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Abstract

There is an increasing demand for man-made dynamical systems to be reliable and

safe. If a fault can be detected quickly, appropriate actions should be taken to prevent

critical accidents, high cost malfunctions or failures. The key point in fault diagnosis

is the assumption of the availability of good mathematical model of the plant. Math-

ematical modeling of non-linear dynamical systems may be computationally hard

and time consuming. Therefore, modeling the plant using machine learning methods

such as Neural Networks (NN), fuzzy logic, extension neural networks (ENN) can be

more advantageous.

Although a dynamical system is modeled via machine learning methods, there

can be non-measurable states which are used in the system. Even though they

are estimated with mathematical approaches, they can drift in time. Classification

methods can be applied totally or to initialize the mathematical estimation. Although

ENN is one of the promising classification methods, it sometimes gives poor results

due to insensitivity to scatter of data-points. Its shifting and updating property takes

more iterations than comparable methods to give an acceptable error rate.

In this thesis, we propose improved extension neural networks (IENN) which im-

prove on ENN’s linear clustering method by using quadratic clustering and generating

clustering criteria which depend on statistical properties of the training set. Rechar-

gable Lead-Acid Battery is modeled via feed-forward NN approach and its state of
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charge is classified via proposed IENN method. The proposed method produces more

accurate classifying results than ENN.
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Özet

İnsan yapımı dinamik sistemlerinin güvenilir ve gürbüz olmasına gittikçe artan

ihtiyaç var. Eğer bir hata çabuk bir şekilde bulunur, gerekli önlemler alınırsa sis-

tem kritik kazalardan, yüksek maliyetli hasarlardan ve de daha büyük hatalardan

kurtarılabilir. Hata teşhisinde tesisin iyi bir matematiksel modelinin varlığı büyük

önem taşır. Non-Lineer dinamik bir sistemin matematiksel modellemesinin bulun-

ması zor ve zaman alıcıdır. Bu nedenle, yapay sinir ağı (YSA), bulanık mantık ve

genişletilmiş yapay sinir ağları (GYSA) gibi yapay zeka ile öğrenme yöntemleri daha

avantajlı olabilir.

Dinamik sistemlerin modellemesi yapay zeka ile öğrenme yöntemleri ile yapılsa

bile, sistemde kullanılan, ölçülemeyen durumlar olabilir. Bunlar matematiksel olarak

hesaplansalarda, zamanla hesaplanan değerler kayabilir. Sınıflandırma yöntemleri

tamamen veya hesaplamayı doğru noktaya çekebilmek için kullanılabilir. GYSA

umut veren bir sınıflandırma yöntemidir ama veri noktalarının dağılımına hassasiyeti

olmadığı için bazen kötü sonuçlar verebilir. GYSA, kabul edilebilir bir hataya ulaşana

kadar kullandığı kaydırma ve güncelleme özelliği, diğer karşılaştırılabilir metodlara

göre daha uzun sürer.

Bu tezde, sunulan geliştirilmiş genişletilmiş yapay sinir ağları (GGYSA) ile GYSA’

nın lineer kapsamasını kuadratik olarak değiştiriyor ve eğitim setinin istatiksel özellik-
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lerine göre kapsama kriterini geliştiriyoruz. Şarj edilebilir kurşun asit bataryanın YSA

ile modeli oluşturulup ve şarj durumu önerilen GGYSA ile bulunmuştur. Önerilen

GGYSA metodunun GYSA yöntemine göre daha doğru sınıflandırma sonuçları verdi-

ği görülmüştür.
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1 INTRODUCTION

This chapter gives an overview about fault diagnosis (FD), model based methods,

their usage and demanded machine learning methods.

1.1 Fault Diagnosis and Their Usage

Fault diagnosis is generally performed by comparing the real-time signals and param-

eters of a plant with those of its model. Any discrepancies are interpreted to identify

a fault in the plant and its location. Designing a model for a nonlinear plant such

as a commercial electromechanical device or a control system is difficult even if the

plant does not have a complex structure, because its parameters are not disclosed. In

such cases, a nonlinear model can be derived using machine learning methods such

as neural network or fuzzy logic by examining samples of its input-output signals.

In this thesis, a less frequently used method, the extended neural network is taken

up and an improved version, the ”Improved Extended Neural Network“ (IENN) is

proposed. The performance of the method is compared with other methods’ and

results are presented. Although this paper focuses on modeling of nonlinear systems

for fault diagnosis applications, the proposed method is general and may have many

application areas.

In daily life, there is an increasing demand for man-made dynamical systems to

be more reliable and safer. If a fault can be detected quickly, appropriate actions

can be taken and prevent from critical accidents, high cost malfunction or failure. In

[12] it is stated that, the fault is a state that may lead to a malfunctions or failures

1



of the system. This statement explains the distinction between a fault and a failure.

After detecting the fault, next process of FD is the fault isolation, identification or

classification.

Consequently, the idea of FD methods is to investigate a system under normal

conditions and compare the found investigations with the actual system running in

real-time. By using hardware redundancy technique, multiple physical devices are

provided and their output signals are compared with the actual devices’ output sig-

nals to detect the type of a fault and its location. This technique has high costs,

therefore it is not preferred. Second technique is to mimic a system by using ana-

lytical redundancy. Analytical redundancy creates mathematical models which gives

the same output value with the system for a given input. This technique is more

preferable than hardware redundancy due to no cost.

Analytical approaches are divided into two groups: quantitative models and the

models generated by machine learning methods. Observers [9], parameter estimation

[11] and parity equations [10] are some of the used quantitative approaches in use

with analytical redundancy. Machine learning techniques are used to mimic a system.

Two of the most famous machine learning approaches used in FD are fuzzy modeling

and neural network (NN) approach. In this thesis NN is used for modeling and the

reasons can be found in Chapter 2.1.

The model of a model based FD approach is given in Fig. 1.1.1. In closed-loop

systems, although plant changes from normal condition to faulty condition, controller

tries to move the plant to normal condition, therefore by measuring only plant output

y may not give positive information about a failure. According to this situation,

mathematical model of the plant is created and as an input, actuator’s output ua is

given to it. As a result output of the model ŷ and y is compared to find residual r.

This residual is then used in fault identification techniques.

The key point in FD approach is the assumption of availability of good mathe-

matical model of the plant. In practice, this idea is not valid because unavoidable

2



modeling uncertainties arise due to modeling errors, noise measurement and external

disturbances which effects the performance of FD approach and giving false fault

alarms as stated in [2]. This makes quantitative model-based analytical approaches

very difficult to use in real systems. And also mathematical modeling of non-linear

dynamical systems may be computationally hard and time. Therefore, using machine

learning approaches is more advantageous than using mathematical approaches.

A non-linear system [2], with one output can be described as in (1.1) where x ∈ ℜn

is state vector, u ∈ ℜm is input vector, y ∈ ℜ is the output of the system, and ξ, f :

ℜn x ℜm → ℜn are the smooth vector fields, which represent the nominal system and

change in the system due to a fault. Modeling uncertainty η: ℜn x ℜm x ℜ+ → ℜn,

is also a smooth vector field, and h: ℜn → ℜ is a smooth function. Time profile of a

fault is represented by the function β: ℜ → ℜ. If a sudden (abrupt) fault happens

in the system, function β becomes step function, whereas in slowly developing faults

(incipent) it becomes a ramp function.

ẋ(t) = ξ(x(t), u(t)) + η(x(t), u(t), t) + β(t− T )f(x(t), u(t))

y = h(x(t))
(1.1)

In machine learning approaches, these vector fields and functions of the non-

linear systems are imitated by pattern recognition techniques, using state vector,

input vector and output to generate a plant model as illustrated in Fig. 1.1.1.

1.2 Contributions of Thesis

Modeling of a system accurately is important in FD as discussed previously. In most

of the modeling problems some non-measurable state variables are necessary to model

the system accurately. When estimation of these states are difficult or integration

errors accumulate in time, classification methods can be applied totally or to initialize

the estimation. ENN is one of such promising classification methods. Although it

3
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sometimes gives poor results due to insensitivity to scatter of data-points and due

to its shifting and updating property, it requires more iterations than comparable

methods to give an acceptable error rate. In this thesis we propose novel Improved

ENN classification methods (IENN) which improves the performance of ENN by:

• making ENN’s linear clustering method quadratic.

