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Abstract

For real-time foreground detection on videos, probabilistic modeling for background and

foreground colors are widely used. Stauffer and Grimson’s model is very successful for

foreground segmentation. In this method, each pixel is modeled independently with

Gaussian mixtures. Explicit foreground probabilities for pixels are not calculated. Spa-

tial and temporal continuity of pixels are omitted.

In this thesis, we obtain foreground probabilities for the pixels using Stauffer and Grim-

son’s model and apply hysteresis thresholding to utilize spatial continuity of pixels. For

the same purpose, we also use Markov Random Field modeling and optimizations. To

leverage the temporal continuity of pixels, mean-shift tracking is integrated into the

segmentation to increase accuracy. Wherever applicable, we combine some of these

improvements together. Our work shows that using the probabilistic approach with

different enhancements results in much higher segmentation accuracy.
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Özet

Gerçek zamanlı önplan tanıma ve ayrıştırma uygulamalarında, önplan ve arkaplan mod-

elleme onemli bir yer teşkil etmektedir. Stauffer ve Grimson metodu, önplan çıkarımında

yaygın olarak kabul görmüş başarılı bir metottur. Bu mettota, her piksel ayrı ve bağımsız

bir Gauss karışımı ile modellenir. Piksellerin önplan olma olasılıkları doğrudan kul-

lanılmaz. Zamansal ve mekansal süreklilik göz ardı edilir.

Bu çalışmada, Stauffer ve Grimson metodundan hareketle, piksellerin önplan olma olasılıklarını

belirleyip histeresiz eşikleme yaparak mekansal süreklilik bilgisini kullandık. Aynı amaçla,

Markov Rasgele Alanları temelli modelleme ve optimizasyon uyguladık. Zamansal de-

vamlılık bilgisini kullanabilmek için de; ortalama kaydırma metodu ile nesne takibini,

önplan ayrıştırmaya dahil ettik. Uygun olan durumlar için birkaç metodu birlikte kul-

landık. Çalışmamızda, önplan belirleme başarımını önemli derecede arttırdık.
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Chapter 1

Introduction

1.1 Motivation

Object detection and segmentation are primary contexts for image processing studies

which address many practical problems. Real world applications are spread on a wide

spectrum and only some of these applications are: face detection/recognition, plate

detection/recognition, automated character detection/recognition, surveillance, medical

image analysis and sports games analysis. Multiple constraints exist for segmentation

based applications. Simply, false object detections and missed objects might cause

critical problems where there is a strict need for a very precise segmentation, like in

medical imaging and surveillance applications. There are different implementations for

this variety of problems. However, the main purpose in all these different methods

and implementations is the same: segmenting target foreground object(s) out of the

background robustly, meeting the required constraints.

Stauffer and Grimson’s model is a widely accepted and used model which segments

foreground out of the background using a mixture of Gaussians to represent per pixel

color distributions. These Gaussians keep track of the historical color observations on

each pixel and they are updated online with every video frame. Segmentation decision for

each pixel is made separately, and the only criteria in segmentation decision is the weights

of the Gaussian components within a mixture. A direct weight based thresholding,

instead of an explicit class probability based thresholding, is applied for the Gaussian

components for each pixel value observed. Foreground probability for pixels is not

1



Introduction 2

calculated. In addition, all pixels are modeled independently and spatial correlation is

omitted. Therefore, fragmentation occurs in foreground detection. Moreover, foreground

is not considered as a whole. Foreground location is not tracked and used. This causes

many false detected pixels which are actually outliers.

In this thesis, we follow a different approach on this color model to address mentioned

problems and increase segmentation accuracy. We use the ISG model, but instead of

obtaining binary class labels for pixels directly, we introduce an intermediate process

of calculating class probability values for the foreground class for each pixel. Then we

exploit these foreground probabilities to enable different enhancements on the segmen-

tation. First of all, a foreground probability based thresholding on pixels which reside

on the vicinity of the convex hulls of foreground fragments detected by the ISG model,

is applied to recover for the misses of the ISG method. We also use standard post-

processing smoothing operations and in addition, we incorporate foreground edge -the

gradient- information into the model for this first enhancement method, which is called

“hysteresis thresholding”. Hysteresis thresholding performs well to detect missed pixels

and deals with the fragmentation problem of the ISG model which results in a poor

performance in detecting foreground precisely and the method provides a clear identifi-

cation of the number of foreground objects and the boundaries for each. Incorporation

of the edge information acts as an indirect use of gradient features of the image, since

the base model features are only the RGB color values.

As a second and a different enhancement, we apply Markov Random Field (MRF)

smoothing by leveraging foreground class probabilities for the pixels as the data consis-

tency terms to be used in the MRF model together with the smoothness criteria. MRF

based method compensates for the independence assumption of the base model. This

enhancement brings a better performance for segmentation, removing the wrong class

labels on misclassified pixels by analyzing neighbor pixels, which makes it possible to

detect the foreground as a whole and eliminate unexpected outlier foreground detections.

As the final enhancement, we incorporate mean shift tracking into the color model, to

improve segmentation accuracy even more. Mean shift runs in parallel with the ISG

model and informs the model on the location and movement rate of the foreground

object. This is used in situations where the foreground object remains stationary for

a long time in the scene and blends into the background of the ISG model. Since
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the location and movement rate is known by the mean shift, stationary foreground

pixels will not be segmented as background, which is the case for the pure ISG model.

The location information is also used for outlier elimination. Mean shift tracking is

used together with the previous enhancement methods we propose, to compare the

segmentation improvements versus the computational load and to be able to select the

best option.

As another method in this thesis, not for the purpose of increasing the segmentation

performance using tracking but for creating a robust tracker within the tracking context;

we also use foreground probabilities calculated from the ISG model as a weight image

for mean shift based object tracking. Since the ISG model assigns precise foreground

probabilities to the pixels in our approach, this forms a robust weight image for a mean

shift tracker and is shown to perform well compared to traditional and classifier based

mean shift trackers.

The next section provides background information on modeling pixel colors in videos

and scene background modeling studies.

1.2 Previous Work

1.2.1 Background Modeling

Some well known methods that are used in segmentation problems are thresholding

based on colors, split and merge, connected component analysis, feature based clustering,

frame comparison with a reference and frame subtraction and correlation methods to

match target objects in an image [1]. There are also model based approaches. For

instance, classification of pixels according to a presumed feature distribution for target

objects or non-target objects is a model based segmentation technique. In foreground

detection methods, the target to segment out is referred as the foreground, and the

remaining non-target objects form the background. Therefore, the problem in this thesis

is a segmentation problem taking two object classes into consideration: foreground and

background.

There are numerous studies on modeling based segmentation especially when the ob-

servation is a set of image frames: videos. Modeling techniques try to obtain a robust



Introduction 4

representation of features of the background objects in a video instead of the fore-

ground, since background features are more stationary. In a video, foreground features

are usually harder to generalize and model, since these features tend to diverge more.

Therefore, background is modeled statistically and used for estimating the labels in the

image. There are usually two classes in background modeling into which each pixel

should be classified: foreground and background. In some studies, besides these two

classes, there are other classes like the shadow class [2, 3].

Most of the background modeling techniques assume that observations are made by a

fixed camera [3–6]. The intuitive reason behind this is the fact that each pixel can

then be referred with the coordinate, which always contains the same part of the scene.

Hence, the movement of the camera does not possess a problem which would otherwise

make it necessary to introduce intermediate steps to create location independent models

which cannot rely on historical color observations per pixel easily.

Modeling can be adaptive or non-adaptive. Non-adaptive modeling forms a static model

for the background. This model itself is usually a pre-observed frame, or the first frame,

or any frame in an observed scene. It may also be a static average of some of the frames

in the video. In short, the model is not updated at all. A single frame to represent

background colors is not a tolerant and flexible way. Single frame based modeling rarely

results in acceptable performance where background is not changing. That is the main

reason why more complex, statistical -parametric or non-parametric- background color

models are used much frequently in foreground segmentation. Kalman filter approach in

[7] deals with the sudden illumination changes in the background, but it is also subject

to a slow background recovery problem. When background moves, it takes very long

for the Kalman filter to recover from that false segmentation. The method described in

[8] does not have this problem. It uses a dedicated Gaussian distribution per pixel over

the color values to represent the background colors on that pixel. Gaussian modeling of

the background was first presented in this work. Every pixel is completely independent

from others, and each pixel has its own Gaussian distribution function. Mean and

variance of a Gaussian is updated when a new frame is received such that each frame

contributes to the background model with a configurable learning rate. There are no

foreground probabilities or background probabilities calculated. Only the color range of

the Gaussian function is used for the binary classification in this approach. Major weak

point of this approach is the fact that background color distribution for a pixel can not
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always be represented by a single Gaussian distribution. As a good example, visualize

an outdoor scene: at day and at night, or at different seasons of the year, under different

lighting conditions of the scenery, a pixel will have very different background colors.

As another example, there might be some periodic motion in the scene. Background

objects such as the leaves of a tree moving in the wind, or waves in the sea periodically

rising are examples of movement in the background. In these examples, some of the

background pixels will have color values concentrated around multiple means. In short,

single Gaussian distribution is not reliable for cases where background is dynamic.

Instead of using a single Gaussian distribution, a mixture of many Gaussians is used for

a single pixel to represent colors observed on that pixel in Stauffer and Grimson’s well

known model [9]. Single Gaussian based method in [8] is not as robust as Stauffer and

Grimson’s mixture of Gaussians based model, in terms of the segmentation performance.

Each pixel is still independent in this mixture based approach. For this reason, we will

refer to this model as the Independent Stauffer-Grimson (ISG) model. Multivariate

Gaussian components in each mixture for each pixel, operate on RGB color space on

three dimensional color vectors. In our work, we used this model as our base model and

increased its segmentation accuracy with various robust approaches.

In ISG model, each component of a Gaussian mixture has a different weight. The model

tries to obtain a label image, based on a single assumption: for any pixel, background

is observed more frequently than foreground. High weighted Gaussian functions in a

mixture represent dominant colors which are frequently observed on that pixel. Thus, the

highest weighted Gaussians represent background colors. This is why the ISG model is

referred as a background model, even though it does not model the background explicitly.

There are no separate background or foreground color models in ISG. There are no class

probability values assigned for pixels. Classification decision is very similar to that in

[8]: ISG is only used for making a binary decision which is not directly and explicitly

based on class probabilities.

There were similar approaches to ISG. In one of them [2], there are 3 different Gaussian

functions in a mixture per pixel, and each Gaussian directly represents a different class.

Three classes used are: background, foreground and shadows. These Gaussians are

updated with every frame in the video just like in the ISG model, but the decision

process differs from that of ISG. The most likely class for a pixel is selected as the label;
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thus class probability values are directly and explicitly used in this work for decision

making.

There are many other studies heading onwards from the ISG model. There are some

local enhancements on the ISG model like shadow suppression [4]. One important study

presents pre-processing and post-processing modifications to the ISG model [10]. In

this study, the image is divided into blocks since it is computationally costly to analyze

every pixel value. Classification is still binary: a label can be foreground or background.

However, in this method, labeling is done for each pixel block. To phrase it in a simple

way, if a block has no significant changes, no calculations are needed on that block. The

block can directly be assumed to be the background. This decreases the number of CPU

cycles significantly, but may obviously reduce pixel classification precision. A similar

block based background model can also be seen in [5].

In the ISG model, all pixels are assumed to be independent of each other in terms of their

colors and also their class labels. Color value of a pixel has no effect on others’ color, just

as the label value on a pixel does not have any effect on others’ labels. In consistency with

this assumption, every pixel has its own mixture of Gaussians. In practice, pixels are

expected to be correlated with each other, intuitively at least with their local neighbors.

To leverage this correlation, Markov Random Field (MRF) based segmentation and

smoothing is widely used. We also employ MRF models in our work. The next section

is on the previous studies on MRF based image modeling and segmentation.

1.2.2 Markov Random Fields Based Segmentation

Markov Random Fields smoothing on images and segmentation are explained in detail

by Perez in [11]. Using MRFs to exploit correlations in pixel neighborhoods was first

presented by Geman, in his paper combining statistical physics rules with image analysis

[12]. In this paper, Gibbs distribution assumption hence Gibbs distribution is used for

MRFs. Differently from the ISG model, conditional pixel probabilities are calculated

by considering local neighbourhood relations between the pixels. Joint distribution of

all random variables is reduced and represented by the local conditional probabilities of

pixels. MRF models try to obtain a joint data energy and a joint smoothness energy for

the overall image labeling and try to find the optimum labeling instance which results

in minimum total energy, in other words the maximum labeling probability. For this,



Introduction 7

a data consistency energy can be produced using a model that defines the probabilistic

relations between the observed data and the underlying labels. Some studies utilized

single or multiple dimensional Gaussians as the model between the data and the labels

within an MRF context [13, 14]. In studies like this, MRFs with Gaussian functions for

the data are sometimes referred as GMRF models. Data energy in our MRF model is

inherited from the probabilistic output of the ISG model. There can also be different

smoothness energy models like the Ising model [15]. To find the optimum labeling in

MRF context, different optimization techniques exist.

In Besag’s work, Iterated Conditional Modes (ICM) algorithm, which is a greedy method

for solving and optimizing MRFs, was presented [16]. ICM can sometimes obtain a global

maximum, resulting in an optimal labeling. But, if the function being optimized is not

convex, ICM will obtain local maximum values for the label probabilities, instead of the

global maxima. ICM is explained later in this thesis. The problem with ICM is also

well explained in Deng’s work [17].

Another MRF optimization technique is Belief Propagation (BP) introduced by Judea

Pearl [18] which takes a different approach to obtain an optimal result and attacks the

sub-optimality problem as referred in [19]. This method relies on a trivial message

passing algorithm between the pixels. Every pixel warns its surrounding pixels about its

point of view on the neighbours. This method does not also guarantee to find the globally

optimal labeling. BP is explained in detail later in this thesis. There are different types

of BP algorithms used in image segmentation based on MRF optimization. In our work,

we used Loopy Belief propagation to obtain the most probable labeling.

There are other MRF optimization techniques like Graph-Cut based algorithms [20, 21]

which may result in better optimization for some cases. However, as indicated in [22],

these methods are computationally costly. In addition, loopy belief propagation based

optimization has a similar peak precision-recall performance to graph cuts.

