
PRICING BY LOCAL SEARCH IN COLUMN GENERATION

FOR THE AIRLINE CREW PAIRING PROBLEM

by

NİMET AKSOY

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

August 2010



PRICING BY LOCAL SEARCH IN COLUMN GENERATION

FOR THE AIRLINE CREW PAIRING PROBLEM

APPROVED BY

Assoc. Prof. Ş. İlker Birbil ..............................................
(Thesis Advisor)

Assist. Prof. Kerem Bülbül ..............................................
(Thesis Co-advisor)

Assist. Prof. Güvenç Şahin ..............................................

Assoc. Prof. Tonguç Ünlüyurt ..............................................

Assist. Prof. Hüsnü Yenigün ..............................................

DATE OF APPROVAL: 09.08.2010



c©Nimet Aksoy 2010

All Rights Reserved



to my beloved family



Acknowledgments

First of all, I would like to express my deepest gratitude to my thesis advisors, whose

expertise, understanding and guidance added a lot to my graduate experience. I am

very grateful to Assoc. Prof. Ş. İlker Birbil for his confidence in me and his encouraging

supervision, which relieves me even under most stressful conditions. I owe my sincere

thanks to Assist. Prof. Kerem Bülbül for his continuous understanding and endless

support throughout my undergraduate and graduate studies at Sabancı University. I

am indebted to Assist. Prof. Hüsnü Yenigün for his invaluable contribution to my

thesis and his helpfulness. I am also thankful to Assist. Prof. Güvenç Şahin and

Assoc. Prof. Tonguç Ünlüyurt for being actively interested in my studies since my

undergraduate years and their willingness to give helpful advice whenever I needed.

I would like to thank TÜBİTAK BİDEB for providing me financial support during

my graduate studies.

I must acknowledge the assistance of my colleagues Erdal Mutlu and İbrahim Muter.

Their experience in coding and the airline crew pairing problem, and their friendly

attitude made the implementation phase a lot easier for me. Another thing that made

my life much easier was the cordial and joyful office atmosphere, and very special

thanks go to my colleagues at FENS1021 and FENS1028. I am especially thankful

to Özlem Çoban, Gizem Kılıçaslan, Elif Özdemir, Merve Şeker, Semih Yalçındağ and

Mahir Yıldırım. They have been much more than office mates to me, and I enjoyed

every moment of two years we have shared.

Words are not enough to express my thankfulness to my dearest friends Nazlı Ak-

takke, Gizem Bayramoğlu, Merve Gümüş and Ece Şuşut. Their presence has given me

happiness and strength since my childhood, and I wish to feel their love and support

forever.

And finally, I doubt that I will ever be able to convey my appreciation fully, but

I must mention my eternal gratitude to my beloved family. Without them supporting

and trusting me by all means, and their neverending love, not only this thesis, but I

myself would not be where I am, at all.



PRICING BY LOCAL SEARCH IN COLUMN GENERATION

FOR THE AIRLINE CREW PAIRING PROBLEM

Nimet Aksoy

Industrial Engineering, Master of Science Thesis, 2010

Thesis Advisors: Assoc. Prof. Ş. İlker Birbil, Assist. Prof. Kerem Bülbül

Keywords: crew pairing, column generation, pricing subproblem, multi-label shortest

path problem, flight network, duty network, local search

Abstract

The airline crew pairing problem (ACP) is finding the least costly set of crew pair-
ings so that each flight given in the flight schedule is covered. The ACP is traditionally
modeled either as a set partitioning problem or a set covering problem. Due to the
large number of possible pairings (columns), these models are usually solved by the
column generation (CG) method. For the ACP, the pricing subproblem of the CG
corresponds to a multi-label shortest path problem (MLSP) typically solved over a
flight network. The MLSP over the flight network is NP -hard and it suffers from an
exponential complexity even for moderate size flight networks.

In order to overcome the complexity of the pricing subproblem, we propose a column
generation method to solve the ACP, in which a hybrid pricing procedure is used. In
this hybrid procedure, the pricing subproblem consists of three steps. First, we apply
a local search mechanism on the partial duty period pool to construct pairings with
negative reduced cost. In cases local search mechanism cannot find such a pairing, we
execute a heuristic MLSP algorithm over the partial duty network to price out negative
reduced cost pairings for the restricted master problem (RMP). If this method also
fails, we solve the MLSP over the flight network. By adopting this hybrid approach,
we aim to decrease the number of CG iterations where the MLSP is executed over
the flight network, and reduce the computation time per iteration as well as the total
computation time. We test the efficiency of our approach on real-life instances acquired
from a local airline company, and present numerical results.



HAVAYOLU EKİP EŞLEME PROBLEMİNDE KOLON TÜRETME YÖNTEMİNİN

YEREL ARAMA İLE ÜCRETLENDİRİLMESİ

Nimet Aksoy

Endüstri Mühendisliği, Yüksek Lisans Tezi, 2010

Tez Danışmanları: Doç. Dr. Ş. İlker Birbil, Yrd. Doç. Dr. Kerem Bülbül

Anahtar Kelimeler: ekip eşleme, kolon türetme, ücretlendirme altproblemi, çok takılı

en kısa yol problemi, uçuş serimi, uçuş görev serimi, yerel arama

Özet

Havayolu ekip eşleme problemi uçuş çizelgesindeki her bir uçuşun kapsanmasını
sağlayacak şekilde en az maliyetli ekip eşlemelerinin bulunmasıdır. Bu problem lit-
eratürde genel olarak küme bölüntüleme veya küme kapsama problemi olarak model-
lenmektedir. Olası eşlemelerin (kolonların) sayısındaki fazlalık nedeniyle bu modellerin
kolon türetme yöntemiyle çözülmesi sıkça başvurulan bir yaklaşımdır. Havayolu ekip
eşleme problemi için kolon türetme yönteminin ücretlendirme altproblemi uçuş serimi
üzerinde çözülen çok takılı en kısa yol problemine karşılık gelmektedir. Uçuş serimi
üzerinde çözülen çok takılı en kısa yol problemi NP-zor bir problemdir ve karmaşıklığı
orta büyüklükteki çizelgeler için bile üsseldir.

Bu çalışmada, havayolu ekip eşleme problemini, ücretlendirme altprobleminin kar-
maşıklığını azaltmak amacıyla melez bir ücretlendirme prosedürü kullanarak, kolon
türetme yöntemiyle çözmekteyiz. Önerdiğimiz melez prosedürde, ücretlendirme alt-
problemi üç adımdan oluşmaktadır. İlk olarak, kısmi uçuş görev havuzu üzerinde uygu-
ladığımız yerel arama yöntemi ile negatif azaltılmış maliyetli eşlemeler oluşturmaya
çalışmaktayız. Yerel arama yönteminin böyle bir eşleme oluşturamadığı durumlarda
çok takılı en kısa yol problemini kısmi uçuş görev serimi üzerinde çözmekte ve kısıtlı
ana probleme eklemek üzere negatif azaltılmış maliyetli eşlemeler aramaktayız. Bu
metodun da kısıtlı ana probleme eklenecek eşleme bulamadığı durumlarda çok takılı en
kısa yol problemini uçuş serimi üzerinde çözmekteyiz. Benimsediğimiz melez yaklaşım
sayesinde, çok takılı en kısa yol probleminin uçuş serimi üzerinde çözüldüğü kolon
türetme iterasyonlarının sayısını ve iterasyon başına düşen çözüm süresi ile toplam
çözüm süresini azaltmayı amaçlamaktayız. Yaklaşımımızın etkinliğini yerel bir hava-
yolu şirketinden edindiğimiz örnek problemler üzerinde test etmekte ve sayısal sonuçlar
sunmaktayız.



Table of Contents

Abstract vi

Özet vii

1 INTRODUCTION 1
1.1 Contributions of This Study . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 LITERATURE REVIEW 5
2.1 Terms and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Solving the LP Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 The Pricing Subproblem . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 PRICING BY LOCAL SEARCH IN COLUMN GENERATION FOR
THE AIRLINE CREW PAIRING PROBLEM 13
3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Initial Feasible Pairing Pool Generation . . . . . . . . . . . . . . . . . . 17
3.3 The Pricing Subproblem . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Pricing by Multi-Label Shortest Path Algorithm on the Flight
Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.2 Pricing by Multi-Label Shortest Path Algorithm on the Duty
Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.3 Pricing by A Local Search Algorithm . . . . . . . . . . . . . . . 25
3.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Class Design and Structures . . . . . . . . . . . . . . . . . . . . 27
3.4.2 Generic Programming with Boost Libraries . . . . . . . . . . . . 28

4 COMPUTATIONAL RESULTS 30

5 CONCLUSION 42

Bibliography 43

A Class Diagrams and Structures 46

viii



List of Figures

2.1 A sequence of flight legs in a duty period (DP). . . . . . . . . . . . . . 5
2.2 A sequence of duty periods in a pairing. . . . . . . . . . . . . . . . . . 6

3.1 A small flight network example. . . . . . . . . . . . . . . . . . . . . . 14
3.2 A small duty network example. . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Flow chart of the proposed algorithm. . . . . . . . . . . . . . . . . . . 16
3.4 Label structure for the MLSP. . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Local search method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 CPU times (sec.) per iteration for DS1. . . . . . . . . . . . . . . . . . 34
4.2 CPU times (sec.) per iteration for DS2. . . . . . . . . . . . . . . . . . 34
4.3 CPU times (sec.) per iteration for DS3. . . . . . . . . . . . . . . . . . 35
4.4 CPU times (sec.) per iteration for DS4. . . . . . . . . . . . . . . . . . 35
4.5 Comparison of HYBRID and PURE by changes in the objective function

value for DS1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.6 Comparison of HYBRID and PURE by changes in the objective function

value for DS2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.7 Comparison of HYBRID and PURE by changes in the objective function

value for DS3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.8 Comparison of HYBRID and PURE by changes in the objective function

value for DS4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A.1 Duty and Flight as SeqOfFlightlegs. . . . . . . . . . . . . . . . . . . . . 46
A.2 Connection, Flightleg and Pairing classes. . . . . . . . . . . . . . . . . 46
A.3 Class diagram for the Label structure. . . . . . . . . . . . . . . . . . . . 47
A.4 NodeLabel and PathLabel classes. . . . . . . . . . . . . . . . . . . . . . 48

ix



List of Tables

3.1 Minimum rest time between two duty periods. . . . . . . . . . . . . . 15
3.2 Maximum elapsed time for a duty period. . . . . . . . . . . . . . . . . 15

