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Abstract

Destabilization and performance degradation problems caused by the time

delay in communication channel is a serious problem in bilateral teleopera-

tion. In particular, variability of the delay due to limited bandwidth, long

distance or congestion in transmission problems has been a real challenge

in bilateral teleoperation research since the internet communication has be-

come prevalent. Many existing delay compensation techniques are designed

for linear teleoperator systems. In order to implement them on real bilateral

systems, the nonlinear dynamics of the robots must first be linearized. For

this purpose feedback linearization is usually employed.

In this thesis, the delay compensation problem is tackled in an observer

framework by designing two observers. Integration of a disturbance observer

to the slave side implies a linearized slave dynamics with nominal parame-

ters. Disturbance observer estimates the total disturbance (nonlinear terms,

parametric uncertainties and external disturbances) on the slave system. A

second observer is designed at the master side to predict states of the slave.

This observer can be designed using a variety of linear or nonlinear methods.
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In order to have finite-time convergence, a sliding mode observer is designed

at the master side. It is shown that this observer predicts the future positions

and/or velocities of the slave and use of such predictions in the computation

of a simple PD control law implies stable operation for the bilateral system.

Since the disturbance observer increases the robustness of the slave system,

the performance of the resulting bilateral system is quite satisfactory.

Force reflecting bilateral teleoperation is also considered in this thesis. In-

tegrating the proposed observer based delay compensation technique into the

well known four-channel control architecture not only stable but also trans-

parent bilateral teleoperation is achieved. Simulations with bilateral systems

consisting of 2 DOF scara robots and pantograph robots, and experiments

with bilateral systems consisting of a pair of single link robots and a pair of

pantograph robots validate the proposed method.
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Gecikme Telafisi
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gözlemci, bozucu gözlemcisi, dört kanallı denetleyici

Özet

İletişim kanalındaki gecikmeden kaynaklanan kararsızlaşma ve perfor-
mans düşüklüğü, iki yönlü teleoperasyonda karşılaşılan oldukça zor problem-
lerdir. Özellikle, internet kullanımının yaygınlaşmasıyla sınırlı bant genişliğin-
den, uzun mesafelerden ya da iletim sırasında oluşan yığılmadan kaynaklanan
değişken gecikme problemi bilateral teleoperasyon araştırmalarında çözülmesi
beklenen önemli bir problem haline gelmiştir. Mevcut gecikme telafisi yöntem-
lerinin çoğu doğrusal teleoperatör sistemleri için tasarlanmıştır. Bunları
gerçek iki yönlü sistemlere uygulamak için öncelikle robotun doğrusal ol-
mayan dinamiği doğrusallaştırılmalıdır. Geribeslemeyle doğrusallaştırma yön-
temi bu amaç için sıkça kullanılan bir yöntemdir. Bu tezde, gecikme telafisi
problemi, gözlemci çerçevesinde ele alınmıştır. Bu amaçla iki yeni gözlemci
tasarlanmıştır. Bozucu gözlemci, yönetilen sistem üzerindeki toplam bozucu
etkiyi (doğrusal olmayan terimler, parametre belirsizlikleri ve dış bozucu-
lar) tahmin eder. Bozucu gözlemcinin yönetilen sistem tarafına entegre
edilmesi, nominal parametrelerle ifade edilen doğrusallaştırılmış bir yönetilen
sistem dinamiği oluşturur. Bir başka gözlemci ise yöneten sistem tarafında
yönetilen sistemin durum değişkenlerini tahmin etmek üzere tasarlanmıştır.
Bu gözlemci, doğrusal ve doğrusal olmayan çeşitli yöntemlerle tasarlanabilir.
Sonlu zaman yakınsaması sağlayabilmek için yöneten sistem tarafında bir
kayan kipli gözlemci tasarlanmıştır. Bu gözlemcinin yönetilen sistemin gele-
cekteki pozisyonlarını ve/veya hızlarını tahmin ettiği ve bu tahminlerin basit
bir PD denetleyicisinde kullanılarak kararlı bir operasyon sağladığı gösterilmiş-
tir. Bozucu gözlemci sistemin gürbüzlüğünü artırdığından, ortaya çıkan iki
yönlü sistemin performansı yeterli düzeydedir.
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Bu tezde kuvvet yansımalı iki yönlü teleoperasyon da ele alınmıştır. Öneri-
len gözlemci tabanlı gecikme telafisi tekniği iyi bilinen dört-kanallı kontrol
mimarisine entegre edilerek sadece kararlı değil aynı zamanda saydam bir
teleoperasyon sağlanmıştır. Önerilen yöntem, 2 serbeslik dereceli scara robot-
lar ve pantograf robotlardan oluşan bilateral sistemlerde yapılan simulasy-
onlar ve tek eksenli bir robot çifti ve pantograf çiftinden oluşan iki yönlü
sistemlerde yapılan başarılı deney sonuçları ile doğrulanmıştır.
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Can Erdoğan, Sena Ergüllü, Yusuf Sipahi, Efe Sırımoğlu, Cevdet Hançer,
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Chapter I

1 Introduction

Bilateral teleoperation has been a highly challenging problem in robotics

circles in recent decades. Teleoperation and telepresence are two concepts

that should be considered together in bilateral teleoperation. Teleoperation

is defined as operating a remote system from a distance and telepresence

is the virtual existence of a manipulator in a distant location. An opera-

tor can perform a task that is impossible even for autonomous robots or

work in hazardous and unsanitary environments as if he/she is present there.

Space-based applications or underwater robotics are examples to applications

performed in such environments. Telesurgery which enables a surgeon to op-

erate a surgery even from another continent is a very popular application of

bilateral teleoperation.

Bilateral teleoperation structure is composed of a human operator, local

system, communication channel, remote system and environment. Position,

velocity or force information is shared between the local and remote sides

through the communication channel. A human operator can control a remote

system by utilizing the information he/she gets from the remote system. Lo-

cal and remote systems are generally called master and slave respectively.

Reference signals like position, velocity or force are generated at the mas-

ter side and sent to the remote side through the communication channel.



Likewise, force information is generated at the slave side as the slave robot

contacts with the environment and this information is sent to the master side

through the channel. Thus the human operator feels the environment force

(transperancy) as if he is in the remote side (telepresence). It is said the

operator is kinesthetically coupled with the environment.

The major problem in bilateral teleoperation is the existence of delay and

data loss in the communication channel. The signals transmitted through the

channel in forward and reverse directions are incurred to constant or time

variable delay and due to the delay, stability and transparency cannot be

achieved in bilateral teleoperation systems. In order to tackle the stability

problem, numerous approaches are proposed and developed in the literature

since the work of Sheridan and Ferrell [1]. The authors worked on remote

manipulation and performed experiments to observe the completion time of

simple tasks. They concluded that, the destabilizing effect of delay could

be eliminated by a strategy called move and wait strategy. Sheridan and

Ferrell didn’t use force reflection in their experiments. As force feedback was

first used in [2], [3], it was shown experimentally that when feedback signals

are used in bilateral teleoperation, delays on the order of tenth of a second

yields the system unstable. Stability could only be obtained for the references

with very small bandwidth. Communication delay caused nonlinearities and

increase of the system dimension to infinity, thus there was little work in

literature in those years. Leung et. al. and Lin et. al. performed analysis

on destabilizing effects of delay on bilateral control systems in later years [4],

[5].

As a breakthrough, Anderson and Spong proposed a passivity based

method to address the stability problem in bilateral teleoperation [6]. By
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using passivity theory and defining the scattering operator, they proved that

the communication channel cannot sustain its passivity in the existence of

time delay. Scattering transformation is utilized to introduce lossless trans-

mission line and provide passivity of the system regardless of bandwidth.

Stability of the method was proven only intuitively in [6] but asymptotic

stability was proven analytically in 1989 [7].

While performing some tasks such as micro-surgery, micro or macro ma-

nipulation and micro assembly, the mismatch of the signals at master and

slave sides motivated the idea of scaled telemanipulation. Colgate proposed

an impedance scaling technique in Laplace domain [8] and Kosuge proposed

the same idea in time domain [9]. Both of the methods are based on the

passivity theory.

In 1991, Niemeyer and Slotine reformulated the scattering theory and in-

troduced new variables called wave variables [10]. In this context the power

flow at the input and output of the communication channel is redefined as

input and output waves. Wave variables are obtained by applying the wave

transformation to the velocity and force signals (power signals) before they

enter the communication channel. The same results, as in the scattering

theory, were obtained by wave theory. In wave variables technique, wave

reflections are observed at junctions and terminations when the impedance

of the wave carriers change. By matching the characteristic impedance of

the wave transmission to the remaining system, wave reflections could be

avoided. The stability of the system was proven by passivity theory but since

the performance of the method was not satisfactory performance improve-

ment studies continued. In [11], transient behavior of the bilateral system is

analyzed and a tuning mechanism is developed to make adjustments between

3



the telepresence and operation speed.

Since the internet is started to be used in the middle of 1990’s, the com-

munication delay problem was turned into time variable communication de-

lay problem. In internet communication, the delay becomes variable due to

factors like bandwidth, congestion and distance. Packet losses and reorder-

ing of data is also observed. The effect of time variable delay and packet

losses in packet switched network is investigated by Hirche and Buss [12].

Oboe and Fiorini also studied on internet based teleoperation and performed

experiments in order to examine the effect of time variable delay on stabil-

ity of the system [13],[14]. In 1998, a bilateral teleoperation environment

was specifically designed for studying time variable internet delays. The be-

havior of the delay was observed with this system and a control method

which is utilized from delay parameters was proposed [15]. In 2002, Lozano,

Chopra and Spong handled the time variable delay problem and showed that

the time variable delay destabilizes the system by rendering it nonpassive

[16],[17]. The authors modified the scattering transformation method and

guaranteed passivity of the system under variable time delay by introducing

a time variable gain into the communication block.

As the internet technology has highly developed and internet based tele-

operation gained more attention, wave variables based approaches are also

extended. Systems with unpredictable time variable delay was studied in [18]

where wave variable filters were used to preserve the stability. For the pur-

pose of obtaining explicit position feedback and avoiding numerical integra-

tion step, instead of wave variables, wave integrals were transmitted through

the communication channel. Chopra, Bestesky and Spong also studied on

the extension of passivity based methods for internet communication [19].

4



They suggested to add two Communication Management Modules which

were responsible for reconstructing scattering variables. This method guar-

antee passivity and asymptotic stability of the system when variable time

delay exists in the communication channel.

Passivity based methods can be considered as the fundamental approaches

that motivate the delay compensation problem in bilateral teleoperation. Al-

though asymptotic stability was proven and velocity convergence was pro-

vided, exact position tracking could not be maintained in earlier passivity

based studies. The wave matching method was able to suppress the oscil-

lations, however tracking errors in position and force tracking could not be

compensated. In 2001 position tracking errors were eliminated by removing

one of the matching elements (from master side) and exact force reflections

(transparency) were satisfied in the existence of variable delay in commu-

nication channel [20]. In this method impedance parameter ‘b’ was used

to compensate the variations of time delay by changing it as a function of

the delay to keep the gain margin constant. In order to tackle the position

convergence problem, Chopra et al. extended the wave variable based ap-

proach by adding a term proportional to the delayed position error in both

master and slave sides and achieved better position tracking [21], [22]. In

their Kalman filter based method, Munir and Book studied the position drift

problem in 2004 [23]. Another passivity based architecture for handling force

and position tracking problem in delay compensation of bilateral teleopera-

tion was proposed by Namerikawa and Kawada in 2006 [24]. In the method,

the impedances of the local and remote sides are matched by adding virtual

damping to the both sides. Establishing position control gains by Lyapunov

stability based methods, possible deteriorations on the operation ability of
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the system due to the virtual damping can be avoided.