Besides MRF based optimization for smoothing, we also integrated the location informa-

tion of the foreground into the segmentation. To track the object and find the location

of the foreground, we use mean shift based tracking. The next section introduces studies

on mean shift algorithm and object tracking based on mean shift.
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1.2.3 Mean Shift Tracking

Mean shift algorithm was introduced in [23] to find the mean of a probability density.

It is used to calculate the center of gravity for a given cluster of weights (densities).

Mean shift based tracking in image processing context was introduced in [24] and used

in many tracking studies like [25], [26], [27] and [28]. In tracking, weights correspond to

target object probabilities for pixels. In short, in image processing context, mean shift

is used to find the mean of the target object being tracked in the video.

Mean shift based tracking needs a probability distribution to be used as weights. In

image processing context, the weights are provided in the format of an image, containing

individual weight values for each pixel. This distribution image is referred with different

terms like “confidence map” or “weight image” in different studies on mean shift. In

traditional mean-shift based tracking, color based features of the target object are used

to form a weight image. A backprojection of the histogram of target object’s HUE color

features is used to assign target probabilities to all pixels in [28]. In Avidan’s work

[27], instead of characterizing target colors to form the weight image, classifiers and

discriminative learning is used. A group of classifiers -called the ensemble- is trained

on both target and non-target colors. This discriminative way outperforms traditional

mean-shift trackers which only rely on the target model. Classifiers are then used to

assign target probabilities to each related pixel. In all these different methods, the

purpose is to create a robust weight image where each value on any pixel is a weight.

The weight is actually the target probability value for a pixel, showing how likely the

pixel is to belong to the tracked target. Mean shift iterates on this probability image

to find the center of the weights inside a given video frame. The initial location of the

object should be provided to the mean shift tracker manually at the first frame in which

the foreground object becomes visible.

We utilized a decision tree classifier based mean shift tracker, similar to Avidan’s pro-

posed tracker. Location and movement rate of the target foreground object is fed into

the ISG model by the tracker. This extra information proves to be useful in scenarios

where very stationary foreground objects exist. We combine the information retrieved

from the tracker, which is actually a foreground probability for each pixel depending on

the tracking; with the information retrieved using the ISG model. If the foreground is
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stationary, then the tracker information automatically becomes dominant in this com-

bination. Otherwise, the ISG model probabilities for pixels are dominant in decision

making. In short, outliers are eliminated, the problem of stationary foreground blend-

ing into the background is resolved and the segmentation performance is significantly

improved with the incorporation of mean shift tracker.

1.3 Problem Definition

In this thesis, the main purpose is to segment foreground regions in a video. ISG model

is used as the base color model for the pixels observed by a stationary camera. 3 channel

video images (RGB) are taken into consideration. Saying that an observed frame X is

an input, a segmentation method should produce a label image Y . Some features can

be obtained from X, and let us say that F is the features matrix. The main purpose

in all segmentation techniques is common: how to come up with Y such that P (Y |F )

is very high. P (Y |F ) is the conditional probability of the labels Y , given the features

F of the observation X. In our study, and in most of other studies in the field, features

are actually the observed RGB colors. Thus, the problem is to maximize P (Y |X).

In generic terms, we try to propose solutions to output a labeling Y , which maximizes

P (Y |X). There are two classes; foreground and background. Then the optimized

labeling decision is binary; for all pixels, to select a combination of label values where a

label ys for a pixel s = (i, j) can either be 0(background) or 1(foreground). This problem

definition is also summarized in Figure 1.1.

In ISG model, segmentation decision is made based on the mixture of multivariate

Gaussians for pixel s. The decision to find ys|xs on pixel s is independent of the decision

to find yr|xr on pixel r, where r 6= s. All pixels are treated independently. Each pixel

has its own mixture of Gaussians. This approach completely neglects the temporal

and spatial correlation between neighbor pixels. Due to this fact, foreground is usually

detected in a fragmented format.

ISG does not specify a way to calculate P (ys|xs) or P (Y |X). Instead, within every

mixture, only color ranges and weights of each Gaussian component is used for binary

decision making.
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Figure 1.1: Problem Definition

In our work, we follow a different approach than the base ISG model segmentation.

We do not directly make a binary decision ys for pixel s just by looking at the Gaus-

sian mixture components’ weights for s. Instead, we create an intermediate step. We

obtain the target probability value vs for each pixel s before any classification. vs is

the probability, also the weight value, which resides within the interval [0, 1]. To be

more precise, we form a probability image V I ; and every value vs on V I on pixel s is

the foreground (target) probability of pixel s, given the color values observed on the

pixel. Therefore, vs = P (ys = 1|xs). We can also calculate the background probabili-

ties P (ys = 0|xs) = 1 − vs, but this is not explicitly used since we concentrate on the

foreground probabilities.

As seen in Figure 1.2, ISG directly results in Figure 1.2(b). Foreground probability

values are not calculated. The mixture is only used to identify dominant color values

frequently observed for a pixel. Our method, on the other side, obtains an intermediate

image representing foreground probabilities for all the pixels, A sample probability image

like this can be seen in Figure 1.2(c). Background probability image is not taken into

consideration explicitly, since we try to detect foreground.

With this probability image approach, different enhancement options are made avail-

able. These probabilities are used as data probabilities in MRF based segmentation.

In addition, a secondary probability threshold mechanism is applied on the probability

image to make the segmentation more robust on situations where ISG decision criteria
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(a) Video (b) ISG Detection

(c) Probability Image

Figure 1.2: Foreground Probability Image Sample

fails. Location information leveraged via mean shift tracking can be combined with a

new tracker which operates on this probability image, to have a better estimation of

the location of foreground. All these enhancements can be combined probabilistically,

whenever appropriate.

1.4 Contributions of this Thesis

This work presents a way of forming a foreground probability image using the ISG

method, instead of directly classifying pixels into two classes using their color models.

Leveraging this, different improvements as explained below are realized.

• A method of utilizing the ISG model to inherit conditional class (foreground and

background) probabilities for pixels and forming a probability image V I which

contains all foreground probabilities for every pixel s is introduced.

• Within ISG classification decision, a secondary thresholding on pixels based purely

on their foreground probabilities given in V I is introduced. This alleviates the

fragmentation problem in ISG method, and increases the recall rate of the model

significantly.

• An MRF based segmentation which utilizes the ISG model as the data model and

which introduces smoothness constraints, is presented. A new way of calculating
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foreground probabilities using this MRF model together with Belief Propagation

optimization is introduced. A probability image, V M , containing foreground prob-

abilities calculated via the MRF model is provided. The MRF model compensates

for the independence assumption in the ISG model, and it outperforms ISG based

segmentation, by increasing foreground detection accuracy significantly.

• Using a tracker which utilized a decision-tree based classifier, we incorporate lo-

cation and tracking information into segmentation. The tracker provides a pure

classifier based foreground probability image V T , together with the location and

the movement rate of the foreground objects. Using this information, a robust

outlier elimination is performed. In cases where foreground is very stationary, we

also prevent the foreground to be classified as background by the ISG model using

this additional information.

• V I or V M probabilities and the tracker probability image, V T , are averaged using

dynamic weights that depend on the movement rate of the foreground object. If

the foreground is stationary, the weight of V T increases in these combinations to

prevent foreground blending into the background, which would be the case if V I

or the V M is dominant for the segmentation decision, since these probabilistic

models do not consider the location and movement of the target foreground.

• Not as a segmentation method, but as a robust tracker, it is also shown that V I

and V M can be well used as input weight images for mean shift trackers. This new

tracker utilizing V I or V M can be combined with traditional or classifier based

trackers, to achieve much better tracking performance in cases where well-known

trackers tend to experience failures.

1.5 Outline of Thesis

This thesis is divided into 7 chapters, Introduction being the first one. In Chapter 2,

detailed explanations on the ISG model is given and the way to obtain the foreground

probability image V I from the ISG model is shown. The next chapter, Chapter 3

explains the new thresholding technique, hysteresis thresholding, with some additional

post-processing operations performed on the ISG model. In Chapter 4, the details of

MRF smoothing with Iterated Conditional Modes (ICM) and Belief Propagation (BP)
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optimization methods are provided. Forming the MRF probability image V M is shown

in this chapter. Our final segmentation method which integrates mean shift tracking is

explained in Chapter 5. How the tracker based probability image V T is obtained and

combined with the ISG model’s probability image V I or the MRF model’s probability

image V M , is also shown in this chapter. Chapter 5 also shows how we use the ISG

model or the MRF model probability images for the purpose of creating a robust mean

shift tracker. All parametric results for these different segmentation methods tested on

different videos are given in Chapter 6. In this results chapter, besides segmentation

experiments, the performance evaluation for the ISG/MRF based object tracker is given

in the last section. Discussion on possible future improvements is explained in the last

chapter, Chapter 7.



Chapter 2

Background Modeling

In this chapter, we first explain how the ISG model works. ISG was introduced in [9]

and it has been one of the most successful methods in the algorithm competition of 4th

ACM International Workshop on Video Surveillance and Sensor Networks (VSSN’06)

[29]. Once the model is explained, we will show how we obtain conditional foreground

and background probabilities using the ISG model. Segmentation results of the base

model are provided in Chapter 6 for being able to compare the performance results to

those of other methods. However, discussion and expectations on the results can be

found throughout this chapter.

2.1 A Dynamic Background Model

ISG utilizes a color model to obtain a label image Y containing class labels for each pixel

s = (i, j) for a 3-channel observation image X. Considering that S is the whole image

lattice, we can say that s ∈ S. Y contains label values ys and X contains observed color

vector xs on pixel s. There are only two classes, foreground and background; hence ys

can either be 1 (foreground) or 0 (background). Therefore, it can be said that for Y ,

ys = Y (i, j).

In ISG, a dedicated and independent mixture of Gaussian distribution functions is cre-

ated for each pixel s. This mixture, in a sense, keeps track of the historical color changes

on that pixel. These functions are multivariate, operating on the 3-dimensional RGB

color space. In a single mixture, there can be many Gaussians. Since the mixture itself

14
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Figure 2.1: An Example: 1-D Mixture of Gaussians

is the color distribution for a pixel, the sum of weights of all individual Gaussians within

the mixture adds up to 1. A mixture of Gaussians on a single dimensional color space

with 3 Gaussian components is shown in Figure 2.1.

Every Gaussian function within a mixture can have a different weight. Some of the

Gaussian components will have higher weights than the others inside the mixture. The

assumption that ISG model relies on is that background always dominates the video.

To be more specific, let us consider the mixture for pixel s = (i, j). Many different

color vectors xs will be observed on s during the video at different times. Some of these

vectors will belong to foreground, and the rest to the background. ISG assumes that for

any pixel s, it is mostly the background that is observed. For most of the time, a pixel

is expected to be covered with background objects, hence with the background colors.

Foreground objects are not expected to appear very frequently on a pixel, compared to

background. This assumption impacts the ISG model, since the weights of Gaussians

in a mixture are updated with every video frame according to this assumption. For an

observation xs, if one Gaussian in the mixture for pixel s can represent xs, then the

weight of that Gaussian will increase compared to other components in the mixture.

This means, the weights of all other components will decrease. In other words, if xs

falls within a confidence interval of one of the Gaussians in the mixture, ISG model

assumes that xs color vector is already represented by that Gaussian. Combining this

matching rule with the model’s assumption of frequent background, highly weighted

mixture components are more likely to represent the background colors for the pixel.

These components’ weights have increased due to the fact that these colors represented

with the components have been observed very frequently. This is the sole assumption
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and rule that the ISG classification depends on.

Then the decision is intuitive to make. If the observation value xs falls in the confi-

dence interval of one of the highest weighted components, then pixel s is classified as

background. Otherwise, that pixel is probably not a background pixel. Then the prob-

lem of how to separate the components of a mixture by analyzing the weights emerges.

How can we separate high weighted components in a mixture and what defines a “high

weight” value? This question will be answered later in this section.

Our calculations and formulas are shown for a single Gaussian Mixture belonging to a

single pixel s. These formulas do apply for every pixel and their mixtures. Thus, s indices

are dropped from the variables in formulas in this chapter for simplicity. However, it

should be kept in mind that these operations are valid for all Gaussian mixtures for all

s.

In ISG, the probability of observing a color vector value xt at time t and pixel location

s = (i, j) is modeled as:

P (xt) =
K∑

n=1

wn,t ∗ N (xt,µn,t,Σn,t). (2.1)

In ISG, a mixture for a single pixel can be composed of at most K different components.

Some of these K components have higher weights and they represent background color

distribution. Selection of the parameter K depends on user choice, but in [9] where the

model was introduced, and also in many other studies on ISG, this value is taken to

be 5. The probability of observing color value xt at time t, is the sum of distribution

values of these K different components in the mixture for the pixel. µn,t is the mean

value of the nth Gaussian component in this mixture at time t, and Σn,t is the covari-

ance matrix for this component. wn,t is the weight of the same Gaussian component.

N (xt, µn,t,Σn,t) represents nth Gaussian distribution value for xt. All these parame-

ters are time-dependent, and updated with every new frame in the video. This update

mechanism will be explained in the following paragraphs.

Saying that N represents a Gaussian distribution, for the nth component in the mixture,

we can state that the multivariate color probability distribution for xt can be calculated

as:
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N (xt, µn,t,Σn,t) = sqrt{ 1

(2π)d|Σn,t|
} exp

[
−1

2
(xt − µn,t)

T (Σn,t)−1(xt − µn,t)
]

. (2.2)

Since we are using RGB color model, d value above is 3 in our implementation. µn,t is the

d dimensional mean vector and Σn,t is the d× d sized covariance matrix. In this model,

for reducing calculation complexity on the inverse operation applied on the covariance

matrices, d-dimensional pixel value vectors are assumed to have a diagonal covariance

matrix. This relies on the assumption that different color channels are uncorrelated (e.g.