4.1 CPU times needed to generate an initial feasible solution. . . . . . . . 32
4.2 Initial and (LP and IP) optimal objective function values. . . . . . . . 32
4.3 Comparison of HYBRID and PURE by total CPU times, number of

FNMLSP executions and number of CG iterations for DS1. . . . . . . 36
4.4 Comparison of HYBRID and PURE by total CPU times, number of

FNMLSP executions and number of CG iterations for DS2. . . . . . . 36
4.5 Comparison of HYBRID and PURE by total CPU times, number of

FNMLSP executions and number of CG iterations for DS3. . . . . . . 36
4.6 Comparison of HYBRID and PURE by total CPU times, number of

FNMLSP executions and number of CG iterations for DS4. . . . . . . 37
4.7 Some performance measures after turning off the LS mechanism. . . . 37
4.8 Some performance measures for the proposed pricing method with the

original initial feasible pairing pool technique and the modified version
(with less number of duty periods). . . . . . . . . . . . . . . . . . . . . 38

4.9 Some performance measures acquired by turning off the LS and DN-
MLSP mechanisms after the iteration at which FNMLSP is first exe-
cuted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

x



CHAPTER 1

INTRODUCTION

The airline crew scheduling problem consists of assigning crew members to a given

timetable of flights, such that the assignment is feasible with respect to civil aviation

rules, and the crew costs are minimized. Crew scheduling is both challenging and im-

portant for an airline company for two reasons. First, following fuel costs, crew costs

are the second largest direct operating cost of airlines [3]. Thus, crew scheduling opti-

mization has the potential to provide significant cost reduction for airline companies.

Second, the strict regulations imposed by the government and the large scale of the

problem makes optimal airline crew scheduling a complex task to accomplish. While

trying to preserve feasibility, time efficiency of the solution should also be considered.

The crew scheduling problem consists of two subproblems: the crew pairing problem

and the crew assignment problem. As the first phase, the crew pairing problem is

solved in order to find the least costly set of a sequence of flights (i.e. pairings) start-

ing and ending at the same airport (i.e. crew base) and covering all flights given in the

timetable. Pairings generated by the solution of the crew pairing problem are given as

input to the crew assignment problem. The crew members are optimally allocated to

these pairings in a way that a set of feasibility constraints are satisfied and employee

satisfaction is maximized. In this thesis, the crew pairing problem is considered.

The crew pairing problem is traditionally modeled either as a set partitioning prob-

lem or a set covering problem. The integer programming (IP) formulation for the set

covering problem is as follows:

minimize
∑
j∈P

cjxj (1.1)

subject to
∑
j∈P

aijxj ≥ 1, i ∈ F , (1.2)

xj ∈ {0, 1}, j ∈ P , (1.3)

where P is the set of all feasible pairings, F is the set of all flights, cj is the cost of

1



pairing j, aij = 1 if flight i is covered by pairing j and 0; otherwise. If pairing j is

selected by the solution, its corresponding variable xj = 1, and otherwise it is set to 0.

The only difference between the set partitioning and the set covering formulations is

that the inequality in (1.2) is changed to equality in the set partitioning model. This

means that the flights are covered exactly once by the set partitioning formulation,

whereas they are allowed to be covered more than once by the set covering formulation.

In other words, the set covering model allows for deadhead flights. That is, one crew

is assigned to cover the flight, the other crews fly as passengers in order to reach their

destination airport to continue with their own pairings.

This study proposes a solution method to the crew paring problem based on the LP

relaxation of the set covering model. Due to the nature of the crew pairing problem,

the search space might become intractably large for even a moderate number of flights

and generating all feasible pairings might be very costly in terms of computation time.

Furthermore, as more pairings are generated, solving the LP relaxation becomes harder.

Therefore, usually, a column generation approach is adopted for the solution of the

crew pairing problem. In this approach, at each iteration, a restricted master problem

(RMP), which includes only a subset of all possible pairings, is solved. After solving

the RMP, the pricing procedure is applied in order to find a pairing with negative

reduced cost. If such a pairing is found, it is added to the problem and the RMP is

resolved. Same steps are continued until no negative reduced cost pairing is found,

i.e., the optimal solution is reached. The pricing subproblem depends on the problem

characteristics. In the crew pairing problem, the pricing subproblem corresponds to

a multi-label shortest path (MLSP) problem, which is typically solved over a flight

network. Several labels related with the feasibility and the cost of the pairings are kept

throughout the paths on the network, and once a negative reduced cost path is found,

it is added as a new column to the RMP. This procedure is repeated until MLSP fails

to find a negative reduced cost column.

1.1 Contributions of This Study

In this thesis, we focus on column generation to solve the crew pairing problem. While

solving the crew pairing problem by column generation, modeling the pricing subprob-

lem as a multi-label shortest path problem (MLSP) is common practice. However, the

MLSP subproblem is usually the most time-consuming step of the column generation

approach and its complexity is exponential in the number of flights in the schedule.

2



Thus, dealing with large-scale networks is difficult. This study proposes an alternating

pricing procedure to overcome this difficulty. We are motivated by the existence of a

diverse and rich duty period pool generated during the pairing generation phase, and

we use this duty period pool to apply a local search based mechanism to price out the

negative reduced cost pairings. The pool is populated with duty periods during the

initial feasible solution construction (See Section 3.2) and updated each time a new

pairing is generated at each iteration. Since this mechanism yields a heuristic method,

it is not guaranteed that the local search finds a pairing that will improve the RMP

objective function value at each iteration even if such a pairing exists. In that case, we

resort to MLSP over the partial duty network that is constructed from the populated

duty period pool. In the duty network, the number of feasibility rules that need to

be tracked are reduced since the feasibility rules related to a duty period (maximum

elapsed time, minimum/maximum rest time etc.) are already satisfied during the duty

network construction. Since it is impossible to generate all possible duty periods at

once, each MLSP iteration is executed on the partial duty network. Moreover, as the

number of feasibility rules is reduced, the number of necessary labels is also reduced.

Less number of labels and the partiality of the duty network provide an easier solution

to the MLSP problem, compared to solving it over the entire flight network. However,

MLSP solved over the duty network might also fail to find a negative reduced cost pair-

ing. In such a case, MLSP is executed over the flight network. This last alternative

is the most exhaustive way to price out new pairings; but, it is required to ensure the

optimality of the subproblem. Our main aim is to minimize the number of costly calls

to the MLSP solution over the flight network. In the ideal case, we wish to solve the

costly problem only once, at the last iteration, to ensure optimality.

Contributions of this study can be listed as follows:

• Proposed local search procedure is a simple and easy-to-implement heuristic

which rapidly provides negative reduced cost pairings for the RMP.

• Pricing with local search and utilizing the partial duty network are time-efficient

alternatives to pricing with MLSP over the flight network in terms of time spent

per subproblem iteration.

• We ensure the optimality of the subproblem by resorting to MLSP over the flight

network which is an exact method to find negative reduced cost pairings whenever

the local search algorithm and MLSP over the duty network fail to do so.

3



• We test our approach on different real-life problems and present numerical results.

We benchmark our hybrid scheme against a pure MLSP pricing scheme. Based

on our comparisons, we observe the following:

– Incorporating local search and the duty network reduces the number of calls

to exact MLSP solved over the flight network.

– Total CPU times are reduced.

• We adopt a generic implementation scheme using Boost C++ Graph and Date-

Time libraries [7]. Our class structures are compatible with these libraries which

makes it easier to work with network related problems.

1.2 Outline

The outline of this thesis is as follows: Chapter 2 gives a literature review on the crew

pairing problem, the column generation method and the pricing subproblem. Chap-

ter 3 includes our problem statement and proposed pricing scheme which alternates

between MLSP and local search as well as the implementation details of our method.

In Chapter 4, we present a computational study on a set of actual data acquired from

a local airline company. Conclusions are discussed in Chapter 5.

4



CHAPTER 2

LITERATURE REVIEW

2.1 Terms and Definitions

Throughout this study, we frequently make use of some standard terms used in airline

scheduling problems. Before reviewing the crew pairing problem literature, we need

to define some important terminology. We refer to Vance et al. [26] and Barnhart et

al. [5] for the following definitions:

Flight Leg (Segment): A single nonstop flight. Two flight legs could be connected

if and only if the arrival airport of the first leg is the same with the departure airport

of the second leg, and the time between these flights respects the predefined feasibility

rules.

Duty Period: A sequence of flight legs with short time periods separating them.

A duty period might also be defined as a single work day for a crew. Duty periods are

also connected to each other according to some regulations. Figure 2.1 illustrates the

structure of a duty period.

Crew Base (Domicile): The city where the crews are stationed.

Pairing: A sequence of duty periods with overnight rests between them. Each

ADB-IST IST-AYT AYT-ADB- -

sit time sit time
? ?

beginning of DP end of DP

Flight Leg 1 Flight Leg 2 Flight Leg 3

Figure 2.1: A sequence of flight legs in a duty period (DP).

5



ADB-AYTIST-AYT AYT-ADB AYT-IST

rest time

time away from base (TAFB)

first DP second DP

- --

Figure 2.2: A sequence of duty periods in a pairing.

pairing must begin and end at the same crew base. Figure 2.2 exhibits the structures

and terminology related to a pairing.

Sit Time: The time between two flight legs within a duty period.

Rest Time (Layover): The time between two duty periods within a pairing.

In the crew pairing problem, flight network construction is strictly dependent on

a number of constraints. Kornilakis and Stamatopoulos [20] identify these constraints

as:

1. Temporal Constraints: The departure of a flight leg/ duty period should take

place after the arrival of the previous flight leg/duty period.

2. Spatial Constraints: For every two consecutive flight legs/duty periods within

a pairing, the second must depart from the airport that the first arrives at. For a

pairing, the departure city of its first leg and the arrival city of its last leg must

be the crew base.

3. Fleet Constraints: Cockpit crew is usually designated to operate only one type

of aircraft whereas the cabin crew may be assigned to several types of aircraft.