In 2005, Lee and Spong, proposed a PD based control method for teleop-

eration systems consisting of multi DOF nonlinear robots under a constant

communication time delay [25]. In the previous passivity based methods,

the passivity of the teleoperation system blocks were provided individually.

As an improvement, in this method, the closed loop teleoperation system

was passified as a whole. Position convergence that had implicitly been pro-

vided in earlier scattering approaches, was ensured exponentially. In this

work the communication delay was considered to be the same in forward

and backward directions (symmetric) and known exactly. In 2006 Lee and

Spong removed this unrealistic ideas and considered the delay as unknown

and asymmetric [26]. They used controller passivity concept, the Lyapunov-

Krasovskii technique and Parseval’s identity for passifying the communica-

tion and control blocks together. Nuno et al. claimed in their paper ([27])

that, since any L∞ stable mapping from velocity to force cannot be defined,

the assumptions which Lee and Spong used in their approach were unverifi-

able. Nuno and his colleagues proved that, with the injection of sufficiently

large damping to both manipulator subsystems makes the subsystems pas-

sive and this yields stable behavior of nonlinear teleoperators with PD like

control structure. They controlled the teleoperators with either delayed force

or delayed position error. As the velocities converge to zero (if the human

and environment forces are bounded), position coordination is achieved by

adding gravity compensation. Thus, it was shown that, without passivity

and scattering transformation, PD-like structures could control bilateral sys-

tems under constant delay and the approach in [26] was also proven. In this

paper, it was also referred that the idea of damping injection may degrade

6



performance. In [28], authors developed simple P-like and PD-like position

controllers which provide global position tracking for nonlinear teleoperators

under variable time delay. Stability of the bilateral system has been proven

by a Lyapunov analysis. Position and velocity convergence is achieved if any

external force is not applied on either of the master or slave systems.

Andriot et al. presented a synthesis method to design a generalized bi-

lateral control based on the passivity theory [29]. They considered the de-

lay problem for flexible and rigid joint manipulators and claimed that the

problem was completely solved for rigid manipulators. For the flexible joint

manipulators, H∞ based control method was suggested. In telerobotics, H∞

control theory is used by Kazerooni and Tsay [30],[31]. Dynamic behavior

of master and slave systems were defined to be functions of each other. H∞

control theory and model reduction technique was used to guarantee that

the system behavior was governed by the proposed specified functions. In-

stead of velocity and position information, force information was transferred

between the two systems but force transfer required wider bandwidth be-

tween the master and slave. Position tracking error occurred because of not

transferring velocity or position information. In these studies free motion

of slave was not considered, only contact motion was considered. Although

the proposed methods provided stability, degradation of performance due to

the communication delay could not be avoided. In 1995, a new approach

was developed by using H∞ control and µ analysis and synthesis technique

[4]. Unlike the previous methods, this method considered the performance

and stability against communication delay together. Again in this work, the

control method was designed for both environment contact and free motion

cases. In this method, constant and upper bounded delay was considered as a
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perturbation to the constrained motion (contact with the environment) and

this perturbation was filtered to have norm less than 1. Then µ synthesis

method was applied to the system to design the controller. In 1998 Sano

designed controllers for several values of bounded delay and with the use of

gain scheduling, he selected the suitable controller for the measured delay.

This was a suitable idea for Internet based teleoperation [32].

An alternative bilateral system with dynamic environment where the sys-

tem is incurred to time variable delay was proposed by Kikuchi, Tekeo and

Kosuge [33]. The proposed system is a combination of three subsystems

which are bilateral teleoperation, visual information and environment predic-

tive display subsystems. The camera system at the slave side was collecting

pictures and sending them to the master system. Because of the variable

communication delay, the information sent through the visual information

subsystem could not be used for bilateral teleoperation. Therefore, envi-

ronment predictive display subsystem which provided the estimated current

position of the slave manipulator and the environment was used.

A modified sliding mode controller based time variable delay compen-

sation method was proposed in 1999 [34]. In this method, an impedance

controller was used at the master side while a sliding mode controller was

used at the slave side. In this method, the nonlinear sliding mode control

gain didn’t depend on the delay variations, thus the amount of delay didn’t

need to be known and the controller gains could be tuned independent of the

delay.

Prediction based methods also took place in the literature of delay com-

pensation methods. Smith predictor is one of these methods which is based

on elimination of delay terms from the characteristic equation of the con-
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trol systems [35], [36]. Munir and Book derived a predictor from a modified

Smith predictor along with Kalman filter [37],[38]. An energy regulator was

used in this method to provide passivity. Wave variables and Smith predictor

methods were combined by Ganjefar, Momeni and Janabi in 2002 [39]. A

paper covering predictive control methods proposed a neural network and

Smith predictor based predictive controller method [40].

Natori, Tsuji, Ohnishi proposed Communication Disturbance Observer

method (CDOB) for the compensation of variable communication delay. Un-

like predictor based methods, in this method it was not necessary to know

the amount of delay so that it could be applied to the systems under time

variable delay. In this method the effect of delay was considered as external

disturbance force acting on the communication channel and this disturbance

force was eliminated by communication disturbance observer [41]-[43]. How-

ever the eliminated force was not only the disturbance force, it also included

the environmental force in the case of contact with the environment. For this

reason, force information couldn’t be transferred to the master side precisely.

In 2009 CDOB method was extended so that the environmental force was

separated from the communication disturbance [44]- [46]. In [45] external

forces are calculated by reaction torque/force estimation observer (RTOB).

RTOB is designed as a kind of disturbance observer that uses position in-

formation to estimate the reaction forces acting on a system [47]. In order

to provide transparent teleoperation, Ohnishi and his colleagues used four

channel controller method in which force and velocity signals are transmit-

ted in both directions. This control architecture was proposed by Lawrence

in 1992 and by Yokokohji and Yoshikawa in 1994 independently [48], [49],

[50]. In order to provide a perfect transparency between master and slave

9



systems, the impedance seen by the human operator should be equal to the

impedance of the environment. By using the two-port hybrid parameter ma-

trix, Lawrence showed that transparency cannot be achieved without using

four information channels. Yokokohji also addressed the same idea by using

the chained matrix. In the conventional method, the four channel controller

was designed to control the system in position mode. In 1995, Zhu and Sal-

cudean improved Lawrence’s formalism so that transparency could also be

provided for the systems that operate in velocity (rate) control mode [51].

Unlike Lawrence’s method, force sensing is not required in [52]. Estimate

of the environment impedance is used to obtain the contact information. In

the mentioned four channel controller based approaches, it is assumed that

master, slave, environment and operator impedances are perfectly known. In

order to circumvent the uncertainty problems adaptive control based schemes

came forward. Zaad and Salcudean developed an adaptive control method

where force feedback is not used [53]. Adaptation on both sides of the tele-

operator is considered in [54].

Wave variables method is also improved for force reflecting teleopera-

tors [55], [56]. In [57], an additional wave impedance in the wave variable

transformation is implemented in order to provide the transparency of the

bilateral teleoperation system.

1.1 Motivation

Bilateral teleoperation allows a human operator to manipulate a slave

system located at a certain distance remotely via a master system and inter-

act with the remote environment at the same time (Fig. 1.1). A closed loop

interaction is necessary for the successful achievement of these two goals.
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Control, reference or feedback signals are transmitted through a communi-

cation channel from master to slave and from slave to master sides. Possible

communication delays in the channel may cause not only unstability but also

degradation in the performance of the task realization. In force reflecting tele-

operation, the environment cannot be perceived due to the communication

delay. Stability and performance issues have been a real challenge in the

field of bilateral teleoperation and numerous researchers have contributed to

this field over the last decades. The developments on communication and

robotics technology necessitated improvements on the existing delay com-

pensation techniques. The common use of internet required extensions on

the delay compensation techniques for variable communication delay.

Figure 1.1: Remote surgery

In bilateral teleoperation studies, mostly linear and single degree of free-

dom systems are considered as master and slave manipulators for simplicity

until today. However, more complicated systems such as nonlinear multi de-

gree of freedom robots are being used in robotics applications recently. As the
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complexity and the nonlinearity of the system increases, modeling uncertain-

ties appear in addition to parametric uncertainties and system nonlinearities.

Stability in bilateral teleoperation could be attained by designing controllers

considering the system nonlinearities or linearizing the system dynamics.

1.2 Thesis Contributions and Organization

In this thesis, a novel observer based time delay compensation method for

nonlinear bilateral teleoperator systems is proposed. It consists of two types

of observers: disturbance observers (DOB) at both master and slave sides

which render nonlinear dynamics of the master and slave robots linear, and

a sliding mode observer (SMO) at the master side which predicts the future

states (position and velocity) of the slave. Any system can be transformed

into a nominal one by eliminating the undesired terms from the model of the

system. Undesired terms may be external disturbances acting on the system

like viscous friction, coulomb friction and gravity or internal disturbances

like modeling uncertainties, parameter uncertainties and nonlinear terms.

Estimation of the nonlinear terms or other disturbances are rendered by

disturbance observer. Extracting the estimated nonlinear terms from the

system dynamics, a nonlinear system can be linearized.

Utilization of disturbance observer implies a linear system with nominal

parameters which in turn allows application of the predictor observer. Pre-

dictor observer approach is based on using the states of an observer that

mimics the behavior of nominal slave system in control calculations. The

precise estimation of the actual system states is possible with accurate mea-

surement of available states. The predictor observer SMO is composed of

a two-step structure. In the first step, the finite-time convergence of the
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measured system states incurred to communication delay to intermediate

observer states is provided by sliding mode control approach. The equivalent

control generated in first step is used in second step for the convergence of

estimated states to actual states.

Unlike many other teleoperation schemes where position or velocity of the

master is sent to the slave side as reference, in the observer based approach

the control signal for the slave is computed at the master side and sent

through the communication medium. Slave’s position (and/or velocity) is in

turn sent to the master side through the same medium. Delayed signals sent

from the slave side are used in the construction of the SMO observer at the

master side.

Contact with environment condition is considered in bilateral force reflect-

ing teleoperation framework. The control of the system is provided by four

channel controller structure that is developed in an early study of Lawrence

[48]. The control method is used together with predictor sliding mode ob-

server to compensate communication delay in bilateral teleoperation systems

where environment contact possibly occurs.

Proposed approach is verified with several simulations on Matlab/Simulink

and experiments performed on a pair of pantograph robots where time de-

lay is artificially created with Matlab’s Time-Variable Delay block. Control

algorithms are implemented in realtime using dSpace1103 controller board.

The contributions of the thesis can be summarized as follows:

• A novel observer based time delay compensation method for nonlinear

bilateral teleoperator systems is proposed. Nominal linear teleoperators

are obtained by employing disturbance observers and communication

delay is compensated by a predictor observer.
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• The control input for the slave manipulator is designed at the master

side using the estimated states of the slave system and sent to the

remote side.

• Telepresence is provided by using a four channel control architecture

so that unknown environment conditions are handled in control of the

system.

• As nonlinear teleoperator systems, 2 DOF pantograph robots are de-

signed and produced. Several experiments are performed in real time

using dSpace1103 controller board.