R,G,B color channels are taken to be independent). In addition to this assumption,

variance values for different channels are taken to be equal, for being able to write Σn,t

in the form Σn,t = σ2
n,tI, where σ2

n,t is the variance of a single channel at time t. Then

the equation 2.2 simplifies to:

N (xt, µn,t,Σn,t) = sqrt{ 1

(2π)dσ3
n,t

} exp

[
− 1

2σ2
n,t

(xt − µn,t)
T (xt − µn,t)

]
. (2.3)

In a mixture for a pixel, each component has its mean, variance and weight parameters,

which are updated upon observation of a new value on that pixel. As explained above,

if xt falls into the confidence region of a Gaussian in a mixture, xt is said to “match”

with that Gaussian. Then a question may arise; how can we specifically confirm that xt

matches with a Gaussian? In ISG model, if xt is within 2.5 standard deviation interval

of a component, it is said that there is a matching condition. In other words, if xt is

within %99 confidence interval of one of the mixture components, it matches with that

component.

A color vector might as well match with more than one component in the mixture. There

should always be only one matching component for any pixel value, since our segmen-

tation decision will be based on this match. For this purpose, we analyze the matching

condition for xt, beginning from the highest weighted component in the mixture. Thus,

once we detect a match condition between a vector and a mixture component, then we

stop looking through other components.

Referring to equation 2.3, the mathematical way to evaluate a match between xt and

nth Gaussian component of the mixture is explained with the equations below. If the
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condition given below is true, it means xt is matching with the nth Gaussian in the

mixture of Gaussians.

exp

[
−1

2
(xt − µn,t)

T (
1

σ2
n,t

)(xt − µn,t)

]
≥ exp

[
− 1

2σ2
n,t

(2.5σn,t)(2.5σn,t)

]
, (2.4)

[
(xt − µn,t)

T (xt − µn,t)
] ≤ [(2.5σn,t)(2.5σn,t)] , (2.5)

[
(xt − µn,t)

T (xt − µn,t)
] ≤ [

(2.5)23σ2
n,t

]
. (2.6)

Notice that σn,t is actually a 3 dimensional vector above, and each element in this vector

equals to σn,t, which is a scalar. σt is the variance for a single channel only, and same for

all channels according to our simplification. Otherwise, assuming that variance values

are different for R,G,B channels, matching rule should be stated as below:

[
(xt − µn,t)

T (xt − µn,t)
] ≤ [

(2.5)2(σ2
R + σ2

G + σ2
B)

]
, (2.7)

where individual variances for each channel are different.

Once the match condition is evaluated, our model records the matching Gaussian index

for xt. Then, the model is updated with the new information. There is a real-time

update mechanism for the mean, variance and the weight of Gaussians for each pixel

mixture. In terms of the mean, basically, received pixel value shifts the distribution

mean towards itself. Variance of the Gaussian also changes in addition to the shift in

the mean value. Also, the component which matches with the value observed should

become more dominant within the mixture. For this reason, “only for the mixture

component that matches with the observed value xt”, mean and variance values will be

updated as follows:

µn,t = (1− ρ)µn,t−1 + ρxt, (2.8)

σ2
n,t = (1− ρ)σ2

n,t−1 +
ρ

d
(xt − µn,t)

T (xt − µn,t), (2.9)
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where ρ is the parameter defining the learning rate for the Gaussian distribution. For

computational simplicity, this parameter is fixed according to the observed scene char-

acteristics. Notice that the matching component gets narrower or wider, meaning that

the variance changes with the observation. One question that may arise here is: What

if an observed value xt does not match with any of the K Gaussian components in the

mixture? How are we going to update the model when there is no match? In that case,

inside the mixture, the component with the minimum weight is discarded. In place of

the discarded component, a new component is created, with mean value equal to xt,

and variance value equal to an initial variance parameter σinit. As expected, in the first

iteration of this method for the first video frame, since there are no Gaussian compo-

nents that would be created before, there will not be any match conditions. In other

words, during analysis of the first frame in a video, the first Gaussian components for

each pixel mixture is created.

Although mean and variance are updated for only the matching component, weights are

updated for all components in the mixture. Weight update for the nth component in the

mixture is realized as follows:

wn,t = (1− α)wn,t−1 + αMn, (2.10)

where Mn is 1 if the nth component is the matching one with xt, and it is 0 for all other

components in the mixture. This actually corresponds to increasing the weight of the

matching component and renormalizing all the weights in the mixture to 1 again. α is

the weight learning parameter and selected experimentally. To be able to make this a

separate entity than the learning rate ρ which is used for the mean and variance update,

another variable name is used in the implementation; anyway α equals ρ in our tests.

Up to this point, how each Gaussian mixture per pixel keeps track of the observations

on that pixel has been shown. Now, the decision to estimate the labeled image Y out

of the observation X will be explained.

The mixture for pixel s represents the overall distribution of color values on that pixel.

Actually, it is not only the model of the background colors or the model of the foreground

colors. It is the general color model for a pixel. In this model, our assumption was that
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the highest weighted components should represent the background, since our observa-

tions on that pixel are dominated by the background. Therefore, we can classify s into

classes background(ys = 0) or foreground(ys = 1). Weight of the matching Gaussian

with xt is the important value here. Simply put, if the matching component is one of

those highest weighted components in the mixture, then xt is classified as background,

thus ys = 0. Otherwise, this pixel is foreground at the moment, and ys = 1. But, how

does ISG model identify those high weighted components inside the mixture? What is

the “high” threshold for the weights as we have asked before in this chapter?

Below is the algorithm to separate high weighted background components out of a

mixture, and then to classify a pixel as background or foreground:

Algorithm 1 ISG Decision Process
Ensure: w1 > .. > wK for K Gaussians

Sum of Weights = 0.0 and
Set Threshold τwε[0, 1]
for k = 1 to K do

Add wk to the Sum of Weights
if Sum of Weights > τw then

Break the Loop
end if

end for
B = k, m = Matching Gaussian Index for xt

if m < B then
ys = 0 (Background)

else
ys = 1 (Foreground)

end if

In ISG model, it is assumed that on a pixel, mostly background will be observed. In the

long run, highest weighted components will be formed by the values observed in back-

ground objects. To demonstrate, visualize an outdoor scene. One of the pixels’ mixture

has two highly weighted Gaussian components and three low weight components, thus

B = 2 and K = 5. Intuitively, those two components should represent the background.

One of the mean values is probably around brighter color values learned during daytime.

The other mean might be around darker color values for nighttime color observations.

Three remaining non-background components can have their means around any color

value, since ISG does not try to define foreground model. In this manner, multiple

background color distributions due to changes in lighting and also periodic motion in
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the observed scene such as the leaves of a tree, can be captured. To rephrase the deci-

sion criteria, in the weight-wise ordered mixture, the first B components represent the

background such that:

B = arg min
b

(
b∑

n=1

wn ≥ τw

)
, (2.11)

where τw is an experimental threshold value for the sum of weights.

As a result of this overall labeling for each pixel s, label image Y is obtained. In the

results chapter, it will be visually shown that the ISG model detects the foreground

objects in a fragmented format. Due to the uncorrelation assumption between pixels,

instead of a single foreground object, the ISG detects multiple smaller objects that are

positioned closely. To overcome this problem, we tried to combine these small indepen-

dent object fragments using a thresholding approach based on foreground probabilities

for the pixels. Before that, in the next section, how we obtain foreground class prob-

abilities for the pixels using the ISG model will be shown. In the next chapter, the

thresholding solution to the fragmentation problem which utilizes these probabilities is

explained.

2.2 Inheriting Class Probabilities from ISG

We will now explain how we extract class probabilities using the ISG model. All expla-

nations in this section will now be made for a specific time t, therefore time subscript is

removed from the symbols used.

As explained in the previous section, for observation image X taken as input to the

ISG model, a label image Y is the output. ISG assumes that all pixels are independent.

Thus, probability of observing a label image Y from X, which is P (Y |X) is not explicitly

calculated and used in the ISG model for segmentation. The only value used is the weight

of a matching Gaussian component as explained in Algorithm 1.

We modified the model and added an intermediate step of calculating P (Y |X). We can

write this probability as:
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P (Y |X) =
P (X|Y )P (Y )

P (X)
. (2.12)

For accepting a possible label image Y 1, which has a specific configuration of ys values

for all s, we simply can compare P (Y 1|X) to other P (Y |X) values for other label

images. In this comparison, the denominator P (X) in equation 2.12 will always be the

same. P (X) is the prior probability of observing image X in the formula, and this can

be considered to be the normalizing constant for the probability function given above.

P (X) is simply the sum of P (X|Y )P (Y ) for all possible Y . Thus, from equation 2.12,

the numerator P (X|Y )P (Y ) is the significant term. Since all pixels are assumed to be

independent in ISG, P (Y |X) and P (Y ) can be written as:

P (Y |X) =
∏

s∈S
P (ys|xs), (2.13)

P (Y ) =
∏

s∈S
p(ys). (2.14)

In equations 2.13 and 2.14, ys is the specific label value for pixel s and xs is the color

vector observed on s. Due to the independence assumptions in the ISG model, we can

actually find conditional class probabilities on pixel s given xs as follows:

P (ys|xs) =
P (xs|ys)P (ys)

P (xs)
. (2.15)

Since we only consider 2 classes, prior probabilities P (ys) can be trivially figured out

as P (ys = 0) = λ and P (ys = 1) = 1 − λ. λ can be altered according to the scene

characteristics. A general estimation for λ can be made by observing the scene for

some training time. The remaining P (xs|ys) term in equation 2.15 is inherited from the

mixture model. This is the likelihood of color vector xs when the class of the pixel is

assumed to be ys. Remembering that in the mixture for pixel s, there can be at most K

Gaussian components and the first B components with highest weights represent back-

ground colors; we can separate the mixture into two different sub-mixtures. First of

these sub-mixtures contains the highest weighted B components from the main mixture

and this is the background class sub-mixture, representing the probability distribution
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of the background color values. The second mixture contains the remaining K−B Gaus-

sian components, and this mixture represents the foreground probability distribution.

Weights of the Gaussian components for each sub-mixture should be normalized so that

the sum of the weights becomes 1 for each sub-mixture. In formulas, we can state that:

P (xs|ys = 0) =
B∑

k=1

wk

B∑

j=1

wj

N (xs, µk,Σk), (2.16)

P (xs|ys = 1) =
K∑

k=B+1

wk

K∑

j=B+1

wj

N (xs, µk,Σk), (2.17)

P (xs) =
∑

ys={0,1}
P (xs|ys)P (ys), (2.18)

Then we form a probability image V I using equation 2.12. Each element of V I on

pixel s is vs. vs is the foreground probability for s, therefore vs = P (ys = 1|xs).

Figure 2.2 shows a visualization of a sample probability image on which, darker colors

represent higher foreground probabilities. This is the intermediate step that enables

different type of enhancements on the ISG model. In regular ISG model, there is a

direct binary classification for each pixel, using the Gaussian components’ weights in the

mixture of that pixel. In our probabilistic ISG approach, we obtain a matrix containing

the conditional foreground probabilities for each pixel and classification is based on

the explicit foreground probabilities for the pixels. A thresholding operation on V I is

performed to obtain a new labeling image, Y = (V > τp) where τp is an experimental

probability threshold.

This approach is also utilized in the next chapter in hysteresis thresholding context, and

is explained in detail in that chapter.

Experimental results for the ISG based foreground segmentation are provided in Chapter

6 together with the results of all other methods which will be explained further in the

thesis.
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(a) Foreground - Groundtruth (b) Foreground Probabilities

Figure 2.2: An ISG based Probability Image

In the next section, we explain the new thresholding method which addresses the spatial

correlation issue and the fragmentation problem in ISG based foreground segmentation.



Chapter 3

Improved Post-Processing

In the previous chapters, we used the label probability values obtained from the ISG

model. In this chapter, we mostly focus on the binary output Y of the ISG model.

We introduce post processing methods that can directly be applied on Y . However,

we also introduce a thresholding technique in this chapter, which still operates on the

probability image V I .

In ISG method, all pixels have their own mixtures of Gaussians, and pixels are inde-

pendent. This brings simplicity in terms of CPU cycles and processing speed, but in

real life, there is usually a correlation between the pixels in an image. This spatial cor-

relation is not taken into account in the ISG model. For this reason, single foreground

objects might sometimes be detected as many number of smaller fragments. We ad-

dress this fragmentation problem, which causes a significant drop in recall rate of the

segmentation, in this chapter.

The first section describes additional post-processing on Y to achieve better segmenta-

tion performance. The next section explains a new secondary probability thresholding

method to detect missing foreground pixels. We call this secondary thresholding as

“hysteresis thresholding”, or “relaxed thresholding in a hysteresis region”. Final section

of the chapter will show how we can also incorporate edge and gradient information of

the foreground to precisely smooth the segmentation results, and to slightly improve the

final performance of the operation.

25
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3.1 Standard Post-Processing

After the foreground image Y is retrieved, it is subject to some post processing opera-

tions:

3.1.1 Opening and Closing

In the foreground, there are usually many small holes in the detected objects and there

are also some small objects detected which are not really foreground, but occur due

to the noise and the dynamic background. Since opening smooths the contour of an

object by eliminating protrusions and closing smooths the contours by filling the gaps

and holes on the contours [30], an opening and a closing operation are performed as

standard post-processing morphological operations.

3.1.2 Connected Component Analysis

A connected component analysis is performed on Y after the morphological operations.

The connected regions are obtained and the contours {C1, C2 . . . CK} of these regions

on the foreground image are found. In this work, we only take the external contours

into consideration, therefore it is assumed that the foreground objects will not have a

hollow structure.

3.1.3 Minimum Area Filtering

Let Amin be the minimum area value determined experimentally. For an object with

external contour C having a pixel wise area of AC , the object will be filtered out of Y if

AC < Amin. Thus, very small pieces that were not eliminated through the morphological

operations and that are too small to be foreground are left out.

After the standard post-processing, the set of contours surrounding the foreground re-

gions is formed and an updated foreground image Ŷ is formed by union of interiors of

these contours.

These post-processing methods provide enhancements, but these are not able to elim-

inate the fragmentation problem. To address this problem in a more strict manner,
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(a) Fragmented Foreground (b) Real Foreground

Figure 3.1: ISG Fragmentation Problem

we introduce a secondary probability-based thresholding in a specific hysteresis region.

After this, we also analyze foreground objects edge information to fine-tune the segmen-

tation. These additional techniques will be explained in detail in the following section.