Therefore, all flights in a pairing generated for cockpit crew must be flown by

the same type of aircraft. As a consequence, pairings that are legal for the cabin

crew may be illegal for the cockpit crew and this makes the cockpit crew problem

easier to solve.

4. Constraints due to Laws and Regulations: In order to remain legal, con-

structed pairings must respect the regulations specified by government laws and

collective agreements. These regulations are usually related to the maximum du-

ration of a duty period, the maximum flight time allowed over a time period, the

6



minimum length of the rest time between two duties and so on.

The last set of constraints might vary in different types of problem settings. How-

ever, the basic feasibility rules associated with duty periods and pairings might be

stated as follows:

• The time between two flights in a duty period should be greater than or equal to

the minimum sit time and less than or equal to the maximum sit time.

• The total elapsed time of a duty period should be less than or equal to the

maximum elapsed time defined for the duty and the total flying time of a duty

period is restricted by the maximum flying time.

• The number of duty periods in a pairing cannot be greater than the maximum

number of duty periods defined for the pairing.

• The time between two duty periods in a pairing should be greater than or equal

to the minimum rest time and less than or equal to the maximum rest time.

• Maximum time away from base is an upper limit on the total elapsed time of a

pairing.

2.2 Solving the LP Relaxation

In the literature, solution approaches for the crew pairing problem are generally based

on solving the LP relaxation of the set covering or the set partitioning models. Anbil

et al. [1] addresses the crew pairing problem by introducing the Trip Reevaluation and

Improvement Program (TRIP) method for iterative pairing generation and subproblem

optimization. This method starts with an initial solution (usually generated by modi-

fying the previous period’s solution) and continues with selecting a set of pairings and

solving a subproblem at each iteration. If a set of pairings that yield a better solution

is found, they replace the chosen set of old pairings. The drawback of the TRIP is that

since it is a subproblem optimization approach, it may stall at a suboptimal solution

that cannot be improved further. However, another method they utilize in conjunction

with TRIP is a global approach called SPRINT which is able to find the optimal so-

lution for the LP relaxation. SPRINT begins with a subproblem consisting of a subset

of columns. The dual values acquired after solving the subproblem are used to calcu-

late the reduced cost for pricing out new columns to the subproblem. This procedure

7



is carried out until no negative reduced cost columns can be found, i.e. the optimal

LP solution is found. SPRINT method is proved to solve a problem with 5.5 million

columns by solving only 25 subproblems. Bixby et al. [6] deals with very large-scale

linear programs by proposing a combination of interior point and simplex methods.

Similar to the column generation approach, this method is based on a process called

sifting, which is originally suggested by Forrest [16]. It should be noted that, SPRINT

is the practical term used for sifting.

Column generation is a widely used method to solve the LP relaxation of the crew

pairing problem. The set covering model of the crew pairing problem corresponds

to the master problem of the column generation since it contains all of the possible

pairings. Due to the intractably large number of variables (pairings) in the master

problem, column generation method works on a feasible subset of all pairings and the

problem with this subset of columns is called the restricted master problem (RMP).

Main steps for the column generation procedure are given as follows:

Step 1: The restricted master problem is solved to find an optimal solution for the

current set of columns.

Step 2: The pricing subproblem is solved to find a column that may improve the in-

cumbent solution. This corresponds to finding a column with a negative reduced

cost.

Step 3: If an improving column can be found at Step 2, it is added to the RMP and

the procedure restarts from Step 1. If Step 2 is not successful, the algorithm is

stopped since the optimal solution for the LP relaxation is found.

Crainic and Rousseau [9] solve the set covering formulation of the airline crew

pairing problem using a column generation technique. Their algorithm starts with a

set of one-day pairings and solves the subproblem over these pairings to find a pairing

that improves the solution. At each iteration, they increase the number of duty periods

in a pairing by one and check whether a negative reduced cost pairing is found. The

column generation iterations continue until no negative reduced cost pairing is found.

Anbil et al. [2] adopt a column generation approach towards the airline crew pairing

problem which combines SPRINT with column generation.

Besides the crew pairing problem, column generation is utilized in order to solve

other types of crew scheduling problems. Desrochers and Soumis [13] use the column

generation to solve the urban transit crew scheduling problem whereas Desaulniers et

8



al. [10] deal with crew scheduling problems, and Gamache et al. [17] focus on the crew

rostering problem.

Branch-and-price (B&P) method, which is a variant of the branch-and-bound (B&B)

technique, is another solution approach for the problems with a large variable set. In

B&P, column generation is applied at each node of the B&B tree. If negative reduced

cost columns are found after pricing, they are added to the RMP and RMP is reopti-

mized. If such columns cannot be found and the incumbent solution is not integer, a

branching procedure is applied. For the airline crew pairing problem, B&P is adopted

by Vance et al. [26]. They approximately solve the pricing subproblem of the column

generation and thus, acquire near-optimal solutions. Savelsbergh and Sol [23] propose

a B&P approach for the general pickup and delivery problem. We refer to Barnhart

et al. [4] for an extensive study on B&P method applied to several types of problems

along with different formulations.

2.3 The Pricing Subproblem

For the column generation solution of the LP relaxation of the crew pairing problem,

the pricing subproblem usually corresponds to the multi-label shortest path problem

(MLSP) or the constrained shortest path problem (CSP). Labels and constraints are

essential for the feasibility tracking of the paths and the shortest paths are found to

determine the negative reduced cost pairings. The pricing subproblem is solved at each

iteration of the column generation in order to find a pairing that would improve the

RMP objective function unless there is degeneracy.

In the literature, the constrained shortest path problem is frequently utilized in

order to solve vehicle routing problems with constraints. Dynamic programming is

used by Desrochers and Soumis [12] for the shortest path problem with time windows

(SPPTW). Their algorithm is constructed by adjusting the Ford-Bellman-Moore dy-

namic programming algorithm, which is originally designed for the regular shortest

path problem. They try to find the minimum-cost path from the source node to the

sink respecting the time windows specified for each node. Desrochers et al. [14] for-

mulate the vehicle routing problem with time windows (VRPTW) as a set partitioning

model and apply column generation to the LP relaxation of this formulation. Unlike

the regular vehicle routing problem, the vehicle routing problem with time windows

requires keeping track of the allowed service times for each customer. Thus, the pricing

subproblem is equivalent to the shortest path problem with time windows and capac-

9



ity constraints. Another dynamic programming approach is proposed by Nagih and

Soumis [22] for the shortest path problem with resource constraints. The aim is to

find the least costly path from the source node to the sink node such that the resource

constraints are satisfied. However, as the number of resources increases, the complexity

(thus the time required to solve the problem) increases quickly. A heuristic is proposed

to reduce the size of the resource space by using Lagrangian and surrogate relaxation

methods. Desrosiers et al. [15] also present dynamic programming solution methods

for time and resource constrained shortest path problems. While trying to minimize

the total traveling cost, the solution should satisfy the allowed time intervals specified

for each node. Each path on the network is identified by two labels: cost and time.

Two algorithms are proposed for this labeling scheme: The first one is based on label

correcting. Each node is treated once and all paths of a treated node are carried to its

successors through the arcs that connect these nodes. The second algorithm applies

label setting and labels are treated instead of nodes. In this algorithm, the path that

has the minimum time is selected and carried to the successor nodes. The advantage of

this algorithm is that it works even if the cost parameters on the arcs or cycles in the

network are negative. The number of labels defined for each problem is n+1 where n is

the number of resources and one additional label is kept for the calculating the cost of

the path. Domination rules are applied at each node in order to prune some unneces-

sary paths. Desaulniers et al. [11] adopt a branch-and-price-and-cut method for solving

the VRPTW where the column generation subproblem is an elementary shortest path

problem with resource constraints (ESPPRC). They develop a tabu search heuristic for

the pricing subproblem that generates negative reduced cost columns rapidly. In addi-

tion to this heuristic method, they introduce a generalization of the k -path inequalities

and emphasize that these generalized inequalities can theoretically be stronger than the

traditional ones. In their study, they also propose a new subproblem type called the

partially elementary shortest path problem with resource constraints (PESPPRC) for

which elementarity requirements are imposed only on a subset of the nodes. They show

that the PESPPRC is easier to solve than the ESPPRC and it yields lower bounds that

are comparable in quality with the ones provided by the ESPPRC. With their method

which combines all of these ideas, they report solving five of the previously unsolved

100-customer benchmark instances of Solomon.

Label correcting algorithms are frequently employed in the shortest path problem

literature. The bi-criterion shortest path problem, which is a subproblem for many

10



transportation and scheduling problems, is solved by Skriver and Andersen [25] utiliz-

ing a label correcting algorithm. Bi-criterion shortest path problem, unlike the classical

shortest path problem which is easier to solve, considers two different objectives at the

same time: minimizing the total cost and minimizing the total travel time. The al-

gorithm proposed by Skriver and Andersen is an improvement of Brumbaugh-Smith

et al.’s algorithm [8] which utilizes several labels to solve the bi-criterion shortest

path problem. Multi-criteria shortest path problem, which is even harder than the

bi-criterion shortest path problem, is studied by Guerriero and Musmanno [18]. On

random networks, they test several label correcting methods based on either node-

selection or label-selection and show that label-selection algorithms perform better

than node-selection methods for networks with high-density.

For the airline crew pairing problem, using the reduced cost as the pricing criterion

is common practice. Anbil et al. [2] use the reduced cost criterion for their shortest

path column generation scheme. They apply depth-first search on the duty tree in

order to find negative reduced cost pairings. An alternate pricing rule based on a score

obtained by dividing the pairing cost with the sum of the dual values of the flights in

the pairing is introduced by Bixby et al. [6]. This rule is called the lambda pricing rule

and lambda is calculated as follows for each partial pairing during column generation:

λp = cp/
∑
i∈p

yi, (2.1)

where cp is the cost of pairing p and yi is the dual value for the coverage constraint

corresponding to flight leg i in pairing p. Notice that the dual values are summed over

all flight legs covered by pairing p. λ value for each pairing with negative reduced cost

pairing is calculated. Then, k columns with the k lowest λp are sent to the restricted

master problem instead of the columns with the most negative reduced costs. In this

study, it is shown that applying this selection rule reduces the number of iterations.