The thesis is organized as follows: Section II describes modeling of linear

and nonlinear bilateral systems with time delay, explains delay compensa-

tion methods that take important part in the literature and explains the

four channel control architecture that is used in force reflecting bilateral

teleoperation. Section III presents design of predictor observers and distur-

bance observers. Section IV describes force reflecting bilateral teleoperation

and modified predictor observer designed for such teleoperation. Section V

presents and discusses simulation and experimental results of constant and

time variable delay compensation on various platforms working in master-

slave configuration. Finally, Section VI concludes the thesis with some re-

marks and indicates possible future directions.

1.3 Notes

This thesis work is developed in the context of a TUBITAK (The Scientific

and Technological Research Council of Turkey) and NSF (National Science

Foundation) funded joint research project under the grant 106M533.
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Yüksek Teknoloji Enstitüsü, Kocaeli, Turkey, 21-23 Eylül 2010,
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S. Bogosyan, M. Gökaşan, TOK’09: Otomatik Kontrol Ulusal Toplantısı,
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Chapter II

2 Bilateral Teleoperation

Bilateral teleoperation is based on the idea that the signals generated

at both the master and slave systems are shared between each other in two

directions. In bilateral teleoperation a remote manipulator could only be

controlled by a human operator provided that the force/torque references

that is imposed to a local manipulator are transmitted to the remote side

precisely. For accurate realization of the task, the environmental factors that

may possibly affect the task performance should be perceived by the human

operator. As the force is applied on the master manipulator, this results

in the motion of the master and position reference to be tracked by the

slave is generated. On the other hand if the slave manipulator contacts with

environment at the remote side, force/torque information which restricts the

motion of the slave is generated. Sharing the generated signals at both sides

through the communication channel allows slave manipulator to track the

master’s position and human operator to perceive the remote environment.

This operation enables the operator to execute a task somewhere without

actually being there.

A bilateral system can be stabilized by a simple PD controller and a suc-

cessful performance of position tracking is achieved if there is no delay in

the communication channel. On the other hand, even a very small amount



of delay (e.g. 0.05− 0.1 sec) can degrade the performance and finally makes

the system unstable. A simple stability analysis shows that as time delay in-

creases, poles of the transfer function of the closed-loop system move toward

the right hand complex plane and turns the system into an unstable one.

In the following subsections, modeling of linear and nonlinear bilateral tele-

operation systems will be explained, fundamental methods that exist in the

literature for providing stability against communication delay are presented.

2.1 Modeling of Bilateral Teleoperation Systems

A bilateral teleoperation system is usually composed of a human operator,

a master system, communication channel, a slave system and the environ-

ment (Fig. 2.1). In the literature different bilateral control architectures are

proposed based on the type of shared signals (position, velocity and force).

In some of these systems, master’s velocity is sent to the slave side while

force measured at slave side is sent to the master side (Fig. 2.2).

Figure 2.1: Bilateral Teleoperation System

In observer based approaches, however, the control input (force or torque)

for the slave is computed at the master side and sent to the slave side while

position (and/or velocity) of the slave is fed back to the master side and used

in control calculations as shown in Fig. 2.3.

According to the complexity of the task, linear or nonlinear systems

are used as master and slave manipulators in bilateral teleoperation. Even
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Figure 2.2: Bilateral Control architecture where velocity and force informa-
tion are shared.

though the nonlinear systems are difficult to be analyzed, applying lineariza-

tion techniques renders the control of such systems possible. Modeling of

linear and nonlinear teleoperators is explained in the following two subsec-

tions.

2.1.1 Linear Teleoperators

In order to simplify the analysis of bilateral systems, usually 1 DOF

bilateral control systems are employed in discussions. In such systems, slave

is a 1 DOF robot arm and its dynamics is modeled as

Jsq̈s(t) + bsq̇s(t) = τs(t) + τds (2.1)
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Figure 2.3: Bilateral control architecture where control input and position
information are shared.

In this equation Js, bs, q̈s, q̇s, represent moment of inertia, damping coef-

ficient, angular acceleration and angular velocity of the robot arm, respec-

tively. Input torque which is the difference between the motor torque and the

environmental torque and external disturbances acting on the slave system

are represented by τs and τds respectively. Likewise, master robot which is

manipulated by a human operator can be described similarly as

Jmq̈m(t) + bmq̇m(t) = τm(t) + τdm (2.2)

where subscript m emphasizes the fact that related quantities belong to the

master robot. τm is net input torque defined as the difference between the

torque applied by the operator and the torque generated by the motor. Ex-

ternal disturbances acting on the master system is represented by τdm.
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2.1.2 Nonlinear Teleoperators

Performing some tasks are only possible with manipulators that has non-

linear dynamics having multiple degrees of freedom. In order to analyze such

systems, a n DOF bilateral control system is employed in discussions. In

such a system, slave is a n DOF robot arm and its dynamics is modeled as

τs = Ds(qs)q̈s + Cs(qs, q̇s)q̇s + FGs(qs) + Bsq̇s + τds (2.3)

where qs is the vector of joint angles, Ds(qs) is the n × n positive-definite

inertia matrix, Cs(qs, q̇s) is the n×n Coriolis-centripetal matrix, FGs(qs) is the

n× 1 gravitational force vector, Bs is the viscous friction (damping) matrix

and τds is an external disturbance vector. Input torque vector which is the

difference between the manipulator torque and the environmental torque is

represented by τs. Likewise, master robot which is manipulated by a human

operator can be described similarly as

τm=Dm(qm)q̈m + Cm(qm, q̇m)q̇m + FGm(qm) + Bmq̇m + τdm (2.4)

where subscript m emphasizes the fact that related quantities belong to the

master robot. τm is net input torque vector defined as the difference be-

tween the torque applied by the operator and the torque generated by the

manipulator.

2.2 Scattering Transformation Approach

Stability of bilateral control systems under time delay could not be

achieved in a serious theoretical framework until the seminal work by An-

derson and Spong in 1989 [6]. In this work, authors attributed instability
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of the system to the non-passive nature of the communication channel. In

order to analyze a system in the context of passivity the power entering to

the system should be defined first. It is defined as the scalar product between

the input vector (x) and the output vector (y) of the system. In addition, a

lower-bounded energy storage function E and a non-negative power dissipa-

tion function Pdiss are also defined. With these definitions a system is said

to be passive, if it obeys:

P = xT y =
dE

dt
+ Pdiss (2.5)

which means the power is either stored in the system or dissipated. This

implies that the total energy supplied by the system up to time t is limited

to the initial stored energy i.e. the energy transfer is lower bounded by the

negative initial energy:

∫ t

0

P dτ =

∫ t

0

xT y dτ = E(t)− E(0) +

∫ t

0

Pdiss dτ ≥ −E(0) = constant.

(2.6)

Anderson and Spong proposed so called scattering transformation which ren-

ders the communication channel passive and proved that for any constant

delay the passivity of the system can be preserved by using scattering trans-

formation. Scattering theory analyzes the stability problem considering it

in the context of transmission line. Effort and flow (voltage and current

in this case) are transmitted without losing energy and without changing

the steady-state behavior of the signal through the communication channel

when the ideal lossless transmission line is provided. Stability of the system

is affected by the line impedance Zo, environment impedance Ze and human

impedance Zh. In frequency domain, a linear 2−port lossless communication
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line element is defined as

Fh(s) = Zotanh( sL
Vo

)Vm(s) + sech( sL
Vo

)Fe(s)

−Vs(s) = −sech( sL
Vo

)Vm(s) + (tanh( sL
Vo

)/Zo)Fe(s)
(2.7)

where Zo =
√

L
C
, Vo = 1

LC
, L is the characteristic inductance, C is the

capacitance for the transmission line, Fh(s) and Fe(s) are the Laplace trans-

formation of human and environment forces respectively and similarly Vm(s)

and Vs(s) are the master and slave velocities expressed in Laplace domain.

Figure 2.4: 2−Port Model of Teleoperation Systems

If the teleoperation system is established as shown in Fig. 2.4 the rela-

tionship between the forces and velocities in bilateral teleoperation can be

characterized for LTI systems by the Hybrid matrix ( H(s) in Laplace domain

) which is defined as follows:


 Fh(s)

−Vs(s)


 =


 h11(s) h12(s)

h21(s) h22(s)




︸ ︷︷ ︸
,H(s)


 Vm

Fe


 (2.8)

For an ideal one degree of freedom teleoperation system, the ideal hybrid

matrix that provides transparent teleoperation is

Hideal(s) =


 0 1

−1 0



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The scattering operator, S, which is mapping the input and output flow

of the 2−port network block is defined as (F −V ) = S(F +V ) and it can be

written as the scattering matrix for multi DOF systems in Laplace domain

as (F (s)−V (s)) = S(s)(F (s)+V (s)). The scattering matrix can be written

in terms of hybrid matrix as

S(s) =


 1 0

0 −1


 [H(s)− I][H(s) + I]−1

Using the scattering matrix, passivity is proven by the following theorem:

Theorem 2.1. A system is passive if and only if the norm of the scattering

operator is less than or equal to one ( ‖S‖ 6 1)

However if T amount of constant communication delay is imposed on the

system then the hybrid and the scattering matrices become as

H(s) =


 0 e−sT

−e−sT 0




and

S(s) =


 −tanh(sT ) sech(sT )

sech(sT ) tanh(sT )




which makes the norm of the scattering matrix unbounded and yields the

system non-passive and unstable. In order to provide the stability of the

system the teleoperation system should be rendered passive. Passive system

is obtained by providing the transmission line lossless i.e. setting Zo = 1 and
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Vo = L/T . Then the transmission line equations become as

Fh(s) = Zotanh(sT )Vm(s) + sech(sT )Fe(s)

−Vs(s) = −sech(sT )Vm(s) + tanh(sT )Fe(s)
(2.9)

then the scattering matrix which satisfy the passivity condition with ‖S‖ = 1

is given by

S(s) =


 0 esT

esT 0




2.3 Wave Variables Approach

In 1991 Niemeyer and Slotine reformulated the scattering theory and

defined new variables called wave variables [10]. Wave variables represent

the input and output power flow at each side of the communication channel

as input and output waves. Wave transformation is applied on the velocity

and force signals (power signals) before they enter the communication channel

and the signals are transformed into wave variables. Damping is injected into

the communication channel and stability has been proven in the “passivity”

framework.

In order to define the wave variables, the power flow is first defined as

P = ẋT F =
1

2
uT u− 1

2
vT v (2.10)

where F is the force (effort) and ẋ is the velocity (flow) and they can be rep-

resented by any other effort and flow pair. In wave variables technique 1
2
uT u

and 1
2
vT v specifies the power flow along and against a main direction respec-

tively. The first and the second terms of P are components with positive
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and negative values respectively. The wave variables (u,v) can be computed

from the standard power variables (x, F ) by the following transformation.

um(t) = 1/
√

2b(Fm + bẋm(t))

vs(t) = 1/
√

2b(Fs + bẋs(t))
(2.11)

where um and vs represent the forward and backward moving waves respec-

tively and b is the characteristic wave impedance that may be a positive

constant or a symmetric positive matrix. The power to wave variables trans-

formation is shown in Fig. 2.5.