• generating clustering criteria, depending on statistical properties of the training

set.

• hybridizing the cluster separations by using linear or quadratic separators based

on the statistical properties of the data.

Due to the proposed method, more accurate classifying results than ENN’s are ac-

quired.

1.3 Implementation of Proposed Method on Lead-

Acid Battery

Lead-acid battery has non-linear characteristics. Rather than using mathematical

approaches, Neural Network (NN) modeling approach is used in this thesis. Predict-

ing the recent reduction amount of capacity which is called state of charge (SoC) is

4



u(t)
Plant

Plant

Model
SOC

y(t)

y(t)

Figure 1.3.1: An example NN illustration for a dynamic system

a difficult task while the battery is under operation. Current integration method is

widely used in literature to find SoC but it is a weak method due to accumulation

of integration errors in time. In the case of this weakness, a model which predicts

the SoC is highly needed and can be used as illustrated in Fig. 1.3.1 where u(t) is

the current flowing through the battery and y(t) is the terminal voltage of the bat-

tery. Our purpose in this thesis is to improve ENN to IENN and classify the instant

measured and calculated values of the battery to predict the ten-spot regions of SoC

accurately.
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2 BACKGROUND

In the previous chapter, the advantage of applying machine learning approaches com-

pared to mathematical approaches is discussed. In this direction, artificial neural

networks (ANN) model is generated to mimic the battery terminal voltage and the

performance of the model is investigated in this thesis. Additionally, proposed IENN

classification method is used to classify SoC accurately. Therefore, this chapter gives

a background information about ANN and ENN.

2.1 Dynamic-SystemModeling with Artificial Neu-

ral Network

ANN was designed to reproduce a human brain which makes generalization with a

previously learned event. It is a supervised learning model, in learning phase it uses

system’s input-output data pairs. In [3], the main strengths of ANN is summarized

as follows:

• Easily deals with complex problems.

• From the learned situations, generalization of known circumstances to unknown

circumstances.

• Because of the high degree of parallel structure, gives low operational response

times “after training phase” due to fast calculations.

Due to adapting to complex problems easily, in the last two decades ANN has become

the most famous modeling technique in FD. Model-based fault diagnosis methods

6



heavily depend on the accuracy of the model. FD uses ANN’s strong nonlinear

mapping and robustness to noise. Rather than using a mathematical model, ANN

is more beneficial because it gives fast response times and it can be placed in to the

on-line fault diagnosis systems. In this thesis, feed-forward neural network is used

because of common usage in FD literature.

ANN mimics the plant by using system’s input output pairs, and generates a

function which represents the plant. Due to the ability of robust mapping of input

vector u(t) and state vector x(t) to output vector y(t), even under with the presence

of noise ANN is a useful tool in fault diagnosis.

A dynamic-system can be defined as shown in (2.1) where f is a non-linear func-

tion, y(t) is output, u(t) is input and x(t) is state vector. This plant can be modeled

using a NN by feeding back current and delayed values of its outputs and known

states. An example of using ANN for a dynamic model is illustrated in Fig. 2.1.1.

y(t) = f(u(t), x(t)) (2.1)

Nonlinear model represented with a nonlinear function f , can be mimicked by

ANN to obtain a dynamic ANN, making it suitable for dynamic models for which

mathematical models are too difficult or too expensive to obtain.

In the training phase, ANN is trained with the input and output pairs of the

system under examination which is in absence of a fault. Clearly, the number of input

nodes is fixed on the basis of the number of input/output signal samples necessary to

describe the system structure. A setup similar to Fig. 2.1.2 (a) can be used to obtain

training data for an ANN with the plant. Fig. 2.1.2 (b) is the execution phase, setting

the trained ANN in parallel with the plant under control. This makes it possible to

detect faults.
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2.1.1 Feed-Forward Neural Network Architecture

A feed-forward neural network (ffNN) architecture is shown in Fig. 2.1.3 where two

layers are used which are called hidden and output layer, respectively. Depending on

the complexity of the system, more layers can be used, whereas in literature it is not

recommended because generalization is reduced.

There are two operations in training an ffNN using backpropagation method as

stated in [1]. First operation involves calculation of output opk by feeding pth instance

data to the input layer xi and passing through hidden and output layers weights.

This operation is called feed-forward operation. The output of nj hidden neuron is

yj and it is calculated by (2.2), where fh is the hidden node activation function. Then

opk can be formulated by (2.2), where fo is the output node activation function.

netk =
M∑
j=1

yjwjk

opk = fo(netk)

(2.2)

9



.

.

.

x1

x2

x3

xN

.

.

.

n1

n2

nM

n3

n4

Hidden Layer

o1

o2

oR

Input Layer
Output Layer

wij wjk

.

.

.

Figure 2.1.3: Feed-Forward Neural Network Architecture

netj =
N∑
j=1

xiwij

yj = fh(netj)

(2.3)

Some of the commonly used activation functions are:

Sigmoid Function : f(n) =
1

1 + e−n

Tangent Sigmoid Function : f(n) =
e2n − 1

e2n + 1

Linear Function : f(n) = n

(2.4)

Second operation is called backpropagation. Error on pattern p which is the input

to the network, is defined by Ep. It is calculated via summing the squares of difference

between the desired outputs tpk, which are called target outputs, and the calculated

opk as shown in (2.5) where R is the number of outputs. Weights are adjusted until

desired error rate is found.

Weight update for output layer is as follows:
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Ep =
1

2

R∑
k=1

(tpk − opk)
2 (2.5)

For reducing error, weight update is needed. Therefore weight derivative of Ep should

be checked as in (2.6).

∂Ep

∂wjk

=
∂Ep

∂netk

∂netk
∂wjk

∂netk
∂wjk

= oj

(2.6)

Implementing gradient descent, change in the output weight ∆wjk is shown in (2.7)

where η is the learning rate.

∆wjk = −η
∂Ep

∂netk
oj (2.7)

By using chain rule, ∂Ep

∂netk
is obtained as shown in (2.8). By combining (2.2) and

(2.8),
∂opk

∂netk
can be determined as in (2.9).

∂Ep

∂netk
=

∂Ep

∂opk

∂opk
∂netk

(2.8)

∂opk
∂netk

= f ′(netk) (2.9)

Calculation of ∂Ep

∂opk
= −(tpk − opk), therefore weight update for wjk is (2.10).

∆wjk = ηf ′(netk)(t
p
k − okp)oj (2.10)

Weight update for hidden layer is as follows: In this step, the nj hidden node

weight wij is adjusted. Derivative of the Ep with respect to wij is calculated via

(2.11).

∂Ep

∂wij

=
∂Ep

∂netj

∂netj
∂wij

(2.11)
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By using chain rule, (2.11) expands to (2.12), where yj is the output of hidden neuron

nj

∂Ep

∂netj
=

∂Ep

∂yj

∂yj
∂netj

∂Ep

∂wij

=
∂Ep

∂yj

∂yj
∂netj

∂netj
∂wij

∂Ep

∂netj
=

∂Ep

∂yj
f ′(netj)xi

(2.12)

Target of nj is not known. Hence, ∂Ep

∂yj
can only be calculated through nj’s contri-

bution to the derivative of Ep with respect to netk at the output nodes as shown in

(2.13).

∂Ep

∂yj
=

R∑
k=1

wjk
∂Ep

∂netk
(2.13)

In (2.13), ∂Ep

∂netk
which is calculated in (2.8), leads weight update process to be bounded

with output weight update.

