% of testiﬂg compared to’ traditgijonaly . In this work W,e' _howeve_r, arglue that this cost model
covering arrays. is not always valid in practice. First, we observe that the
configuration cost often varies from one configuration to
other. For example, in a study conducted on MySQL — a
[. INTRODUCTION widely-used and highly-configurable database management
_ ) ) system, we observed that the cost of configuring the MySQL
The configuration spaces of configurable software SySteméommunity Server (a core component of the system) with its
are often too large to test exhaustively. The number o efault configuration took about 6 minutes on avetagn
possible configurations is often far beyond the availablg,o oiher hand, configuring the system with NDB cluster
resources to test the entjre configuration space in a time|¥torage support — a feature that enables clustering of in-
manner, e.g., for regression testing. memory databases, and with embedded server support — a
Combinatorial interaction testing (CIT) approaches takeeatyre that makes it possible to run a full-featured MySQL
as input a configuration space model. The model includegeryer inside a client application, took about 9 minutes,
a set of configuration options, each of which can take on gg these features needed to be compiled into the system.
small numb_er of option settings. As_not all configurationstherefore, in a covering array, reducing the number of
may be valid, the model can also include some systeMgonfigurations that include these features, without adiers
wide inter-option constraints. In the context of this work, affecting the coverage of option setting combinations, can
an inter-option constraint is a constraint that implicidy  gjgnificantly reduce the amount of time required for testing
explicitly invalidates some combinations of option sejtin However, existing approaches do not take actual testingg cos
In effect, the configuration space model implicitly defines ajntg account when computing covering arrays.
set of valid ways the software under test can be configured. Second, we observe that highly configurable systems often
CIT approaches systematically sample the valid confighaye reusable components which, once configured, can be
uration space and test only the selected configurationgised in other configurations with no or very little additibna
The sampling is carried out by computing a combinatorial

object, called a:overing array GiVe“ a configur_ation _space_z Iperformed on an 8-core Intel(R) Xeon(R) CPU 2.53GHz machiite
model, at-way covering array is a set of configurations, in 32 GB of RAM, running CentOS 6.2 operating system.
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Figure 1. (a) A traditional 2-way covering array. (b,c) $ittates our algorithm where (b) shows 2-way covering araayohly compile-time options and
(c) shows 2-way cost-aware covering array.

cost. One simple example is the presence of compile-timéngs, requiring to build the system 8 times. On the other
and runtime configuration options. hand, the 2-way covering array presented in Figure 1(c)
Compile-time options need to be set before the systenfieduires to build system only 4 times, as it includes 4
can be built. The system is then configured as a part of thehique compile-time configurations. For example, once the
build process. Therefore, changing the setting of a compileSystem is built foro1=0, 02=0, and 03=0, the same
time Option requires a partia| or a full rebuild of the System binaries are reused without any additional cost for 3 more
On the other hand, given a build of the system, runtimeconfigurations included in the covering array. Assuming tha
options are set when the system is running and the systefii€ runtime configuration cost is negligible compared to the
is configured on the fly. Note that a build of the system iscompile-time configuration cost and that the compile-time
a reusable component. Once the system is built for a giveﬁonfiguration cost is the same for all configurations, the 2-
combination of compile-time option settings, the samecbuil Way covering array in Figure 1(c) tests all 2-way option
can be used with different runtime configurations withoutsetting combinations at half of the cost compared to the 2-
any additional cost; as long as the settings of compile-timavay covering array in Figure 1(a).
options stay the same, the same binaries can be reused.To improve the cost-effectiveness of CIT approaches, we
However, runtime configurations are not reusable. Even foin this work introduce a novel combinatorial object, calied
the same build (i.e., the same compile-time configurationpost-aware covering arrayGiven a traditional configuration
they need to be reconfigured every time the program isgpace model augmented with a cost function and a value of
executed, unless the program state is saved for future usea t-way cost-aware covering array is a t-way covering array
Figure 1(a) and 1(c) illustrate the effect of reusablethat minimizes the cost function. We, furthermore, provide
components on testing cost in a hypothetical scenario.ign th an algorithm to compute cost-aware covering arrays for a
scenario, we have 7 configuration options, ..., 07, each ~ simple, yet frequently-faced scenario in practice. Theltss
of which can take on a binary value (i.6.pr 1). The first 3  of our empirical studies suggest that cost-aware covering
optionso?, 02, and o3 are compile-time options, whereas arrays, depending on the configuration space model used,
the remaining optionsn4, o5, o6, and o7 are runtime can greatly reduce the actual cost of testing compared to
options. There are no system-wide inter-option constaint traditional covering arrays.
all option setting combinations are valid. Furthermore th  The remainder of the paper is organized as follows:
system is to be tested with a 2-way covering array. Twosection Il discusses related work; Section Il introduces
covering arrays are created for comparison. cost-aware covering arrays; Section IV presents an alguorit
The 2-way covering array presented in Figure 1(a) in-to compute cost-aware covering array for a particular cost
cludes 8 unigue combinations of compile-time option set-model; Section V describes the empirical studies; Sectibn V