Makri and Klabjan [21] also use the score criterion proposed by Bixby et al..

A pairing p has negative reduced cost if and only if its corresponding λp is less than

one. Two types of pruning rules are utilized to avoid total enumeration of pairings

and these rules are called exact and approximate rules. The approximate rules fathom

partial pairings that will likely result in a pairing with a score greater than or equal

to one, i.e. λp ≥ 1. However, optimality is not guaranteed by the approximate rules

11



since these rules might fathom some pairings that would yield negative reduced cost.

Therefore, if the approximate rules fail to find a pairing with negative reduced cost,

the column generation algorithm resorts to the exact rules for pricing.

12



CHAPTER 3

PRICING BY LOCAL SEARCH IN COLUMN GENERATION FOR

THE AIRLINE CREW PAIRING PROBLEM

3.1 Problem Statement

In the crew pairing problem, the number of all feasible pairings grows exponentially

as the number of flight legs in the schedule increases. Therefore, the generation of all

pairings becomes an intractable task and it is out of the scope of this study. Instead

of enumerating all possible pairings for a given network, we adopt a column generation

approach for the set covering formulation of the crew pairing problem. Due to the very

large number of variables (pairings), column generation is a suitable approach for this

formulation and traditionally, the pricing subproblem for the column generation in the

crew pairing problem corresponds to the multi-label shortest path problem (MLSP).

However, the large scale of the search space is an important issue again at the MLSP

phase, since solving MLSP becomes very time-consuming for moderate to big flight

networks, and hence, the pricing subproblem turns out to be the bottleneck of the

whole column generation algorithm. In this thesis, we propose a time-efficient pricing

procedure involving a local search (LS) over the duty period pool (See Section 3.3.3)

and a heuristic MLSP procedure over the partial duty network (See Section 3.3.2) as

to avoid executing the MLSP algorithm at each iteration of the column generation.

We make use of the duty period pool we accumulate during the initial feasible pairing

generation phase and the MLSP phase in order to create negative reduced cost pairings

in a reasonable time as well as to reduce the number of times the MLSP algorithm is

called during the entire column generation algorithm. In order to represent the flight

schedule, either a flight network or a duty network is used [26]. Throughout this study,

we make use of both networks. We work on the flight network to denote the flights

and the possible connections and to execute the exact MLSP algorithm. A small flight

network example is illustrated in Figure 3.1. We utilize the (partial) duty network in

order to find negative reduced cost pairings faster than in the MLSP solved over the

13



-

±°
²¯

±°
²¯

- -

-j

¸

*̂

j
-

10.00 11.00 12.00 13.00 14.00 15.00 16.00

IST-ESB ESB-ADB ADB-IST

ESB-IST

IST-ADA ADA-IST
Source Sink

Timeline

Figure 3.1: A small flight network example.

flight network. Details of the heuristic MLSP method on the duty network are given

in Section 3.3.2 and Figure 3.2 exhibits a duty network example.

It should be noted that the flight network structure adopted in this study is different

than the traditional flight network structure. Common practice in the crew pairing

literature is to represent each flight leg by two nodes (departure node and arrival

node) and to connect them by a flight arc. Connections are denoted by connection

arcs. However, in our flight network construction, each flight leg in the schedule is

represented by one node in the network and these nodes are connected to each other

by connection arcs following the two basic sit connection rules:

1. The arrival city of the first Flight is the same with the departure city of the

second Flight.

2. The duration of the sit connection cannot exceed the maximum sit time, nor it

can be below the minimum sit time. The maximum sit time is 4 hours and the

-

±°
²¯

±°
²¯

- -

-j

¸

*̂

j
-

10.00 18.00 02.00 10.00 18.00 02.00 10.00

IST....ESB ESB....ADB ADB....IST

ESB....IST

IST....ADA ADA....IST

Source Sink

Timeline

DAY 1 DAY 2 DAY 3

Figure 3.2: A small duty network example.

14



minimum sit time is 20 minutes in our case.

As the MLSP algorithm is executed on the flight network, several other feasibility

rules should be tracked. Table 3.1 shows the minimum rest time needed between two

duty periods and the maximum elapsed time allowed for a duty period is shown in

Table 3.2.

Duration of the Previous Minimum Rest Time
Duty Period Between Two Duty Periods

Less than 4 Hours 8 hours
4 to 11 Hours 10 hours
11 to 12 Hours 12 hours
12 to 14 Hours 14 hours

18 hours or more 20 hours

Table 3.1: Minimum rest time between two duty periods.

Number of Flight Legs

Starting Time 1-3 4-5 6 or more
of the Duty Period Flights Flights Flights

05.00-14.00 14 h 13 h 12 h
14.01-17.00 13 h 12 h 11 h
17.01-04.59 12 h 11 h 10 h

Table 3.2: Maximum elapsed time for a duty period.

Similar to our flight network structure, our adopted duty network structure is also

different than that of the classical crew pairing literature. This time, each node rep-

resents one duty period (basically a sequence of flight legs connected to each other

subject to some feasibility rules) and arcs are used to connect these duty periods. It is

important to note that less number of feasibility rules should be tracked on the duty

network since duty period related requirements are already met during duty construc-

tion. This allows faster traversal on the network, therefore provides potential to price

out negative reduced cost pairings more rapidly.

In addition to the nodes that represent flights and duty periods, there are also a

dummy source and a dummy sink node in both networks. These two nodes are needed

in order to construct feasible paths (pairings) in the network starting from the source

and ending at the sink. All arcs emanating from the dummy source correspond to a

departure from the crew base and all incoming arcs to the dummy sink represent an

arrival to the crew base. Note that the crew base is IST for the networks illustrated

in Figure 3.1 and in Figure 3.2.

15



L
o
ca

l
S
ea

rc
h

N
eg

.

-

-
6

¾
6

? ?

S
T

O
P

O
p
ti

m
al

so
lu

ti
on

is
fo

u
n
d

Y
E

S

N
O

Y
E

S

In
it

ia
l
F
ea

si
b
le

R
M

P

R
M

P

R
ed

.
C

os
t

C
ol

u
m

n
?

M
L
S
P

ov
er

D
u
ty

N
et

w
or

k

N
eg

.

R
ed

.
C

os
t

C
ol

u
m

n
?

-

N
eg

.

R
ed

.
C

os
t

C
ol

u
m

n
?

M
L
S
P

ov
er

F
li
gh

t
N

et
w

or
k

N
O

6

N
O

Y
E

S

?

S
T
A

R
T

(p
ar

ti
al

)

Figure 3.3: Flow chart of the proposed algorithm.

16



For our proposed local search based pricing heuristic (See Section 3.3.3), generating

a diverse set of duty periods is crucial. Throughout this thesis, we refer to this set as

the duty pool. The majority of the duty periods in the duty pool is generated during the

initial feasible pairing pool generation phase (See Section 3.2). Each time the MLSP

algorithm adds a new pairing to the restricted master problem, the duty periods that

this pairing consists of are added to the duty pool so that the duty pool is updated

for the subsequent iterations. As shown in Table 3.2, duty periods are also subject to

some feasibility rules and the feasibility of the duty periods added to the duty pool

is ensured during the update. A flow chart of our proposed method is illustrated in

Figure 3.3. Details of each step are explained in the subsequent sections.

3.2 Initial Feasible Pairing Pool Generation

To start the main flow of the algorithm, a feasible set of pairings that cover all flight

legs is essential. With this set of pairings, the RMP is solved for the first time, and the

dual values for all flight legs are initialized. Within the column generation algorithm,

the pricing phase introduces new pairings (columns) to the RMP until the optimal

solution is found.

An initial feasible pairing pool for the RMP can be generated using an artificial

pairing method. In this method, an artificial pairing, which consists of only one flight

leg, is created for each flight leg in the schedule (so that all flights are covered and

the set covering model is feasible) and very high costs are assigned to these artificial

pairings. These high-cost pairings are eventually removed from the optimal solution of

the RMP as the pricing subproblem finds favorable feasible pairings that actually exist

in the flight network. In this study, the artificial pairing approach is not adopted for

the following reasons:

• The artificial pairing technique generally maintains poor initial objective function

values, since the costs of the artificially generated pairings are very high. A

significant amount of time is spent trying to remove these pairings from the

RMP and this consequently increases the number of MLSP iterations needed to

reach the optimal solution.

• The basis of our local search algorithm is the duty pool mentioned in Section

3.1. With the artificial pairing technique, an initial diverse duty pool cannot be

generated, since most of the involved pairings do not actually exist. Therefore,

17



duty periods can only be accumulated during the MLSP invocations over the

flight network, and the diverse duty pool necessary for the local search cannot be

created.

Due to the issues mentioned above, a different initial feasible pairing pool generation

technique is proposed. Essentially, our proposed method involves solving a series of

multi-label shortest path problems on the flight network until all flights in the schedule

are covered. Here, the shortest path is determined according to the visiting cost defined

for each node in the network. These visiting costs are initially zero for all flights. After

each MLSP iteration, the pairing with the minimum total visiting cost is added to the

initial pairing pool, its duty periods are added to the duty pool and the visiting costs of

all flight legs (nodes) covered by the pairing (path) are increased by a predefined large

number. As the iterations progress, the visiting costs of the covered flight legs increase

rapidly and the paths with more uncovered flight legs are favored. Feasibility tracking

for duty periods and pairings is performed by the same procedure as that of the MLSP

algorithm (See Section 3.3.1). Basically, at each iteration, the MLSP is solved following

the same label updating procedures with Algorithm 3.2. The only difference is that the

shortest path here is determined according to the visiting cost, whereas in Algorithm

3.2, the path with the minimum reduced cost is the shortest path.

Algorithm 3.1: Initial feasible pairing pool generation algorithm.