∆wij = −η

(
f ′(netj)xi

R∑
k=1

wjk
∂Ep

∂netk

)
(2.14)

2.2 Classification Via Extension Neural Networks

Extension Neural Network (ENN) is a new pattern recognition classification method

based on concepts from ANN and extension theory (ET). ENN uses extension dis-

tance (ED) to measure the similarity between instances and classes. In FD, ENN’s

classification property can be implemented to find non-measurable states of plant to

use it in dynamic modeling. However shifting same type of cluster and not inves-

tigating the scatter of inputs may cause ENN to classify patterns poorly. Further

discussions about the proposed improvements to ENN are in Chapter 2.2.
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2.2.1 Extension Theory

Extension Theory (ET) was proposed by Cai [4] to solve contradictory problems in

1983. Contradictory problems can not be solved by given conditions until a proper

transformation of the conditions is implemented. In engineering applications, Laplace

transformation for example, is used to make a problem solvable by transforming it

into another domain. ET deals with these incompatible or contradictory problems

and re-formalizes the concepts to give a solution. There are similarities between

Fuzzy Set Theory (FST) and ET. In [22], FST is explained as a generalization of

well known standard sets to extend applications field. In standard set applications,

transfer function shows if an element belongs to a class or not. FST extends this set

to [0,1], showing the degree an element belongs to the class. In [6], it is explained that

ET extends FST from [0,1] to [−∞,∞] and therefore, this situation leads up with

an element, belonging to each extension set to a different degree. However, although

ET works on the degree of an element belonging to a class like FST, it also considers

the degree of not belonging to a class.

The membership function of ET can be defined by K(x) where x is an element,

K(x) shows the degree an element belongs to a class. In the case of K(x) <0,

it describes the degree of x not belonging to a class. The region 0 < K(x) < 1

corresponds to fuzzy set theory, which implies the degree of x belonging to a class.

When K(x) < −1, x does not have any possibility to belong to a class. When

−1 < K(x) < 0, x has a still possibility to belong to a class if that class is adjusted.

These regions are shown in 2.2.1.

ET is composed of Matter-Element Theory and Extension Set Theory. To under-

stand the aspects of Extension Theory, these two pillars should be analyzed individ-

ually.
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Matter-Element Theory

Classical mathematics are familiar with quantity and forms of objects. Whereas,

Matter-Element Theory(MET) considers both quality and quantity of an object. In

real world, things are represented by their quantity and quality. Therefore, MET

deals with contradictory problems’ quality and quantity. ET considers transforming

these contradictory problems to matter-element models and analyze them with their

quality and quantitative change.

R = (N,C, V ) (2.15)

where in matter R, N is the name or type, C is its characteristic and V is the

corresponding value for the characteristic. An element can have many characteristics.

Therefore, that many characteristics and corresponding values are identified. An

example in (2.16) is given about multiple characteristics. Equation (2.16) shows

that Yusuf’s height is 178 cm and his weight is 98 kg. These characteristics form a

set. Matter element is used in extension sets via correlation functions to determine

membership degree of a pattern which is randomly taken from whole space with these

sets. Correlation functions and extension sets are described next in 2.2.1.

R =

Y usuf, Height, 178cm

Weight, 98kg

 (2.16)

Extension Set Theory

Let U be a space of objects and x be an element of this space as shown in (2.17).

A = {(x, y)|x ∈ U, y = K(x)} (2.17)

where A is the extension space. K(x) maps patterns x taken from U space to a

membership grade between [−∞,∞]. Extension set can be shown in three regions
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(2.18).

A+ = {(x, y)∥x ∈ U, y = K(x) ≥ 0},

A0 = {(x, y)∥x ∈ U, y = K(x) = 0},

A− = {(x, y)∥x ∈ U, y = K(x) ≤ 0}

(2.18)

where A+ is the positive region which represents the degree of x belonging to a class.

Whereas A− shows the negative region which represents the degree of x not belonging

to a class. A0 is the zero boundary region, in this region x∈ A+ and x∈ A−.

Let Xin and Xout be real number intervals between (a,b) and (c,d), where Xin ⊂

Xout. Xin and Xout are called concerned and neighborhood domains, respectively.

The correlation function can be summarized as (2.19). The correlation function is

used for calculating the membership degree between x and Xin, Xout.

ρ(x,Xin) =

∣∣∣∣x− a+ b

2

∣∣∣∣− b− a

2

ρ(x,Xout) =

∣∣∣∣x− c+ d

2

∣∣∣∣− d− c

2

(2.19)

The extended correlation function’s (2.20) shape is shown in Fig. 2.2.1. For further

details about these regions please refer to the last part of 2.2.1.

K(x) =


− ρ(x,Xin) x ∈ Xin

ρ(x,Xin)

ρ(x,Xout)− ρ(x,Xin)
x ̸∈ Xin

 (2.20)

In [22], extension theory is used in misfire FD of gasoline engines and faults in

the system are successfully found.

In 2.2.2, ET and Neural Networks are combined to maintain a hybrid method. The

aim of creating a hybrid method is to enhance classification efficiency and accuracy.

Extension Neural Network(ENN) is briefly explained in 2.2.2 and implemented in

state of charge estimation of a lead acid battery which is explained in the following

chapter.
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Figure 2.2.1: Extended Correlation Function

2.2.2 Extension Neural Networks

Extension Neural Network is a hybrid method for classification of patterns with the

help of NN and ET concepts. While ET makes distance measurement for classifica-

tion, NN is used for its fast and adaptive learning capability. ENN was first proposed

in 2003 by Wang [20]. It implements an appropriate classification method for features

which are defined in a range. In [20], it is shown that ENN gives better or equal accu-

racy and less memory consumption in classification than Multilayer Perceptron NN,

Probabilistic NN, Learning Vector Quantization and Counter Propagation Neural

Networks.

ENN is used in many areas for classification. Monitoring condition of machinery,

which follows the parameters of the machinery, classifies them and makes failure

detection [23]. In [19], ENN approach is implemented for classification of brain

MRI data, specifically tissue classification. Another approach is implemented in [8],

which deals with fault recognition in automotive engine. Ignition and oxygen sensor

malfunction faults are classified with high accuracy. Also [7], is concerned with the

state of charge estimation in Lead-Acid Batteries. The purpose of this thesis and [7]
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are similar. In this thesis, Improved ENN is proposed and used rather than ENN

and this is the main difference with [7].

Figure 2.2.3 shows an illustration of ENN. The nodes in the output layer are a

representation of the outputs of the nodes in the input layer through a set of weights.

The total number of inputs and outputs are expressed by n and nc, respectively. The

total number of instances is Np. Data-points are denoted by xp
ij, meaning ith instance

(i = 1, ..., Np), j
th characteristic value (j = 1, ..., n) corresponding to material p. Here

xp
ij becomes the input and oik the extension neural network output node k for instance

i. Between input xp
ij and output oik, there are two sets of weights denoted by wU

jk and

wL
jk. These two weights are determined by searching the lower and upper boundaries

of jth input of the training data. The upper boundary wU
jk, is found by searching

the maximum value for jth input node out of all jth input instances. And the lower

boundary wL
jk is determined vice versa. These two weights are adjusted in each

iteration to make classification more accurate and efficient. The nodes oik in output

layer are the indicators of which class an input vector belongs to. If ith instance’s

inputs correspond to the class k, then in the output layer oik should be smaller than

the other output nodes. This situation denotes that the ith instance’s inputs’ distance

to kth class, is smaller than the other classes. The transfer function of Fig. 2.2.3 is

shown in (2.22), where k∗ is the index of the estimated class. Figure 2.2.2 represents

(2.21). Weights wU
kj and wL

kj are the points where EDik(x) = 1. Further details about

extension distance (ED), shown in (2.21) and adjustment of weights are discussed in

the following section.

EDik =
n∑

j=0

 |xp
ij − zkj| −

wU
kj−wL

kj

2

|w
U
kj−wL

kj

2
|

+ 1


k = 1, 2, ...., nc

(2.21)

oik ≡ EDik (2.22)
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Figure 2.2.2: Extension Distance

k∗ = argmin
k

(oik) (2.23)

Extension Neural Networks Learning Algorithm

The architecture of ENN in Fig. 2.2.3 is expressed by matter-element model as shown

in (2.24). ENN is a supervised learning method which provides inferring a function

from supervised training data. Training data is the composition of input and desired

output pairs.

Rk =



classk, c1,Vk1

c2,Vk2

......

......

cn,Vkn


k = 1, 2, ...., nc (2.24)

In (2.24), classk is the name of the kth class. The symbols c1 to cn represent the

characteristic. Vkj, denotes the range for the characteristic cj of classk. The range

value Vkj is determined by wU
kj and wL

kj. Next we continue with how to find weights

wU and wL.
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Figure 2.2.3: Extension Neural Network Architecture

Learning proceeds as follows: At the initial step, weights are determined by us-

ing (2.25), searching the maximum and minimum jth input for kth class among all

instances to find wU
kj and wL

kj, respectively.

wU
kj = max

i
{xk

ij}

wL
kj = min

i
{xk

ij}

i = 1, ..., Np

k = 1, ..., nc

j = 1, 2, ...., n

(2.25)

Vkj = [wL
kj,w

U
kj] is determined initially by (2.25), therefore, it depends on training

data.