presents concluding remarks and possible directions focolony algorithms [17], to compute covering arrays. These
future work. methods typically maintain a set of configurations at any
given time and iteratively apply a series of transformation
to the set until the set constituteg-avay covering array.
In this section we provide background information on Greedy algorithms also operate in an iterative manner [6],
traditional covering arrays and discuss related work. [9], [5], [19], [18], [14]. At each iteration, among the setf
Traditional CIT approaches take as input a configuratiorconfigurations examined as candidates, the one that covers
space modelM=<0,V,Q>. The model includes a set the most previously uncoverggtuples is included in the

Il. RELATED WORK

of configuration optiong)={01, 09, ...,0,}, their possible covering array and the newly covereetuples are then
valuesV={V1,Vs,...,V,}, and some system-wide inter- marked as covered. The iterations end when all the required
option constraintg) (if any). Each configuration option; t-tuples have been covered.

(1 <4 < n) takes a value from a finite set ¢o¥;| distinct Mathematical methods for constructing covering arrays
valuesV; = {wi1, via, ..., vjjv;|}- have also been studied [20], [13], [21]. Some mathematical

methods are based on recursive construction methods, which
build covering arrays for larger configuration space models
(i.e., the ones with a larger number of configuration optjons
by using covering arrays built for smaller configuration
space models (i.e., the ones with a smaller number of con-
figurations) [20], [13]. Other mathematical methods legera
mathematical programming, such as integer programming, to

Not all the ¢-tuples may be valid due to the constraints compute covering arrays [21].

Q. Let valid(¢:,Q) be a deterministic function such that  Our approach differs from existing covering array gen-
valid(¢¢, Q) is true, if and only if,¢, satisfies the constraint erators in that we compute a t-way covering array that
Q. Otherwisealid(¢:, Q) is false. The set of alalid t-  minimizes a given cost function, rather than computing a
tuples ®; under constraint) is then defined asb;={¢; :  covering array that minimizes the number of configurations
valid(¢, Q)}- required.

Furthermore, Bryce et al. introduce the concept of soft
constraints to mark option setting combinations that are
permitted, but undesirable to be included in a covering
array [3]. Although soft constraints could be used to avoid
Definiton 3. Given a configuration space model costly combinations of options settings, thus to reduce
M=<0,V,Q>, the valid configuration spaceC' is testing cost, using soft constraints for this purpose can be
the set of all valid configurations, i.eG={c:c € ®,}. considered to be an opportunistic approach. Our approach,
on the other hand, takes the task of reducing the cost as an
optimization criterion.

Definition 1. Given a configuration space model
M=<0,V,Q>, a t-tuple ¢;={<0;,,vj,>, <0i,,vj,>,
.o <o04,v5,>} is a set of option-value tuples for a
combination oft distinct options, such that < ¢ < n,

1 <dp < idp < ... <4 < mn,andv;, € V;, for
p=1,2,... 1.

Definition 2. Given a configuration space model
M=<0,V,Q>, a valid configuration ¢ is a valid
n-tuple, i.e.,c € ®,,, wheren = |O|.

