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An image formation framework for ultrasound imaging from synthetic transducer arrays based on

sparsity-driven regularization functionals using single-frequency Fourier domain data is proposed.

The framework involves the use of a physics-based forward model of the ultrasound observation

process, the formulation of image formation as the solution of an associated optimization problem,

and the solution of that problem through efficient numerical algorithms. The sparsity-driven,

model-based approach estimates a complex-valued reflectivity field and preserves physical features

in the scene while suppressing spurious artifacts. It also provides robust reconstructions in the case

of sparse and reduced observation apertures. The effectiveness of the proposed imaging strategy is

demonstrated using experimental data.
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I. INTRODUCTION

Imaging high contrast, spatially compact inclusions

within a nominally homogeneous medium is important in

domains ranging from nondestructive evaluation (NDE) to

biomedical imaging. In NDE, such inclusions can indicate

the presence of material defects, such as cracks.1 In medical

imaging, these inclusions can be associated with objects

such as shrapnel and kidney stones.2 For many of these tasks

ultrasound is the imaging modality of choice due to its low

cost, flexibility, and safety. However, conventional ultra-

sound imaging methods exhibit diffraction artifacts which

can make imaging of distinct structures difficult, especially

as there are often limited acoustic windows which result in

poor data coverage. For example, one application where

detecting strong, spatially compact inclusions in a weakly

scattering background becomes challenging is detecting kid-

ney stones using ultrasound imaging. A recent study on this

application reports that ultrasound has a sensitivity of 76%

with 100% specificity, indicating that about a quarter of the

kidney stones could not be detected.3 A second application

is the detection of needles and other medical instruments in

ultrasound images where diffraction artifacts make the loca-

tion and orientation of the instruments almost impossible to

discern from the images.4–6

In this work, a new model-based framework for ultra-

sound imaging that estimates a complex-valued reflectivity

field using single-frequency Fourier domain data is pre-

sented. It is demonstrated that the approach produces images

with improved resolution and reduced diffraction artifacts.

These gains are especially seen in challenging observation

scenarios involving sparse and reduced apertures. The

framework is based on a regularized reconstruction of the

underlying reflectivity field using a wave-based linear model

of the ultrasound observation process. The physical model is

coupled with nonquadratic regularization functionals,

exploiting prior knowledge that the underlying field should

be sparse. In our previous work we have applied such

sparsity-driven approaches to other wave-based, coherent

imaging problems such as radar imaging.7 These nonqua-

dratic functionals enable the preservation of strong physical

features (such as strong scatterers or boundaries between

regions with different reflectivity properties), and have been

shown to lead to super-resolution-like behavior.8,9 The

resulting optimization problem for image formation is solved

using efficient numerical algorithms. The new method is

demonstrated using experimental ultrasound data.

A number of others have attempted to regularize the

ultrasound image formation process. Ebbini et al.10 and

Ebbini11 proposed optimal inverse filter approaches using

singular value decomposition based regularization. These

methods yield closed form solutions to ultrasound imaging

problem. Carfantan and Mohammad-Djafari12 proposed a

Bayesian approach for the nonlinear inverse scattering prob-

lem of tomographic imaging using microwave or ultrasound

probing employing a generalized Gauss Markov random
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field (MRF) prior image model on the real and imaginary field

components. They use a nonlinear observation model and show

only two-dimensional simulated examples corresponding to

transducer positions completely surrounding the object. Battle

et al.13 coupled a linearized, physical-optics approximation

with maximum entropy regularization applied to sparsely

sampled multimonostatic sensing. They extended the maximum

entropy method to account for the complex nature of the scat-

tering field and apply it to the real and imaginary

field components. They show experimental results. Husby

et al.14 propose a deconvolution technique that estimates a real-

valued reflectivity field based on a MRF model of the variance

of the scattering field for diffuse ultrasound. The resulting opti-

mization problem is computationally challenging and was

solved using Markov chain Monte Carlo techniques. Lavarello

et al.15 investigated the feasibility of a generalized Tikhonov

technique. They use time-domain data and estimate a real-

valued reflectivity field and perform performance analysis on

simulated two-dimensional data. Viola et al.16 extended a pas-

sive sound navigation and ranging (SONAR) method to

account for near field and broadband signals. Their method also

uses time-domain data and estimates sparse, real-valued reflec-

tivity fields; however, their method is computationally unattrac-

tive, requiring the use of a supercomputer. Although, they are

not in the class of regularization methods, Capon (Ref. 17) and

MUSIC (Ref. 18) beamformers are well known methods used

in acoustic localization in sparse reflectivity fields and have

been shown to perform well in scenarios involving isolated

point targets, but are not directly applicable to scenarios involv-

ing extended targets.