After maintaining matter-element model, center of clusters are determined by Vkj

as shown in (2.26). Note that clusters are the representers of classes. Each class has

the same number of clusters as the number of inputs.
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Zk = {zk1, zk2, ..., zkn}

zkj =
wU

kj + wL
kj

2

k = 1, 2, ...., nc

j = 1, 2, ...., n

(2.26)

After initial steps are done, if these initial values are not sufficient for classification,

weights and center of clusters should be updated to classify more accurately. For

calculating the accuracy of classification, learning performance rate equation is used

which is shown in (2.27).

Eτ =
Nm

Np

(2.27)

Nm is the total errorously classified instances and Np is the total number of instances.

Update of weights and center of clusters are proceeded until the learning performance

rate is low enough. While learning, all the instances should be used. In every

iteration, an instance should be chosen randomly among the training data. In (2.28),

for training, ith pattern, whose desired outcome should be p is chosen randomly out

of the training set.

Xp
i = {xp

i1, x
p
i2, ..., x

p
in}

1 ≤ p ≤ nc

(2.28)

In the next step, ED method is used to determine the class. Xp
i is the input vector

and the vector elements are the characteristics’ values. The distance between a

training instance Xp
i ’s data-points x

p
ij and every cluster is calculated. In (2.21), the

distance between randomly taken instance’s input and kth class is calculated. After

each input’s distance is calculated for a certain class, the distances are summed up

to find the total distance. This procedure should be done for every class. The class

which gives the minimum distance is the class that the ENN classifies the instance

to. However instance’s desired outcome is p (2.21). If the minimum ED shows
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that k∗ = p, then no update is needed. If k∗ ̸= p, then update is needed to make

classification more accurate.

In training phase, if k∗ ̸= p, the separator is shifted according to the closeness

of inputs to the cluster centers. Amount of shift is directly proportional to the

distance. The mis-classified class’s separator k∗ is shifted away from the instance’s

inputs while the desired class’s separator p is shifted near to them as formulated in

(2.29) and (2.30). Center of clusters and weights are both modified.

znewpj = zoldpj + η(xp
ij − zoldpj )

znewk∗j = zoldk∗j − η(xp
ij − zoldk∗j)

(2.29)

w
L(new)
pj = w

L(old)
pj + η(xp

ij − zoldpj )

w
U(new)
pj = w

U(old)
pj + η(xp

ij − zoldpj )

w
L(new)
k∗j = w

L(old)
k∗j − η(xp

ij − zoldk∗j)

w
U(new)
k∗j = w

U(old)
k∗j − η(xp

ij − zoldk∗j)

(2.30)

where η, is the learning rate.

An update example is given in Fig. 2.2.4 which has a total number of two clusters.

Although the instance Xi behaves as if it belongs to class A, (2.21) shows that Xi

belongs to the class B. Therefore, cluster A and B are updated with the formulas

(2.29) and (2.30) as shown in Fig. 2.2.4(b) so that (2.21) gives EDA < EDB. Note

that training continues until (2.27) converges to an acceptable value.
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Figure 2.2.4: Updating Separators:(a)Before Update; (b)After Update
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3 IMPROVED EXTENSION

NEURAL NETWORKS

We propose Improved Extension Neural Network (IENN) in this thesis to improve

the performance of ENN in classifying various patterns. Some patterns may need

to be separated by a separator which has sharper boundaries whereas others may

need to be separated by a wide boundary. This issue depends on the scatter of

pattern’s data-points to the space. In this situation, because ENN represents every

pattern using the same type of separator, it can not answer the previously explained

circumstance. For example, training data with few extreme outliers but low variance

may be incorrectly represented by a wide separator.

Figure 3.0.1 shows how ENN classifies given patterns. After updating classes

as illustrated in Fig. 3.0.1(b), while class B includes two patterns from class A, it

leaves out the patterns which belong to class B, to class C because of just shifting

the separator. This happens due to the insensitivity to scatter of patterns. This

type of mis-classification issues, decrease the classification performance. Due to such

problems IENN method is proposed in this thesis.

IENN is similar to ENN. In IENN, the center of separator is not shifted; center of

cluster is selected at the mean of the instances and kept the same whereas the arms of

the separators are moved according to the scatter of data-points. If training instances’

characteristic values have low variance, arms of the separators get narrower and vice

versa. According to the performance of the IENN, separators are implemented as

a linear function (3.1) or non-linear(3.2) function as shown in Fig. 3.0.2. Separator
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Figure 3.0.1: Updating Separators:(a) Recent Class View;(b) After Few Iterations

Class View

as defined by Fig. 3.0.2 represents a cluster of data belonging to a class. Note that

iterations continue until (2.27) converges to an acceptable value as implemented in

ENN.

SLUjk(x) = aUjkx+ bUjk

SLLjk(x) = aLjkx+ bLjk

k = 1, 2, ...., nc

j = 1, 2, ...., n

(3.1)

SQUjk(x) = aUjkx
2 + bUjkx+ cUjk

SQLjk(x) = aLjkx
2 + bLjkx+ cLjk

k = 1, 2, ...., nc

j = 1, 2, ...., n

(3.2)

where, the upper and lower sides of the linear and non-linear separators are defined

with different parameters: aUjk, bUjk, cUjk and aLjk, bLjk, cLjk respectively. For linear

separator, upper part of linear separator SLU is defined by the points (wU
kj,1), (zkj,0)

and lower part of SLL, by (wL
kj,1), (zkj,0). In non-linear separator case, the upper

and lower parts SQU , SQL are defined similar to linear separator, and an additional

point (3.3) is given which interprets that SQU and SQL derivative at x = zkj is zero.
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Figure 3.0.2: (a) Linear Separator (b) Non-Linear Separator

Therefore, via using these points coefficients of the separators can be determined.

dy(zkj)

dx
= 2aUjkzkj + bUjk = 0 (3.3)

Initial weight estimation is kept the same as in (2.25). Center of cluster calculation is

changed from (2.26) to (3.4), where zkj is the mean of the training data for jth input

for kth class. nk is the number of training instances for class k. During the update

stage, center of cluster is not updated because the training data does not change,

therefore mean of classes do not change.

Zk = {zk1, zk2, ..., zkn}

zkj =
1

nk

nk∑
i=1

xk
ij

k = 1, 2, ...., nc

j = 1, 2, ...., n

(3.4)

Update is only done to weights as summarized in (2.30). If the given instance input

is closer to lower weight, lower weight is modified, else upper weight is modified. By

doing weight update, linear or non-linear separator gets narrower to diverge from a

mis-classified data-point or gets wider to classify the data-point within the desired
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cluster. An example is illustrated about non-linear separator update and an update

with ENN classifier in Fig. 3.0.3.

Calculation of extension distance is different than (2.21). Total distance calculated

to a class k for instance i via linear separators is indicated with improved extension

distance linear value IEDLik, and quadratic is IEDQik. Total distance is calculated

by using (3.6) or (3.8), depending on the used separator type. The placement of xij

based on the center of cluster zkj indicates if the data-point is located to the right

or left side of the separator in (3.5) or (3.7), depending on the used separator type.

Class k∗, which has least distance calculated is selected as Xi’s class (2.23).