3.2 Hysteresis Thresholding

In ISG model, decision to classify a pixel into foreground or background was given in

Chapter 2 in Algorithm 1. ISG model itself does not calculate P (Y |X) values. The only

criterion used in ISG for decision making to label pixel s, is the weight of the Gaussian

component that matches with the observation xs on pixel s. In Chapter 2, we showed

how we can also obtain P (Y |X) values using the ISG. V I is the probability image that

contains P (ys|xs) values for all s.

Relying only on the weight of the matching component might be problematic, when

all pixels are also considered to be independent in the ISG model. Instead of a single

foreground object, ISG tends to detect many smaller fragments of the object which are

very close to each other. Due to the spatial independence, this proximity is not analyzed

at all. Therefore, ISG cannot combine all these fragments by filling in the space between

the fragments appropriately. To compensate for this weak point, we find a region that

contains all the fragments of a possible single piece foreground object. As it is seen in

Figure 3.1, when object colors are similar to those of the background for some pixels,

a very apparent fragmentation occurs. This also reduces the detection performance

significantly.

To deal with this problem, we define a search region, called the hysteresis region. Then

in the hysteresis region, we search for pixels which might belong to the foreground, but

that are classified as background due to color similarities with the background. In this
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search, we directly utilize the pixel probabilities obtained from the probability image V I .

Simply put; for pixel s detected as background inside the hysteresis region (suspicious

region), if foreground probability P (ys = 1|xs) is higher than a relaxed threshold value

τr, then we say that this pixel is actually foreground, and we reclassify it such that

ys = 1. The first step in this relaxed thresholding is to find the hysteresis region.

3.2.1 Hysteresis Search Region

Let dmin(Cn, Cm) be the minimum distance between two object contours Cn and Cm

on Ŷ . We iterate through all contour pairs and if the distance between two contours

is less than the threshold Dmax, we find the union of interiors of the convex hulls for

those two contours, Hnm. Then the union of such convex hull regions is taken to form

a mask where the relaxed threshold will be applied. This union image operates as a

mask combining pairs of regions that have a high probability for belonging to the same

single region foreground object. Assuming there are NR objects and their contours, the

process below is performed:

Algorithm 2 Finding Hysteresis Region
Ensure: H(i, j) = 0 for all i, j

for n = 1 to NR do
for m = n + 1 to NR do

D = distance(Cn, Cm)
if D < Dmax then

Hnm = convexhull(Cn ∪ Cm)
H = H ∨Hnm

end if
end for

end for

At the end of this process, the hysteresis search region indicator image H is obtained. It

can be considered as a foreground image with the union of convex hulls of close contours

in Ŷ . In Figure 3.2, the union of object convex hulls can clearly be seen. In the same

figure on the second image, gray areas represent hysteresis region. This region is the

group of pixels classified as background, but these pixels lie within the proximity of some

small foreground segments which are located close to each other.
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(a) Union of convex hulls (b) Gray Hysteresis Region

Figure 3.2: Hysteresis Region for the Foreground

3.2.2 Relaxed Thresholding

For the pixels in H, a secondary thresholding with a new threshold value τr which is

lower than the ISG threshold τp is applied. In Stauffer-Grimson method, the sum of the

weights of the Gaussian mixture components are compared to the single threshold value

τw as it was explained in Chapter 2 Algorithm 1. Primary foreground image Y is formed

with this thresholding. In hysteresis thresholding, we will update the new foreground

image Ŷ . The label for pixel s on this new image is ŷ(s).

ISG thresholding mechanism causes the highest weighted Gaussian component to be

considered as background regardless of its weight. This may cause problems when there

is a highly variable background and the current foreground pixel value is covered by one

of the background Gaussian components (which becomes more likely due to the variable

background). Because of this, in relaxed thresholding, only the foreground probability

of pixel s is compared to the new threshold, τr. Considering that vs = P (ys = 1|xs) for

pixel s, Algorithm 3 summarizes the procedure.

Algorithm 3 Relaxed Thresholding

Ensure: Ŷ = Y
for s = (i, j), s ∈ H do

if ys = 0 then
if vs >= τr then

ŷ(s) = 1
end if

end if
end for

As it is seen in Algorithm 3, only pixels having a high foreground probability within the

hysteresis region are modified in Ŷ .
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Dilation and erosion is then applied to Ŷ to obtain a better labeling. In the next step,

using foreground edges as an enhancement is shown.

3.2.3 Foreground Edge Extraction

The gradient operator uses neighbors of a pixel to determine spatial derivatives of the

intensity image. Gradient information in the background versus the foreground should

be complementary to the color change information used in ISG method. Thus, in addi-

tion to relaxed thresholding, we also employ a foreground edge detection algorithm to

determine foreground edge pixels inside the hysteresis search region. Foreground edges

will mark only the edges of foreground objects. We consider only external contours to

cover foreground objects, thus no hollow foreground objects are allowed. Because of this

assumption, correctly detected foreground edge points will possibly aid in determining

the whole foreground object as a single object. Foreground edge detection is realized by

the Algorithm 4:

Algorithm 4 Foreground Detection
Apply Gaussian Smoothing on X

Gx = δX
δx

Gy = δX
δy

Λx,t = History of horizontal gradient
Λy,t = History of vertical gradient
Λx,t = (1− κe)Λx,(t−1) + κeGx

Λy,t = (1− κe)Λy,(t−1) + κeGy

Dedge =
√

(Gx −Λx,t)2 + (Gy −Λy,t)2

for all s = (i, j) ∈ H do
if Dedge(s) < τe then

Efg(s) = 0
else

Efg(s) = 1
end if

end for

In this procedure, κe is the edge learning parameter and τe is the edge threshold pa-

rameter. Efg is the labeling image resulting from the edge comparison only. A Sobel

operator with a 3×3 kernel is used. For the x-derivative and for the y-derivative, kernels

used are:
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(a) Foreground Edge X Components (b) Foreground Edge Y Components

Figure 3.3: Edges of Foreground





−1 0 1

−2 0 2

−1 0 1





and





−1 −2 −1

0 0 0

1 2 1





respectively.

Figure 3.3 shows the x-direction and y-direction components of the Efg image for a

sample frame, calculated via the algorithm above by differentiating the overall gradients.

We have also experimented with the Laplacian operator to find the gradient images;

but our experiments show that Laplacian operator results in a slightly worse foreground

change detection than the procedure above.

The foreground edge information is then used as follows. A pixel inside the hysteresis

search region H is considered as a foreground pixel if it passes the relaxed threshold

test or it is found as a foreground edge using the test above. In other words, we form a

new foreground mask image by the following operation Ŷ ∨Efg.

The main purpose in this method is to find a way to detect the missed foreground

pixels which lie in th vicinity of ISG-detected foreground pixels. Since the ISG model

considers each pixel independently, in the output image for the ISG model there might

be some small clusters of pixels detected as background, lying between larger clusters of

foreground pixels. This method simply looks for those small cluster of pixels. Obviously,

any pixel that lies in between closely located foreground clusters should not directly be

classified as foreground. At this point, this is the reason why we apply the secondary

thresholding in a relaxed manner, with a lower threshold value. If a pixel is between close

foreground clusters and it also qualifies to be a foreground according to its foreground

probability vs, then it should be a foreground pixel which has been missed by the ISG

model due to the similarity between its color and the background color.
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This method brings improvements in terms of segmentation recall rate -the ratio that

defines what percentage of the real foreground has actually been detected- because of the

mentioned reasons. Performance results on different test videos are shown in Chapter

6, in comparison with other methods in this thesis.

The next chapter explains how we leverage the ISG probability image V I in MRF based

segmentation. Just like in hysteresis thresholding approach, we also utilize MRF models

to compensate for the spatial correlation between pixels. It can be said that MRF

segmentation will accept V I as an input and the data model, and give out a different

label image Y .



Chapter 4

Markov Random Fields Based

Segmentation

Markov Random Fields are used to model spatial dependencies between random vari-

ables. MRF models represent the joint probability distribution of a group of random

variables by using a set of local dependencies. Conditional dependencies between neigh-

bor pixels is leveraged. MRF models are widely used in image smoothing, segmentation

and restoration. In this chapter, we will describe how MRFs can be utilized using the

probability image V I we obtain from the ISG model. We explain two practical MRF

energy optimization / probability maximization techniques: Iterated Conditional Modes

(ICM) and Belief Propagation (BP). We also present experimental results for MRF seg-

mentation using BP optimization in the results chapter, Chapter 6.

4.1 Markov Random Field Models

Markov Random Fields based segmentation will be used to obtain a familiar output,

Y , which is the label image. Let the image width be W and the image height be H in

number of pixels. Remembering that s is the coordinate for a pixel, we define lattice S

as: S = {s = (i, j)|1 ≤ i ≤ H, 1 ≤ j ≤ W} is a lattice. In this case, the lattice includes

the whole image. We have an observation image X, where on every pixel s there is a

color value xs. Pixel s will have a label value ys on image Y which can be either 1 or 0.

33
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Figure 4.1: Graphical MRF Model

Y is the set of ys variables and it is a Markov random field. y is a specific configuration

of this set of random variables.

We will utilize MRF assumptions for getting the most probable Y given X, hence the

purpose is to model P (Y |X) and select Y that provides the highest probability. If

the components of P (Y |X) are analyzed as in the previous chapters using the Bayesian

rules, it is certain that Y configuration is dependent on X. In addition, ys variables in Y

have their joint probability P (Y ). Observations xs on different s pixels are independent

of each other. P (X|Y ) component of P (Y |X) can then be reduced to
∏

s∈S
P (xs|ys).

This concept is illustrated in a graphical MRF model shown in Figure 4.1.

On the other hand, P (Y ) depends on the joint distribution of ys variables. Since we

assume that ys variables satisfy Markovian characteristics P (Y ) can be reduced to a

set of conditional distributions between locally neighboring ys. Before showing how this

value can be obtained, we should define terms used in MRFs.

The neighborhood of pixel s is called as N s. For a neighbor pixel r where r ∈ N s,

it is also valid that s ∈ N r where N r defines the neighborhood of r. That is to say,

neighborhood in this context is a mutual rule. A pixel is not considered to be its own

neighbor, so s /∈ N s.

We first define pixel neighborhoods. A neighborhood for a pixel can be of some degree

n where n ≥ 0. For the nth degree neighborhood of pixel s , which we can call Nn
s , it

can be stated that Nn
s = {r : ||r − s||2 ≤ n, r 6= s}.
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Another term should be explained. We define a set of pixels which is called a clique, c.

In a clique, every possible pair of pixels are mutually neighbors. So for a 4-neighborhood

region, maximum size for a clique can be 2 pixels, otherwise all pairwise pixels inside c

will not be mutual neighbors. Also, the set of all cliques in the image is C. Cliques are

dependent on the definition of the neighborhood relation.

We assumed that Y is a Markov random field where the P (Y ) can be reduced to a set

of local conditional probabilities. For Y to be Markov random field, following properties

must be satisfied:

• Positivity property: P (Y ) > 0 for any Y , meaning that any labeling should be

possible.

• Markovianity property: P (ys|yr, r 6= s) = P (ys|yr, r ∈ N s). This means

that the probability of ys is only dependent on the other variables yr within the

neighborhood of s. The joint distribution for P (Y ) can be represented by the local

dependencies between the neighbors. In this approach, a pixel is conditionally

independent from all other non-neighboring pixels.

As we stated in the beginning, the most probable Y given X is the optimal labeling.

This Y value should be selected, and classification of pixels should be defined according

to this for a correct maximum probability based segmentation.

The Hammersley-Clifford theorem states that the joint probability distribution of any

Markov random field Y can be written as a Gibbs distribution [17]. Thus, Y is both a

Markov random field and a Gibbs random field. Gibbs distribution for random field Y

can be written as:

P (Y ) =
1
Z

exp(−UM (Y )). (4.1)

Z is used to normalize the probability distribution and UM (Y ) is the MRF energy. To

demonstrate this in a specific way: consider that y is a single configuration instance for

Y . Then, the probability for the specific configuration y can be written as:

P (y) =
1
Z

exp(−UM (y)). (4.2)
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In equation 4.2, P (y) should be normalized over all exp(−UM (y)) values for any possible

y. So the normalization constant Z can then be written as:

Z =
∑

y′
exp(−UM (y′)). (4.3)

We stated that UM (y) is the MRF energy. This energy is related to the joint probability

of observing y. Referring back to the purpose of MRFs, we should maximize P (Y |X).

In Chapter 2, it was already stated in equation 2.12 that P (Y |X) can be written as:

P (Y |X) =
P (X|Y )P (Y )

P (X)
. (4.4)

UM (y) in equation 4.3 arises from the probability P (Y ) in equation 4.4. Since this is the

probability representing the consistency between all the labels in image Y , we usually

refer to this probability as the smoothness probability. Hence, UM (y) is the smoothness

energy for specific a configuration of labels in Y , which is y.

UM (Y ) in general depends on the joint probability P (Y ), which can be represented with

local conditional dependencies between pixels. We can write P (Y ) as:

P (Y ) =
1
Z

∏

c∈C
Ψc(yc), (4.5)

where yc represents a clique. In our implementation, we used 4-neighborhood relations

between pixels. We also used only the maximal cliques with size 2. Maximal cliques

are the cliques in an image which cannot be extended by adding any more pixels in

size. Thus, in this case yc = [ys, yr] is the maximal clique. yc is a group of two labels

of the pixels in a clique and C is the set of all maximal cliques in the image. Ψc is a

potential function of a clique that is used to form a valid probability from the labels of

the pixels in the clique. If we try to obtain the smoothness energy UM (Y ) arising from

the probability P (Y ) in 4.5, then the UM (Y ) becomes:

UM (Y ) =
∑

c∈C
Vc(yc). (4.6)
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Here, Vc(yc) is called the potential function for a clique which is written in terms of

the energy instead of probability. In equation 4.5, Ψc is the potential that is written in

terms of probabilities (it is not a probability itself). Therefore, Vc(yc) can be written

as − log Ψc(yc). UM (Y ) is found over the whole image using every clique c in clique set

C. Clique potential function Vc(yc) can be defined using different functions, depending

on the application.