Figure 2.5: Transformation of power variables into wave variables

As the signals are transmitted along the communication channel with

time delay, they are obtained as

us(t) = umd
(t) = um(t− T )

vm(t) = vsd
(t) = vs(t− T )

(2.12)

The overall system structure is shown in Fig. 2.6
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Figure 2.6: Wave variables

Applying the following transformations

ẋs(t) =
√

2
b
us(t) + 1

b
Fs(t)

Fs(t) = −bẋs(t) +
√

2bus(t)

ẋm(t) =
√

2
b
vm(t) + 1

b
Fm(t)

Fm(t) = bẋm(t)−
√

2bvm(t)

(2.13)

the power input can be defined by the wave variables as

Pin =
1

2
uT

mum − 1

2
vT

mvm − 1

2
uT

s us +
1

2
vT

s vs (2.14)

By substituting the terms in (2.12) into (2.14) and integrating, we obtain

Pin =
d

dt
[

∫ t

t−T

1

2
um(τ)2 dτ +

1

2
us(τ)2 dτ ] (2.15)

Therefore this is a lossless passive communication with a positive energy

storage function which simply integrates the power of the waves for the du-

ration of the transmission. In particular, its passivity property is completely

independent of the actual time delay. We obtain a lossless transmission line

since the wave variables approach implicitly yields Eqn. (2.7). Then, we
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can conclude that the wave variables transformation provides a scattering

transformation. The overall structure of the system is as shown in the figure

below

Figure 2.7: Bilateral teleoperation with scattering transformation

2.4 Lyapunov Based Approaches

In the literature, scattering and wave variables techniques are used for

a long time to cope with the destabilizing effects of time delay in bilateral

communication. With the approach proposed in 2005 by Lee and Spong,

PD based control schemes are started to gain prevalence. In these modified

proportional or proportional-derivative controller methods the passivity is

basically provided by the addition of a dissipation gain to passify the teleop-

eration system. By injecting sufficiently large damping to both manipulator

systems, unstability problem of nonlinear teleoperators could also be tackled.

It is proven that transmitted signals are bounded and velocity signals belong

to L2 space. Furthermore, with this method velocities converge to zero if the

forces applied by the human and the environment are bounded.

According to the Proposition 2 in [27], the P-like controller is given by

the following equations

τm = Km(qs(t− Ts(t))− qm)−Bmq̇m

τs = Ks(qs − qm(t− Tm(t)))−Bsq̇s

(2.16)
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where Bi are the damping coefficients of the master and slave systems re-

spectively (i = m, s), variable delays Ti are upper bounded by ∗Ti(t) and the

control gains Ki are set such that

4BmBs > (∗T 2
m +∗ T 2

s )KmKs (2.17)

which implies the velocities and position error bounded. Moreover if the sys-

tem does not interact with the human or environment, position convergence

is obtained by asymptotic convergence of the velocities to zero. The block

diagram of bilateral teleoperation structure with P-like controller is shown

in Fig. 2.8

Figure 2.8: P-like controller

In the same context another controller namely PD-like controller is de-

scribed as

τm = Kd(γsq̇s(t− Ts(t))− q̇m) + Km(qs(t− Ts(t))− qm)−Bmq̇m

τs = Kd(q̇s − γmq̇m(t− Tm(t))) + Ks(qm(t− Tm(t))− qs)−Bsq̇s

(2.18)

where γi =
√

1− Ṫi. As it can be observed from the Lyapunov function given

in the stability proof of the controller, the time varying gains (γi) dissipate
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the energy generated in the communication channel. PD-like controller block

diagram is given in Fig. 2.9

Figure 2.9: PD-like controller

2.5 Four Channel Controller Architecture

Stable manipulation and transparency are the two main goals in bilat-

eral control architecture design. Transparency is achieved provided that

the transmitted impedance is matched with the environment impedance

(Zt = Ze) or the following conditions are satisfied:

xm = xs

Fh = −Fe

which means the slave tracks the master position precisely and the environ-

ment force is perceived by the human operator. On the other hand, for a

stable teleoperation, the passivity of the system should be achieved by pas-

sivity theory. According to the passivity theory, if the subsystems (master,

slave, communication channel, environment and human) are passive, then

the interconnected bilateral teleoperation system is also passive. Several dif-
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ferent stability and transparency techniques exist in the literature. Variety

of the signals transmitted through the communication channel is one of the

factors that designate the control system architecture. The number of virtual

channels used for the interconnection between master and slave is another

classification scheme. In the literature, two, three and four channel archi-

tectures have been proposed for stable force reflecting teleoperation. In this

thesis four channel control architecture where the forces and velocities are

transmitted in both ways is used. In Fig. 2.10 the master and slave dynam-

ics are represented by the impedances Zm and Zs respectively. Similarly, Cm

and Cs represent the master and slave controllers and C1−C4 blocks denote

the velocity and force controllers in forward and backward directions.

Figure 2.10: Block diagram of a four channel bilateral teleoperation system

The overall force reflecting bilateral teleoperation system can be defined

by the Eqn. (2.8) using the hybrid matrix, which was previously defined in

section 2.2. The parameters of the hybrid matrix are calculated by solving

the Eqn. (2.8) and they are defined in terms of the subsystems of the bilateral
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system designed based on four-channel control structure as

h11 = (Zm + Cm)D(Zs + Cs − C3C4) + C4

h12 = −(Zm + Cm)D(I − C3C2)− C2

h21 = D(Zs + Cs − C3C4)

h22 = −D(I − C3C2)

(2.19)

where D = (C1 + C3Zm + C3Cm)−1. The ideal hybrid matrix that yields the

perfect transperancy was also defined in section 2.2. In order to satisfy the

ideal condition of the hybrid matrix, the control parameters C1 − C4 should

be chosen as

C1 = Zs + Cs

C2 = I

C3 = I

C4 = −(Zm + Cm)

(2.20)

where acceleration measurements are required to design the master and slave

controllers Cm and Cs since the master and slave impedances contain ‘s’

terms ([48],[64],[65]). A method to avoid this problems is proposed in [54]

providing the perfect transperancy by designing the controllers as C1 = Cs,

and C4 = −Cm.

Lawrence concluded the conflicting characteristics of transperancy and

stability since using the four channel architecture yields more transparent

teleoperation however on the contrary it increases destabilization of the sys-

tem.
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Chapter III

3 An Observer Based Approach to Commu-

nication Delay Problem

In observer based approaches presented in the literature, control input

of the slave is computed at master side and transmitted to the slave side

through the communication channel. Position or velocity of slave is fed back

to the master side through the same channel (Fig. 2.3 and Fig. 3.1).

Figure 3.1: Sharing control input and position signals in observer based

teleoperation systems

The observer or predictor based delay compensation methods in the liter-

ature are originated by Smith predictor in the late 1950′s [66]. By assuming

that the communication delay is constant and known, a Smith predictor pro-

vides a prediction of the nondelayed output of the plant [66]. In the Smith

predictor approach, the plant model is utilized and the delay is moved out

of the control loop. However, since the delay is uncertain and variable in



internet communication, performance of the model based approach deterio-

rates. In this thesis a predictor based method is designed where the amount

of delay is not necessary to be known.

3.1 Predictor Sliding Mode Observers

An observer that predicts the states of the slave is designed in the master

side. The predictor observer is designed over a nominal slave model that is

also obtained by disturbance observers in the master and slave sides.

A linear slave dynamics can be expressed by the following scalar differ-

ential equations in state-space:

ṗ(t) = ω(t)

Jsω̇(t) + bsω(t) = τs(t)
(3.1)

Suppose the time delays from master to slave and from slave to master are

denoted by T1 and T2, respectively, and they are constant. The input to the

slave robot will be τs = u(t− T1) assuming no interaction between the slave

and the environment. On the other hand, the position of the slave will reach

to the master side as pd(t) = p(t−T2)(see Fig. 3.1). Since the equation block

(3.1) can be defined for all t, substituting t with t − T2 in the equation, it

can be rewritten as

ṗ(t− T2) = ω(t− T2)

Jsω̇(t− T2) + bsω(t− T2) = τs(t− T2)
(3.2)

Since pd(t) = p(t− T2), wd(t) = w(t− T2) and τs(t− T2) = u(t− T2 − T1) =

u(t− (T2 − T1)) = u(t− T ), then the slave dynamics in terms of the delayed
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signals can be written as

ṗd(t) = ωd(t)

Jsω̇d(t) + bsωd(t) = u(t− T )
(3.3)

where T = T1 + T2 represents the total round-trip delay that the system is

incurred to.

3.1.1 Sliding Mode Observer

In order to predict position (and/or velocity) of the slave system, we construct

the following sliding mode observer (SMO):

˙̂p(t) = ω̂(t) (3.4)

Js
˙̂ω(t) + bsωe(t) = u(t) + uo(t) (3.5)

Jsω̇e(t) = Jsω̇d(t)− uoeq(t) (3.6)

ṗe(t) = ωe(t) (3.7)

where p̂ and ω̂ are observer’s intermediate variables and pe and ωe are esti-

mated angular position and velocity of the slave. SMO input and its equiv-

alent part are denoted as uo and uoeq. The observer is called Sliding Mode

Observer since it is designed in the framework of sliding mode control. As it

will be shown analytically, observer’s intermediate variables (p̂(t), ω̂(t)) are

pushed to position and velocity signals that reach to the master side with

delay while the estimated variables (pe,we) are pushed to the future position

and velocity values of the slave.

In order to design the observer input, an observer error is defined as the
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difference between the delayed position pd(t) and the intermediate variable

p̂(t), as

e(t) = pd(t)− p̂(t) (3.8)

The first and second derivatives of the observer error are written as below:

ė(t) = ωd(t)− ω̂(t) (3.9)

ë(t) = ω̇d(t)− ˙̂ω(t) (3.10)

Substituting ˙̂ω(t) from Eqn 3.5 into the second derivative yields

ë(t) = ω̇d(t) +
bs

Js

ωe(t)− u(t)

Js

− uo(t)

Js

(3.11)

Since the observer input will be designed in SMC (sliding mode control)

framework, a sliding surface is defined in terms of observer error as

σ = ė(t) + Ce(t) (3.12)

where C > 0 is the slope of the sliding surface. In sliding mode control (SMC)

theory, the control that keeps the system on the sliding surface is called

equivalent control. Since σ = 0 when the system is on the sliding surface,

equivalent control can be computed by setting σ̇ to zero. Substituting error

and its derivative into Eqn. (3.12), σ̇ is obtained as

σ̇ = ω̇d(t) +
bs

Js

ωe(t)− 1

Js

u(t)− 1

Js

uo(t) + Cė(t) (3.13)
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By setting σ̇ to zero, we get the so-called equivalent control

uoeq(t) = Jsω̇d(t) + bsωe(t)− u(t) + JsCė(t) (3.14)

Observer input is the sum of the equivalent control uoeq(t) and a discontinuous

term (Ksgn(σ) ). Hence, we have

uo(t) = uoeq(t)−Ksgn(σ) (3.15)

where K > 0 is a gain parameter and sgn(.) denotes the well-known signum

function. It is straightforward through a Lyapunov analysis to show that the

control law given in (3.15) can transfer the system onto the sliding surface in

finite time from arbitrary initial conditions in state-space and stabilizes there.

Lemma 1. The observer defined by the equations in (3.4)-(3.7) predicts the

future position (and/or velocity) of the slave system.

Proof. Substituting the equivalent control given by (3.14) into (3.6) implies

Jsω̇e(t) = −bsωe(t) + u(t)− JsCė(t) (3.16)

Replacing t by t + T in (3.3) implies

Jsω̇d(t + T ) + bsωd(t + T ) = u(t + T − T ) = u(t) (3.17)

Subtracting (3.17) from (3.16), we obtain

Js(ω̇e(t)− ω̇d(t + T )) + bs(ωe(t)− ωd(t + T )) = −JsCė(t) (3.18)
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Defining ω̃(t) = ωe(t)− ωd(t + T ) and rewriting (3.18) implies

Js
˙̃ω(t) + bsω̃(t) = −JsCė(t) (3.19)

Since trajectories approach the sliding surface (σ = 0), observer error and

its derivative converge to zero at steady state. Therefore, solution of (3.19)

as t →∞ becomes

lim
t→∞

ω̃(t) = 0 (3.20)

Since ω̃(t) = ωe(t)− ωd(t + T ), it follows that

lim
t→∞

ωe(t) = ωd(t + T ) (3.21)

Recall that ωd(t) = ω(t−T2), and thus ωd(t+T ) = ω(t+T −T2) = ω(t+T1).