IEDL(xij, k) =

SLUjk(xij) xij > zkj

SLLjk(xij) xij < zkj

 (3.5)

IEDLik =
n∑

j=1

IEDL(xij, k) (3.6)

IEDQ(xij, k) =

SQUjk(xij) xij > zkj

SQLjk(xij) xij < zkj

 (3.7)

IEDQik =
n∑

j=1

IEDQ(xij, k) (3.8)

Comparing the performance of linear separator with quadratic separator is not

a trivial task. Linear separator is more suitable for data with large variance while

quadratic separator is not. Total calculated distance is the sum of jth input to the

kth separator so that if system has one input, linear and quadratic separator would

give the same results in classifying although, total calculated distance is different as

illustrated in Fig. 3.0.4 (a). Both intersection points of linear separators and non-

linear separators give the same result. Therefore, distance of xi1 in any case gives

IEDQ(xi1, A) > IEDQQ(xi1, B) or IEDL(xi1, A) > IEDL(xi1, B). Data-point xi1’s

distance to the center of a cluster zk1 is projected to IEDL(xij, k) as a linear distance

in linear separator, whereas it is projected to IEDQ(xij, k) as a quadratic distance
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in non-linear separator. If a data-point xi2 is far out from cluster B as illustrated in

Fig. 3.0.4 (b), IEDQ(xi2, B) > IEDL(xi2, B). In Fig. 3.0.4 (b) assume that second

input has high variance through cluster B and a data point xi2 exists where ith

instance belongs to cluster B. In non-linear case, because of the quadratic increasing

of the separator, IEDQ(xi1, A) + IEDQ(xi2, A) < IEDQ(xi1, B) + IEDQ(xi2, B),

therefore instance xi behaves as if it belongs to the class A. Whereas in linear

separator case, IEDL(xi1, A)+ IEDL(xi2, A) > IEDL(xi1, B)+ IEDL(xi2, B) which

shows xi belongs to the class B. The reason is; by defining cluster B as a linear

separator, it is defined as second input has high variance among cluster B. Therefore,

a data-point located outside of the weight point of cluster B gives less IEDL values

than quadratic separator gives IEDQ. Eventually, linear separators must be used for

high variance input data sets and non-linear separators for vice versa.

In the example illustrated in Fig. 3.0.3 (a) and (c), ENN and IENN clustering

updates are shown respecitvely. Note that system has only one input. In Fig. 3.0.3

(a), although x51 is classified correctly, x11 is misclassified in to cluster B. After the

update is done as illustrated in (b), although x11 is classified correctly, this time x51

is misclassified. To classify x51 to cluster C, doing more updates might be helpful but

there is a possibility that, x11 can be misclassified again. Whereas non-linear IENN

update, illustrated in (c) classified both data-points correctly.

Learning rate η, used in ENN update (2.30), changes with respect to iteration

number (3.9), where x represents the current iteration number, E is the maximum

number of iterations. Learning rate η decreases with the increasing number of iter-

ations to a minimum set point. At first iterations, class boundaries oscillate much

and get influenced by every data-point. As learning of relationship proceedes, η is

reduced. This idea provides learning to be faster and reduces influence of noisy input

data. An example of the process of η is shown in Fig. 3.0.5 where η is defined as 0.1

at x = 1 and 0.001 at x = 2000.
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Figure 3.0.3: (a) ENN Clustering with one input (b) ENN Update Clustering with

one input

(c)IENN Non-Linear Clustering with one input (d)IENN Update with one input
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η(x) =
1

ax+ b

1 < x < E

(3.9)

3.1 Using A Hybrid Approach For Classification

Due to the variation difference of data-points on clusters as discussed earlier, a hybrid

approach can be used to classify input sets with large variance by linear separator

and vice versa with non-linear separator. For cluster k, each input j’s variance is
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calculated with the formula (3.10).

µkj = zkj

σ2
kj =

1

nk

nk∑
i=1

(xk
ij − µkj)

2

k = 1, 2, ...., nc

j = 1, 2, ...., n

(3.10)

To decide jth input separator type for cluster k, a threshold parameter αthr should be

chosen from the interval (0, 1). This threshold value is mapped to some point σ2
thrkj

between the maximum and the minimum variance of σ2
kj as shown in (3.11). If σ2

kj is

smaller than the σ2
thrkj

, non-linear separator is used for kth cluster for jth input and

vice versa is classified via linear separator. Figure 3.1.1 illustrates A and B clusters

where jth input with large and small variance, respectively.
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σ2
maxj

= max
k

{σ2
kj}

σ2
minj

= min
k

{σ2
kj}

σ2
thrj

= (σ2
maxj

− σ2
minj

)αthr + σ2
minj

k = 1, 2, ...., nc

j = 1, 2, ...., n

αthr ∈ (0, 1)

(3.11)

Note that both ENN and IENN methods give unreliable results if input data sets

are divided into more than one region for the same class as illustrated in Fig. 3.1.2.

However, most dynamic systems have state and output spaces which progress con-

tinuously, therefore such divisions do not occur in normal cases.

3.1.1 Validation

Validation is a technique for testing the generalization of a statistical analysis on an

independent data set and cross validation is the commonly used validation method.

Cross validation involves partitioning the data set into training set and a validation

set. A model with one or more unknown parameters is trained with training data
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set and generalization performance is tested on validation data set. This procedure

is done to use suitable parameters.

10-Fold Cross Validation

In testing the generalization performance of classification techniques, 10-fold cross

validation is used. Total data set is divided into ten partitions. One partition is

assigned to validation set and the remaining partitions are assigned to training set.

Each classification algorithm with different parameters is trained with the training

set partitions and tested on validation set partition. This procedure is proceeded

iteratively until every partition is assigned to validation set. In each iteration, error

rate for the validation set is assigned to Ei as shown in (3.12) where i is the iteration

number, Ve is the number of mis-classified patterns and Vn is the total number of

patterns in validation set.

Ei =
Ve

Vn

(3.12)

After ten iterations, total generalization performance E is found by calculating the

mean error as shown in (3.13).

E =
1

10

10∑
i=1

Ei (3.13)
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4 RECHARGEABLE LEAD ACID

BATTERY PRINCIPLES AND

MEASUREMENT METHODS

4.1 Lead Acid Battery Principles of Operation

A battery is a device which converts chemical energy to electrical energy. The old-

est widespread rechargeable battery technology is the Lead-acid battery. There are

two types of lead-acid batteries: Valve Regulated Lead Acid (VRLA) battery and

Lead Acid Wet Cell (LAWC) battery. VRLA batteries use immobilized sulfuric acid

electrolyte in gel form. This opportunity provides reducing the chance of leakage of

electrolyte. In this research, (LAWC) battery is used because of their widely usage

on cars and buses.

LAWC battery is an integral component of a vehicle’s electrical network. It is

also called starter battery because it is used to start combustion engine of a vehicle.

By using this property in early 1900’s, the need for hand-cranking of engines was

eliminated. After that year automobile battery is used for engine starting, ignition

and vehicle lighting and as a buffer to store instantaneous power generated by the

alternator. Therefore, it may be said that main purpose of the battery in vehicles

is to start engine. After starting engine, the secondary role of providing current to

consumers is processed. A vehicle electrical network is shown in Fig. 4.1.1. The

battery is placed between the alternator and consumers of electricity such as starter

motor, lights, radio, air condition etc. Whenever the alternator is producing more
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Figure 4.1.1: Vehicle Electrical Network

power than needed, remaining current is used to charge the battery. Lead-Acid cells

contain a positive electrode (anode) made of lead oxide (PbO2), negative electrode

(cathode) made of pure lead (Pb) and the cathode and anode is immersed in sulfuric

acid (H2SO4) electrolyte.

Electrochemical energy is stored in active materials which are bonded to anode

and cathode grids. When a circuit is connected to the grids through the terminals

of battery, according to the flow of the charge direction, i.e. charging or discharg-

ing electrons are transfered through one active material to other active material as

their chemical composition change. The electrolyte is responsible of transfer of ions

between these active materials. The chemical reactions during discharge can be de-

scribed as follows:

Positive electrode:

PbO2 +HSO−
4 + 3H+ + e− → PbSO4 + 2H2O (4.1)

Negative electrode:

Pb+HSO−
4 → PbSO4 +H+ + 2e− (4.2)

Charging causes (4.1) and (4.2) occurs in the reverse direction.
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As seen above, positive electrode is accepting electrons from negative electrode.

In discharge operation, lead sulfate is produced and if the battery is over-charged or

left standing in the discharged state for a long time, lead sulfate coats the electrodes

until battery is recharged. Under these circumstances, the sulfuric acid mixture can

separate into two distinct layers with the water rising to the top and acid sinking to

the bottom. In the low part of the mixture, acid concentration rises and corrosion of

the bottom half lead plates of battery occurs. Battery efficiency and life cycle will be

reduced. In discharge chemical reaction density of sulfuric acid is reduced, because of

H2O production. With the effect of reduced density of sulfuric acid, battery efficiency

becomes more bound to temperature. It is also explained in [21] that reduction of

electrolyte density causes residual capacity to decrease and accordingly this effects

electromotive force to decrease. In the charging case chemical reaction (1) and (2) is

reversed. If battery is overcharged, it causes H2O to decompose into hydrogen and

oxygen gas. Acid fumes vaporize through vent caps and (irreversible)material loss

occurs.