Definition 4. A t-way covering array

CA(t, M=<0,V,Q>) is a set of valid configurations
in which each valid t-tuple appears at least once, i.e., I1l. COSTAWARE COVERING ARRAYS
CA(t, M=<0,V,Q>)={c1,¢a,...,cn}, such that

Yy € By Ie; D éy, wheree; € C for i=1,2, ... N. In our approach we take as input a traditional configura-

tion space model augmented with a cost functiont(.).
The problem of generating covering arrays is NP-Given a covering arraya, cost(ca) returns the expected

hard [15]. Nie et al. classify the methods for generatingcost of testingca.

covering arrays into 4 main categories [15]: random searc:hl—Definition 5. Given a configuration space model

based methods [16], heuristic search-based methods [8], [4 '

M=<0,V,Q,cost(.)> and a value of¢, a t-way
7], [11], [4], [17], greedy methods [6], [9], [5], [19], . . .
{1]4][ ar1 d[m]at[heangtical %etho ds [2([)]] [g,;] [[2]1][ [1]2]F]]8 cost-aware covering array is a t-way covering array that

Random search-based methods employ a random selection " TIZ€S the functionost(.).

without replacement strategy [16]. Valid configurations ar  Defining the cost function is not a trivial task. For
randomly selected from the configuration space in an iteraexample, the cost of a given covering array may not simply
tive fashion until all the requiredtuples have been covered be the sum of the cost of the configurations included in the
by the configurations selected. array, as some parts of a configured system can be reused
Heuristic search-based methods, on the other hand, enby other configurations with no or little additional cost.
ploy heuristic search techniques, such as hill climbing [8] Therefore, we present a framework for defining the cost
tabu search [4], and simulated annealing [7], or Al-basedunction.
search techniques, such as genetic algorithms [11] and ant



Definition 6. Given a configuration space model Definition 10. The cost of a configuratior, which is
M=<0,V,Q>, a component classX={0;,, 0, ..., 0;,} composed of components, xo, ..., z,, is defined as
is a set ofk distinct options, such thak C O.

_— . > i< cc(x-)) + le(c)
Definition 7. Given a component  class ( tsisp
X={0i,,0iy,...,0; }, @ componentz is a k-tuple of However, in the presence of reusable components, the cost
the form{<o;,,vj,>, <0i,,vj,>, ..., <o;,,vj, >} for the  of a given covering array isot the sum of the cost of the
configuration options included iX', wherek=|X|. configurations included in the array.

We assume that the set of configuration optiofls Definition 11. Given a covering arraya={cy,cz,...,cn},

are divided intop (1 < p < |O|) component classes letR; andS; be the set of reusable and non-reusable compo-
X1,Xo,...,X,, such thatX; n X; = 0 for i#j and nents in a configuratiom;, respectively, wheré < i < N.
X;U...U X, = O. Consequently, a given configuration The cost of the covering array: is then defined as follows:

c is composed op components, z2, . . ., zp, such that; B
is a component of component clas$ for i=1,...,p. COSt(ca)_zﬂﬂeUlgigN R, o) +
For example, in our running example depicted in Figure 1, Yicicn (le(e) + 2 e, co(@))

we have two component classeX;;={o1, 02,03} and

Xo={04,05, 06,07} Component clasX; includes all the

compile-time options, whereak, includes all the runtime Definition 12. A reusable composite component is a com-

options. ponent, which is composed of reusable components and/or
We distinguish between two types of component classether reusable composite components.

reusable and non-reusable component classes.

Furthermore, reusable components can form a hierarchy.

Reusable composite components are constructed by link-
Definition 8. A reusable component clas§” is a compo-  ing the components appearing in the composite, once these
nent class whose components can be configured in isolatiofomponents are configured. Therefore, to account for com-

and, once configured, they can be reused in other configuPosite components, thie(.) function should ensure that the
rations. linking cost of the same reusable composite components is

o . paid only once.
Definition 9. A non-reusable component clas§™ is a

component class whose components need to be configur§d compuUTING COSTAWARE COVERING ARRAYS FOR
every time they are used. A SIMPLE COST MODEL

~ Going back to our running example, we observe tat  \ve conjecture that all the methods that have so far been
is a reusable component class, since, once the system igeq o compute traditional covering arrays, such as ran-
built for a given compile-time configuration, the resulting 4,y search-based methods, heuristic search-based methods
blna_nes can pe rel_Jsed in other conflguratlonslwnh d|ffErengreedy methods, and mathematical methods (Section I1), can
runtime configurations. On the other hanll; is @ non- 5,50 he used to construct cost-aware covering arrays, all
reusable component class, since the runtime options need {8, their own pros and cons. In this work, however, we, as
be configured every time the system is executed. a proof of concept, present an algorithm to compute cost-
To determine the cost of a given covering array, Weaware covering arrays for a simple, yet important cost model
assume two cost functionsz(.) and lc(.). The function In this cost model, the system under test has compile-time
ce(x) takes as input a component(either a reusable or a gnq ryntime options. For a given configuration space model
non-reusable component) and returns the configuration cogf ihe system, we define two componeit§ and X", X*
of z. For example, assuming that the reusable componen{ 5 reysable component class, containing all the compile-
x represents a configuration for a libraryc(z) is the  {ime gptions in the model, wherea&™ is a non-reusable
cost of compiling the library with the given configuration. component class, containing all the runtime options in the