Hence, the final result is

lim
t→∞

ωe(t) = ωd(t + T ) = ω(t + T1) (3.22)

This shows that the sliding mode observer (SMO) predicts future values of

slave’s velocity.

3.1.2 Modified Luenberger Observer 1

In observer based approach, using the sliding mode observer (SMO) provides

robustness since it is based on sliding mode control (SMC) which is a well

known robust control technique. On the other hand, as it will be explained

later in this chapter that the slave system could be linearized in terms of

nominal parameters by rejecting nonlinear terms, external disturbances and

parametric uncertainties using disturbance observer. Thus, modified Luen-

37



berger type observers can be designed alternatively. One of the two Luen-

berger type observers designed as predictor observers that predicts the future

positions of the slave is given by the following equations

ṗe(t) = ωe(t) (3.23)

Jsω̇e(t) + bsωe(t) = u(t)− L(ωd(t)− ω̂(t)) (3.24)

˙̂p(t) = ω̂(t) (3.25)

˙̂ω(t) = ω̇d(t) + Kvo(ωd(t)− ω̂(t)) + Kpo(pd(t)− p̂(t)) (3.26)

where the observer gain parameters are chosen as L,Kvo , Kpo > 0. Note

that the first two equations of the observer reminds a Luenberger observer

that mimics the dynamics of the slave system. The observer errors and its

derivatives can also be defined similar to Eqn. (3.8)-(3.11). Eqn (3.26) can

be written in the following form

ω̇d(t)− ˙̂ω(t) + Kvo(ωd(t)− ω̂(t)) + Kpo(pd(t)− p̂(t)) = 0 (3.27)

and substituting the error expressions, we obtain

ë(t) + Kvo ė(t) + Kpoe(t) = 0 (3.28)

where Kpo = ω2 (ω: natural frequency of the observer) and Kvo = 2ω =

2
√

Kpo for critically damped error response. Consequently, the error ap-

proaches to zero exponentially as t →∞.

Lemma 2. The observer defined by the equations in (3.23)-(3.26) predicts

the future position (and/or velocity) of the slave system.
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Proof. Subtracting Eqn. (3.24) from Eqn. (3.17) we obtain

Js(ω̇d(t+T )− ω̇e(t)) = −bs(ωd(t+T )−ωe(t))+u(t)−u(t)+L(ωd(t)− ω̂(t))

(3.29)

By the following definition

ω̃ = ωd(t + T )− ωe(t) (3.30)

Eqn. (3.29) can be rewritten as

Js
˙̃ω(t) = −bsω̃(t) + L(ωd(t)− ω̂(t)) = −bsω̃(t) + Lė(t) (3.31)

At steady state, derivative of the observer error (ė = ωd− ω̂) and ˙̃ω converge

to zero, i.e. ė → 0 and ˙̃ω → 0. Hence, from Eqn. (3.31) we obtain

ω̃ → 0 as t →∞ (3.32)

which implies

lim
t→∞

ωe(t) = ωd(t + T ) = ω(t + T1) (3.33)

3.1.3 Modified Luenberger Observer 2

The first Luenberger type observer and SMO require angular acceleration

information which is calculated by Euler’s backward difference method from

the angular velocity. Such an approximate derivative may degrade the system

performance due to high frequency noises. Although any problem has not

been encountered in experiments performed with SMO, an observer that
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doesn’t require acceleration information can be useful. Thus an observer

with the following equations is proposed:

ṗe(t) = ωe(t) (3.34)

Jsω̇e(t) + bsωe(t) = u(t)− L(pd(t)− p̂(t)) (3.35)

˙̂p(t) = ω̂(t) (3.36)

˙̂ω(t) = ω̇d(t) + Kpo(pd(t)− p̂(t)) (3.37)

Lemma 3. The observer defined by the equations in (3.34)-(3.37) predicts

the future position (and/or velocity) of the slave system.

Proof. Defining the observer error and its derivative as Eqn. (3.8) and Eqn. (3.9),

Eqn. (3.37) can be reorganized as

ė(t) + Kpoe(t) = 0 (3.38)

In this observer, the error dynamics is given with a first degree equation

whose solution is calculated as

e(t) = exp(−Kpot)e(0) (3.39)

where it can be observed that the error converges to zero as t → ∞. By

subtracting Eqn. (3.35) from Eqn. (3.17) we obtain

Js
˙̃ω(t) = −bsω̃(t) + L(pd(t)− p̂(t)) (3.40)
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where the convergence of the position error (pd − p̂) to zero yields

lim
t→∞

ωe(t) = ωd(t + T ) = ω(t + T1) (3.41)

3.1.4 Controller Design

Estimated (or predicted) velocity ωe(t) = ω(t + T1) and its integral pe =

p(t + T1) can be used in controller design (see Figure 3.2).

Figure 3.2: SMO Based Bilateral Control System

Control signal u(t) for the slave can be designed as

u(t) = f(Xe(t)) = f(pe(t), ωe(t)) (3.42)

where f(.) is a linear or nonlinear function. For instance, f(.) could represent

a linear control such as PD or a robust nonlinear control such as SMC (sliding

mode control). Since the designed control input is delayed by T1 through the

channel, in light of (3.42) slave control input τs(t) can be written as

τs(t) = u(t− T1) = f(pe(t− T1), ωe(t− T1))
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Since pe(t) = pd(t + T ) the expression becomes as

u(t− T1) = f(pd(t + T2), ωd(t + T2)) (3.43)

where the control signal finally results in

u(t− T1) = f(p(t), ω(t)) (3.44)

Equation (3.44) shows that the slave control input τs(t) is designed in

terms of non-delayed signals, and thus the slave system is automatically

stable.

3.2 Disturbance Observers

In order to implement the proposed time delay compensation method on

nonlinear teleoperator systems, nonlinear robot dynamics must be linearized.

In this work, linearization with disturbance observer method (Fig. 3.3) is pro-

posed for linearization. In addition to the external disturbances, nonlinear

terms and parametric uncertainties are also included in the total disturbance.

Hence, when the total disturbance is properly compensated, a linear dynam-

ics with nominal parameters is obtained.

Nonlinear dynamics of an n DOF robot manipulator can be written as

τ = D(q)q̈ + C(q, q̇)q̇ + FG(q) + Bq̇ + τd (3.45)

where q is the vector of joint angles, D(q) is the n×n positive-definite inertia

matrix, C(q, q̇) is the n × n Coriolis-centripetal matrix, FG(q) is the n × 1

gravitational force vector, B is the viscous friction (damping) matrix, τd is
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an external disturbance vector and τ is the control input vector.

We first note that inertia and damping matrices can be written as

D(q) = Dnom + D̃(q)

and

B = Bnom + B̃

where the nominal inertia and damping matrices are defined as

Dnom = diag(Jnom1 , Jnom2 , . . . , Jnomn)

and

Bnom = diag(bnom1 , bnom2 , . . . , bnomn)

Rewriting Eqn. ((3.45)) in terms of nominal inertia and damping matrices

imply

Dnomq̈ + Bnomq̇ + τdis = u (3.46)

where u is the control input and τdis is the total disturbance acting on the

system which is defined as

τdis = D̃(q)q̈ + C(q, q̇)q̇ + B̃q̇ + FG(q) + τd (3.47)

where (̃.) represents the difference between the actual and nominal quanti-

ties. In order to estimate the total disturbance at each joint, a disturbance

observer [67] is integrated to each joint of the robot (see Fig. 3.3).

In Fig. 3.3, Pnomi
(s) denotes the nominal transfer function of the linear

system, characterized by the actual transfer function Pi(s), modeling each
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Figure 3.3: Disturbance Observer

joint (i) and G(s) = g
s+g

is the transfer function of the low-pass filter used to

estimate the total disturbance. By using superposition, the system output

can be written [68] as

yi = Gui−yi
(s)ui + Gτdis−yi

(s)τdis (3.48)

where

Gui−yi
(s) =

Pi(s)Pnomi
(s)

Pnomi
(s) + (Pi(s)− Pnomi

(s))G(s)
(3.49)

and

Gτdis−yi
(s) =

Pi(s)Pnomi
(s)(1−G(s))

Pnomi
(s) + (Pi(s)− Pnomi

(s))G(s)
(3.50)

If G(s) ≈ 1, then the transfer functions given in (3.48)-(3.50) are approxi-

mated as

Gui−yi
(s) ≈ Pnomi

(s) =
1

Jnomi
s + bnomi

(3.51)

and

Gτdis−yi
(s) ≈ 0 (3.52)

Equations (3.51) and (3.52) show that the total disturbance acting on the
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system is eliminated in the low frequency region characterized by the filter’s

cut-off frequency and the input/output relationship of the system is linear

with nominal parameters. As a result, the nonlinear robot dynamics given

in (3.45) will be reduced to the following linear dynamics

Jnomi
q̈i + bnomi

q̇i = ui, i = 1, 2, . . . , n (3.53)

Notice that Eqn. ((3.53)) can be used for both slave and master robots de-

scribed in equations (1) and (2). Thus, the delay compensation method de-

tailed in the previous section can be used for the position control of nonlinear

bilateral teleoperator systems.
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Chapter IV

4 Force Reflecting Bilateral Teleoperation

Bilateral teleoperation enables a human operator to manipulate a remote

teleoperator (slave) and feel the interaction forces between the environment

and slave by providing force feedback. In order to provide the human to

be kinesthetically coupled with the environment, impedances at each side

of the communication channel should be matched (Zt = Ze). However, due

to the inevitable communication delay, identical impedances at both sites

(transparency) cannot be achieved. Hence, the well known four channel con-

trol structure is modified by the integration of the proposed prediction based

delay compensation technique in order to achieve stable and transparent

teleoperation.

4.1 Modified Force Based Predictor Observer

In the proposed delay compensation scheme control input is designed at

the master side by using the future values of the slave’s states and sent to

the slave. In free motion, the system works in the structure given in Fig. 2.3.

When contact with environment is considered, the slave system does not

require any information from master side except the control input. Therefore

for the delay compensation technique that combines both SMO and four

channel controller structure, the fourth channel is revealed as unnecessary.



Then, the proposed control architecture becomes three channel controller

where control torque, environment torque and slave position are transmitted

(Fig. 4.1).