4.2 Battery Characteristics

4.2.1 Capacity

The capacity of a Lead Acid Battery can be explained as an amount usable electrical

charge of the battery. Ampere-hour (Ah) is an expression for capacity. It is calculated

as:

Cmax = InxT (4.3)

Equation (4.3) is called peukert’s effect. I is the current measured in amperes (A),

T is time in hours, n is the Peukert’s number and Cmax is the maximum capacity of

the battery. The Peukert’s number is available from manufacturers. This equation,

gives the true capacity if the battery is discharged at 1 Amp. Capacity estimation

is done by using single battery in [5]. Capacity measurement is done under different
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discharge currents and temperature conditions. It is seen that as the amount of

current drawn from the battery increases, estimated capacity is decreased.

In [15] equivalent lead-acid battery model is generated by imposing the manu-

facturers’ data. Output of the peukert’s effect algebraic function is one of the used

input to the generated battery model to predict battery terminal voltage output.

4.2.2 State Of Charge

The State of Charge (SoC) is the energy stored in the battery at a given time com-

pared to its capacity, in percent. For different SoCs, battery acts differently. When

SoC is maximum, open circuit voltage is expected to be between 12.7V - 13.0V. In

an empty state, it is expected to be 10.5V. Also density of electrolyte can be used to

accurately estimate SoC. In full SoC, density is 1.25 g/mL - 1.27 g/mL and in empty

SoC, it is measured as 1.12 g/mL - 1.14 g/mL.

It is difficult to estimate SoC electrically, because of nonlinear dynamics of the

battery. Faulty calculated SoC can lead to faulty estimates of battery model out-

put. Much effort is being put into the research to estimate the SoC accurately and

precisely. The articles [21], [14], [17], [18] mention SoC estimation, based on current

integration, internal resistance and open circuit voltage. For current integration tech-

nique; if total integral of current is known since full or empty, SoC can be estimated.

Due to integration errors, this technique has difficulty in practice. The formula is

defined as:

SoC(t) = 100

(
Qc −

∫ t

0
id(τ)dτ

Qc

)
(4.4)

Where, id(τ) is the current drawn from battery and Qc is the actual capacity esti-

mated via integrating the discharge current of exactly 1A from a full charged state

until terminal voltage of 10.5V is reached.

Internal resistance is known to increase as the active material in the battery

decreases. Therefore as the battery discharges, internal resistance increases. When

the SoC is about maximum, the gradient of internal resistance is not large. This
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situation, causes difficulty in estimation of SoC by only using internal resistance

data. Estimation of internal resistance is briefly discussed in the next chapter.

Short circuit current is the current that is expected to flow through the battery

under a load of zero ohms. The value of the short circuit current depends on the

internal resistance and open circuit voltage. Short circuit current and internal re-

sistance are inversely proportional, therefore just using short circuit current is not

sufficient in estimating the SoC of the battery.

Open circuit voltage Voc is also related to SoC as the SoC decreases, Voc decreases

accordingly. However, just using Voc data is not sufficient to estimate SoC. Estimation

and measuring technique is discussed in the next chapter.

In [14] and [21] an equation to model the battery is proposed; composed of inter-

nal resistance, electromotive force and temperature. It uses least square estimation

technique to find unknown parameters of the equation. Proposed technique estimates

SoC with an error rate around 10% - 15%. Article [17], gives an overview of SoC

estimation techniques. Contrary to [14] and [21], it discusses Kalman Filter (KF),

Impedance Spectroscopy (IS) and Artificial Neural Network (NN) in estimation of

SoC. It concludes that IS is hard to be implemented to online SoC estimation while

KF gives perspectives for high dynamic usage. And also mentions that if training

data is enough, NN can be implemented to SoC estimation. [16], uses NN to es-

timate SoC of faulty and proper Lead-Acid Batteries. As a training data it uses

capacitance parameters, internal resistance, electrical power, temperature, Voc and

average of voltage and current for a period of time.

In [13] dynamic behavior of dynamic batteries is analyzed by using electrochem-

ical impedance spectroscopy. Frequency ranges are separated to show the effects of

mass transport, charge transfer and capacitance between electrodes, and electromag-

netic field. It is shown that SoC mainly influences the low frequency characteristics

like mass transport characteristic. Therefore, by inspecting the low frequency char-

acteristics SoC can be determined.
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4.2.3 Effects of Temperature

The characteristic of the battery is highly effected by the temperature. With higher

temperatures, the battery has higher capacity and Voc while it has lower capacity

and Voc in lower temperatures. Therefore, it can be said that temperature effects

on capacity have similarities with the relationship of amount of current drawn and

capacity. In [5], temperature effects on capacity is also studied. Same fully charged

battery is tested under different temperature environment. Under −5◦C temperature

environment, discharging with 13 A of current shows 70 Ah of capacity. On the other

hand, under 35◦C temperature environment, discharging with 13 A of current shows

110 Ah of capacity which is significant. In [16], environment temperature is used in

NN to estimate SoC accurately.

In this thesis, temperature effect is neglected. It is assumed that temperature is

not below 20◦ or above 30◦. All tests are done and collected under these conditions.

4.3 Experimental Setup and Measurement Meth-

ods

In this section, brief information about the experimental setup is given. Single mea-

surement of internal resistance Rin, short circuit current Isc and Voc are not sufficient,

in estimation of SoC as explained in Section 4.2.2 and can not be simply made dur-

ing operation. These three data sources are used together to create a meaningful

classification results. The techniques used for the measurement and those for the

calculation of Rin, Isc and Voc are also expressed in this chapter.

4.3.1 Experimental Setup

IENN presented in Section 2.2, were implemented on Matlab via using data acquired

by a data acquisition system dSpace which provides Matlab and Simulink tools for
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Figure 4.3.1: Battery data acquisition system experimental setup

measuring anolog signals. For data acquisition and automated supervision of the

experimental setup, ControlDesk application of dSpace is used. In Fig. 4.3.1, battery

charge/discharge equipment is illustrated.

Equipment Illustrated in Fig. 4.3.1 consists of:

• 5 Ah 12 V wet cell lead acid battery.

• Three HP 1146A AC/DC Current Probes which are used to measure charge,

discharge and battery input current.

• Topward laboratory DC power supply, used to provide constant charge current

to the battery.

• Agillent N3300A programmable electronic load, used to draw current from the

battery.

• dSpace data acquisition system, used for measuring anolog signals and providing

constant discharge or charge current via controlling the electronic load on RS232

channel.

Figure 4.3.1 is represented in Fig. 4.3.2 as a block diagram, where IS and IL

are power supply and electronic load current, respectively. The direction of battery

current IB depends on the difference between IL and IS. Current Sensor 1, measures
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Figure 4.3.2: Experimental Setup Overview

the total current flowing through the battery. Current Sensor 2, measures the charge

current flowing to the battery. Current Sensor 3, measures the current drawn by

electronic load. Redundant sensors are used for cross checking for erroneous readings.

Dspace controls the electronic load by sending reference load current values via RS232

communication. Since the power supply generates constant currents IS, by adjusting

the load current IL the battery current IB can be set desired.
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4.3.2 Measurement Methods

Estimation of Internal Resistance

Estimation of Rin is done by implementing an equivalent circuit battery model. To

find Rin, equivalent circuit model of a battery is used to get voltages and current

values in [18], [21] and [14]. For Rin calculation, the circuit model in Fig. 4.3.3

is used. R1 is the electrolyte resistance, including electrode resistance. R2 is the

charge transfer resistance between the electrode and electrolyte solution. C represents

the static capacitance formed between electrolyte and electrode. VB and V (t) are

the battery and terminal voltage, respectively. Equation (4.5) gives V (t) by using

equivalent circuit shown in Fig. 4.3.3. Effects of ambient temperature and aging

effects are neglected.