1: Initialize:
visitCosti = 0 ∀i ∈ F

2: while there are uncovered flights do
3: Solve MLSP on the flight network
4: Add pairing j with the smallest total visiting cost to the initial pairing pool
5: Add all duty periods covered by pairing j to the duty pool (if these are not

duplicates of already existing duties)
6: Increase visiting costs of all flight legs covered by pairing j
7: end while

3.3 The Pricing Subproblem

The pricing subproblem essentially corresponds to finding feasible pairings which will

improve the objective function of the RMP. In our problem, we start the column

generation algorithm with a subset of all possible feasible pairings that is generated

by using Algorithm 3.1. In the main loop, the RMP and the pricing subproblem are

solved alternatingly until the pricing procedure fails to find a negative reduced cost

18



pairing (i.e. optimal solution is reached). Each time the RMP is solved, the dual

values corresponding to the flight legs change, and the pricing subproblem tries to find

the favorable pairing according to these updated values. The dual interpretation of

the pricing step can be explained using the dual of the LP relaxation of the primal set

covering model:

maximize
∑
i∈F

ui (3.1)

subject to
∑
i∈F

aijui ≤ cj, j ∈ P , (3.2)

ui ≥ 0, i ∈ F , (3.3)

where ui corresponds to the dual variable of flight (constraint) i in the primal problem.

ui values are obtained after each reoptimization of the RMP and are used to calculate

the reduced cost of the pairing that will be added to the RMP in the next iteration.

The reduced cost c̄j of any pairing j is given by:

c̄j = cj −
∑
i∈F

aijui. (3.4)

Unless we have a degenerate LP, any negative reduced cost pairing found after pricing

improves the primal objective function value once added to the RMP.

Solving the MLSP is the core component of our pricing procedure. It provides

negative reduced cost pairings to the RMP, and ensures that the feasibility rules are

satisfied by tracking several labels on the (partial) duty periods and the (partial) pair-

ings. Domination rules ensure that dominated partial paths are not carried until the

sink node and the number of alternative paths is reduced which makes it faster to reach

to the sink node.

In this study, multi-label shortest path algorithm is applied on two different net-

works: the partial duty network and the flight network. MLSP over the duty network

is a heuristic approach based on finding shortest paths on the partial duty network

(which is constructed using the duty period pool) in order to price out the negative re-

duced cost pairings. This approach is faster than MLSP over the flight network, which

is an exact approach based on total implicit enumeration of the feasible pairings. Since

the search is carried out on a partial network, MLSP over the duty network may fail

to find a negative reduced cost pairing even if such a pairing exists. In that case, exact

19



MLSP over the flight network is required to ensure that if a negative reduced cost

pairing cannot be found, the optimal solution to the LP relaxation is found.

The other key procedure to obtain negative reduced cost pairings is the local search

algorithm applied over the duty pool. The proposed local search algorithm is a heuristic

method for pricing out the promising pairings to be added to the RMP. The local search

algorithm provides a simple and fast way of providing negative reduced cost columns

to the RMP and as long as it succeeds, MLSP is not employed for pricing. However,

since the local search algorithm is a heuristic way of looking for negative reduced cost

columns, it does not guarantee the optimality of the RMP. Thus, MLSP and the local

search algorithm are used alternatingly. The former is required to prove the optimality

of the subproblem while the latter helps speeding up the iterations and solving the

whole problem in less number of iterations.

3.3.1 Pricing by Multi-Label Shortest Path Algorithm on the Flight Net-

work

As its name implies, the multi-label shortest path problem is different from the shortest

path problem with a number of labels kept throughout the nodes in order to record the

state of the path. In the crew pairing problem, these labels are important for tracking

feasibility conditions related to pairings and duty periods. In general, a label is used

for each metric mentioned in the feasibility rules of the problem. In addition to these,

the dual values and the costs are also traced. On each node in the network, there

is a node label consisting of several path labels. In our case, as the flight network is

traversed, these path labels are updated according to the following atomic labels (i.e.

attributes) attached to each one of them:

• Total elapsed time

• Total cost

• Sum of the dual values of the flight legs covered

• Number of flight legs covered

• Number of completed duty periods

Figure 3.4 shows how each node label is structured. Let us assume there are m

different atomic labels needed to track the information about a path. For the sample

node label illustrated in Figure 3.4, there are n different paths (thus n different path

20



..........

..........

..........

....................

....................

....................

PL1

PL2

PLn

AL11 AL12

AL21 AL22

ALn1 ALn2

AL1m

AL2m

ALnm

Node
Label

Figure 3.4: Label structure for the MLSP.

labels) from the source node to this node. Recall that each node in the network is

represented with a single node label consisting of several path labels and the atomic

labels are what the path labels are made of. Defining the set of different atomic labels

on a path label as A and the set of path labels on the node label as L, atomic label

i ∈ A on path label j ∈ L is denoted by ALji while the path label j is denoted by PLj.

Each duty period on any path is also checked for feasibility during MLSP and duty

period information is stored. Implementation details for network and label structures

are given in Section 3.4.

As Figure 3.4 illustrates, each node label may consist of several path labels. In

other words, there may be more than one path emanating from the source node to any

intermediate node. However, not all of these partial paths are required to be extended

until the sink node. A partial path is pruned (i.e. no longer considered) either if it

violates the feasibility conditions or if it is dominated by any other path. Domination

criterion, which is specific to our case, is explained by Definition 1. To clarify this

definition, let us denote the state of a path i on some node j with (ALj
iPLi

, RCj
i ) where

PLi is the set of all labels kept on path i. (ALj
iPLi

) is listed as (ALj
i1, ALj

i2, ..., ALj
i|PLi|)

and RCj
i is the reduced cost of path i on node j. Then,

Definition 1 We say that, among two paths represented by two path labels PL1 and

PL2 and emanating from the source node to node j with states (ALj
1PL1

, RCj
1) and

(ALj
2PL2

, RCj
2), respectively, PL1 dominates PL2 if and only if RCj

1 ≤ RCj
2 and

ALj
1l ≤ ALj

2l, ∀l ∈ PL. In this case, the paths represented by PL1 and PL2 are called

nondominated and dominated paths, respectively.

21



Note that, in our flight network construction phase, the topological order of the

nodes is ensured. That is, connections are always established from left to right along

the time line (See Figure 3.1). In Algorithm 3.2, the nodes are processed following

their topological order. Nondominated paths on each node are carried to the successor

nodes using the necessary information retrieved from these two nodes as well as from

the arc connecting them. To illustrate the way labels are updated on an example, let

us denote the label representing the total elapsed time on any path label as Li
et and

Lj
et for nodes i and j, respectively, the duration of the flight leg represented by node

j as durj, and the duration of the connection (i.e. sit time) between these two nodes

as SitT imeij. Then, the label update is done as follows:

Lj
et = Li

et + durj + SitT imeij. (3.5)

Algorithm 3.2 explains how the nodes are processed during one MLSP iteration.

The output of Algorithm 3.2 is the pairing with the minimum reduced cost which

corresponds to the path from the source node to the sink node with the minimum

reduced cost. Note that our proposed algorithm (See Figure 3.3) resorts to MLSP over

the flight network if and only if it fails to find a negative reduced cost pairing after

searching the duty network using MLSP.

In Algorithm 3.2, n denotes the number of nodes in the flight network. vi represents

the ith node in the flight network (according to the topological order), and kij is the

jth adjacent node of node vi while the number of nodes adjacent to node vi is denoted

by Ki.

Algorithm 3.2: Multi-label shortest path algorithm for the flight network.

1: Initialize:
Set null node labels ∀i ∈ F

2: for i = 1 to n do
3: Apply domination rules to path labels on vi and prune dominated paths
4: for j = 1 to Ki do
5: Update all path labels on kij through the arc from vi to kij

6: Check feasibility rules for the updated path labels and prune infeasible paths
7: end for
8: end for
9: Sort all paths at the sink node according to their reduced costs

10: Output: The path with the minimum reduced cost

22



3.3.2 Pricing by Multi-Label Shortest Path Algorithm on the Duty Net-

work

In the airline crew pairing problem, a duty network consists of duty periods represented

by nodes and rest connections represented by arcs. The network structure is similar

to the flight network however, the node structure is different. As it is mentioned in

Section 3.1, while one node of the flight network denotes a single flight leg, one node

of the duty network stands for a number of flight legs concatenated under duty period

feasibility rules (i.e. a feasible duty period). Similarly, the arcs of the duty network

correspond to overnight rest connections whereas one flight network arc might either

denote a short sit connection or a longer rest connection. One common characteristics

for the two networks is that, in both networks, one path from the source node to the

sink node constitutes a feasible pairing. Therefore, solving the multi-label shortest

path problem over the duty network is an alternative way for pricing out negative

reduced cost pairings for the restricted master problem. However, it should be noted

that, the duty network utilized in this study is a partial duty network. The reason for

working on a partial network is that the total enumeration of all possible duty periods

is an exhaustive task and it is almost equivalent to generating all possible pairings.

Since we look for a time-efficient solution method for the airline crew pairing problem,

constructing the whole duty network is not viable. Instead, we work on a partial duty

network constructed from the duty pool generated during the initial feasible pairing

pool generation phase and updated each time a new pairing is added to the RMP by

the MLSP solved over the flight network. In the subsequent sections, our partial duty

network will simply be referred to as the duty network.

Solving the multi-label shortest path problem on the duty network has a potential

to efficiently generate negative reduced pairings for the following reasons:

• The duty periods in the duty pool are known to be feasible and ensuring the

feasibility of the duty periods reduces the number of labels kept during the MLSP.

Therefore, during the multi-label shortest path algorithm, only the pairing related

feasibility rules should be tracked. As a result, having less number of labels makes

the multi-label shortest path problem easier to solve on the duty network.

• As the pairings are generated, the duty pool is updated by accumulating all dis-

tinct duty periods. The duty pool is used in order to construct the duty network,

where the duty periods are denoted by the nodes of the network. Compared to

23



the flight network, the duty network, even the partial one, might include a larger

number of nodes. At first, this might seem to be a shortcoming of the network

structure, since it would increase the size of the network. However, in the mean-

time, the duty network approach decreases the depth of the search tree. In other

words, it is easier to reach to the sink node from the source node, since there is

a smaller number of nodes that need to be traversed. Likewise, the length of a

pairing is reduced in terms of the nodes it consists of. This is very important for

the multi-label shortest path problem since it tries to find the shortest path from

the source to the sink as quickly as possible. To illustrate this concept on an

example, let us consider a pairing consisting of eight flight legs. This corresponds

to a 10-node (including the source and the sink) path on the flight network. Let

this pairing be separated into three feasible duty periods with overnight rests be-

tween them. Then, the corresponding pairing would be a 5-node (again including

the source and the sink) path on the duty network. Rather than traversing 10

nodes to reach to the sink node, a 5-node traversal would be enough to constitute

the same pairing. The reduction in the depth of the search tree saves time and

effort, and allows a faster execution of the MLSP on the duty network than that

on the flight network.