This paper develops the methods presented in Refs. 7

and 19 for the ultrasound imaging problem. There are a num-

ber of aspects of this paper that differentiate it from the

existing literature. The proposed framework can seamlessly

handle complex-valued, single-frequency Fourier domain

data and estimates a complex-valued reflectivity distribution.

The proposed method uses a Sobolev-type functional incor-

porating simultaneous penalties on the magnitude of the

underlying complex reflectivity field as well as the gradient

of this magnitude. This enhanced dual penalty functional

contrasts those used in Refs. 12–16. Further, the correspond-

ing optimization algorithms provide a straightforward and

efficient solution when complex fields are used with penal-

ties on the gradient of the magnitude, thus avoiding the need

for general and expensive Monte Carlo sampling techni-

ques,14 expanded field definitions,13 or specialized computa-

tional hardware.16 Finally, the new method is used to

process experimental data and verify the anticipated

improvement in image quality compared to conventional

synthetic aperture focusing technique (SAFT). Results from

the experiments show how the proposed approach can pro-

vide improved resolution, reduced artifacts, and robustness

to data loss as compared to conventional imaging methods.

II. OBSERVATION MODEL FOR ULTRASOUND
SCATTERING

The observation model used for ultrasound scattering is

based on a linearization of the scalar wave equation, as

developed in Refs. 13 and 20, and is summarized here. The

free space Green’s function is used to model the scattered

field in space in response to a point source of excitation,

G r0 � rj jð Þ ¼ exp jk r0 � rj jð Þð Þ
4p r0 � rj j ; (1)

where r and r0 denote the source location and the observa-

tion location in three-dimensional space, respectively, and

k is the wavenumber. It is assumed that imaging is carried

out with a single element transducer acting in pulse-echo

mode, that is, only backscatter data are collected and that the

transducer can be moved to a number of different locations.

For this initial work it is assumed that the background is

homogeneous and the wave suffers no scattering until an

impenetrable scatterer is encountered. This assumption is

reasonable from cases of strong reflectors of acoustic energy,

e.g., shrapnel or kidney stones in the body and or cracks in

nondestructive evaluation, where the scattering from the

background medium is weak in comparison to the target.

This is equivalent to the Born approximation and one can

linearize the Lippmann–Schwinger equation using Born

approximation to obtain the following observation model:21

y r0ð Þ ¼ c

ð
G2 r0 � rj jð Þf rð Þ dr; (2)

where y �ð Þ denotes the observed data and f �ð Þ denotes the

underlying, unknown backscatter function, which we will

refer to as the reflectivity field and which for generality is

taken to be complex valued.22 Complex-valued reflectivity

fields are common in coherent imaging and allow the obser-

vation model (2) to capture the impedance of surfaces where

the underlying material has a layered structure, for example,

shrapnel from bullets where the jacket and internal alloy

are different, or the lamellar structure of kidney stones. In

Eq. (2), c is a constant scaling factor that depends on the

wavenumber, electro-mechanical coupling, and other cali-

bration factors and it is assumed that c ¼ 1 throughout this

work. Note that squaring the Green’s function captures the

two-way travel from the transducer to the target and back.

Also note that the above-mentioned observation model

involves essentially a shift invariant point spread function.

The model is discretized and the presence of measurement

noise is taken to be additive to obtain the following discrete

observation model:

y ¼ Tf þ n; (3)

where y and n denote the measured data and the noise,

respectively, at all transducer positions; f denotes the

sampled unknown reflectivity field; and T is a matrix repre-

senting the discretized version of the observation kernel in

Eq. (2). In particular, each row of T is associated with meas-

urements at a particular transducer position. The entire set of

transducer positions determines the nature of the aperture

used in a particular experiment, and the matrix T carries

information about the geometry and the sparsity of the

aperture.
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III. SPARSITY-DRIVEN ULTRASOUND IMAGING

A. Imaging problem formulation

Given the noisy observation model in Eq. (3), the imag-

ing problem is to find an estimate of f based on the measured

data y. The conventional ultrasound imaging method of

SAFT essentially corresponds to using TH, the Hermitian

adjoint of the operator T, to reconstruct the underlying field f ,

f̂SAFT ¼ THy: (4)

SAFT has no explicit or implicit mechanisms to deal with

low quality and limited data; hence it yields images with

diffraction artifacts and low resolution in such scenarios.