Figure 4.1: Three channel controller and predictor SMO

Acceleration control is performed on both the master and slave robots. In

the master side Proportional-Derivative (PD) controller that pushes master’s

position to slave’s estimated position and a force controller that yields the

estimated human force to be equal to the estimated environment force with

opposite sign are combined. The equation that provide control reference in

acceleration dimension for master is given as

ẍm(t) = Kpm(xe(t)− xm(t)) + Kdm(ẋe(t)− ẋm(t))−Kfm(F̂e(t− T2) + F̂h(t))

(4.1)

where F̂e and F̂h denote the estimated environment and human forces by

‘Reaction Torque Observer (RTOB)’ respectively.
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For the slave, a PD controller is designed at the master side to push

the slave’s position to master’s position and is combined with the estimated

human force (F̂h(t)). The estimated environment force (F̂e(t)) is subtracted

from this control input at the slave side. The acceleration controller that is

designed at the master side is defined as

ẍs(t) = Kps(xm(t)− xe(t)) + Kds(ẋm(t)− ẋe(t))−KfsF̂h(t) (4.2)

Human force acting on the master manipulator, Fh, is estimated at the master

side by establishing a RTOB around the master system. Similarly, environ-

ment force that is generated when there is a contact with the environment is

estimated at the slave side by another RTOB which can be considered as a

modified disturbance observer. The idea behind force estimation by RTOB is

to extract the disturbance terms other than the external force from the total

disturbance estimated by an ordinary disturbance observer (DOB). Param-

eter uncertainties, system nonlinearities, friction, coupling, gravity can be

counted as the disturbances other than the external forces and they should

be known exactly to estimate the external forces precisely. This method re-

trieves us from using additional force sensors. For a nonlinear system given

with Eqn. (2.3), total disturbance calculated by a disturbance observer for

each joint is given as

τdis = τint + τext + Fi + Diq̇i + (Ji − Jnomi)q̈i + (bi − bnomi)q̇i (4.3)

where τint is the interactive torque, including the coupling inertia torque,

gravitation etc., τext is the reaction torque which is nonzero when the system

contacts with the environment, Fi and Diq̇i are the Coulomb and viscous fric-

tion respectively, (Ji − Jnomi
)q̈i is the self-inertia variation torque and lastly
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(bi − bnomi
)q̇i is the torque pulsation due to the flux distribution variation of

the motor. As explained in the previous section, by extracting these forces

from the nonlinear system dynamics, a linear system with nominal parame-

ters is obtained (Eqn 3.53). Since the total disturbance is calculated by the

disturbance observer, the external torque equation is given as

τext = τdis − τint − Fi −Diq̇i − (Ji − Jnomi
)q̈i − (bi − bnomi

)q̇i (4.4)

When the manipulator dynamics are being made nominal with disturbance

observers, the external forces are also eliminated from the system and there-

fore the system behaves as if no forces are acting externally. Master and

slave systems are subject to external forces via designed controllers.

The environment force estimated at the slave side is sent to the master

side through the communication channel and subject to constant or time-

variable delay. SMO is modified to compensate the effects of the delay when

the system is in contact with the environment. The modified SMO equations

are defined as

˙̂p(t) = ω̂(t) (4.5)

Js
˙̂ω(t) + bsωe(t) = us(t)− F̂e(t− T2) + uo(t) (4.6)

Jsω̇e(t) = Jsω̇d(t)− uoeq(t) (4.7)

ṗe(t) = ωe(t) (4.8)

Observer error and its derivatives are defined as in Eqn. (3.8), Eqn. (3.9)

and Eqn. (3.11). Substituting ˙̂ω(t) from Eqn (4.6) into the second derivative
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yields

ë(t) = ω̇d(t) +
1

Js

(bs(t)ωe − us(t)− uo(t) + F̂e(t− T2)) (4.9)

Since the observer input will be designed in SMC framework, a sliding surface

is defined in terms of observer error as in Eqn. (3.12). Substituting error and

its derivative into Eqn. 3.12, σ̇ is obtained as

σ̇ = ω̇d(t) +
1

Js

(bs(t)ωe − us(t)− uo(t) + F̂e(t− T2)) + Cė(t) (4.10)

By setting σ̇ to zero, we get the equivalent control as

uoeq(t) = Jsω̇d(t) + bsωe(t)− us(t) + F̂e(t− T2)) + JsCė(t) (4.11)

Since the observer input is the sum of the equivalent control uoeq(t) and a

discontinuous term (Ksgn(σ) ), we have

uo(t) = uoeq(t)−Ksgn(σ) (4.12)

which can bring the system onto the sliding surface from arbitrary initial

conditions in state-space. Substituting the equivalent control given by (4.11)

into (4.7) implies

Jsω̇e(t) = −bsωe(t) + us(t)− F̂e(t− T2)− JsCė(t) (4.13)

When there is contact with the environment the slave dynamics given with
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Eqn. (3.3) becomes

ṗd(t) = ωd(t)

Jsω̇d(t) + bsωd(t) = us(t− T )− F̂e(t− T2)
(4.14)

Replacing t by t + T in the second equation of (4.14) implies

Jsω̇d(t + T ) + bsωd(t + T ) = us(t)− F̂e(t + T1) (4.15)

Subtracting (4.15) from (4.13), we obtain

Js(ω̇e(t)− ω̇d(t + T )) + bs(ωe(t)− ωd(t + T )) = −JsCė(t)+ F̂e(t+T1)− F̂e(t−T2)

(4.16)

Defining ω̃(t) = ωe(t)− ωd(t + T ) and rewriting (4.16) implies

Js
˙̃ω(t) + bsω̃(t) = −JsCė(t) + (F̂e(t + T1)− F̂e(t− T2)) (4.17)

At steady state, both observer error (e) and its derivative converge to zero.

Since, ω̃ will converge to a constant value at steady state its derivative will be

zero, i.e. ˙̃ω = 0. Note also that since limt→∞ F̂e(t + T1) = limt→∞ F̂e(t− T2),

it follows that

ω̃ → 0 as t →∞ (4.18)

which in turn implies

lim
t→∞

ωe(t) = ωd(t + T ) = ω(t + T − T2) = ω(t + T1) (4.19)
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Chapter V

5 Simulations and Experiments

In order to test the success of the proposed method in delay compen-

sation and position tracking performance, simulations and experiments are

performed. The simulation and experiment results of predictor based delay

compensation method is presented for both free and contact motion of var-

ious plants. Simulations are carried out with 2 DOF Scara and pantograph

robots which have nonlinear dynamics. For experimental tests, as master

and slave systems, a pair of 1 DOF linear manipulators and 2 DOF nonlin-

ear pantograph manipulators are designed and manufactured. In this section,

the model and dynamics of the manipulators will be presented together with

the simulation and experimental results.

5.1 Simulations for Free Motion

In this subsection, simulations are repeated for two different nonlinear bilat-

eral teleoperation systems where pantograph and scara robots are used as

master and slave manipulators. The dynamics of this robots and simulation

results for free motion will be presented in this subsection.



5.1.1 Simulations with Scara Robots

In the first simulations, the master and slave manipulators are modeled as a

pair of 2 DOF scara robot [70] (see Fig. 5.1). Their corresponding nonlinear

dynamics can be written as in (2.3) and (2.4) without subindices:

D(q)q̈ + C(q, q̇)q̇ + FG(q) + Bq̇ = τ

In this equation joint angular positions, angular velocities and accelerations

are given as q = [q1, q2]
T , q̇ = [q̇1, q̇2]

T and q̈ = [q̈1, q̈2]
T , respectively.

Figure 5.1: Scara Robot

The inertia matrix D(q) is given by

D(q) =


 m1l

2
c1 + I1 + ξ + γ γ

γ m2l
2
c2 + I2




where γ = m2(l
2
c2 + l1lc2 cos q2) + I2 and ξ = m2(l

2
1 + l1lc2 cos q2). In this

equation Ii is the link inertia , mi is the link mass, li is the link length

and lci is the joint to the center of mass distance where subindices i = 1, 2

denote corresponding link (see Table 5.1). Coriolis and centripetal forces are
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modeled as the matrix C(q, q̇) which is

C(q, q̇) =


 −ζq̇2 −ζ(q̇1 + q̇2)

ζq̇1 0




where ζ = m2l1lc2 sin q2. Viscous friction is modeled as B = diag(b1, b2) (see

Table 5.1) and gravitational forces are taken as FG(q) = 0 since robots are

planar.

Table 5.1: Scara Parameters

Link 1 Link 2

Link Length (li) 0.38 m 0.75 m
Distance to Center of Mass (lci) 0.225 m 0.09 m

Mass (mi) 17.8 kg 3.25 kg
Inertia (Ii) 0.54 kgm2 0.04 kgm2

Viscous Friction Coeff. (bi) 3 Nms/rad 0.6 Nms/rad

Nonlinearities of the system are rejected by disturbance observers and the

dynamics of the scara is made nominal. The nonlinear dynamics of the robot

is reduced to the linear equation given in Eqn. (3.53) which can be used for

both slave and master robots and the proposed delay compensation method

can be applied on these linearized dynamics.

System performance is tested under constant and variable delay condi-

tions in the communication channel. The simulations have been carried out

using Matlab/Simulink. Constant or variable delay is introduced to the sys-

tem from the Time Variable Delay block of Simulink library. First, the

simulations are performed for the existence of 0.5 sec. constant delay in the

communication channel. The human force is simulated as various kinds of

reference signals. Simulations with smoothed step, sinusoidal and trapezoidal

54



references under constant delay are presented in this subsection.

The joint positions and end effector positions of the scara robots in carte-

sian space for a quadratic smoothed step reference are given in Fig. 5.2 and

Fig. 5.3 respectively. The control parameters of the PD controller (Kp, Kd)

are selected to be Kp = 50, Kd = 1 for the first joint and Kp = 30, Kd = 2

for the second joint. The cut-off frequencies of the low-pass filters used in

the disturbance observers are set to g1 = 50 rad/sec and g2 = 50 rad/sec. In

Fig. 5.2, the 0.5 sec. delay can be noticed in the beginning of the motion.

Slave system follows the master system with a 0.5 sec. delay but as the mas-

ter trajectory settles in a constant position, slave position also converges to

master position. Fig. 5.3 shows the end-effector position of master and slave

manipulators in cartesian space and as the slave follows the master position

successfully, master and slave positions are coincident.
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Figure 5.2: Joint positions tracking a smoothed step reference
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Figure 5.3: Trajectory of the end-effector in x− y plane

As a continuous and periodic trajectory a sinusoidal reference is applied

to the system. The phase shift is again observed in the beginning of the

motion and did not change during the periodic motion. This behavior is

evident from the joint motions (Fig. 5.4) and position tracking is clear from

the end-effector positions (Fig. 5.5).
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Figure 5.4: Joint positions tracking a sinusoidal trajectory
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Figure 5.5: Trajectory of the end-effector in x− y plane

As a different trajectory, a trapezoidal position reference is applied to the

master scara model. It is observed that the slave cannot follow the master

precisely when the trajectory comes to corner points where the direction is

suddenly changed. The results are given in Fig. 5.6 and Fig. 5.7.
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Figure 5.6: Joint positions tracking a trapezoidal trajectory
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Figure 5.7: Trajectory of the end-effector in x− y plane

Simulation results show that the proposed linearization and delay com-

pensation method works successfully on a 2 DOF nonlinear scara robot when

the system is incurred to constant delay.