The motivation behind constructing the duty network is the opportunity to work

with a smaller and compact version of the flight network so that the search space is

reduced and exhaustive enumeration of all pairings is avoided. It should be noted that

the multi-label shortest path algorithm explained in Section 3.3.1 is still essentially

valid. Algorithm 3.3 exhibits the slightly modified version of Algorithm 3.2 for the

duty network.

In Algorithm 3.3, n denotes the number of nodes in the duty network. vi represents

the ith node in the duty network (according to the topological order), and kij is the jth

adjacent node of node vi while the number of nodes adjacent to node vi is denoted by

Ki. Here, D is the set of all duty periods in the partial duty network.

Notice that label updating and node treating procedures are the same in both

algorithms. The duty network version outperforms the flight network version due to

the reduced number of feasibility rules and tracked labels as well as the decreased depth

of the search space, reducing the time needed for a MLSP execution. However, since

the duty network is partial and the whole space is not explored, the multi-label shortest

path algorithm over the duty network is not sufficient to announce the optimality of

24



Algorithm 3.3: Multi-label shortest path algorithm for the duty network.

1: Initialize:
Set null node labels ∀i ∈ D

2: for i = 1 to n do
3: Apply domination rules to path labels on vi and prune dominated paths
4: for j = 1 to Ki do
5: Update all path labels on kij through the arc from vi to kij

6: Check feasibility rules for the updated path labels and prune infeasible paths
7: end for
8: end for
9: Sort all paths at the sink node according to their reduced costs

10: Output: The path with the minimum reduced cost

the overall problem.

3.3.3 Pricing by A Local Search Algorithm

Since the multi-label shortest path problem is NP -hard, some of its instances can be

very hard to solve depending on several factors such as the number of flight legs in the

schedule, the general network structure, the structure of the feasibility rules and the

number of labels associated with these rules. Thus, it is common practice to try to avoid

solving the MLSP subproblem to optimality at each column generation iteration and

to apply heuristic methods for the pricing subproblem. On the other hand, heuristic

methods are not sufficient to prove the optimality of the current restricted master

problem and solving the subproblem to optimality is necessary at some point during

the iterations. Therefore, we resort to MLSP when our heuristic local search pricing

algorithm fails to find a negative reduced cost pairing. This way, we aim to reduce

the number of times MLSP is executed and the total computation time for the column

generation by rapidly generating negative reduced pairings for the restricted master

problem in a simple way.

Our proposed local search algorithm is based on deletion and insertion operators

applied to a promising set of pairings utilizing the duty pool generated during the initial

feasible pairing pool generation phase and updated as new pairings are added to the

problem. Here, the promising set of pairings are defined as the set of pairings associated

with the basic variables of the current restricted master problem solution. These are

good candidates to turn into negative reduced cost pairings by simple operations since

they already have zero reduced costs. At each iteration of the column generation, after

solving the restricted master problem, the set of pairings with zero reduced costs is

processed using Algorithm 3.4. For Algorithm 3.4, dutyPool denotes the set of duty

25



- - -DP 1 DP 2 DP 3 DP 4

z

DP 1 DP 2 DP 4- - -

DP 33

Resulting Pairing after Deletion-Insertion

Duty Period Pool

j
DP 5

DP 5

Before

Local Search

After

Local Search

Figure 3.5: Local search method.

periods in the duty pool. ZRCP represents the set of zero reduced cost pairings and

NRCP represents the set of negative reduced cost pairings. The ith pairing in ZRCP

is illustrated by ZRCPi and ZRCPik is the kth duty period in ZRCPi. n is the number

of zero reduced cost pairings in ZRCP , while m denotes the number of duty periods

in dutyPool.

Algorithm 3.4: Local search algorithm.

1: Input: ZRCP , dutyPool
2: Initialize:

NRCP = ∅
3: for i = 1 to n do
4: for j = 1 to m do
5: for k = 1 to number of duty periods in ZRCPi do
6: Try:

Delete duty period ZRCPik from ZRCPi

Insert dutyPoolj to the position ZRCPik

7: if insertion is feasible then
8: Calculate reduced cost for the new pairing
9: if the reduced cost for the new pairing is negative then

10: Insert new pairing to NRCP
11: end if
12: end if
13: end for
14: end for
15: end for
16: Output: NRCP

26



3.4 Implementation Details

Besides the hybrid pricing algorithm we propose for the airline crew pairing problem, we

utilize a generic programming scheme to code and test our methods. The class design

and the implementation with Boost Graph and Date-Time Libraries [7, 24] provide a

neat and efficient way to deal with complex network-related operations.

3.4.1 Class Design and Structures

There are two basic types of structures used in our class design: flight network related

structures and label structures. The basic building block for our flight network design

is the FlightLeg. Each FlightLeg is represented by its:

• Departure City

• Arrival City

• Departure Time

• Arrival Time

• Duration

• Index (i.e. its place in the given timetable)

One or more FlightLegs come together in order to form SequenceOfFlightlegs. Each

SequenceOfFlightlegs carries certain elements such as:

• Total Cost

• Total Elapsed Time

• Total Flight Time

• Covered Flight Legs

• Node Label

A SequenceOfFlightlegs is either a DutyPeriod or a Flight. As their names imply,

a DutyPeriod contains more than one FlightLeg while a Flight has a single FlightLeg.

Each flight in the schedule represented by a Flight node in the network and these nodes

are connected to each other by Connection arcs. Each Connection is denoted by its:

27



• Total Cost

• Duration

• Tail Node (i.e. the Flight that the Connection starts from)

• Head Node (i.e. the Flight that the Connection ends at)

Notice that each SequenceOfFlightlegs has a node label member. This corresponds

to the other component of our class design: label structures. A NodeLabel is attached

to all nodes in the flight network and as shown in Figure 3.4, a NodeLabel is made of

several PathLabels consisting of the following AtomicLabels:

• Total elapsed time

• Total cost

• Sum of the dual values of the flight legs covered

• Number of flight legs covered

• Number of completed duty periods

The information enclosed in the PathLabel structure is essential in the pricing proce-

dure since feasibility tracking and domination decisions for all paths are made according

to this information. According to the feasibility requirements, the number of Atomi-

cLabels encapsulated by a PathLabel can be increased or decreased and new types of

path information can be introduced thanks to the flexible and generic structure of our

label design.

3.4.2 Generic Programming with Boost Libraries

Using the structures explained in Section 3.4.1, all of the algorithms were implemented

using the Visual C++ programming language. In order to construct and manipulate

the flight network, we make use of Boost Graph Library (BGL), a generic open source

C++ library and an efficient tool for graph abstraction in a flexible environment. Due

to the generic nature of BGL, graph structures are defined as templates and this allows

the user to work with any data structure she wants. In our work, SequenceOfFlightlegs

is given as the vertex type and Connection is given as the edge type of the graph.

Network construction is carried out following the built-in BGL procedures.

28



We also utilize Boost Date-Time Library in order to easily work with date and time

structures. Since the nature of the crew pairing problem is strictly based on temporal

constraints and the network structure is dependent on date and time related rules, the

functionality of the date-time library is of great importance. Boost Date-Time Library

provides the user a robust set of operators and calculation capabilities. Therefore,

date/time comparisons, adding/subtracting time durations/intervals and retrieval of

times and dates from clocks are carried out simply and efficiently.

We refer to [7,24] for other useful Boost C++ libraries and further information on

Boost Graph and Date-Time Libraries. We present class diagrams and structures in

Appendix A.

29



CHAPTER 4

COMPUTATIONAL RESULTS

In this chapter, we present the results of the numerical study on a set of real-life data

acquired from a local airline company. We solve four problem instances consisting of

200, 236, 281 and 300 flight legs. In the subsequent sections, these data sets will be

referred to as DS1, DS2, DS3 and DS4, respectively. As it is explained throughout

this thesis, the number of all possible pairings is very large for each instance. Therefore,

the column generation approach, of which the details are explained in Chapter 3, is

adopted to solve these instances. The algorithm is implemented using the Visual C++

programming language, and Boost C++ Libraries [7, 24] are used to manipulate the

network structures. The restricted master problem of the LP relaxation for the set

covering model is optimized by ILOG CPLEX 12.1 [19].

In order to present numerical results that attest to the efficiency of our approach,

we benchmark our algorithm against a pure MLSP pricing scheme. As it is exhibited in

Figure 3.3, our adopted algorithm breaks down the pricing subproblem into three steps.

First, a local search mechanism is applied on a set of pairings. In cases when the local

search cannot construct a negative reduced cost pairing (in other words, none of the

pairings it constructs has negative reduced cost), the multi-label shortest path problem

is solved over the duty network. If this second heuristic approach also fails, the multi-

label shortest path problem is solved over the flight network. Since this last alternative

is an exact enumeration method, we are assured that the optimal solution is reached if

the MLSP algorithm over the flight network cannot find a negative reduced cost pairing

anymore. Therefore, our termination criterion is satisfied when the exact method

(MLSP over the flight network) fails to add a negative reduced cost pairing to the

RMP. While our hybrid algorithm uses three different pricing methods alternatingly,

the pure MLSP scheme, as its name implies, solves the pricing subproblem by executing

the multi-label shortest path algorithm over the flight network at each subproblem

iteration. For illustrative purposes, our proposed algorithm will be referred to as the

30



hybrid method and the pure MLSP pricing scheme will be denoted by the pure method

in the subsequent sections. We will make use of the following abbreviations for the

sake of simplicity:

• LS: local search mechanism

• DNMLSP: multi-label shortest path problem over the duty network

• FNMLSP: multi-label shortest path problem over the flight network

• CG: column generation

• DP: duty period pool

• HYBRID: our hybrid pricing scheme

• PURE: pure FNMLSP pricing scheme

Benchmarking our algorithm against a pure FNMLSP pricing scheme is crucial

since we want to measure the effect of incorporating LS and DNMLSP into the pricing

mechanism. FNMLSP is an NP -hard problem and our main goal should be to avoid

solving this problem at each and every subproblem iteration if possible. This way, we

expect the following to occur:

• the number of column generation iterations that FNMLSP is executed would be

reduced,

• the computation time per iteration would be reduced due to the heuristic methods

(i.e. LS and DNMLSP),

• the total computation time needed to solve the whole instance would be reduced

due to the reduction in computation time per iteration.