In contrast, the method presented here obtains an image

as the minimizer of a cost or energy functional that takes

into account both the observation model (3) as well as terms

reflecting prior information about the complex-valued field

f . One type of generic prior information that has recently

been successfully applied in a number of imaging applica-

tions, such as astronomical imaging,23 magnetic resonance

imaging,24 and computer assisted tomography,25,26 involves

the sparsity of some aspect of the underlying field. In the

context of ultrasound imaging, such sparsity priors can be a

valuable asset since in many applications of interest the

underlying field should be fairly sparse in terms of both the

location of inclusions as well as the boundaries between

such inclusions and the homogeneous medium. Overall, the

proposed method produces an image as the solution of the

following optimization problem, which will be called

sparsity-driven ultrasound imaging (SDUI):

f̂SDUI ¼ argmin
f

J fð Þ; (5)

where the objective function has the following form:

J fð Þ ¼ y� Tfj jj j22þk1 fj jj jppþk2 D fj jj jj jpp: (6)

In Eq. (6), �j jj jpp denotes the lp-metric (for p � 1 it is also a

norm), D is a discrete approximation to the derivative opera-

tor or gradient, fj j denotes the vector of magnitudes of the

complex-valued vector f , and k1, k2 are scalar parameters

that will be discussed in the following. Here, D was imple-

mented using first order differences in horizontal, vertical,

and diagonal directions. The formulation (5), (6) starts from

the measured acoustic waveforms and is not simply a post-

processing of a formed image.

The first term in Eq. (6) is a data fidelity term, which

incorporates the Green’s-function-based observation model

(2), and thus information about sensing geometry, e.g., aper-

ture. The second and third terms in Eq. (6) are regularizing

constraints that incorporate prior information regarding both

the behavior of the field f and the nature of features of inter-

est in the resulting reconstructions. By choosing 0 < p � 1

these terms favor sparsity in their arguments.27 In particular,

the sparsity favoring behavior of the second term preserves

strong scatterers while suppressing artifacts. Similar objec-

tives have been previously achieved in the context of nuclear

magnetic resonance spectroscopy,28 astronomical imaging,29

and ultrasound imaging using maximum entropy methods.13

The third term has the role of smoothing homogeneous

regions while preserving sharp transitions, such as those

between cracks and background or kidney stone and the tis-

sue. Such constraints have been applied in real-valued image

restoration and reconstruction problems by using constraints

of the form rfj jj j1.30,31 However, straightforward independ-

ent application of such a term to the real and imaginary parts

of the complex-valued field f does not directly control the

behavior of the magnitude,32 which is what is typically

desired. Here, the gradient is applied to the magnitude of the

field through use of the prior term r fj jj jj jpp, which directly

imposes coherence on the magnitude of f while preserving

discontinuities in the magnitude. The values of the scalar pa-

rameters k1 and k2 determine the relative emphasis on the

regularizing sparsity constraints. Unfortunately, the resulting

cost function in Eq. (5) is nonquadratic, and thus its minimi-

zation is nonlinear and potentially challenging. For its solu-

tion we adopt the efficient optimization method developed in

Ref. 7 in the context of synthetic aperture radar, which is

summarized next.

B. Solution of the optimization problem

In order to avoid problems due to the nondifferentiabil-

ity of the lp metric around the origin when 0 < p � 1, we

use the following smooth approximation to the lp metric in

Eq. (6):

zj jj jpp�
XK

i¼1

zð Þi
�� ��2þ�� �p=2

; (7)

where � > 0 is a small constant, K is the length of the com-

plex valued vector z, and zð Þi is the ith element of z. Using

the approximation in Eq. (7), we obtain a modified cost

function,

Jm fð Þ ¼ y� Tfj jj j22þk1

XN

i¼1

fð Þi
�� ��2þ�� �p=2

þ k2

XM

i¼1

D fj jð Þi
�� ��2þ�� �p=2

: (8)