Results showing that the system behavior does not change with fluctua-

tions of delay will be presented next. In this part, variable delay whose value

changes randomly with a mean of 0.5 sec and standard deviation of 0.05 sec.

is applied to the system using the Time Variable Delay block. In the first

simulations it is considered that the master system generates a smoothed

step reference and the performance of the slave manipulator in tracking this

reference under variable communication delay is tested. From the joint po-

sitions given in Fig. 5.8, a phase shift whose value changes dependending on

the delay value is observed. Since the delay changes with a small variability,

a significant difference with the constant delay results is not observed. In

Fig. 5.8 and Fig. 5.9 the tracking performance is identical with the perfor-

mance under constant delay.
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Figure 5.8: Joint positions tracking a smoothed step reference
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Figure 5.9: Trajectory of the end-effector in x− y plane

As destabilization or performance degradation is not caused by delay

variations, the position tracking performance of the system is tested for a

periodic reference. As seen in Fig. 5.10 and Fig. 5.11, slave system follows

the master with a phase shift whose value changes randomly between 0.276

and 0.724.
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Figure 5.10: Joint positions tracking a sinusoidal trajectory
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Figure 5.11: Trajectory of the end-effector in x− y plane

When trapezoidal references are applied to the joints of the scara robot,

the results given in Eqn. (5.12) and Eqn. (5.13) are obtained and it is observed

that they are not different from the constant delay results as expected.
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Figure 5.12: Joint positions tracking a trapezoidal trajectory

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x axis

y 
ax

is

Positions in cartesian space

 

 
master
slave

Figure 5.13: Trajectory of the end-effector in x− y plane

The proposed delay compensation method is tested on a 2 DOF scara

manipulator under constant or variable communication delay and it is ob-

served that the system stability is achieved for both of the delays and the

position tracking performance is quite satisfactory.
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5.1.2 Simulations with Pantograph Robots

The method is tested on a different bilateral teleoperation system which is

composed of two pantograph robots. Pantograph has a more complex dy-

namics with its 5−link closed chain mechanism. Like scara, it is also a 2 DOF

manipulator but it has two actuated and two passive joints (Fig. 5.14). Since

it has a closed-chain structure, derivation of dynamic equations of motion re-

quires highly complex dynamics and kinematics analyses. By utilizing these

analyses, dynamic equations of motion of pantograph can be expressed by

two actuated joint variables. As explained in [69], equation of motion of

pantograph, that lies in horizontal plane, can be written as :

τ12 = D(qi)q̈12 + C(qi)q̇12 (5.1)

Figure 5.14: Five-link parallel manipulator pantograph

Since gravity is perpendicular to motion plane, gravitational forces do not

have effect on equation of motion. In equation (5.1), qi and q̇i are the joint

angles and angular velocities where i = 1, 2, 3, 4, D(qi) is 2×2 inertia matrix

and C(qi, q̇i) is 2 × 2 matrix that contains Coriolis and centripetal forces.

The angular acceleration, velocity and input torques of the pantograph are
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represented by 2× 1 vectors q̈12 and q̇12 and τ12, respectively.

D(qi) can be written in terms of moment of inertia, mass, length and

positions of the pantograph links as:

D(qi) = I12 + (A−1
34 A12)

T I34A
−1
34 A12 + AT

s M12As+

(As34A
−1
34 A12 + As)

T M34(As34A
−1
34 A12 + As)

+AT
c M12Ac + (Ac34A

−1
34 A12 + Ac)

T M34(Ac34A
−1
34 A12 + Ac)

(5.2)

where link masses Mi and moment of inertias Ii can be written in the form

of 2× 2 diagonal matrices as:

M12 =


 M1 0

0 M2


 M34 =


 M3 0

0 M4




I12 =


 I1 0

0 I2


 I34 =


 I3 0

0 I4




(5.3)

Matrices that are used in calculation of D(qi) given with Eqn. (5.2), are

defined as:

A12 =


 L1s1 −L2s2

L1c1 −L2c2


 A34 =


 −L3s3 L4s4

−L3c3 L4c4


 As =


 Lc1s1 0

0 Lc2s2




Ac =


 Lc1c1 0

0 Lc2c2


 As34 =


 Lc3s3 0

0 Lc4s4


 Ac34 =


 Lc3c3 0

0 Lc4c4




(5.4)

where si and ci indicate sin(qi) and cos(qi) of the corresponding link, Lci

indicate the distance from center of the links to the joints they belong to and
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Li indicate the link lengths.

The Coriolis-centripetal matrix C(qi, q̇i) can be written as the product

of derivatives of the elements of matrix D(qi) and angular velocities of the

pantograph’s active links:

C(qi, q̇i) =
1

2




Q̇T
12




∂d11

∂q1

2∂d11

∂q1
− ∂d12

∂q1


 Q̇T

12




∂d12

∂q1

2∂d12

∂q1
− ∂d22

∂q1




Q̇T
12


 2∂d12

∂q1
− ∂d11

∂q2

∂d12

∂q2


 Q̇T

12


 2∂d22

∂q1
− ∂d12

∂q2

∂d22

∂q2







= Ḋ(qi)−CKQ(qi, q̇i)

(5.5)

where Q̇T
12 is the vector transpose of the angular angles of pantograph links

and Ḋ(qi) is time derivative of inertia matrix. In order to simplify the rep-

resentation of Coriolis-centripetal matrix, the terms except Ḋ(qi) are repre-

sented by CKQ(qi, q̇i. The derivative of the inertia matrix given in Eqn. (5.2)

can be written as

Ḋ(qi) = 2(A−1
34 A12)

T I34A
−1
34 (Ȧ12 − Ȧ34Ȧ

−1
34 A12)

+ 2AT
s M12Ȧs + 2(As34A

−1
34 A12 + As)

T M34((Ȧs34 − As34Ȧ34A
−1
34 )A−1

34 A12

+ As34A
−1
34 Ȧ12 + Ȧs) + 2AT

c M12Ȧ
+
c 2(Ac34A

−1
34 A12 + Ac)

T M34

((Ȧc34 − Ac34Ȧ34A
−1
34 )A−1

34 A12 + Ac34A
−1
34 Ȧ12 + Ȧc)

(5.6)
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where Ȧ12,Ȧ34,Ȧs34,Ȧc34,Ȧs,Ȧc can be calculated as:

Ȧ12 =


 L1c1q̇1 −L2c2q̇2

−L1s1q̇2 L2s2q̇2


 Ȧ34 =


 −L3c3q̇3 L4c4q̇4

−L3s3q̇3 −L4s4q̇4




Ȧs =


 Lc1c1q̇1 0

0 Lc2c2q̇2


 Ȧc =


 −Lc1s1q̇1 0

0 −Lc2s2q̇2




Ȧs34 =


 Lc3c3q̇3 0

0 Lc4c4q̇4


 Ȧc34 =


 −Lc3s3q̇3 0

0 −Lc4s4q̇4




(5.7)

CKQ(qi, q̇i) from Eqn. (5.5) can be written by using Eqn. (5.7) as:

CKQ(qi, q̇i) = (Cs34 + C34A
−1
34 A12) (5.8)

where C34 and Cs34 are defined as

Cs34 =


 −2m3L1Lc3s1s21̇1 0

0 −2m4L2Lc4s2s4q̇2




C34 =




(L1A−1
3 4sc1)T


 2m3L1Lc3s1s3q̇1 0

0 −2m4L2Lc4s2s4q̇2




(L1A−1
3 4sc2)T


 2m3L1Lc3s1s3q̇1 0

0 −2m4L2Lc4s2s4q̇2







(5.9)

where sc1 and sc2 terms are represented as sci = [sin(qi) cos(qi)]
T

One of the pantograph robots that is used in the experiments is shown in

Fig. 5.15
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Figure 5.15: Links of pantograph robot

The properties of the pantograph links are given in Table 5.2.

Table 5.2: Technical Properties of Pantograph

Mass (gr) Length (mm) Inertia (gr.mm2)

Link 1 123 200 132,438 × 103

Link 2 123 200 132,438 × 103

Link 3 136 195 141,526 × 103

Link 4 136 195 141,526 × 103

Link 5 - 175 -

Simulations are performed using the 2 DOF and 5 link nonlinear pan-

tograph robots as nonlinear master and slave manipulators which are made
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nominal by disturbance observer. The control parameters of the system are

given in Table 5.3. The cut-off frequency values of the disturbance observers

are chosen to be g1 = 1500 rad/sec and g2 = 1500 rad/sec.

Table 5.3: PID Control Parameters for Free Motion Simulations

Kp Kd

Joint 1 8 0.4

Joint 2 8 0.4

First it is considered that the communication channel is imposed to con-

stant delay with amount of 0.5 sec. The references are applied to the sys-

tem as different types of position references. The simulation results with

smoothed step references are given in Fig 5.16 and Fig 5.17.

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

Time [s]

1.
 J

oi
nt

 P
os

iti
on

0.5s constant delay

 

 

q1−master
q1−slave

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

Time [s]

2.
 J

oi
nt

 P
os

iti
on

0.5s constant delay

 

 

q2−master
q2−slave

Figure 5.16: Joint positions tracking a smoothed step reference
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Figure 5.17: Trajectory of the end-effector in x− y plane

It is observed that the slave system successfully tracks the master’s posi-

tion with a constant phase shift of 0.5 sec. which is due to the constant time

delay on the communication delay. Simulations are also performed for sinu-

soidal type of reference and the results are given in Fig. 5.18 and Fig. 5.19.

Again 0.5 sec phase shift is significant. It is clearly observed that unstabil-

ity and performance degradation problems are handled with the proposed

method.
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Figure 5.18: Joint positions tracking a sinusoidal reference
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Figure 5.19: Trajectory of the end-effector in x− y plane

In order to observe performance of the method for time variable delay,

simulations are carried out on pantograph manipulators. Variable time delay

characterized by a normally distributed random variable with a mean of 0.5

sec and standard deviation of 0.05 sec. is applied on the channel and the

results of the simulations for smoothed step references are given in Fig 5.20

and Fig 5.21.
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Figure 5.20: Joint positions tracking a smoothed step reference
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Figure 5.21: Trajectory of the end-effector in x− y plane

Tracking of sinusoidal references by pantograph robots under variable

delay results are given in Fig 5.22 and Fig. 5.23.
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Figure 5.22: Joint positions tracking a sinusoidal reference
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Figure 5.23: Trajectory of the end-effector in x− y plane

Simulation results are similar to the ones obtained with constant delay.

The tracking performance is satisfactory and the system does not tend to

become unstable.

5.2 Experiments for Free Motion

Two pantograph robots (Fig. 5.24) designed and manufactured in our labs

are used in a bilateral control system as master and slave systems.

Figure 5.24: Master and slave pantograph robots
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Dynamical equations of pantograph robots are linearized using distur-

bance observer given in the previous section. SMO based time delay com-

pensation method is implemented on these pantograph robots to see the

effectiveness of our proposed approach.

Figure 5.25: Experimental Setup

In the experiments, the end-effector positions of the pantographs in x−y

plane and joint angles are examined. The aim is to enable the slave robot to

follow master’s trajectories generated by human operator. Pantographs are

allowed to work in a bilateral teleoperation system by introducing a variable

time delay characterized by a normally distributed random variable with a

mean of 0.5 sec and standard deviation of 0.025 sec. Time delay is artificially

created with Matlab’s Time-Variable Delay block. Control algorithms are

implemented in real-time using dSpace1103 controller board. The control
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parameters used in experiments are given in Table 5.4. The cut-off frequency

of the low-pass filter, G(s), used in the disturbance observer is set to g = 1000

rad/sec.

Table 5.4: PID Control Parameters for Free Motion Experiments

Kp Kd

Joint 1 8 0.3

Joint 2 9 0.3

In the first experiment, the human operator holding the end-effector of

the master pantograph draws a free-form closed curve. For example, in a

remote surgery, an odd-shaped tumor could be represented by a curve like

this.
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Figure 5.26: Tracking a closed curve
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Figure 5.27: Joint positions versus time

As shown in Fig. 5.26, the end-effector of slave pantograph (dashed line)

successfully tracks the end-effector of master pantograph (solid line). Angular

joint positions of pantographs are depicted in Fig. 5.27. Note that joint

angles of pantographs track each other with a delay. This is inevitable since

the future values of operator reference can not be known in advance.
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Figure 5.28: Tracking the reference (number 5) drawn by the master
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Figure 5.29: Joint positions versus time

In another experiment, number 5 shaped reference (an open curve) is

drawn by the operator controlled master pantograph. From Fig. 5.28 and

Fig. 5.29 it is clear that slave pantograph successfully tracks this trajectory.