Therefore, we present the results based on a comparison between PURE and HY-

BRID approaches. One should note that the initial feasible pairing pool generation

mechanism (See Section 3.2) is the same for both approaches. A series of multi-label

shortest path problems is solved for four instances until all flight legs are covered and

an initial feasible pairing pool is generated. CPU times needed to generate an initial

feasible solution are presented in Table 4.1.

It is mentioned in Section 3.2 that the quality of the initial feasible solution (i.e. the

objective function value of the initial RMP) is important in order to reach the optimal

31



DS1 DS2 DS3 DS4

CPU sec. 70.95 302.94 439.60 424.48

Table 4.1: CPU times needed to generate an initial feasible solution.

solution more rapidly. In Table 4.2, the initial and optimal objective function values

of the RMP are exhibited for four instances.

Throughout this thesis, we deal with the LP relaxation for the set covering model

of the airline crew pairing problem. That is, we relax the integrality constraints (1.3)

in the set covering formulation, and allow the variables to take non-integer values.

Our proposed column generation solution method is based on this relaxed model, and

the optimal objective function values we report in Table 4.2 are the optimal objective

function values for the LP relaxation of the RMP, thus, they are lower bounds on the

integer programming optimal objective function values. In Table 4.2, we also present

the IP optimal objective function values (with respect to the restricted set of pairings

we have at the end of the CG) for DS1, DS2, DS3, and DS4. The pairings (columns),

which are generated during the column generation iterations are given as input to

the IP set covering model and the model is optimized using ILOG CPLEX 12.1 [19].

It should be noted that the optimality gaps between the LP solutions found by our

proposed method and the set covering IP solutions are significantly small.

DS1 DS2 DS3 DS4

Initial OFV 11102.2 14203.5 17817.1 18464.2
Optimal OFV (LP) 7530 8635 11030 11210
Optimal OFV (IP) 7530 8670 11190 11220

Table 4.2: Initial and (LP and IP) optimal objective function values.

Figures 4.1, 4.2, 4.3 and 4.4 give the changes in the durations of subproblem it-

erations for DS1, DS2, DS3 and DS4, respectively. In these charts, red data points

correspond to the iterations where only LS is used for pricing. Blue data points rep-

resent the iterations where LS is unsuccessful but DNMLSP is successful at finding

a negative reduced cost pairing. The iterations at which both heuristic methods (LS

and DNMLSP) fail and hence, FNMLSP is executed are denoted by the yellow data

points. Considering the distribution of these data points over the timeline, the following

observations can be made:

• Let tLS, tDNMLSP and tFNMLSP denote the computation time needed for a sub-

problem iteration when, respectively, LS, DNMLSP and FNMLSP are executed.

32



Then, the relationship between tLS, tDNMLSP and tFNMLSP values can be de-

fined as tLS < tDNMLSP < tFNMLSP . This result is expected since both LS and

DNMLSP are heuristic methods and they aim to find a quick solution to the

pricing subproblem by reducing the search space but they both are short of prov-

ing optimality. FNMLSP is an exact method which is based on exploring the

whole search space, thus, it is the most time consuming method. Comparing LS

with DNMLSP, LS outperforms DNMLSP in terms of computation time since

DNMLSP has a more sophisticated search mechanism than LS. While LS looks

for negative reduced cost pairings only among the basic variables of the RMP

(i.e. pairings with zero reduced cost), DNMLSP considers all pairing alternatives

that can be generated using the duty network generated up until then.

• LS mechanism is successful at the early phases of the CG and stalls after some

point. This is caused by the characteristics of the duty period pool. The duty

period pool is populated with a rich and diverse number of duty periods at the

initial feasible pairing pool generation phase (See Section 3.2) and after this

phase, the duty period pool diversity cannot be increased much. As a result,

LS mechanism operates on similar pairings with almost the same duty periods

at each iteration. Therefore, the chance of creating a new negative reduced cost

pairing is decreased.

• DNMLSP is generally successful at finding negative reduced cost pairings. How-

ever, it also stalls at some point during the iterations (at later phases of the CG)

and the pricing subproblem resorts to FNMLSP frequently after this point. As

it is mentioned above, although DNMLSP works on a broader search space than

LS, it is still a heuristic method and the duty network is partial. Thus, FNMLSP

execution is crucial at some point during the iterations, since it maintains the

optimality of the subproblem.

• Tracing the yellow data points, it is observed that FNMLSP executions last sig-

nificantly longer at the early and late FNMLSP iterations. At the early iterations,

there exist plenty of negative reduced cost columns (pairings) that are candidates

for entering the basis. This causes the MLSP algorithm to spend more time to

find the most negative one among these candidates. The number of candidate

pairings decreases in the subsequent iterations, and the computation times per

iteration are reduced as expected. However, after some point during the itera-

33



tions, at later phases, we again observe an increase in the computation time per

CG iteration. This time, the increase is caused by the large number of pairings

whose reduced costs are costs are negative and very close to zero. Due to nu-

merical precision, these numbers are not considered as zero and the paths that

they are associated with cannot be dominated. For this reason, the number of

non-dominated paths increases and it takes more time to reach the sink node.

Figure 4.1: CPU times (sec.) per iteration for DS1.

Figure 4.2: CPU times (sec.) per iteration for DS2.

In Tables 4.3, 4.4, 4.5 and 4.6 pure and hybrid methods are compared in terms

of the total computation time needed to solve the problem, the number of FNMLSP

executions and the number of CG iterations. It is important to note that the reported

34



Figure 4.3: CPU times (sec.) per iteration for DS3.

Figure 4.4: CPU times (sec.) per iteration for DS4.

total computation times exclude the time needed to generate an initial feasible solution

(those are reported separately in Table 4.1). One can notice that the outcomes are as

expected. By adopting the hybrid approach, the total CPU times are reduced. There

is a significant reduction in the number of FNMLSP executions compared to the pure

method. This exhibits the positive effect of LS and DNMLSP on the pricing mechanism.

Another observation is that the total number of CG iterations might differ for two

methods. In other words, the number of iterations needed to reach the optimal solution

need not to be the same for each instance. This is again expected, since two methods

price out different pairings for the restricted master problem. As different pairings

enter to the basic solution, the objective function values might differ for some specific

35



CG iteration. For example, for DS2, at iteration 203, the objective function value is

9650 with the hybrid method, whereas it is 9192 with the pure method. However, at

the last iteration of the CG, the objective function values for both methods should

be equal, since the objective function value for the last CG iteration is the optimal

objective function value.

DS1

PURE HYBRID
total CPU sec. 175.859 132.422

number of FNMLSP executions 213 28
number of CG iterations 213 220

Table 4.3: Comparison of HYBRID and PURE by total CPU times, number of FN-
MLSP executions and number of CG iterations for DS1.

DS2

PURE HYBRID
total CPU sec. 442.188 366.89

number of FNMLSP executions 346 49
number of CG iterations 346 346

Table 4.4: Comparison of HYBRID and PURE by total CPU times, number of FN-
MLSP executions and number of CG iterations for DS2.

In order to observe the effect of incorporating the local search into the pricing

mechanism more clearly, we conduct a computational study in which we turn off the

LS mechanism and run the pricing step by only utilizing FNMLSP and DNMLSP.

Benchmarking the values in Table 4.7 and Tables 4.3, 4.4, 4.5 and 4.6, one may conclude

that LS has a positive effect on the total computation time and the number of FNMLSP

executions. These two values are between the two values acquired by PURE and

HYBRID methods whereas the same positive effect is not observed on the total number

of CG iterations. The total number of CG iterations is generally larger than those in

both the PURE and the HYBRID methods.

We mention in Section 3.2 that a rich and diverse initial duty period pool is impor-

tant for the efficiency of our approach. As it is exhibited in Algorithm 3.1, we populate

DS3

PURE HYBRID
total CPU sec. 1243.39 1115.31

number of FNMLSP executions 426 63
number of CG iterations 426 472

Table 4.5: Comparison of HYBRID and PURE by total CPU times, number of FN-
MLSP executions and number of CG iterations for DS3.

36



DS4

PURE HYBRID
total CPU sec. 1587.34 1328.7

number of FNMLSP executions 558 55
number of CG iterations 558 591

Table 4.6: Comparison of HYBRID and PURE by total CPU times, number of FN-
MLSP executions and number of CG iterations for DS4.

DS1 DS2 DS3 DS4
total CPU sec. 150.09 415.65 1210.32 1347.13

number of FNMLSP executions 28 59 77 57
number of CG iterations 224 364 481 585

Table 4.7: Some performance measures after turning off the LS mechanism.

the duty period pool by adding all of the duty periods covered by the pairing (if these

are not duplicates of already existing duties) found at each iteration. We apply this

step even if the new found pairing does not cover an uncovered flight leg but consists

of duty periods that do not exist in the duty period pool. To illustrate this on an

example, let us suppose that at iteration i of Algorithm 3.1, a generated pairing with

a negative reduced cost consists of 3 duty periods. The first duty period consists of

flight legs 2 and 5, the second duty period consists of flight legs 7, 9 and 11, and the

third duty period consists of flight legs 15, 16 and 18. For illustrative purposes, let us

denote this pairing i as 2 − 5/7 − 9 − 11/15 − 16 − 18. Following the same notation,

let the pairing generated at iteration i + 1 be 2− 7/11− 16− 18. Notice that, pairing

i + 1 does not cover any new flight legs uncovered by pairing i. However, our initial

feasible pairing pool generation mechanism adds all of the duties covered by these two

pairings (i.e. 2 − 5, 2 − 7, 7 − 9 − 11, 11 − 16 − 18 and 15 − 16 − 18). With this

approach, we intend to generate a diverse duty pool. In order to measure the effect of

the diversity of the initial duty period pool on our proposed algorithm, we modify our

original initial feasible pairing pool generation technique as follows: We only consider

new duty periods to be added to the pool if they come from a pairing that covers at

least one flight leg that was previously uncovered. This way, some duty periods will

not be able to enter the initial duty pool and the number of distinct duty periods will

be reduced. This will reduce the diversity of the duty pool, and consequently, effect the

performance of our pricing procedure. Table 4.8 provides a comparison between the

modified and the original initial feasible pairing pool generation mechanisms. In the

first row for each data set, the CG is started with a less number of duty periods in the

duty pool, and the second row represents the results we find by our original technique,

37



explained by Algorithm 3.1. Comparing these two approaches, one can derive that

reducing the number of duty periods in the duty pool (i.e. decreasing the diversity of

the duty pool):

• negatively effects the performance of the LS,

• increases the number of CG iterations at which FNMLSP is executed,

• causes the first execution of the FNMLSP to shift to earlier iterations of the CG.

initial # of # of iterations the iteration # of total
duties LS is at which FNMLSP FNMLSP

in the DP successful is first executed executions

DS1 121 2 114 41
249 6 165 28

DS2 149 3 169 76
254 14 266 49

DS3 193 11 299 142
325 16 357 63

DS4 211 9 310 123
374 24 467 55

Table 4.8: Some performance measures for the proposed pricing method with the orig-
inal initial feasible pairing pool technique and the modified version (with less number
of duty periods).