Note that Jm fð Þ ! J fð Þ as �! 0. The minimization of J fð Þ
or Jm fð Þ does not yield a closed-form solution for f in gen-

eral so numerical optimization techniques must be used. We

employ the quasi-Newton method developed in Ref. 7 that

accounts for the complex-valued nature of the ultrasound

imaging problem and the associated prior terms. The gradi-

ent of the cost function is expressed as

rJm fð Þ ¼ ~H fð Þf � 2THy; (9)

where

~H fð Þ ¼D 2THTþ pk1K1 fð Þ
þ pk2U

H fð ÞDTK2 fð ÞDU fð Þ; (10)
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K1 fð Þ ¼D diag
1

fð Þi
�� ��2þ�� �1�p=2

8><
>:

9>=
>;;

K2 fð Þ ¼D diag
1

D fj jð Þi
�� ��2þ�� �1�p=2

8><
>:

9>=
>;;

U fð Þ ¼D diag exp �j/ fð Þi
� �� �	 


; (11)

and / fð Þi
� �

denotes the phase of the complex number fð Þi.
The symbol diag �f g denotes a diagonal matrix whose ith di-

agonal element is given by the expression inside the square

brackets. We use ~H fð Þ as an approximation to the Hessian in

the following quasi-Newton iteration:

f̂
ðnþ1Þ ¼ f̂

ðnÞ � ~H f̂
ðnÞ� �h i�1

rJm f̂
ðnÞ� �

: (12)

After substituting Eq. (9) into Eq. (12) and rearranging, the

following fixed point iterative algorithm can be obtained:

~H f̂
ðnÞ� �

f̂
ðnþ1Þ ¼ 2THy: (13)

The iteration (13) runs until k f̂
ðnþ1Þ� f̂

ðnÞk2
2 =k f̂

ðnÞk2
2< d,

where d is a small positive constant. It was shown in Ref. 33

that this algorithm can be interpreted as a so-called half-

quadratic algorithm, with guaranteed convergence to an esti-

mate that is at least a local minimum of the cost function.

The key step in the iterative algorithm (13) is the solution

of a linear set of equations for the updated estimate f̂
ðnþ1Þ

. The

matrix ~Hðf̂ðnÞÞ is sparse due to the observation that although T

is not a sparse matrix in general, THT is usually sparse and

sparsity of the second and third terms in ~H fð Þ is easier to

recognize. The sparse structure of ~Hðf̂ðnÞÞ is well matched to

efficient iterative solution by methods such as the precondi-

tioned conjugate gradient (CG) algorithm,34 which is what we

use here. The CG iterations are terminated when the l2 norm

of the relative residual becomes smaller than a threshold

dCG > 0. Overall then, there is an outer iteration where

~Hðf̂ðnÞÞ is updated and an inner iteration where Eq. (13) is

solved for a given ~Hðf̂ðnÞÞ using an efficient iterative solver.

IV. EXPERIMENTS AND RESULTS

For the imaging experiments, two-dimensional cross

sections of target objects were reconstructed using two meth-

ods: SAFT, Eq. (4), and the proposed SDUI method. Two

different object types were imaged. First, circular metal rods

made of either aluminum or steel were used for resolution

studies. The second type of object was a more complicated

aluminum U-shaped channel, as used in Ref. 13. In both

cases the objects were aligned with their cross section paral-

lel to the array plane.

Ultrasound experiments were carried out in a tank of

water (2� 1� 1 m). A broadband single-element unfocused

transducer (HI-6743, Staveley, East Hartford, CT) with a di-

ameter of 4.81 mm and a nominal center frequency of 500

kHz was employed. It was excited in pulse-echo mode using

a pulser-receiver (Model 5800, Olympus-NDT, Waltham,

MA) and the echo waveforms recorded on a digital oscillo-

scope with a sampling rate of 50 MHz. The target (rod or

channel) was held fixed in the tank. The transducer was

mounted to a computer controlled positioning system and

was initially placed at a distance of 75 mm from the target.

The transducer was then scanned in a raster pattern in a plane

parallel to the cross section of the target and pulse-echo data

recorded at each location, i.e., in a multimonostatic arrange-

ment. The imaging setup is illustrated in Fig. 1. In the case of

FIG. 1. (Color online) Illustration of the imaging setup: A broadband

single-element unfocused transducer performs a raster scan in a plane paral-

lel to the cross section of the object. At each scan location the transducer

sends an acoustic pulse and then detects the echo. For all experiments, the

initial distance between the object and transducer was set to be 75 mm.