For our assumption for the clique potential, we use the prototypical Markov random field

model, which is the Ising model, since MRFs were introduced for the Ising model [15] and

it is trivial to implement the model. In this model, if the labels of the neighbor pixels are

different, this gives rise to a smoothness penalty. If we say that the smoothness energy

around a single pixel s is defined as uM , and if we only consider 1st degree neighbors r

of pixel s, inside its neighborhood N1
s ; then it is stated that:

uM (s) =

[
θ
∑

∀r
δ(ys, yr)

]
; (4.7)

and the overall MRF energy for the image containing all pixels s can be calculated as:

UM (Y ) =
∑

s∈S

uM (s), (4.8)

where δ(ys, yr) = −1 if ys = yr and δ(ys, yt) = 1 if ys 6= yr. θ is used to adjust the

energy scales for a reliable smoothness penalty on the image. Note that equation 4.8 is

very similar to equation 4.6, where Vc(yc) = θ
2δ(ys, yr) .

According to this smoothness constraints, whenever the number of neighbors having the

same label value with the pixel increases, the smoothness energy decreases. Regarding

this decrease in the energy, the probability of this labeling will increase. The assumption

that neighboring pixels should have a tendency to have the same labels can be clearly

seen. In addition, using the Markovian property of Y , overall sum of clique potentials

is expressed in terms of pixel neighborhoods.

Now the energy component UM (Y ) and the related probability P (Y ) has been defined.

Referring back to the probability P (Y |X) in equation 4.4 which we try to maximize,

P (X|Y ) component in the numerator and P (X) component in the denominator should
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be analyzed afterwards. P (X|Y ) is the probability measuring how well the labeling Y

satisfies the observations X. This probability is called as the data-fitting probability.

As it is demonstrated in figure 4.1, for each pixel s, the data-fitting probability P (xs|ys)

is independent. Therefore, P (X|Y ) can be expressed as:

P (X|Y ) =
∏

s∈S
P (xs|ys). (4.9)

P (xs|ys) can be retrieved from the ISG background model. Referring back to equations

2.16 and 2.17 in Chapter 2, for any pixel value xs, likelihood P (xs|ys = 0) or P (xs|ys =

1) can be easily found from the ISG model with the given formulas.

Similar to the fact that P (Y ) defines the MRF energy UM (Y ); P (X|Y ) defines the data

fitting energy UD(X|Y ). Considering that the relation between the observations xs and

labels ys is independent for any s, and using the probability relation in equation 4.9, we

can assert that for pixel s, the data energy can be written as the negative logarithm of

the likelihood value calculated from the ISG model as shown below:

uD(xs|ys) = − log(P (xs|ys)). (4.10)

And then the overall data energy for the whole image becomes:

UD(X|Y ) =
∑

s∈S
uD(xs|ys). (4.11)

We have now defined probabilities P (X|Y ) and P (Y ) in equation 4.4, and also obtained

the related energies, UD(X|Y ) and UM (Y ).

Now the classification decision to find the optimum labeling Ŷ may be expressed as:

Ŷ = arg max
Y

[
P (X|Y )P (Y )

P (X)

]
. (4.12)

Having the data-fitting energy and the MRF energy at hand, we can define the total

energy as U(Y ) = UM (Y ) + UD(Y ). To rephrase once again: smoothness energy

component UM arises from P (Y ) and UD is inherited from the probability P (X|Y ).
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Therefore, we can relate the probabilistic decision rule to an energy based decision rule

as follows:

Ŷ = arg min
Y

U(Y ). (4.13)

To calculate the probabilities of all possible X and Y configurations over the whole

image range is not feasible. Finding the labeling Ŷ by minimizing the energy is therefore

computationally heavy. To solve these problems sub-optimally, we utilize 2 different

MRF energy optimization techniques, which are explained in the next sections.

4.2 Iterated Conditional Modes (ICM) Optimization

Besag [16] proposed a deterministic algorithm called iterated conditional modes (ICM)

which maximizes local conditional probabilities sequentially. It is a coordinate descent

based greedy algorithm. If the energy function to minimize is convex, then practical

methods like ICM can be used to find the optimal segmentation. If the energy function

is not convex as in our case, it may iterate to a local minimum of the energy, or to a

local maximum of the probability function.

ICM starts from an initial label image Y 0. For the success of the method, this initial

input is crucial. Steps in ICM energy minimization are summarized in algorithm 5.

Algorithm 5 ICM Iteration
Y = Y 0

repeat
for s ∈ S do

for y′s = {0,1} do
Calculate uM (y′s)
Calculate uD(xs|y′s)
Calculate u(y′s) = uM (y′s) + uD(xs|y′s)

end for
y′s = {0, 1}
ŷs = arg miny′s(u(y′s))
Update Y

end for
until Num. of MAX Iterations is reached

ICM is not guaranteed to converge to the global minimum energy as mentioned before.

It is a greedy algorithm to find a local optimum value for Y . The maximum number of
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iterations should be adjusted according to the requirements mostly based on time and

processing speed.

4.3 Belief Propagation (BP) Optimization

Belief propagation is another technique to find the optimal labeling in images where

MRF assumptions are applied [18]. In this method, the decision criteria at any number

of iterations is to compare ‘Beliefs” of different classes for a pixel s. The label which

is “believed” by neighbors of s to be the most probable label for s is selected in this

method.

In every iteration, pixels are assumed to send so-called messages to their neighbors.

At each iteration, all pixels are assumed to send these messages simultaneously, at the

same time to each other. Iterations are executed from the receiving pixel’s perspective

for every pixel. A message, m, is a vector with the same number of values available for

y. A message sent from pixel s to pixel r at time t is mt
s→r. mt

s→r implies which label

is the best fitting label for pixel r, from the perspective of pixel s.

In our approach, each pixel s passes energy values to its neighbors. Pixel s first assumes

that its neighbor r has label value yr = 0. For the possible label values ys for itself,

pixel s calculates two energies. The energy of having yr = 0 when ys = 0 is the first one.

The second one is the energy of having yr = 0 when ys = 1. The minimum of these two

energies is a part of the message from pixel s to pixel r. This is the belief from pixel s’s

perspective on pixel r having label value yr = 0.

After this, pixel s calculates two more energy values; the energy of having yr = 1 when

ys = 0 and the energy of having yr = 1 when ys = 1. The minimum of these two energies

is also sent inside the message to pixel r. Hence, two energies are sent from pixel s to

pixel r, showing the belief of pixel s on the two possible labels on pixel r.

This algorithm is explained in Algorithm 6.

In Algorithm 6, the number of iterations is configurable. When iterations converge,

there are two Belief values for pixel r; Belief(yr = 0) and Belief(yr = 1). The label

with the smallest belief is going to be selected as the optimal label. Notice that this

algorithm is a minimum sum algorithm, which corresponds to a max-product algorithm



Markov Random Fields Based Segmentation 41

Algorithm 6 BP Iteration
INIT: ms→r = 0∀(s ∈ S, r ∈ N s)
Pixel Processing Order: (0, 0) to (0, lastcolumn) to (1, 0) to (1, lastcolumn) . . .
repeat

for s ∈ S do
for r ∈ N s do

for y′r = {0,1} do
for y′s = {0,1} do

u(y′s) = uD(xs|y′s)
V (y′s, y′r) = Vc([y′s, y′r])
MSG(y′s) =

∑

kεN s/r

mk→s(y′s)

end for
ms→r(y′r) = min [u(y′s) + V (y′s, y′r) + MSG(y′s)]

end for
end for

end for
until Num. of MAX Iterations is reached
for y′r = {0,1} do

Belief(y′r) = u(y′r) +
∑

kεN r
mk→r(y′r)

end for
Select ŷr = arg miny′r [Belief(y′r)]

for the probabilities. The algorithm operates on − log domain. This is different than

sum-product algorithms, which try to find a global optimum for the whole image labeling

Y .

Using the belief values as the decision criteria, we both satisfy the data constraints and

the spatial smoothness constraints on the image. We also use the MRF segmentation to

produce a new weight image V M . This new probability image will be used in tracking

compensation for segmentation later in Chapter 5.

Each pixel value in V M at pixel s is V M (s), and these values are the probabilities calcu-

lated from the MRF model. We follow a trivial approach to obtain these probabilities.

Simply, the ratio of the belief on foreground label for pixel s to the sum of the beliefs for

both label values gives the probability of foreground for the pixel. The formula below

displays this way to obtain V M (s):

V M (s) =
exp−(Belief(ys = 1))

exp−(Belief(ys = 1)) + exp−(Belief(ys = 0))
. (4.14)
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This is a consistent approximation with MRF models. The overall marginal probability

is not maximized as in max-product algorithms. However, using this approximation

approach, a new segmentation for the foreground can be realized by thresholding MRF

probabilities using an experimental probability threshold value τmrf
p . So the new label

for pixel s then becomes VM (s) > τmrf
p . Later on, this probability image will also be

used in tracking in this thesis.

Performance results for MRF based segmentation results are provided in Chapter 6.

It is shown that MRF improves segmentation success, by creating a spatial smoothness

penalty constraint on the image. The results are obtained using BP optimization. Differ-

ent and more complex MRF optimization techniques like graph cut based optimization

[20, 21] could also be used; since these methods are sometimes more likely to converge

to the globally optimal energy values. Graph-cuts is guaranteed to converge for binary

labeling problems. On the other hand, BP peak results are comparable to these meth-

ods, and graph cut algorithms require a graph data structure and heavy computational

burden as indicated in [22]. For this reason, in the context of this thesis, it is not strictly

necessary to use other optimization algorithms like graph cuts.

Smoothness parameter θ in equation 4.7 defines the balance between the ISG information

and the smoothness penalty. When this parameter is high, the resulting probability

image becomes very smooth. This might result with an over-smoothing. In the other

case when the parameter is too low, then there is no effect of spatial correlations on

the segmentation. The results will completely be dominated by the ISG model. We

selected this parameter experimentally, in a way not to allow an over-smooth labeling

while incorporating the smoothness information into the model.

Next chapter explain how to integrate tracking information using mean-shift tracking

with the base model.



Chapter 5

Integrating Tracking Information

In this chapter, we explain how temporal continuity information can be integrated into

the ISG model and the MRF model based foreground segmentation methods, using mean

shift tracking. Mean shift algorithm tracks a target by estimating its location. The

ISG model hence the MRF model does not utilize location information. Every pixel is

modeled independently from others in the ISG model, and even though the MRF model

considers local smoothness constraints on the image, it does not use the foreground

location and movement information. We show that the integration of a tracker with the

segmentation methods increases segmentation performance drastically. This provides a

robust elimination of outliers detected as foreground objects in ISG/MRF models. As an

additional argument which does not try to achieve better foreground segmentation, but

tries to create a tracker; we also show that the probability images V I and V M obtained

via the ISG and the MRF models can be used as weight images in robust object tracking

with mean shift.

In the first section we will explain the mean shift algorithm and object tracking based

on it. The next sections provide information on how tracking can be used to improve

ISG/MRF foreground segmentation. Chapter 6 contains all the experimental results on

tests that we have conducted with the tracker compensation on foreground segmentation.

43
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5.1 Mean Shift Tracking

Mean shift algorithm was introduced in [23] to find the mean of a probability density.

It was used to calculate the center of gravity for a given cluster of densities. In tracking

context, densities correspond to target object probabilities for pixels. Densities are also

referred as weights. Therefore, mean shift finds the most probable location for the target,

which is the mean of the target probability distribution provided to the algorithm inside

a frame. The use of mean-shift under tracking context is explained in detail in [24].

In mean shift tracking, an assumption based on target movement is necessary. At time t

for a video, it is assumed that target object in the next frame, frame t+1, lies within the

proximity of its current location in the current video frame, frame t. The region around

the current location of the target is called as the proximity region. In short, target will

be searched inside this proximity region in the next frame, instead of analyzing the whole

frame to find it. Because of this assumption, it is enough to define target probabilities

for pixels s which lie in this proximity region, as implemented in [27].

Target probabilities of pixels are necessary for mean shift. For each pixel, a probability

of belonging to the target object should be available. This input is usually provided

not in a mathematical probability distribution function format but in an image format.

We will refer to this probability image as V . An example for this kind of images is

the V I image we can obtain using the ISG model, or the V M image we obtain using

MRFs and Belief Propagation; as explained in previous chapters. Every vs value on this

image on pixel s are probability values. In the way we have been expressing foreground

probabilities until now using ISG/MRF models, we can state that vs = P (ys = 1|xs).

It defines the weight to be assigned to pixel s during mean shift. For this reason, V is

also referred as the weight image.

There are different ways to obtain the weight image V . In traditional mean shift trackers,

only target color features are used to obtain this image. As an example to such methods;

color histogram of the target object being tracked is formed and backprojected to each

pixel in the image to create foreground probabilities in [28]. In this work, if a pixel has

similar colors to those of the target, due to the backprojection which creates a probability

from the target histogram and the pixel color, this pixel will have a high weight assigned

on it. In Avidan’s work [27], a group of classifiers -the classifier ensemble- is trained on
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both target colors and non-target colors. This is a discriminative method of training the

tracker. Then, the ensemble of classifiers assigns a weight to each pixel, showing how

probable classifying each pixel as target object is. This discriminative analysis makes

classifier based trackers perform better than traditional mean shift trackers.

We will now explain how mean shift operates on images, and how an object can be

tracked in a video. To rephrase the first step, a cluster of weights should be provided to

the algorithm. Mean shift will operate on this cluster and using moments of the weights,

it will detect the center of gravity of the cluster. For tracking context, this cluster of

weights is actually the target probability image, V .

To remind, the probability image may also be referred as the “confidence map”. vs

values should be in the interval [0, 1] since these are target probabilities. Notice that if

a pixel s is very likely to be a part of the target object, then the probability value vs

at this pixel location in the probability image is going to be higher. Therefore, when V

is displayed as a grayscale image with intensities starting from 0 up to 1, pixels which

are more likely to be target pixels will be displayed brighter than others. Mean shift is

expected to find the mean location of this bright object.