The function ic(c), on the other hand, takes as input amggel. We assume that (1) the cost of linking compile-time
configurationc and returns the cost of linking (i.e., gluing) gnd runtime configurations is negligible, i.de(c)=0 for

together the components appearing in the configuration. Fogy . (2) the compile-time configuration cost is the same
example, assuming that a configuratioris composed of = ¢4 o) compile-time configurations, i.ec¢(z")=a for some

reusable components; and x5, each of which represents qnstany, for all 27, and (3) the runtime configuration cost
a library, lc(c) is the cost of linking the two libraries after ¢ ihe system is negligible, i.ecc(2"")=0 for all 2™

they are compiled, i.e., after the:(«7) and cc(z}) costs

: Under this cost model, the cost of a covering array
are paid.

ca={cy,ca,...,cN} IS

cost(ca)=a X |U1§i§N Ril,



where a is the constant cost of building the system, andAlgorithm 1 Computes a {-way cost-aware covering
R; is the set of compile-time components appearing indffay
configuratione; (1 < i < N). In other words, under this Input M=<O,V,{>: Configuration space model
model the optimization criterion is to minimize the number Input ¢: Covering array strength
of times the system is built, while covering all t-tuples. Let M’ be the configuration space model for only the
Although this cost model may seem to be overly con-compile-time options in\/
strained at a first glance, since our goal in this paper is to
demonstrate the differences between the cost-effecgene 1 () « [1(t, M")
of traditional and cost-aware covering arrays, rather thanz: Q « ()
to compute cost-aware covering arrays for any given costs: for each ¢ = {<o;,,v;, >, <0i,,vj,>,...} in Q do
function, we believe that the cost model employed servess. (Q « Qv {0i, =vj, Noiy =vj, ...}
well to its purpose. 5 end for
Furthermore, based on our feasibility studies conductedg: ¥ [1(t, M=<O,V,Q>)
on MySQL - a highly-configurable database management7: return ¥
system, and Apache — a highly-configurable HTTP server,
we argue that this simple cost model still has some practical

importance. For example, we observed that (1) both subject Figyre 1(b) and (c) illustrate the algorithm in our running

applications have compile-time and runtime options, (2)example introduced in Section 1. First, a traditional 2-way
runtime configuration cost for both subject applications iscoyering array is generated for the 3 compile-time options
negligible, (3) the cost of linking runtime configurations ,; 42, ando3 (Figure 1b). The array has 4 compile-time

with compile-time configurations is negligible. Although, configurations. Second, these configurations are expressed
for both subject applications, compile-time configurationas a constraint so that no additional compile-time config-
costs vary from one configuration to another, since building,rations can be selected (Figure 1c). Finally, a traditiona
these systems from scratch is costly, reducing the number gf.way covering array satisfying the constraint is generate

times they are built is still of practical value, e.g., bulg  for all the options. The resulting cost-aware coveringarra
the entire software suite that comes with the source codgsquires to build the system under test 4 times.

distribution of our subject applications with the default
configuration takes about 80 minutes for MySQL and 8 V. EXPERIMENTS
minutes for Apache, on average. To evaluate the proposed approach, we conducted a set of

With all these in mind, Algorithm 1 presents our algo- experiments.
rithm. In this algorithm, we use traditional covering array
construction as a computational primitive. In particulae
assume a generatf (¢, M) that constructs a traditiona To carry out the experiments, we first implemented our
way covering array for the configuration space motiel algorithm. In the implementation, we used a well-known and