FIG. 2. Illustration of data acquisition scenarios being considered. (a) Full

aperture case for an 8� 8 grid of scan locations. (b) Sparse aperture case:

The data are collected from the marked locations that are irregularly and

randomly distributed over the full support of the 8� 8 grid. (c) Reduced

aperture case: Marked scan locations concentrated in the center of the full

aperture are obtained by uniformly decreasing the aperture support in each

dimension.
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a single object, the scan plane covered a square with a side of

64 mm with 1 mm separation between each scan location,

while in the case of multiple objects, it covered a square with

a side of 96 mm with 1.5 mm separation between each scan

location. In both cases a full scan forms a 64� 64 grid with a

total of 4096 scan locations. The echo data were time gated

from 90 to 170 ls in order to isolate the reflected signals

from other signals, reflections from the target holder and the

tank walls. The time-gated received signal was transformed

to the frequency domain. In all experiments, the peak of the

echo spectra was found to be around 320 kHz. Data from this

single frequency were used in the image formation, which

corresponds to a wavelength of 5 mm in water. For the trans-

ducer employed, the Rayleigh distance at 320 kHz was

3.9 mm and the far-field �6 dB half-angle beam width was

43.5�. At the imaging range of 75 mm the beam width corre-

sponded to a lateral beam extent of 142 mm. The expected

lateral resolution of SAFT is half the diameter of the trans-

ducer, d=2 ¼ 2:4 mm.35

For each experiment, reconstructions were carried out

for three data scenarios. The first is referred to as the full

data scenario where data from all 4096 scan locations on the

64� 64 grid were employed. The second, referred to as a

sparse aperture, corresponded to a subset of the locations

chosen with random and irregular sampling over the full sup-

port of the 64� 64 grid. The sparse apertures reported here

include 25%, 14:06%, 6:25%, and 3:5% of all scan locations.

The third scenario, referred to as a reduced-support aperture,

consisted of the same number of locations as the sparse aper-

ture but the locations were restricted to squares with sides

that were 50%, 37:5%, 25%, and 18:75% of the full aperture,

i.e., a 50% reduction in each dimension reduces the total

number of scan locations by 0.5� 0.5¼ 0.25. These notions

FIG. 3. Images of the 3.2 mm steel rod using full and sparse aperture data.

Reconstructions by SAFT using (a) full data, (c) 6.25% sparse data, and (e)

3.5% sparse data. Reconstructions by the SDUI method using (b) full data

with k1 ¼ 500, k2 ¼ 100, (d) 6.25% sparse data with k1 ¼ 25, k2 ¼ 5, and

(f) 3.5% sparse data with k1 ¼ 16, k2 ¼ 3. All dimensions are in millimeters.

FIG. 4. Images of the 3.2 mm steel rod using full and reduced aperture data,

corresponding to expected loss of resolution. Reconstructions by SAFT

using (a) full aperture, (c) 6.25% reduced aperture, and (e) 3.5% reduced

aperture. Reconstructions by the SDUI method using (b) full aperture with

k1 ¼ 500, k2 ¼ 100, (d) 6.25% reduced aperture with k1 ¼ 170, k2 ¼ 5, and

(f) 3.5% reduced aperture with k1 ¼ 150, k2 ¼ 3. All dimensions are in

millimeters.
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are illustrated schematically in Fig. 2. The motivation in

choosing the two degraded scenarios was to contrast the

effects of the amount of data available and the size of the

aperture on the reconstruction. In particular, in reduced aper-

ture scenarios, the resolution of SAFT is expected to degrade

as the aperture size, 64 or 96 mm, for the full data scenario is

smaller than the lateral width of the beam, 142 mm, hence

reducing the aperture will remove signals with information

about the target.

For all reconstructions with SDUI, a value of p ¼ 1 was

used in the penalties of Eq. (6) or Eq. (7) and the regulariza-

tion parameters, k1 and k2, were chosen to yield reconstruc-

tions judged best by visual inspection. The sensitivity of the

reconstruction to these regularization parameters is dis-

cussed in Sec. IV C. The smoothing parameter in Eq. (7)

was set to be � ¼ 10�10, which was observed to be small

enough not to affect the behavior of the solutions. For all

the experiments the SDUI method was initialized with a

field of zeros and the tolerances for ending the iterations

were d ¼ dCG ¼ 10�3.