Similarly, number 4 shaped reference is also tracked by the slave pantograph

quite satisfactorily. Results are shown in Fig 5.30 and 5.31.
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Figure 5.30: Tracking the reference (number 4) drawn by the master

75



0 1 2 3 4 5 6 7 8 9 10
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time (sec)

1.
 J

oi
nt

 P
os

iti
on

 (
ra

d)

Joint 1

 

 

Master
Slave

0 1 2 3 4 5 6 7 8 9 10
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Time (sec)

2.
 J

oi
nt

 P
os

iti
on

 (
ra

d)

Joint 2

 

 

Master
Slave

Figure 5.31: Joint positions versus time

Experimental results presented above indicate that the nonlinear dynam-

ics of pantograph robots are successfully linearized and the parameter un-

certainties in the system are eliminated by the disturbance observer (DOB)

which in turn allows implementation of SMO for delay compensation. In all

experiments slave pantograph successfully tracks the trajectory of the master

pantograph.

5.3 Simulations for Contact Motion

According to the idea of bilateral teleoperation, when slave system contacts

with the environment, the forces applied to the slave should be perceived

by the human operator. This goal is achieved by establishing a transparent

communication channel between the local and slave manipulators. However,

constant or time variable communication delay is inevitable. The system

under constant or variable communication delay is stabilized by the proposed

method. Moreover, it is possible to feel the environment forces as if human

operator directly contacts with the environment. In the previous subsection,

it is shown with simulations that, in free motion manipulating a remote
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system is possible even with a delayed communication. In this subsection the

performance of the modified sliding mode observer scheme will be observed

on simulation results.

5.3.1 Simulations with Pantograph Robots

In this part, simulations are performed considering the interaction of the

slave robot with environment and pantograph robots are used as master and

slave manipulators. In order to simulate the contact motion, the environment

is modeled as a rigid wall having a rigidity of k = 1000 N/m and a viscosity

of b = 5 Ns/m. Environment force is generated as

Fe = k(xs − xw) + bẋs (5.10)

where xs is the position of the slave and xw is the position of the wall. The

force is generated depending on the end-effector position and it is transformed

into joint forces to be applied to the slave joints individually. The parameters

used in the simulations are given in Table 5.5.

Table 5.5: Parameters of Simulation

gdob Cut-off frequency of DOB 1500 rad/sec

grtob Cut-off frequency of RTOB 1500 rad/sec

Kp Position feedback gain 9

Kd Velocity feedback gain 0.6

Kf Force feedback gain 1

In the first simulation with constant delay in the channel, the wall is lo-
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cated at x = 0 position which means the slave pantograph stops at x = 0.

The simulation results concerning this scenario is shown in Fig. 5.32 and

Fig. 5.33. The second figure of Fig. 5.32 shows the behavior of pantograph’s

end-effector in x and y coordinates individually. At time t = 6.16 sec., the

master contacts with the environment at x = 0 and as given in the first

figure of Fig 5.32 environment force starts to increase. As shown in Fig. 5.33

the trajectory starts at (x, y) = (0.252, 0.192) position and slave stays at

(x, y) = (0, 0.36) until the contact force is released. During the contact mo-

tion acts on the slave system from the x−direction, slave manipulator moves

in y−direction. When the contact is released at t = 11 sec. master and

slave manipulators restart free motion from (x, y) = (0, 0.123). Fig. 5.33

shows that the end-effector of the slave cannot exceed the wall position and

master pantograph strains to catch slave’s position. This means that, the

external forces are perceived at the local side. Human force and environment

force applied at the contact instants are clearly shown in the first figure of

Fig. 5.32. Here it is clear that, trajectories generated by the human opera-

tor are tracked with delay by coping with the unstability and performance

degradation problem.
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Figure 5.32: External forces and positions in cartesian space
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Figure 5.33: Trajectory of the end-effector in x− y plane

As the delay type is interchanged as time variable, Fig. 5.34 and Fig. 5.35

are obtained. The simulation results show that the variable delay is also

compensated by the method successfully.
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Figure 5.34: External forces and positions in cartesian space
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Figure 5.35: Trajectory of the end-effector in x− y plane

5.3.2 Simulations with Scara Robots

As a different plant, scara robots (Fig. 5.1) are used in simulations. In the

simulations it is considered that the stiff wall (k = 1700 N/m, b = 5 Ns/m)

is located at y = 0.5 m. position. The parameters used in the simulations

are given in Table 5.6.
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Table 5.6: Parameters of Simulation

gdob Cut-off frequency of DOB 1500 rad/sec

grtob Cut-off frequency of RTOB 1500 rad/sec

Kp Position feedback gain 9

Kd Velocity feedback gain 0.6

Kf Force feedback gain 1

As observed from Fig. 5.36, slave robot stops at that position. In the

first figure of Fig. 5.36, it is clear that the environment force increases at the

moments that contact motion is realized at the assigned wall position.
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Figure 5.36: External forces and joint positions
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Figure 5.37: Master and slave pantograph robots

Successful results are obtained from the simulations performed with con-

stant delay. Time variable delay is also considered for the scara robot simu-

lations. Similar results with constant delay scenario are obtained as they are

given with Fig. 5.38 and Fig. 5.39.
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Figure 5.38: External forces and joint positions
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Figure 5.39: Master and slave pantograph robots

5.4 Experiments for Contact Motion

Since the simulation results for contact motion are satisfactory, the method

is tested with experiments.

Experiments with 1 link single DOF Robots

Experiments are performed in order to examine performance of the system

when contact with environment motion is considered. In experiments, a

linear 1 DOF manipulator (Fig. 5.40) is used which means a linearization

is not applied on the system. But other disturbances are eliminated with

disturbance observers. The environment and human forces are estimated

by reaction torque observers. The first figure of Fig. 5.41 shows that at

t = 2.2 sec the slave manipulator interacts with the environment and cannot

move beyond the y = −0.83 m. position. During the contact, environment

and human forces are increasing in opposite directions as expected. In this

experiment the slave system contacts with the environment multiple times.
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For instance, at t = 7.46 sec., t = 18.88 sec. and t = 29.26 sec. In the

first figure of Fig. 5.41 it is observed that as the human force is increased

at the contact motion, the environment force also increased. As observed

from Fig. 5.41, due to the communication delay master system perceives the

environment force and positions converge each other with delay. When the

slave manipulator is released from the wall contact, stable position tracking

is achieved with quite satisfactory performance.

Figure 5.40: Bilateral teleoperation setup with 1 DOF linear manipulators

Experiments are also performed with time variable delay and the results

are as shown in Fig 5.42. The slave manipulator contacts with the environ-

ment at t = 6.6 sec. and as shown in the first figure of Fig. 5.42, environment

force starts to increase in that moment until t = 17.6 sec. It is observed from

the second figure of Fig. 5.42, in this period the slave manipulator does not

move from the position of q = 0.71 rad. As the contact is released, master

and slave positions are converge to each other with a 0.047rad. of steady

state error which is negligible.
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Figure 5.41: Constant delay
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Figure 5.42: Variable delay

From the figures, we can observe that in free motion the master robot fol-

lows the slave robot with a phase lag in a stable fashion. When environment

contact occurs the estimated human and environment forces become equal

in magnitude with opposite signs. However due the phase shift resulting

from the communication delay, the master position cannot converge to the

slave position immediately. On the other hand, when the contact is released

position tracking phase shift is observed.
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Experiments with 5 link 2 DOF Pantograph Robots

The proposed three channel controller with SMO is tested on a bilateral

teleoperation system composed of two pantograph manipulators Fig.5.25.

Experiments are performed under constant and variable delay. In Fig.5.43

the human and environment forces acting on the slave and perceived by the

master are shown. As the environment force increases at contact moments,

the human force also increases in the opposite direction. Positions of the

joints are given in Fig.5.44. At contact moments, the position of the second

joint cannot not move and the when the human operator releases the force

the master and slave positions converge to each other.
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Figure 5.43: Joint Forces
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Figure 5.44: Joint Positions

For constant delay, the results are similar to the simulation results. There

are some unexpected motions but they can be considered to be caused due

to the sudden change of action and reaction forces.

The method is tested also for variable time delay. A variable delay with

a mean of 0.5 sec. and fluctuating with a standard variation of 0.05 sec. is

applied on the communication channel from Simulink. Fig. 5.45 shows the

external forces for each actuated joint. The first joint of slave pantograph

contacts with the environment between t = 15 sec. and t = 40 sec while the

second joint contacts between t = 15 sec. and t = 50 sec. After t = 50 sec.

the human and environmental forces are released from the robots however

the position convergence can not be achieved this time. A significant steady

state error is observed in Fig. 5.46.
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Figure 5.45: Joint Forces
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Figure 5.46: Joint Positions
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Chapter VI

6 Concluding Remarks and Future Work

In this thesis, a novel observer based delay compensation method is pro-

posed for the position control of a bilateral teleoperator system with nonlinear

components. Delay compensation method is designed for bilateral systems

consisting of nonlinear teleoperators since nonlinear robots are commonly

used in many telerobotics applications to handle complex tasks. In this work

not only nonlinear but also uncertain dynamics of the manipulators are lin-

earized by a disturbance observer. A sliding observer is defined to predict

the future states of the slave manipulator. This method takes place among

the robust compensation techniques in the literature since the robustness of

the system is increased with both disturbance observers and sliding mode

control in the observer dynamics. Stable operation is guaranteed by simple

PD type controllers which use the predicted states as feedback signals.

The performance of the proposed method is demonstrated with simula-

tions and experiments performed on different nonlinear plants (scara robot

and pantograph robot) considering constant and variable communication de-

lays. For both of the delay types the simulation results show that the position

tracking performance is successful. Predictor observer yields the convergence

of the estimated states to the future of the actual states of the slave system.

Thus, the control signal generated at the master side is able to control the



slave robot successfully. Similar results are obtained with experiments per-

formed on a pair of pantograph robots.

The proposed delay compensation method which is designed and tested

for free motion is improved for force reflecting teleoperation where transper-

ancy is the main concern. The well known four channel control architecture

is modified in the observer based control framework as three channel archi-

tecture. Control efforts for both of the master and slave manipulators are

calculated at the master side by using master’s position, slave’s predicted

position, estimated human and environment forces. It may be impossible to

reach the remote system therefore designing the control signals in master side

allows us to make any modifications on control calculations immediately in

any unexpected situations. The method is tested in simulations and experi-

ments. Simulations are carried out on nonlinear robots (scara, pantograph)

and experiments are performed on 1 DOF linear robots. The results was

satisfactory but the experiments should be carried out on pantographs as

nonlinear plants.

A number of different types of disturbance observes which are basically

low-pass filters are used in the system. Since using low pass filter creates

delay, this increases the phase lag resulting by the communication delay.

The filter generated delay can be decreased with a proper tuning of cut-off

frequency of the filters. Decreasing the cut-off frequency decreases the phase

lag, however as the cut off frequency is decreased the performance of the filter

degrades as disturbances with high frequencies are not estimated. Similarly

since the external forces are estimated by a kind of disturbance observer,

increasing the cut off frequency provides a better estimation. Therefore it

can be concluded that the performance of the method is highly dependent
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on the number of the observers and their cut-off frequency values.

In the experiments the communication delay is introduced virtually from

Matlab/Simulink. For more realistic implementations, a network communi-

cation should be established between the master and slave systems.
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