During initialization, user must provide the location and size of the object that is going

to be tracked. This is usually done by drawing a rectangle just around the object to be

tracked on the first frame where the target is apparent. Initial location should be known

to the algorithm so that the iterations can start from a correct location. Mean-shift takes

this rectangle around the object as an object window SO for the frame. Then, around

this object window which precisely contains the object, a larger window is placed. This

larger window is called the search region window SR, and it is a proximity region which

is expected to contain the object in the next frame. Object will be searched within this

window in the next frame. SO will be automatically repositioned in the next frame

inside SR, depending on the result of the mean shift algorithm and the direction of the

shift in object location. Size of SR is larger than the object window SO, but it does

not occupy the whole video frame either. This brings some efficiency in calculating the

mean. The probabilities only for pixels s which are inside this search SR are enough to

obtain, since mean shift operates only inside SR. This relies again on the assumption

that in the next frame, target will still lie within the proximity of its current location.
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A selection for the search region window size can be a static value like two times the

size of the object frame.

Once the probabilities are assigned inside the search region window SR, then within the

object window SO on image V in the previous frame, mean location sm = (im, jm) of

the probability values is found by mean shift in a trivial way. After the new mean is

found, SO is updated according to the current frame. First, the moments of the weights

inside SO are found as shown below:

M00 =
∑

∀(i,j)εSO

V (i, j), (5.1)

M10 =
∑

∀(i,j)εSO

iV (i, j), (5.2)

M01 =
∑

∀(i,j)εSO

jV (i, j). (5.3)

Notice that value V (i, j) is the same as V (s) since s = (i, j). This is the the weight

value on pixel s. Moments calculated above are 0th and 1st moments of the probability

values (weights) inside S. Using these values, we can then find the coordinates of the

mean of this distribution as:

im =
M10

M00
, (5.4)

jm =
M01

M00
, (5.5)

where sm = (im, jm) is the mean of the weight image inside the object window SO

on probability image V . When the mean is found, SO is centered around the new

mean. These iterations continue until a convergence decision on the mean of the target

is made. Convergence of mean shift is proved in [31]. In our implementation, two criteria

are used together to decide when the calculation of the mean converges. One of them

is the shift threshold. When the shift between a new mean and the previous one is less

than a threshold ε, the new mean is provided as the ultimate result of the mean finding

operation. As a second criteria, the maximum number of iterations is also configurable.
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This ensures that algorithm loop does not continue for a long time to impact processing

speed.

To state the rule to find the mean in a single iteration, we can rephrase equations 5.4

and 5.5 in a more generic way as:

sm =

∑

sεSO

vss

∑

sεSO

vs

(5.6)

The question at this point is how to obtain a robust and reliable weight image that gives

a correct estimation of the probability distribution of the pixels for a tracked object.

As mentioned briefly above, there are different approaches which address this question.

In practical mean shift implementations like [28], color histogram information of the

tracked object is used to create this distribution using backprojection of the histogram.

This is a simple and fast way of implementing mean shift method, and it can be robust

where the tracked object is significantly different from the non-target pixels in terms of

its color. Below are the steps to implement this approach:

Algorithm 7 Traditional Mean Shift Tracker
Xt = Video Frame at time t
Assume: X1 is the first frame with the target
Mark SO in X1

Hist = A Color Histogram of SO

for all {Xt|t = 1 to Number of Frames} do
Convert Xt into the related color space
repeat

Calculate vs ∀s inside SO with backprojecting Hist
Calculate sm = (im, jm) inside SO

Center SO around sm

until sm converges
end for

In Algorithm 7, the convergence rule “until sm converges” actually has two conditions

inside. Either the maximum number of iterations is reached, or the difference between

the new mean and the previous mean is less than a predefined threshold, ε, as defined

before.

In [27], instead of using color histograms, a group of classifiers is trained on the target

and non-target pixels and used to form the distribution for the target. Here is how this
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method works:

Algorithm 8 Classifier Based Tracker
Xt = Video Frame at time t
Assume: X1 is the first frame containing the target
Mark SO in Xt

Calculate SR around SO

Provide class labels for target pixels inside SO

Provide class labels for non-target pixels inside SR - SO

Extract features F for target and non-target pixels inside SR

Train Classifiers using F
for all {Xt|t = 1 to Number of Frames} do

Calculate vs ∀s inside SR

repeat
Calculate sm = (im, jm) inside SO

Center SO around sm

until sm converges
Calculate the new SR

Extract features F for target and non-target pixels inside SR

Update Classifiers using F
end for

It is important that Avidan’s classifier tracker is discriminative, unlike traditional mean

shift trackers which do not consider non-target pixel colors at all. This is proven to

outperform traditional trackers [27].

There is also a scale invariant version of the mean-shift algorithm, which has a dynamic

size for the object window, instead of a static one. This method is named as Continuously

Adaptive Mean Shift(CAMSHIFT) and introduced in [28]. In this method, the only

difference is that size of the object window in a new frame is dynamic. It is a function

of the 0th moment of the older object window being repositioned on the new frame.

This moment, M00, gives a general idea on the scaling changes of the image, even the

rotational changes. If the 0th moment is much less then expected, this may point to a

scale change, meaning that target object size has been reduced, and vice versa. Scaling

factors is up to the implementation.

5.2 Leveraging Mean Shift Tracking for Segmentation

The ISG/MRF models we have used to segment the observed image X and obtain a label

image Y , do not use any location information on the target object. When combining

tracking approaches with color modeling based foreground segmentation, words “target”
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and “foreground” gets the same meaning. Target for the tracker is the foreground for

the ISG/MRF models.

In the previous section of this chapter, we explained how the location of the target can

be estimated using the mean shift trackers. Intuitively, if we can estimate the location of

the target using a manual input for the first frame that contains the target foreground

object, and then utilizing a mean shift tracker; we can also use this information in

segmentation with the ISG/MRF models. A very simple approach can be to eliminate

pixels s labeled as foreground in label image Y if s /∈ SO. We can remove all outliers

that are misclassified as foreground away from the object location in this manner.

We implemented three different tracker based methods to obtain a labeling and to find

a new Y . These methods are:

• On label image Y retrieved via the ISG model if there are any foreground marked

pixels s where s /∈ SR of the tracker for the current frame; then this is taken to be

a misclassification. According to tracker’s search window SR, there cannot be any

foreground outside the search region. Then, for the new Y , we re-label s as ys = 0

in the previous Y of the ISG model, and mark s as background. The performance

results of this outlier elimination on ISG model using the tracker are provided in

the results chapter.

• We utilized a decision tree based classifier which returns foreground probabilities

for the pixels inside SR for every frame as a label. If we name this new probability

image as V T , then we directly use a probability based thresholding on V T based

on a probability threshold τt. If the probability of foreground for a pixel is lower

than this threshold, then the pixel is taken to be background. This method is

similar in terms of eliminating all outliers outside the SR of the tracker like the

first method, but inside SR, this method relies on the probability of the tracker,

instead of the ISG model.

• As the final method we experimented, we combine V I and V M of the ISG and

MRF models with the probability calculated via the tracker, V T . We take a

weighted average of ISG/MRF based probabilities and the tracker probabilities.

This weight is dynamic and depends on how stationary the foreground object is.
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Using ISG or MRF models in this combination result in similar performance, al-

though MRF and the tracker combination results in a slightly better performance.

The results are displayed in the next chapter.

This average between the tracker and the ISG/MRF is altered and dynamic, de-

pending on the movement rate of the foreground object that can be learned via

a history of object locations. We keep track of object window locations using the

mean shift tracker, and we compare these locations between the frames to get

an idea of the movement speed of the foreground object. If the movement rate

is low, then, as it was explained before, the ISG/MRF foreground probabilities

for the real foreground pixels drop significantly, since the object begins blending

into the background. Therefore, according to the movement rate, we increase or

decrease the effect of the tracker probability on the combination of ISG/MRF and

the tracker probabilities. If the movement rate is high, then we rely more on the

tracker instead of the ISG/MRF models. The details of this algorithm is given in

Algorithm 9.

.

We used V̂ to save the new probability results of the combined model which averages

the probabilities V I/V M calculated via ISG/MRF models with the probabilities V T

calculated via the tracker. Each pixel s on this image has the probability value v̂s,

which shows how likely that pixel is to belong to the target, from the combined model

perspective.

Algorithm 9 describes the step of our implementation for this option to utilize target

movement information in ISG/MRF segmentation:

In algorithm 9, v̂s keeps an averaged target probability value for pixel s. τo(t) defines the

weight of making the ISG/MRF model or the tracker more dominant in this weighted

average. τo(t) also depends on the learning rate ρ for the ISG model, and how fast we

want foreground to be accepted as background. The advantage of the combination is

to compensate for a major disadvantage of using the ISG model. When the foreground

is stationary, the ISG model hence the MRF model will classify it as background after

a while, depending on the learning rate of the model. Therefore, the tracker can in-

form the ISG/MRF model on the location and the movement rate of the object. The
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Algorithm 9 Using Motion for ISG/MRF Segmentation
Ensure: Mean-Shift runs in parallel With ISG/MRF
Ensure: Mean-Shift returns SO for every frame
Ensure: Mean location vector L keeps last 10 object windows (SO)

for all Xt|t = 1 to Number of Frames do
for all s ∈ SR do

vs = probability from the ISG or MRF
v′s = probability from the tracker
τo(t) = Incremental overlap rate between L(t) to L(t− 10)
v̂s = (1− τo(t))vs + τo(t)v′s

end for
end for

tracker can obtain a robust averaging weight τo(t), by measuring the distance between

object windows in consequent frames, which is an indicator of the movement rate for

the target. Then, decision-tree based foreground probabilities can be more dominant

for the segmentation, since the ISG/MRF models blend the stationary foreground into

the background. However, the tracker still knows where the foregorund is, hence to use

the tracker probability is more reliable in such scenarios. Local color based classification

will dominate the labeling decision where foreground remains stationary for a long time.

But still, ISG or MRF models will have a minor effect on the decision as long as the

τo(t) parameter does not increase extremely.

Optionally, when the foreground object should be considered as the new background in

a scene, an additional configuraton on the implementation can surely be made; if the

foreground must be blended into the background after some time. In that case, τo(t)

can be reset to an initial value not to over-increase. The initial value for τo should favor

the ISG/MRF model, and begin favoring the tracker in case of stationary foreground

scenarios.

Performance results for the three different ways to use tracking for segmentation which

are mentioned in this section will be shown in Chapter 6.

In the next section, we explain how the ISG/MRF models can be used to “track” the

object. In short, next section is on a new tracker, that utilizes the probability image V I

of the ISG model and the probability image V M obtained by the MRF model.
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5.3 Using ISG and MRF Models for Tracking

From the previous chapters, we introduced how we obtain foreground probabilities for

all pixels in X. These probability images were V I which was obtained from the ISG

model, and V M which was obtained from the MRF model.

Since mean shift trackers rely on a weight image, these probability images above can be

used as a weight image for the tracker. The ISG model keeps track of observed values

on each pixel by updating the related Gaussians inside the pixel mixture. This model

takes temporal relations of the pixel values xs into consideration. On the other hand,

MRF model also uses the ISG model to obtain this temporal correlation between the

different observations xs on pixels s through time; and MRF model also incorporates

spatial smoothness constraints. In belief propagation based MRF optimization which

was explained in Chapter 3.2.3, every pixel in a sense warns their neighbors on which

class they should belong to. As the ultimate result, an MRF based probability image V M

is formed by combining the belief of the neighbors together with the belief of the pixel

itself, on being a foreground pixel. This gives the MRF based foreground probability for

the pixel.

Traditional and classifier based mean shift trackers that were explained through this

chapter rely on local features of the target object. They do not keep track of temporal

or spatial relations between the pixels. The probability image that is formed in these

trackers is local, mostly based on color features. Intuitively, using the ISG or the MRF

models to assign target (foreground) probabilities to each pixel inside the search region

window SR of the mean shift tracker would be more robust than other probability

assignments.

Consider a scenario where a traditional or a classifier based tracker is used. At a moment

in time, the features of the target pixels might be very similar to the features of the non-

target pixels. In these cases, the tracker would get false probabilities, false weights

and the mean of the object window would not be estimated correctly. This would also

make the tracker get stuck because the object window SO would remain on the same

position for some time due to the fact that non-target pixels with similar features to the

target are stationary. This would affect the tracker drastically and make it impossible

to recover. For this reason, ISG and MRF based weight images would be more robust.
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Even when the features of the background and the foreground are similar, the ISG

model, if converged for some time, would be able to separate the target better since the

Gaussians inside the ISG model would be very precise.

In a feature based tracker, if the search window involves some non-target pixels with

target-like features, then the calculation of the object window fails. In ISG/MRF model

case, the model would know that those non-target pixels have been containing similar

values for a while, hence they are background but not foreground. A sample frame is

displayed in Figure 5.1. It can be seen on that figure that color features of the background

and foreground are similar for a part of the frame, and when the search window involves

those non-target pixels, the object window shifts away from the real foreground object.

Considering another scenario where the foreground is very stationary, and the ISG/MRF

model probabilities tend to favor the background; using the probabilities of the classifier

based tracker can be advantageous. Keeping the movement rate of the foreground object

and the location of the object; if the object moves very slowly, then the significance of

the probabilities calculated by the classifier based tracker can compensate for obtaining

correct weights. Otherwise, when the object movement rate is high, probabilities cal-

culated by ISG/MRF can have higher significance in determining the weights for the

mean-shift algorithm.

We combine two trackers as mentioned above. Calculation for the movement rate of the

foreground object is no different than what is explained in Algorithm 9 in the previous

section that is used for segmentation. The same parameter, τo(t) is used to quantify the

movement rate and the probability v̂s = (1− τo(t))vs + τo(t)v′s is used as the mean-shift

weight for pixel as, as in Algorithm 9.

Experimental results and comparison to other trackers of the ISG and MRF based

tracking methods are provided in the next chapter, which contains all the results for all

methods in this thesis.
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(a) ISG/MRF based Tracker

(b) Classifier based Tracker

Figure 5.1: Tracker Comparison



Chapter 6

Experimental Results

6.1 Information on Test Data and Experiments

In this chapter, we present all experimental results of different methods which are ex-

plained throughout the thesis. In the first section, general information on the tests

and the test data is presented. Then, the performance results and parameters for the

following methods are given:

• Standard ISG model based foreground segmentation and probability thresholding

based ISG segmentation introduced in Chapter 2,

• Hysteresis thresholding introduced in Chapter 3,

• MRF probability based segmentation introduced in Chapter 4,

• Purely decision tree classifier based tracker segmentation where a probability

threshold is applied directly on the search window. In addition, the tracker com-

pensated foreground segmentation methods using the ISG and the MRF models

introduced in Chapter 5,

• Object tracker using the ISG and MRF probabilities introduced in Chapter 5.