V (t) = VB − I(R1 +R2) +R2Ie
− t

CR1 − VCe
− t

CR2 (4.5)

In (4.5), I is the current flow through the battery. When V (t) is in steady state

condition, (4.5) can be changed into (4.6). If two values V1, V2, I2, I2 under different
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loads are captured, from (4.6), (4.7) is obtained. It is assumed that the time interval

is sufficiently small that Rin and SoC do not change significantly. Note that if I = 0

than Voc = VB.

V (t) = VB − I(R1 +R2) (4.6)

R1 +R2 =
V2 − V1

I1 − I2
(4.7)

In Fig. 4.3.4, experimentally measured V1 and V2 values used in (4.7) are shown.

As seen in the graph these two values are taken as battery reaches steady state.

Similarly, I1 and I2 of Fig. 4.3.5 are used in (4.7). The terminal voltage, within a

time window of 2 sec, is checked. If it is stabilized within that period, it is accepted

as steady state voltage, like V1 =V (1.045). After taking one read at steady state,

IB is changed to find another steady state terminal voltage, V2 =V (1.075). During

operation, naturally occurring load changes (current changes) can be used to the

same effect.

To produce training data, a fully charged battery is discharged with 0.4 A and

0.2 A alternately, taking terminal measurements as described until battery terminal

voltage of 10.5 V, which is accepted as empty state, is reached. Since SoC changes

almost linearly by time under these circumstances, Rin can be calculated for all SoC

regions by implementing (4.7). The result is illustrated in Fig. 4.3.6.

Estimation of Open Circuit Voltage

In previous sections, Voc is stated as the terminal voltage of the battery when there is

no load connected to it. To measure Voc, battery should be left at rest for some period

under no load, until terminal voltage acts in steady state. In real life conditions, while

battery is under operation, resting a battery is unrealistic. Rather than measuring

Voc, by using (4.8), Voc is calculated. This calculation is done after Rin is calculated.
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Note that V2 and I2 is shown in Fig. 4.3.4 and Fig. 4.3.5, respectively.

VOC = V2 + I2Rin (4.8)

Notice that, V2 is the steady state voltage which occurs by the constant current, I1.

In Fig. 4.3.7, both calculated and measured Voc is compared.

Estimation of Short Circuit Current

Isc is defined as the current flowing through the battery when the battery is short

circuited. In (4.9), it is stated that, Voc and Rin should be known to calculate Isc.

ISC =
VOC

Rin

(4.9)

In Fig. 4.3.8, change of Isc with respect to SoC is illustrated.

These measurements have desired shapes as seen in literature. They act similar

variations with other lead-acid batteries but because the total capacity is different

according to the type of the lead-acid battery, measured values show differences.
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5 RESULTS

In this chapter, implementation of feed-forward NN to lead acid battery modeling

and using IENN to classify SoC is discussed. The results are given involving IENN

comparison with other classification methods such as ENN, and feed-forward NN.

5.1 Modeling Lead-Acid Battery via Feed-Forward

Neural Network

Modeling a dynamic system via NN is discussed in Chapter 2.1. In the special case

of lead-acid battery modeling the aim is to predict the terminal voltage based on the

current state of charge and load in Amperes. Therefore, the input to the NN is defined

as V (t−1), V (t−2), I(t), I(t−1) and SOC as illustrated in Fig. 5.1.4 (a). Since SoC

cannot be directly measured, it must be estimated. To obtain data describing the

performance of the lead-acid battery under wide operating conditions, it was exercised

using the experimental setup with different charging and discharging currents for

different SoC values. The battery started from an initial condition of SOC = 100, and

the current integration method was used to calculate the actual SoC of the battery.

The battery was first charged with 200mA for 250 sec, then discharged with 200mA,

then this was repeated with 400, 600, . . ., 1400 and 1500mA currents. Since charge

and discharge was interchanged, SoC did not change significantly at the end. Then

the battery was discharged with constant current of 1000mA to 90%, 80%, . . . , 0%

SoC (calculated using current integration method), and the process repeated for

each SoC value. However in long term operation integration errors will accumulate
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and deviate from the actual SoC. Therefore in the second part of this chapter IENN

is substituted to estimate SoC. The experimentally measured current, voltage and

SoC values for this data acquisition process is shown in Fig. 5.1.1, Fig. 5.1.2 and

Fig. 5.1.3 respectively.

In the testing stage, illustrated in Fig.5.1.4 (b), the NN was exercised with an

actual battery with previously unseen data and its output compared with the actual

battery, as illustrated in Fig. 5.1.5. It can be seen that it closely follows the battery

terminal voltage. The maximum difference between the actual output voltage V (t)

and NN’s output V̂ (t) is 0.05 V.
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5.2 Lead-Acid Battery State Of Charge Estima-

tion Via Improved Extension Neural Networks

The proposed methods can be used to improve the SoC estimation that suffers from

integration errors, described in the previous chapter. In this section, SoC classifi-

cation will be used to compare the performances of the proposed methods and the

original ENN method.

The purpose is to classify the SOC of lead-acid battery into ten classes according

to the possible range of Voc, Isc and Rin. These ten classes and their definitions

are listed in Table 5.1. Measurement methods of Voc, Isc and Rin were discussed in

the previous chapter. To obtain data describing battery’s SoC, battery is discharged

from SoC = 100 until terminal voltage reaches 10.5V. In this interval the battery

is discharged with 400mA and 200mA until V (t) is accepted to be in steady state

condition respectively. The process described in 4.3.2 and the experimental data

obtained is used for the following tests. By using (4.7) and (4.9), Rin and Isc are

calculated. Total interval is divided into ten spaces and each space represents one

class from Table 5.1.

Table 5.1: Classes of SOC

Class Definition Class Definition

C1 SOC is around 90 C6 SOC is around 40

C2 SOC is around 80 C7 SOC is around 30

C3 SOC is around 70 C8 SOC is around 20

C4 SOC is around 60 C9 SOC is around 10

C5 SOC is around 50 C10 SOC is around 0

The lead acid battery data that was experimentally collected to predict SoC

was used to train ENN, Linear IENN, Quadratic IENN, Hybrid IENN with low

αthr, Hybrid IENN with high αthr and feed-forward NN. The performance of these
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approaches was tested via using 10-fold cross-validation method. Note that each

algorithm is trained with 1000 iterations. Their performance results are compared

next.

5.2.1 ENN

An ENN was trained using the method explained in Section 2.2.2. Performance of

the method (3.13) is shown in Table 5.2 with respect to learning rate. The best

performance was the same, about %14.1 error in the testing phase, obtained with

η = 0.01 and η = 0.001, i.e, fast reduction of learning rate was not beneficial.

Because of the shifting property of ENN, classifying is poor as expected. Increasing

the number of iterations might help for accurate classification but in any case shifting

the separators effects correctly classified instances to become mis-classified. Training

with η = 0.1 causes weight updates to be high, therefore shifting amount increases

and mis-classification rate increases. Consequently, to get good results from ENN

classification iteration number should be kept high while η should be kept small.

Table 5.2: ENN 10-fold Cross Validation Results

Parameters Training Error Test Error

η=0.1 15.22% 0.1512%

η=0.01 14.13% 14.13%

η=0.001 14.13% 14.13%

5.2.2 Linear IENN

In this thesis IENN was one of the methods proposed to improve the performance

of ENN. In this section, linear IENN performance will be presented. The same data

set as in Sec. 5.2.1 was used to train IENN with only linear separators. The results

can be seen in Table 5.3. The meaning of the first column is η = 0.1 in first iteration
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and decreases to 0.0001 at 2000th iteration for the first row, decreasing function is

defined in 3.9.

Table 5.3: Linear IENN Classifying 10-fold Cross Validation Results

Parameters Training Error Test Error

(η=0.0001,2000) 3.65% 4.96%

(η=0.0001,10000) 3.00% 4.79%

(η=0.0001,30000) 3.84% 5.21%

The middle row, linear separator with η = 0.0001 at 10000th iteration gives the

best fitting and testing performance. Whereas increasing η decreases the speed of

learning, decreasing η causes linear separator to be effected by noisy input data and

causes it to perform poorer.

Overall, a significant improvement in performance is already observed because

the error rate in the test phase is now reduced to 4.8% from 14.1% of ENN.