Given a configuration space mod& and a value of widely-used covering array generator: ACTS (v1.r9.3.2) [1
t, our algorithm operates as follows: (1) a traditional t- We then determined a base configuration space model and
way covering array) is generated for only the compile- varied the model in a systematic and controlled manner to
time options (line 1), (2) all the compile-time configuratgo  obtain other models. For each configuration space model ob-
included in the newly computed array are expressed atined, we computed a traditionalway covering array and
an inter-option constrainf (line 3-5), (3) a traditional t- at-way cost-aware covering array, and compared their cost-
way covering arrayl satisfying@Q, is generated for all the effectiveness, i.e., compared the number of builds reduire
configuration options (line 6). The outpdt (line 7) is a by these arrays.
t-way cost-aware covering array, minimizing the number of All the experiments were performed on an 8-core Intel(R)
compile-time configurations, i.e., minimizing the numbér o Xeon(R) CPU 2.53GHz machine with 32 GB of RAM,
times the system is required to be built. running CentOS 6.2 operating system.

The rationale behind this algorithm is a simple one.
Step (1) selects a “minimal” set of compile-time configu-
rations covering all t-way combinations of option settings In particular we experimented with 3 independent vari-
for the compile-time options. Step (2), by expressing thesé@bles:
compile-time configurations as constraints, ensures tepts « m: The number of compile-time options in the
(3) computes a traditional t-way covering array around configuration space model. We experimented with
these configurations without introducing new compile-time m=>5,6,...,20.
configurations, “minimizing” the number of compile-time « m/n: The ratio of compile-time options to the total
configurations required, thus the testing cost. number of options in the configuration space model,

A. Experimental Setup

B. Independent Variables
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Figure 2. Cost Improvements in a) 3-way b) 4-way cost-awanering arrays with differentn.
wheren is the total number of options and— m is  options, the array will still be a covering array. Once a
the number of runtime options. We experimented withpartially filled traditional covering array was obtainede w
m/n=0.1,0.2,...,0.9. followed a greedy approach to pick the best settings for the
« t: The strength of the covering array. We experimentedunset options so that the number of compile-time configura-
with t=3, 4. tions is "minimized”. Had we had ACTS to create fully filled

In all the configuration space models, we, without losingCoVering arrays, the unset options would have been randomly
the generality, used binary options only. Givenandm /n set, which could have increased the number of compile-time
ratio, the respective configuration space model is obtainegonfigurations required. Therefore, the fully filled traafial
by adding binary runtime options to the model, such thaicovering arrays used in the comparisons represent the best
the requestedh/n ratio is attained. Furthermore, we opted ase scenario for the partially filled covering arrays @eat
not to experiment witht=2 because for then and m/n by ACTS.
values used in the experiments, the sizes of the covering) _
arrays generated were similar to each other. This made - Data Analysis
difficult to analyze the effect of our independent variables Figure 2a-b present the results we obtained. In these

on the cost-effectiveness of cost-aware covering arrays. figures, the horizontal axis denotes the values:f.e., the
number of compile-time options) used in the experiments,
whereas the vertical axis depicts the percentage of cost
To evaluate the cost-effectiveness of cost-aware coveringnprovements (i.e., percentage of decrease in the number
arrays and compare it to that of traditional covering arraysof compile-time configurations required) provided by cost-
we counted the number of unique compile-time configuraaware covering arrays over traditional covering arrayg- Fi
tions required by the arrays. That is, we counted the numbaure 2a is fort=3 and Figure 2b is fot=4.
of times the system is required to be built. Note that this is We first observed that the cost-effectiveness of cost-
indeed the optimization criterion dictated by the cost modeaware covering arrays were better or the same (but never
our algorithm is designed for (Section 1V). worse) compared to that of traditional covering arrays. &or
When creating the traditional covering arrays, we config-accurately, whert=3, the cost-effectiveness of cost-aware
ured ACTS to create partially filled covering arrays. In acovering arrays were better than that of traditional cogri
partially filled covering array, some option settings aré le arrays in 89% (128 out of 144) of the comparisons. In the
unset, indicating that, regardless of the actual settirggglu remaining comparisons (i.e., 11% of the comparisons), the
for these, as long as they are valid settings for the resfecti cost-effectiveness of the arrays were the same. Wheh

C. Evaluation Framework



Table |
3-WAY AND 4-WAY COST IMPROVEMENT(%) AVERAGES FOR DIFFERENT MN RATIOS.

m/nratio | 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

3-way 5458 46.31 38.86 31.31 25.63 20.27 14.03 6.89 248
4-way 55.83 46.80 39.25 31.83 26.88 2045 1480 7.72 1.83

slightly more cost improvements than 3-way cost-aware
covering arrays; as was increased from 3 to 4, the cost
improvements over traditional covering arrays tended to
increase (Table I). For example, when'n=0.1, the average
cost improvement provided by 3-way cost-aware covering
arrays was 54.58%, whereas 4-way cost-aware covering
arrays provided 55.83% cost improvement.