All our tests were conducted in an Intel Processor based PC at 2.0Ghz, with 4.00 GB of

RAM. Intel OpenCV image processing library for C language was used as the founda-

tion library. 8 videos in total were analyzed for all different methods. All these videos
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have also their groundtruth information, either in the format of a black and white video,

or text files pointing to foreground region windows for each frame in the video. 6 of

these videos are taken from VSSN06 segmentation competition test data [29]. 2 videos

were taken from the 2nd IEEE International Workshop on Performance Evaluation of

Tracking and Surveillance [32] datasets. VSSN videos are artificially formed and their

groundtruth is pixelwise matching with the real foreground. PETS2001 videos are obser-

vations of real scenes and the groundtruth for these videos are blockwise matching with

the foreground. In other words, not the exact foreground object but a precise rectangle

around the object is given as groundtruth in these videos. A fixed camera is used for

both datasets. In terms of all experimental parameters, we tried to come up with the

best fitting values for most of the scenarios, and then for a robust comparison, we kept

those parameters constant and the same for all methods.

All parameters that were explained through the thesis are taken as constant for all the

tests. The values we use are:

τp = 0.6, τw = 0.75, τr = 0.5, τe = 120pixels, κ = 0.05, τmrf
p = 0.6, theta = 0.3, Initial

τo = 0.2, τt = 0.5, α = ρ = 0.02, β = 0.1, σinit = 25, initial weight = 0.05 and λ = 0.85.

All videos below have 384x240 pixels, with different number of frames. In Table 6.1,

information on the test videos is given. The duration of the each video and the learning

period for all the videos are displayed in terms of seconds. During the learning period,

performance parameters are not calculated. Subjective criteria like “background move-

ment” and “BG-FG similarity”, “how stationary the foreground is” are represented in

three levels: high, medium and low. These levels are assigned according to the observa-

tions and the averages within the test group.

GMM Test Videos
Video Duration BG Movement BG-FG Similarity Stationary FG Learning Period
Video1 16 Low Low Medium 5
Video2 36 High Medium High 10
Video3 32 High Low Medium 10
Video4 32 High Low Low 10
Video5 30 Low High Low 10
Video6 30 Medium Low Low 10
Video7 90 Low Low Low 30
Video8 90 Medium High Low 30

Table 6.1: Characteristics of Different Test Videos
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(a) Test Video 1 (b) Test Video 2

(c) Test Video 3 (d) Test Video 4

(e) Test Video 5 (f) Test Video 6

(g) Test Video 7 (h) Test Video 8

Figure 6.1: Test Video Screenshots

Screenshots from the videos given in Table 6.1 are provided in Figure 6.1 for a reference

to the mentioned video databases.

Now, the experimental results and the discussion on these results are going to be pre-

sented for each method. Then, an overall comparison discussion will be given. In the
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(a) FG Detection (b) FG Groundtruth

(c) False Alarms (d) Missed Pixels

Figure 6.2: ISG Results - Test Video 1

last section of the chapter, results on the tracking method which utilizes the ISG/MRF

probabilities will be provided.

6.2 Experimental Results for ISG Model

We will first visualize the results of the standard ISG method, addressing the major

problems again. Specific screenshots from random test videos are displayed for discussion

purposes. In Figure 6.2, ISG detected foreground can be seen next to the groundtruth.

False detections (false alarms) and misses can also be seen. This video does not contain

extreme lighting changes and background is very stable. This makes the detection

almost flawless. Some pixels that coincidentally have similar foreground colors with the

background colors are missed. False alarms are usually around the object. This is due

to pixel-wise value misreadings of the image from the groundtruth video. Even so, false

alarms are also neglected.

In Figure 6.3, a video with lots of movement in the background (tree leaves in the

wind) is shown. There are also very sharp lighting changes since this is an outdoor

scene. This is one of the hardest videos in terms of modeling the background colors.

As it can be seen, false alarms are quite a lot in this segmentation, since some tree

leaves moving in the wind are detected as foreground. In the long run, for pixels where

leaves are moving, number of false alarms decreases by time, since the model adapts the



Experimental Results 59

(a) FG Detection (b) FG Groundtruth

(c) False Alarms (d) Missed Pixels

Figure 6.3: ISG Results - Test Video 2

background to those movement changes. In this video, the foreground object (human

shape) is turning around itself, hence some parts of the object remain stationary for

some time. This makes the ISG model believe that some of the pixels on the foreground

object are actually background now, since they become dominant in their Gaussian

mixture based color distribution. In this case, the foreground partially blends into the

background. Modifying the learning parameter for the ISG model according to each

different scenario would be effective in such cases.

The video in Figure 6.4 is similar to the one in Figure 6.3, but here foreground objects

pass through the scene very quickly. The problem of moving background still exists:

there are moving tree leaves. But it can be seen that the number of missed pixels signifi-

cantly decrease compared to the previous video, when foreground is not very stationary.

The time foreground stands still is not enough for foreground colors to blend into back-

ground colors in the Gaussian mixtures, therefore resulting in a better segmentation of

the foreground.

There is also another video with a car passing as a foreground object in 6.5. Here the

issue is: parts at the back of the car have very similar colors with the background.

ISG model takes these parts directly as background, since they fit well in the existing

background distribution. At this point, one good solution could be keeping track of

the size and location of the car, and feed this information to the background model
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(a) FG Detection (b) FG Groundtruth

(c) False Alarms (d) Missed Pixels

Figure 6.4: ISG Results - Test Video 3

(a) FG Detection (b) FG Groundtruth

(c) False Alarms (d) Missed Pixels

Figure 6.5: ISG Results - Test Video 4

with a weight. This scenario is a good example to show when tracking compensated

segmentation can be useful.

Figure 6.6 shows a scenario where there are multiple foreground objects entering a scene.

Foreground objects partially have similar colors with the background, hence there are

some small clusters of missed pixels on foreground regions. Since the ISG model is

completely pixelwise, any pixel that does not behave as expected will be classified as

foreground; since the number of foreground objects is not very relevant in ISG. When
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(a) FG Detection (b) FG Groundtruth

(c) False Alarms (d) Missed Pixels

Figure 6.6: ISG Results - Test Video 5

a smoothing approach like the hysteresis thresholding or the MRF model is used, this

kind of problems are expected to be alleviated.

In most of the figures above, it can be noticed that foreground pixels are completely

independent. There are some pixels detected as foreground, and some others very close

but these are detected as background. Then, another small cluster of foreground pixels

follow. This shows that the model may be improved if the spatial correlation of pixels

is taken into consideration.

In some of the test videos where background is stationary for some time to allow the ISG

model to learn the foreground colors as the background, then the detection performance

decreases significantly. Almost all foreground objects will be detected as background;

and when foreground starts to move again, background appearing out will be detected

as foreground. This can be handled with an additional technique, tracker compensation,

which warns the background model for stationary foreground objects.

Performance parameters used to measure the segmentation performance are taken from

the VSSN06 competition. These performance parameters are calculated as:

precision =
#detected foreground pixels−#false alarm pixels

#detected foreground pixels
, (6.1)
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recall =
#real foreground pixels−#misses

#real foreground pixels
. (6.2)

Precision parameter shows how much of the detected pixels really belong to the fore-

ground. Recall parameter shows how much of the foreground was detected and how

much was missed. Taking precision and recall values as percentages, a single parameter

that represents the overall segmentation success can be also used and it is given by:

F1 =
2 ∗ precision ∗ recall

precision + recall
(6.3)

Table 6.2 shows the results on 8 different videos using the ISG model and Gaussian

weight based segmentation. These are the standard results for the ISG model without

any incorporation of direct probability based thresholding.

ISG Model Performance - Weight Based
Video1 Video2 Video3 Video4 Video5 Video6 Video7 Video8

Precision(%) 96.7 45.1 55 63.1 93 60.6 93.9 65.5
Recall(%) 86.3 49.8 60.1 71 81.5 85.8 82.7 88.1
F1 Score 0.91 0.47 0.57 0.66 0.86 0.71 0.87 0.74

Table 6.2: Results - Standard ISG Performance

Table 6.3 shows the result of the probabilistic thresholding using the ISG model. In this

method, ISG is used to extract class probabilities, and a direct foreground probability

thresholding per pixel is applied with a threshold value, τp. It can be seen that the

results are usually similar to the weight based thresholding, since the base model for

both options is the same. The only difference appears when a foreground object has

different colors than the previous foreground objects observed through the video. In this

case, foreground based thresholding is slightly better than weight based thresholding.

In general, probabilistic thresholding using ISG results at least as good as the regular

ISG method, even better. In addition, calculation of these probabilities enables many

enhancements like MRFs and trackers. The probability image calculated using the ISG

model for direct thresholding is shown in figure 6.7.

These tests are made by keeping all experimental parameters constant. These parame-

ters can be altered according to the specifics of the video to be segmented. For instance,

if we change the probability threshold value τp to different values ranging from 0 to 1,
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(a) FG Groundtruth (b) Probability Image

Figure 6.7: Probabilistic ISG Output

ISG Model Performance - Probability Thresholding
Video1 Video2 Video3 Video4 Video5 Video6 Video7 Video8

Precision(%) 96 43.7 57.6 58.2 93.2 58.1 94.2 66.2
Recall(%) 90.3 51.1 61 72.8 80.4 86 82.5 88.3
F1 Score 0.93 0.47 0.59 0.64 0.86 0.69 0.88 0.73

Table 6.3: Results - ISG Performance with Probability Thresholding

Figure 6.8: Precision-Recall Curve Example - Video 6

for each different value the results will be different. Each threshold value will result in

a different pair of precision and recall parameters. This concept is depicted with the

sample precision-recall curve for test video 6 in Figure 6.8. It is seen in this figure that

increasing the threshold makes the segmentation more precise, however, decreases the

recall rate. Less of the real foreground is detected with each increase in the probability

threshold, as expected.
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(a) Groundtruth (b) ISG Segmented

(c) Hysteresis Segmented (d) Edge Contours Incorporated

Figure 6.9: Hysteresis Segmentation Results

About the computation load of the algorithm, enough memory to allocate Gaussian

mixture models for each pixel in the image is necessary. A single Gaussian mixture

model has K number of Gaussians for a pixel at most; and a mean, a variance and a

weight for each Gaussian. Every test video contains 384x240 pixels. So, 3×K variables

for each of these pixels occupy the memory. With this computational load on our test

PC, the ISG model operates at a frame rate of 38. When the additional probability

calculations are made to extract foreground and background probabilities for all pixels,

the frame rate drops down to 35 due to the additional computational load. Still, this

rate is more than acceptable for real time applications.

6.3 Experimental Results for Hysteresis

Hysteresis thresholding combined with the edge contour information and some post-

processing was done to address the spatial correlations between pixels, as in MRF

smoothing. The resulting images obtained in hysteresis thresholding which overcomes

the issue of the fragmented ISG foreground are displayed in Figure 6.9 together with the

standard ISG segmentation result and the groundtruth. It can be seen that the fore-

ground object is detected in fragments in the base model, but hysteresis thresholding

combines the closer fragments into bigger single foreground objects.
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Hysteresis thresholding increases the recall rate of the segmentation and keeps the pre-

cision stable. Since we apply hysteresis thresholding on background pixels inside the

hysteresis region to detect missed foreground parts, it is expected that the recall will

increase. The only conversion with the hysteresis thresholding is to relabel a pixel from

background to foreground, when the pixel is between foreground objects and has a high

probability of being foreground. Therefore, recall rate increases. Precision remains the

same compared to the ISG model, since the number of pixels relabeled from background

to foreground correctly is almost the same as those which are relabeled from foreground

to background.

It is also seen that incorporating edge information slightly increases the performance.

Since in terms of processing speed, using edge information does not cause any problems,

this is acceptable. Hysteresis thresholding method combined with the edge contour

enhancements operate at a processing rate of 24 frames per second. This method as well

can be used for a real time application.

Precision and recall rates are given in Table 6.4 for the hysteresis thresholding method.

Hysteresis Model Performance
Parameters Video1 Video2 Video3 Video4 Video5 Video6 Video7 Video8
Precision(%) 95.4 45.1 57.9 60.7 91 56.8 93.7 65
Recall(%) 92.5 63 64.5 75.3 85 86 85.2 88.6
F1 Score 0.93 0.52 0.61 0.67 0.88 0.68 0.89 0.75

Table 6.4: Results - Hysteresis Segmentation

6.4 Experimental Results for MRF

MRF Belief Propagation optimization is applied to all test videos that are used for

the base method. Table 6.5 displays precision and recall parameters obtained with

introducing a smoothness penalty for the labels using the MRF approach and MRF

probability thresholding.

It can be seen in the results for MRF smoothing that considering spatial correlations

significantly increases both parameters in most cases as expected. False Alarms, which

are usually pixels detected as foreground in small clusters surrounded by big clusters

of background by the ISG model, will be smoothened, since MRF will penalize such a
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– MRF Model Performance
Parameters Video1 Video2 Video3 Video4 Video5 Video6 Video7 Video8
Precision(%) 97.2 38 57.5 62.3 97.2 59.9 94.1 71
Recall(%) 94 61.4 60.9 79.6 80.7 89.1 87.6 92
F1 Score 0.95 0.47 0.59 0.69 0.87 0.71 0.90 0.80

Table 6.5: Results - MRF Segmentation

(a) Groundtruth (b) MRF Segmented

Figure 6.10: MRF Foreground Detection

labeling. Thus, false alarms will be labeled as background to decrease the overall image

energy. The spatial dependencies affect the foreground labeling decisions. MRF output

increases the number of detected foreground pixels inside the foreground object where

most of the pixels are foreground. It may also result in marking the pixels as background

where there are already some number of pixels detected as background. Since we use

4-neighborhood system, the effect of this can easily be seen in smoothed pixels in a

rectangular fashion. An example is shown in figure 6.10.

Pixels that would be detected as background inside foreground objects are also going to

be classified as foreground, since MRF smoothness penalizes such a non-smooth labeling

of pixels.