The trend of the objective function values over time can be observed in Figures

4.5, 4.6, 4.7 and 4.8. Notice that the two methods follow different paths during the

iterations, but at the last iteration, they coincide as expected. Pure FNMLSP scheme

generally provides better quality pairings in terms of the amount of the improvement

in the objective function value. On the other hand, the objective function value im-

provement is slower in the hybrid method. This difference is caused by the tradeoff

between the solution quality and the time efficiency. With the hybrid method, we can

provide negative reduced cost pairings more rapidly at each iteration at the expense

of the magnitude of improvement in the objective function value. With the less time-

efficient pure FNMLSP method, we explore the whole search space and enumerate all

possible pairings at each iteration, which makes it more likely to price out good quality

pairings.

From Figures 4.5, 4.6, 4.7 and 4.8, one can observe the sudden decrease in the

objective function value acquired by the HYBRID method at some point during the

iterations. This specific point corresponds to the iteration at which FNMLSP is first

38



Figure 4.5: Comparison of HYBRID and PURE by changes in the objective function
value for DS1.

executed. As Figures 4.1, 4.2, 4.3 and 4.4 also illustrate, after that very first execution

of FNMLSP, LS and DNMLSP are not very successful at finding negative reduced cost

pairings and FNMLSP is frequently executed for pricing. This causes unnecessary LS

and DNMLSP executions and might negatively effect the total computation times. Ad-

ditionally, after the sudden relatively large decrease in the objective function value, the

improvement in objective function value is not significant. For benchmarking purposes,

we present some results in Table 4.9 for which we turn off both LS and DNMLSP mech-

anisms and rely only on FNMLSP for pricing after the iteration at which FNMLSP is

first executed. Notice that the performance of the algorithm is worse that of both the

PURE and the HYBRID methods. This way, unnecessary LS and DNMLSP executions

are avoided; however, the number of FNMLSP executions is increased causing longer

total computation times.

DS1 DS2 DS3 DS4
total CPU sec. 173.03 495.67 1360.89 1858.39

number of FNMLSP executions 48 58 115 73
number of CG iterations 213 324 472 541

Table 4.9: Some performance measures acquired by turning off the LS and DNMLSP
mechanisms after the iteration at which FNMLSP is first executed.

39



Figure 4.6: Comparison of HYBRID and PURE by changes in the objective function
value for DS2.

Figure 4.7: Comparison of HYBRID and PURE by changes in the objective function
value for DS3.

40



Figure 4.8: Comparison of HYBRID and PURE by changes in the objective function
value for DS4.

41



CHAPTER 5

CONCLUSION

In this thesis, we solve the airline crew pairing problem by a column generation method.

We particularly focus on the pricing subproblem of the column generation which is

traditionally modeled as a multi-label shortest path problem solved over the flight

network. This problem is NP -hard; thus, it is reasonable to try to avoid solving it at

each subproblem iteration. To overcome the complexity of the pricing subproblem, we

propose an alternate pricing scheme involving heuristic and exact methods. Instead of

solving the multi-label shortest path over the flight network (which is an exact method),

we first apply a local search mechanism to a set of zero reduced cost pairings using

the duty period pool. In case of an unsuccessful local search, we solve the multi-label

shortest path problem over the partial duty network. If this method also fails, we resort

to the exact multi-label shortest path algorithm over the flight network ensuring the

optimality of the subproblem.

We implement the proposed algorithm in a generic programming environment. We

solve four real-life problem instances acquired from a local airline company and bench-

mark the performance of our method against a pure multi-label shortest path problem

pricing scheme over the flight network. We observe reductions in the total computation

times as well as the number of iterations an exact multi-label shortest path algorithm is

executed. In addition, the feasible solutions of the crew pairing problem obtained from

solving the set covering model over the set of pairings generated during the column

generation are of high quality.

42



Bibliography

[1] Anbil, R., Gelman, E., Patty, B. and Tanga, R., Recent advances in crew-pairing

optimization at American Airlines, Interfaces, 21, 62-74, 1991.

[2] Anbil, R., Forrest J.J. and Pulleyblank, W.R., Column generation and the crew

pairing problem, Documenta Mathematica, Extra Volume ICM (3), 677- 686,

1998.

[3] Andersson, E., Housos, E., Kohl, N. and Wedelin, D., Crew pairing optimization,

In G. Yu, editor, Operations Research in the Airline Industry, Kluwer Academic

Publishers, 228-258, 1998.

[4] Barnhart, C., Jonhson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P and Vance,

P.H., Branch-and-price: Column generation for solving huge integer programs,

Operations Research, 46(3), 316-329, 1998.

[5] Barnhart, C., Cohn, A.M., Johnson, E.L., Klabjan, D., Nemhauser, G.L. and

Vance, P.H., Airline crew scheduling, In R. W. Hall, editor, Handbook of Trans-

portation Science, Kluwer Scientific Publishers, 517-560, 2003.

[6] Bixby, R., Gregory, J.W., Lustig, I.J., Marsten, R. and Shanno, D., Very large

scale linear programming: A case study in combining interior point and simplex

methods, Operations Research, 40, 885-897, 1992.

[7] Boost C++ Libraries, 2010, http://www.boost.org/.

[8] Brumbaugh-Smith, J. and Shier, D., An empirical investigation of some

bicriterion-shortest path algorithms, European Journal of Operational Research,

43, 216-224, 1989.

[9] Crainic, G. and Rousseau, J., The column generation principle and the airline

crew scheduling problem, Informs, 25(2), 136-151, 1987.

43



[10] Desaulniers, G., Desrosiers, J., Ioachim, I., Solomon, M. M. and Soumis, F., A

unified framework for deterministic time constrained vehicle routing and crew

scheduling problems, In T. Crainic and G. Laporte, editors, Fleet Management

and Logistics, Kluwer Publishing Company, 57-93, 1998.

[11] Desaulniers, G., Lessard, F. and Hadjar, A., Tabu Search, Partial Elementarity,

and Generalized k-Path Inequalities for the Vehicle Routing Problem with Time

Windows, Transportation Science, 42(3), 387-404, 2008.

[12] Desrochers, M. and Soumis, F., A generalized permanent labeling algorithm for

the shortest path problem with time windows, Infor, 26(3), 191-212, 1988.

[13] Desrochers, M. and Soumis, F., A column generation approach to the urban

transit crew scheduling problem, Transportation Science, 23(1), 1989.

[14] Desrochers, M., Desrosiers, J. and Solomon, M. M., A new optimization algorithm

for the vehicle routing problem with time windows, Operations Research, 40(2),

342-354, 1992.

[15] Desrosiers, J., Dumas, Y., Solomon, M. M. and Soumis, F., Time constrained

routing and scheduling, In M. Ball, editor, Handbooks in Operations Research

and Management Science, Elsevier, 35-140, 1995.

[16] Forrest, J.J., Mathematical programming with a library of optimization subrou-

tines, presented at the ORSA/TIMS Joint National Meeting, New York, 1989.

[17] Gamache, M., Soumis, F., Morquis, G. and Desrosiers, J., A column generation

approach for large-scale aircrew rostering problems, Operations Research, 47(2),

247-263, 1999.

[18] Guerriero, F. and Musmanno, R., Label correcting methods to solve multicrite-

ria shortest path problems, Journal of Optimization Theory and Applications,

111(3), 589-613, 2001.

[19] ILOG software, http://www.ilog.com, July 2010.

[20] Kornilakis, H. and Stamatopoulos, P., Crew pairing optimization with genetic

algorithms, Proceedings of the Second Hellenic Conference on AI: Methods and

Applications of Artificial Intelligence, 109-120, April 11-12, 2002.

44



[21] Makri, A. and Klabjan, D., A new pricing scheme for airline crew scheduling,

Informs Journal on Computing, 16(1), 56-67, 2004.

[22] Nagih, A. and Soumis, F., Nodal aggregation of resource constraints in a shortest

path problem, European Journal of Operational Research, 172, 500- 514, 2006.

[23] Savelsbergh, M. and Sol, M., DRIVE: Dynamic routing of independent vehicles,

Operations Research, 46(4), 474-490, 1998.

[24] Siek, J., Lee, L. and Lumsdaine, A., The Boost Graph Library User Guide and

Reference Manual, Addison-Wesley, 2002.

[25] Skriver, A.J.V. and Andersen, K.A., A label correcting approach for solving

bicriterion shortest-path problems, Computers and Operations Research, 27, 507-

524, 2000.

[26] Vance, P.H., Atamtürk, A., Barnhart, C., Gelman, E., Johnson, E.L., Kr-

ishna, A., Mahidhara, D., Nemhauser, G.L. and Rebello, R., A heuris-

tic branch-and-price approach for the airline crew pairing problem, 1997,

http://citeseer.ist.psu.edu/vance97heuristic.html.

45



Appendix A

Class Diagrams and Structures

Figure A.1: Duty and Flight as SeqOfFlightlegs.

Figure A.2: Connection, Flightleg and Pairing classes.

46



Figure A.3: Class diagram for the Label structure.

47



Figure A.4: NodeLabel and PathLabel classes.

48