Cost Improvements (4-way)
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In this paper, we first introduced a novel combinatorial
object, called @ost-aware covering arrayJnlike traditional
t-way covering arrays, which aim to minimize the number
of configurations required to cover all valid t-tuples, tywa
i B ——— cost-aware covering arrays aim to cover all t-tuples in a set

01 02 03 04 05 06 07 08 09 of configurations, which minimizes a given cost function.
Given a set of configuration, the cost function computes
the actual cost of testing. Furthermore, since computieg th
Figure 3. Cost Improvements in 4-way cost-aware coverimgyarwith testing cost in configuration spaces is a nontrivial taspees
different m/n ratio for m = 19. cially in the presence of reusable components, we provided

a framework for defining the cost function. Finally, we pre-

sented an algorithm to compute cost-aware covering arrays
the cost-effectiveness of cost-aware covering arrays werfdr a particular cost scenario, and empirically evaluates t
better in 94% and the same in 6% of the comparisons.  cost-effectiveness of cost-aware covering arrays.

We then observed that actual cost improvements provided All empirical studies suffer from threats to their internal
by cost-aware covering arrays varied depending omtlie  and external validity. For this work, we were primarily
ratio used in the configuration space models. For a fixed concerned with threats to external validity since they fimi
as them/n ratio increased, cost improvements tended toour ability to generalize the results of our experiment to
decrease. Table | presents the cost improvement percaentagadustrial practice. One potential threat is that our atbon
provided by cost-aware covering arrays. For example, whewas designed for a particular cost scenario. However, the
t=4 andm=19, the cost-aware covering arrays, compared tocost scenario used in the paper, although simple, is of great
the traditional covering arrays, reduced the cost by 59,24%practical importance.

52%, 38.89%, 32.1%, 29.17%, 22.99%, 17.72%, 12%, Another possible threat to external validity concerns the
5.71% when m/n=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,  representativeness of the configuration space models used
respectively (Figure 3). Clearly, whem/n=1, regardless in the experiments. Although we systematically varied the
of the value ofim, as the configuration space model will in- models and evaluated the cost-effectiveness of the prdpose
clude only compile-time options, there will be no differenc approach, i.e., a total of 288 different models were used in
between the cost-effectiveness of traditional and costraw the experiments (16 values af x 9 values ofm/n x 2
covering arrays. values oft), these models are still one suite of models. A

For the values ofm and m/n used, when then/n  related issue is that the configuration space models used in
ratio was fixed, the cost improvements tended to be stabléhe experiments did not contain any inter-option constsain
regardless of the value afi.. On the other hand, when While these issues pose no theoretical problems (our algo-
m < t, as the compile-time configurations will be testedrithm can be modified to account for constraints), we need
significantly, there will be no difference between the cost-to apply our approach to more realistic configuration space
effectiveness of traditional and cost-aware coveringyatra models in future work.

Furthermore, comparing 4-way and 3-way cost-aware Despite these limitations, we believe our study supports
covering arrays with traditional covering arrays, we olsedr  our basic hypotheses. We reached this conclusion by noting
that 4-way cost-aware covering arrays tended to providéhat our studies showed that: (1) in practice, the testirgg co

Cost Improvement %
40
!

20
|

10

m/n Ratio



may not be the same for all configurations, (2) accounting fof10] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. Mott,
the presence of reusable components, i.e., the components,
which, once configured, are reused in other configurations,
can reduce the testing cost, (3) minimizing the number of
configurations as is the case in traditional covering arrays) 1]
does not necessarily minimize the actual cost of testing,
and (4) the cost-aware covering arrays were generally more

cost-effective than the traditional covering arrays usethe
experiments.

We believe that this line of research is novel and in-[

12]

teresting, but much work remains to be done. We are
therefore continuing to develop new approaches that over-

come existing limitations and threats to external validity

particular, we are developing tools and algorithms that ar ]
based on metaheuristic search techniques, such as sithulate
annealing, to compute cost-aware covering arrays for any

given configuration space model and for any cost function.[
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