The only drawback of using MRF smoothing might be the significant decrease in frame

rate. There are additional loops introduced due to the optimization algorithm. This

causes a very significant decrease in the frame rate. Compared to the frame rate of the

ISG model which is 38 FPS or the ISG probability thresholding that operates at 35 FPS,

the MRF model based segmentation operates at a frame rate of 20 frames per second.

However, this frame rate is still acceptable even for real time applications.

Another situation where MRF smoothing decreases the performance is when the data

energies are very high and the smoothness is completely dominated by the incorrect data

energies. When the data energy dictates that many pixels will be classified as foreground;

but actually they are background; MRF tries to smooth the other background pixels
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around, thus, misclassifies them. In short, if the ISG model performs unacceptably bad,

then MRF smoothing might make the segmentation even worse.

6.5 Experimental Results for Tracking Compensated Method

Within all proposed methods in this thesis, on the average, the best performing method

is the tracking compensated segmentation where the decision-tree based tracker proba-

bilities are combined with MRF probabilities. Tracking compensated method brings a

very significant increase in performance.

In most cases in the videos, there are many outliers detected as foreground. Spatial

smoothing like MRF and hysteresis can prevent this up to a point. That limit is de-

fined by their smoothness energy weight or the probability thresholds. In tracking based

method, ISG/MRF model is informed about stationary foreground objects. The prob-

ability of being foreground for pixels that lie outside the search window is 0, from the

trackers perspective. This way, all outliers which are very far away from the foreground

objects are eliminated directly. Inside the search window, the tracker is able to assign

target probabilities to each pixel, based on the decision-tree classifier operating on RGB

colors. Notice that for this tracker compensated method, the location of the foreground

object must be provided manually on the first frame it appears. As an example, Figure

6.11 shows a video frame where tracker is used to track the object location and move-

ment (red rectangle is the object window) and any pixel detected as foreground outside

the search window (double size of the red object window) is eliminated and reclassi-

fied as background. In this example, a very low threshold is used in the ISG model to

emphasize the effect of using the tracker compensation.

In cases where foreground is very stationary, ISG, MRF and hysteresis thresholding

methods will definitely fail, since the data energy component will be very high and

smoothing will cause the number or errors to increase. In tracking compensated method

where the probabilities obtained by the tracker are averaged by the probabilities obtained

by the ISG or MRF model, when the foreground object is stationary to blend into the

background; then the significance of the tracker probability which is based only on color

increases. This prevents the ISG or the MRF model to misclassify stationary foreground

as background.
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(a) Groundtruth (b) Tracked Object

(c) ISG Output Without Tracking (d) Tracking Incorporated Segmenta-
tion

Figure 6.11: Tracker Compensated Segmentation

Table 6.6 shows the results when we only apply outlier elimination using the search

window of the tracker on the ISG segmentation result. In videos where there is a lot of

background movement, there are also many outliers of misdetected pixels in the image,

like in some of the test videos. Then, the outlier elimination method increases the

performance significantly. The difference for this method is, inside the search window, it

is only the ISG model classification that we rely on. There is no probability assumptions

here, only a bare outlier elimination by the tracker is performed on top the ISG result.

– Tracker Based Model Performance
Parameters Video1 Video2 Video3 Video4 Video5 Video6 Video7 Video8
Precision(%) 97.6 63.3 68.3 59.1 93 60.5 91.1 66.5
Recall(%) 95.2 66.2 64.1 85.2 82.3 91 88.9 93.6
F1 Score 0.96 0.64 0.66 0.69 0.87 0.72 0.90 0.77

Table 6.6: Results - ISG and Tracker Outlier Elm.

In Table 6.7, the second option in tracker compensated method where only the fore-

ground probabilities calculated by the decision-tree based tracker are used and directly

thresholded. Since this tracker might be problematic when there are feature similarities

between foreground and background, the precision decreases very significantly.

Upper half of Table 6.8 shows the performance results of combining the MRF probability

image V M and the decision tracker probability image V T . Since everything outside the

search window is directly eliminated, this brings an expected increase in precision. It
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– Tracker Based Model Performance
Parameters Video1 Video2 Video3 Video4 Video5 Video6 Video7 Video8
Precision(%) 86.7 51 57.9 59 71.6 58 91.7 53.3
Recall(%) 81.8 56.1 59.5 71.1 70.8 88.5 77.7 74.2
F1 Score 0.84 0.53 0.58 0.64 0.71 0.70 0.84 0.62

Table 6.7: Results - Only Tracker Probabilities Used

will not affect the recall rate since the search window is much larger than the object

window. This guarantees that no foreground pixels are going to remain outside the

search window. The lower half of Table 6.8 shows the results of the combined model,

but not using the MRF probabilities, instead using the ISG probability image V I . There

are no significant differences between these two options and they both result in very good

performance when combined with tracking. However, MRF and the tracker combination

performs slightly better.

– MRF and Tracker
Parameters Video1 Video2 Video3 Video4 Video5 Video6 Video7 Video8
Precision(%) 98.5 69.1 76.3 75.9 96.4 65.7 95.2 78.2
Recall(%) 96 73.7 72.4 88.1 89.9 95.1 94.6 97.7
F1 Score 0.97 0.71 0.75 0.81 0.93 0.77 0.94 0.86

- ISG and Tracker
Parameters Video1 Video2 Video3 Video4 Video5 Video6 Video7 Video8
Precision(%) 97.6 66.2 70 62.1 96.2 61.3 93.8 70.5
Recall(%) 95.2 69.9 65.5 89.2 89.3 94.7 94 96.6
F1 Score 0.96 0.68 0.67 0.73 0.92 0.74 0.93 0.81

Table 6.8: Results - MRF/ISG and Tracker Combined

6.6 Overall Comparison of Segmentation Methods

Average performance parameter results for each method explained in the section above

can be seen in Table 6.9. For this comparison table, simply an average for each method’s

results on every test video is calculated.

Avg.Parameters ISG Hysteresis MRF Outlier Elim. on ISG Tracking+MRF
Precision 71.6 70.7 72.3 75.3 82.2
Recall 75.6 80 80.6 83.4 88.4

F1 Score 73.5 75 .76.2 79.1 85.2

Table 6.9: Results - Overall Comparison Table
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Figure 6.12: Precision-Recall Curve Comparison

Figure 6.12 shows the group of precision-recall curves of 5 different methods operating

on the same video, video 6. To display a clear precision-recall curve, implementation

parameters except probability and weight thresholds τ , that are given in the first section

are fixed to contant values which are appropriate for a smooth precision-recall curve for

almost all the videos. Each curve belongs to a specific method. These curves are formed

by only modifying different threshold parameters, τ . Each point represents a precision-

recall pair that corresponds to a specific threshold value. In each of these methods, τp,

τw and τr are fixed. τr is always taken to be 3/7 of the parameters τw and τp, which are

both taken to be the same for these curves. The area under a curve actually is directly

proportional to how successful a segmentation method is.

On the figure itself, the blue curve shows the precision and recall relation for the regular

ISG model.

Circle marked red points connected by red dashed lines form the precision-recall curve

for the hysteresis thresholding. It is seen that for the same precision values, hysteresis

thresholding increases the recall rate. In a general view, hysteresis line stays very close

to the ISG line as expected, since it relies on the ISG detection and tries to improve the

recall on that result. When the ISG model precision performance is very low, almost
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every pixel is detected as foreground. Therefore, filling the gaps between pixels make

hysteresis thresholdind perform slightly worse in these cases.

Magenta colored plus signs and the magenta colored dashed line connecting them shows

the curve for the MRF model. It can be observed that when the threshold values is very

low, like in hysteresis thresholding, many of the pixels are assumed to be foreground

and marked as foreground. MRF smoothing in this case favors the foreground too, and

the model is not able to bring visible efficiency. The model performs even worse than

hysteresis thresholding in these cases, since hysteresis thresholding uses a secondary

criterion to fill in the gaps between foreground segments but the MRF model relies

on the dominant data energies. When the threshold value begins to increase and the

base ISG model is able to detect in an acceptable success, then the MRF increases the

accuracy of the segmentation. This is the reason why for lower thresholds, sometimes the

precision decreases compared to other methods. When ISG performance is acceptable,

MRF performs better than the ISG model and the hysteresis thresholding method.

The green colored and dashed line shows the curve for tracker based outlier elimination

with the ISG model. In this method, everything outside the search region window is

neglected and directly considered as background. For this reason, even when the recall

is very high, since all outliers will be eliminated, the precision value does not drop below

40 percent. An increased rate of misdetections in the overall image does not impact the

method, since all these outliers are directly eliminated. For the pixels inside the search

window, ISG decisions are used and this method completely relies on the ISG result.

That is to say, inside the search window, precision and recall rates change as expected.

When the recall rate of the ISG model drops to very low values, outlier elimination

method approximates to the ISG model itself, since most of the pixels inside the search

window will be detected as background due to the higher thresholding. For this reason,

precision will begin to decrease.

The black colored stars connected via the black dashed line displays the best method

according to our tests. In this method, the probability image obtained via MRF, which

is V M , is averaged with the classifier based tracker’s foreground probability image V T .

Averaging parameter τo slightly favors the ISG model initially. On the other hand,

unlike MRF smoothness penalty, this parameter is dynamic. When the foreground

object remains stationary for some time, the weight of V T increases significantly; hence
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correcting any possible misclassification based on V M . It can be seen that the area

under the black curve is higher than those for all other curves. As expected, when the

recall rate decreases down to extremely low values, all curves tend to approach each

other, however, due to the tracking information and the effect of the tracker -which is

not related to the ISG at all-, the black curve never goes under the other curves.

One disadvantage of the tracking compensated method is that at the same time, the

ISG model, all MRF loops and the tracker operates and utilizes the memory. However,

in our test PC, the tracker compensated MRF method operates at 16 FPS per second,

which shows that it can be used for real-time applications anyway.

6.7 Results for Tracking with ISG/MRF

This section shows the results for the tracker, that uses the weight image obtained by

the ISG/MRF model. Probability images V I and V M are used as the weight image

input for a tracker, and mean shift algorithm is utilized to track the object within a

frame as explained in previous chapter.

For tracking comparison, the main performance indicator we use is Frame Detection

Accuracy (FDA), and it is defined by the VACE program [33] as

Overlap%
#Decisions

, (6.4)

where “Overlap%” is the overlapping area percentage between the tracker’s bounding

box and the groundtruth box. ”#Decisions” is the number of total tracking decisions.

Table 6.10 shows the FDA results of 4 trackers: ISG based tracker where V I is the input

weight image, MRF based tracker where V M is used as the weight image, a decision-tree

based classifier tracker that we implemented and an average of the probability images

of MRF tracker and the decision tree tracker. In this table, it can be seen that ISG

and MRF based trackers perform better than a decision tree based classifier which only

operates by analyzing target features inside the search region window. ISG and MRF

models keep track of the spatial and temporal correlations, thus they provide a more

robust weight image. As mentioned before, traditional or classifier based trackers can

easily get stuck in the video on a background object which “looks like” a foreground
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object in terms of its features. In addition to these, a dynamic combination of the

ISG/MRF based tracking with the classifier based tracker according to the movement

rate of the target object provides the best results as it can be seen in Table 6.10.

– ISG MRF Classifier Combined
Video1 88.2 88.3 84 88.6
Video2 94 94.4 87.9 94.7
Video3 77.4 79.6 90.1 88.5
Video4 96.8 98 93.2 98.3

Table 6.10: Results - Tracker with MRF and ISG

In terms of processing speed, ISG based tracker operates at 20 FPS, MRF based tracker

operates at 15 FPS, and the combination of the MRF tracker and the decision-tree based

tracker operates at 14 FPS. Real time tracking can still be provided by each option,

considering that the implementation code is not even optimized perfectly for this thesis.

In terms of tracking performance, combination mostly increases the accuracy of ISG and

MRF trackers in conditions where the target stands stationary for a long time in the

video. ISG model in this case decreases target probabilities since those pixels tend to

be more “background”, but color based tracker still keeps a high foreground probability

for those pixels.

The next chapter contains the conclusion and describes the future plans for this thesis.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this paper, we introduced a different approach on ISG model. We obtained class

probabilities using the model. This probability image for the foreground at any time is

V I . The approach to create a probability image V using each method, brings multiple

options to enhance the segmentation performance. MRF segmentation can be used by

getting the data-fitting energy components from V I and it creates another probability

image V M , which can be used in direct segmentation. This way, spatial correlation be-

tween pixels can be incorporated into the segmentation. The assumption of independent

pixels in the ISG model is dealt with. It outperforms ISG based segmentation.

Spatial relations between pixels is also handled with the hysteresis thresholding mech-

anism. This method significantly removes fragmentation of the detected foreground in

the ISG output, since it tries to fill in the gaps between foreground segments according

to the foreground probabilities.

Besides spatial dependencies, the location and movement information about the fore-

ground is alo utilized with the use of the mean-shift tracker. Decision-tree classifier based

tracker runs in parallel with the ISG/MRF methods to provide location and movement

information about the foreground object. Depending on this information, first of all, out-

liers are eliminated. In addition, the probability of having foreground inside the tracked

74
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object location is boosted especially in scenarios where foreground objects are very sta-

tionary. This completely prevents foreground blending into background undesirably in

ISG and MRF models.

Besides all these enhancements for the segmentation, a side argument has been proven:

V i obtained via the ISG model or the V M obtained via the MRF model can be well

used as input weight images for a robust mean-shift tracker. Since mean-shift needs a

probability image, and we introduce a way obtaining a robust probability image using

the ISG and the MRF models; hence mean shift can be used in accordance with the

ISG/MRF models for tracking purposes.

7.2 Future Work

For future improvements on our model, the main focuses are:

• The MRF optimization techniques ICM and BP are sub-optimal. Other techniques

like Graph-cuts can be tested.

• Implementation can be optimized to achieve better real-time processing perfor-

mance.

• Shadow removal can be applied especially on outdoor scenes. Shadow impacts

especially the precision of the methods for outdoor scenes.

• Since we are using RGB color values, our models are intolerant to shadows or high-

lights. Modeling based not on RGB colors only but incorporating other features

using longer feature vectors can be used and experimented with. These can be

the features like texture based features, gradient based additional features, local

binary pattern (LBP) and Gabor features, block features of the image and other

color domain features like YCrCb or HSV, etc.
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