5.2.3 Quadratic IENN

Table 5.4: Quadratic IENN 10-fold Cross Validation Results

Parameters Training Error Test Error

(η=0.0001,2000) 3.09% 4.63%

(η=0.0001,10000) 2.77% 4.38%

(η=0.0001,30000) 2.68% 3.88%

The same test was applied to the proposed Quadratic IENN method. The result

is shown in Table 5.4. The performance is better than linear IENN, with the testing

phase error value dropping as low as 3.8%. This suggests that the input data set has

low variance.
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5.2.4 Hybrid IENN

Table 5.5: Low αthr Hybrid IENN 10-fold Cross Validation Results

Parameters Training Error Test Error

(η=0.0001,2000)(αthr = 0.2) 3.43% 4.71%

(η=0.0001,12000)(αthr = 0.2) 3.06% 4.13%

(η=0.0001,25000)(αthr = 0.2) 2.97% 4.21%

(η=0.0001,2000)(αthr = 0.4) 3.44% 4.63%

(η=0.0001,12000)(αthr = 0.4) 3.04% 4.21%

(η=0.0001,25000)(αthr = 0.4) 2.91% 4.71%

(η=0.0001,2000)(αthr = 0.6) 3.37% 4.71%

(η=0.0001,12000)(αthr = 0.6) 2.88% 4.46%

(η=0.0001,25000)(αthr = 0.6) 2.79% 4.30%

Next, cross-validation method is implemented on the proposed hybrid IENN

method to determine its performance which is expected to be better compared to

the previous methods. An extra variable that must be selected here is αthr. Small

αthr causes the system to act like a linear IENN whereas a large αthr causes the sys-

tem to act like a quadratic IENN. Results in Table 5.3 and 5.4 suggest that keeping

αthr high should lead the classification accuracy to improve. The results are sepa-

rated into two parts, with Table 5.5 summarizing results for lower αthr and Table 5.6

for higher values. The best error rate can be seen for αthr = 0.9, with an error rate

of around 3.9%. This is similar in performance to quadratic IENN. Changing αthr

causes the hybrid IENN to perform differenyly. It can also be seen that the learning

rate should be selected appropriately for best performance.

For having an idea about classification accuracy, ENN and proposed IENNmethod

is compared with mostly used feed-forward NN methods as seen in Table 5.7. For

NN classification, feed-forward NN with 3 neurons has the best classification accuracy

as expected. In literature, for NN classification it is stated that n hidden neurons
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Table 5.6: High αthr Hybrid IENN 10-fold Cross Validation Results

Parameters Training Error Test Error

(η=0.0001,2000)(αthr = 0.8) 3.38% 4.79%

(η=0.0001,12000)(αthr = 0.8) 2.86% 4.21%

(η=0.0001,25000)(αthr = 0.8) 2.79% 4.13%

(η=0.0001,2000)(αthr = 0.9) 3.30% 4.79%

(η=0.0001,12000)(αthr = 0.9) 2.86% 3.88%

(η=0.0001,25000)(αthr = 0.9) 2.75% 4.38%

for 2n classes gives best classification accuracy. After 3 hidden neurons, increasing

neuron number causes loss of generalization and leads to overfiting of data. In cross

validation feed-forward NN gives worse accuracy than the proposed IENN method.

Table 5.7: Feed-Forward NN 10-fold Cross Validation Results

Parameters Training Error Test Error

2 hidden neurons 5.86% 6.45%

3 hidden neurons 5.48% 5.21%

5 hidden neurons 5.37% 5.87%

7 hidden neurons 5.08% 5.45%

5.2.5 Comparison of Performance with IENN

After finding the generalization performance of classification algorithms via 10-fold

cross validation method, classification methods which give the best generalization

value between each other are selected to be tested with unseen data samples with

known SoC. Distribution of desired and estimated classes are shown in Fig. 5.2.1 and

Fig. 5.2.2, results are summarized in Table 5.8.

In Fig. 5.2.1 true classification values and estimated classification values using
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ENN, NN and low αthr Hybrid IENN are presented. Low αthr shows that in classifi-

cation mostly linear separators are used. Dashed blue line represents the true class

line and the diamond, square and circle symbols appeared on the dash line means

correct classifying for low αthr Hybrid IENN, NN and ENN respectively. ENN has

misclassifications at classes 2, 4, 5, 6 and 7. It did not just misclassified edge samples

but it classified some samples to class 3 and 4 although they belong to class 6. NN

and low αthr Hybrid IENN has misclassifications in classes 2, 5, 6, 7 and 2, 3, 5, 7

respectively. According to the graph, NN and low αthr Hybrid IENN misclassified

samples belong to the edges of the estimated class and desired class.

In Fig. 5.2.2 true classification values and estimated classification values using

linear IENN, quadratic IENN and high αthr Hybrid IENN are presented. High αthr

shows that in classification mostly quadratic separators are used. Plus, square and

x symbols represents high αthr Hybrid IENN, linear IENN and quadratic IENN clas-

sifications. High αthr Hybrid IENN, linear IENN and quadratic IENN has misclas-

sifications at classes 2, 3, 5, 7 and 2, 3, 5, 6, 7 and 2, 3, 4, 5, 7 respectively. The

misclassification occurs at edge samples.

Table 5.8: Classification Performance

Classification Method Test Error

ENN (η = 0.01) 17%

Feed-Forward NN (3 hidden neurons) 7%

Linear IENN (η=0.0001,10000) 7%

Hybrid IENN (η=0.0001,12000)(αthr = 0.2) 5%

Quadratic IENN (η=0.0001,30000) 5%

Hybrid IENN (η=0.0001,12000)(αthr = 0.9) 4%

Table 5.8 explains the performance of all the methods and shows correct clas-

sification rates. It confirms the effectiveness of proposed IENN. As expected, the

proposed IENN classification methods give significantly more accurate results than
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ENN and feed-forward NN. Hybrid IENN with high αthr has the best performance

as expected. Consequently, we can say that the experiment reaches its purpose.
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6 CONCLUSION

In this thesis, a novel classification method, the “improved extended neural net-

work”(IENN) which builds upon extended neural network method (ENN) was pro-

posed. Separators that classify each dimension of the input into classes are designed

to have fixed centers at the mean of each class data set, and their width is changed

by training. Linear and quadratic separators with suitable training methods were

also proposed.

IENN was applied to state of charge (SoC) classification of lead-acid batteries.

Since SoC cannot be measured directly but is a critical value in determining the

performance of such batteries, their accurate estimation is important in areas such as

fault diagnosis. Although SoC can be theoretically found by integrating the current,

after a period of time integration errors cause the estimated battery terminal voltage

to diverge. As a remedy, the proposed method is applied to classification of SoC of

lead acid batteries to be used in their dynamic modeling. The proposed method can

also be used to predict non-measurable state vectors of a nonlinear system where

non-measurable state vectors estimation is complex, the input data samples of the

proposed method represent continuous time signals and the nonlinear system must

be modeled with only input-output relationships.

In classification of SoC, according to results based on data taken from a battery

charge-discharge experimental setup, the proposed hybrid IENN performs with 4%

classification error rate which is significantly better than both existing ENN and

ffNN methods tested with suitable parameters. Therefore, it can be said that the

experiments done in this thesis have reached their purpose. A parameter αthr was also
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proposed which changes the behavior of IENN as applied to data sets with different

variance. In classification of SoC, it is investigated that the variance of the data sets,

used to predict the SoC range are low. Therefore, hybrid IENN with high αthr values

provides more accurate classification results than the other IENN approaches.

Further work is planned to apply the proposed method in real-time battery SoC

estimation to be used as a part of a dynamic battery model in a fault diagnosis

scenario. Rather than using current integration technique in SoC estimation, the

proposed IENN will be used as a estimator model of SoC for dynamic battery model.

The SoC input of the ffNN model of the battery will be fed with the output of the

classification result of the proposed IENN model. SoC estimation will not drift in

time, so that ffNN will not diverge from the actual terminal voltage after a period of

time. Consequently, the model of the battery is expected to conserve its robustness

in time. The method is also expected to perform well in classification of residuals in

fault diagnosis systems. We plan to investigate properties of IENN to determine its

performance and applicability to a broad range of problems.
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