A. Experiments with rods

The aim of these experiments was to demonstrate the re-

solution improvement and signal-to-noise ratio enhancement

capabilities of SDUI compared to SAFT. Four cylindrical

rods of different materials and diameters were used. Three

rods were made of 316 stainless steel with diameters of

approximately 9.5, 4.8, and 3.2 mm. The fourth rod was

made of 6061 aluminum with a diameter of 3.2 mm. The

performance of the imaging algorithms was first studied with

single rods and then with pairs at various separations.

1. Single rod results

For all rods, reconstructions were created with the full

data and then the sparse and reduced apertures at 6:25% and

3:5% of the full data. The results were quantified using

full width at half maximum (FWHM) as an estimate of the

diameter by calculating the average of FWHM values for

horizontal and vertical cross sections passing through the

center of the reconstruction. Similar results were obtained

for all four rods and therefore only results pertaining to the

3.2 mm stainless-steel rod are presented here. Figure 3 shows

the reconstructions by SAFT and the SDUI method using the

full data and 6.25% and 3.5% sparse aperture data. Overall

the proposed SDUI method suppressed the artifacts and

reconstructed smooth object and background regions with

clearly defined boundaries between them. Furthermore, the

SDUI method showed robustness to data sparsity relative

to the conventional ultrasound imaging method of SAFT,

which had increased artifacts as data became more sparse.

In Fig. 4 the equivalent results are shown for the

reduced aperture cases. In this case the data were reduced by

reducing the aperture support, which should lead to

FIG. 5. Estimated diameter values of the 3.2 mm steel rod. SAFT sparse

(dashed and dotted line), SAFT reduced (dotted line), SDUI sparse (solid

line), SDUI reduced (dashed line). The curves, SDUI sparse and SDUI

reduced, overlay each other.

FIG. 6. Images of the 9.5 and the 4.8 mm steel rod at 5 mm separation using

reduced aperture data, corresponding to expected loss of resolution. Recon-

structions by SAFT using (a) full aperture, (c) 6.25% reduced aperture, and

(e) 3.5% reduced aperture. Reconstructions by the SDUI method using (b)

full aperture with k1 ¼ 200, k2 ¼ 30, (d) 6.25% reduced aperture with

k1 ¼ 3, k2 ¼ 0:005, and (f) 3.5% reduced aperture with k1 ¼ 3, k2 ¼ 0:001.

All dimensions are in millimeters.
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resolution loss. This is clearly demonstrated by the conven-

tional SAFT-based images. As the aperture was progres-

sively reduced the apparent size of the reconstructed object

increased as the effective point spread function of the array

increased. Significant blurring occurred in these reduced

aperture SAFT-based images, that is, the boundary of the rod

did not appear as a sharp transition in the image. In contrast,

the SDUI-based reconstructions retained their ability to

focus the object as the aperture was reduced, producing a

clear object image with sharp boundaries.

Figure 5 displays the apparent diameters obtained from

the reconstructions of the 3.2 mm steel rod as a function of

the amount of data used for both the reduced and sparse

aperture data cases. It can be seen that the diameters

obtained from SDUI reconstructions are approximately

3.5 mm as the amount of data is varied. In contrast, the appa-

rent size obtained from the SAFT-based reconstructions are

significantly larger than the true size (at least 4.7 mm). Fur-

ther, in the reduced aperture cases this diameter grows dra-

matically as the aperture support is reduced, reflecting a loss

of resolution with smaller aperture.

2. Two rod results

Experiments were then carried out using two different

diameter rods at different separations to investigate the abil-

ity of conventional SAFT and the SDUI method to resolve

closely spaced objects. Results are just shown for reduced

aperture scenarios as the sparse aperture data scenarios were

similar to the single rod case and so are not presented here.

Figure 6 shows reconstructions by SAFT and SDUI of the

9.5 and the 4.8 mm steel rods separated by 5 mm using the

full data, 6.25%, and 3.5% reduced aperture data. As 5 mm

separation corresponds to two times the expected lateral

resolution of SAFT, it can be seen that both methods sepa-

rated the two rods in the full data case; however, for the

reduced data cases SAFT was unable to resolve the rods

whereas the SDUI method succeeded to resolve the rods. In

Figs. 7(a) and 7(b), the normalized cross sections of the two

rod reconstructions of Fig. 6 are presented for a line passing

through the center of both rods. As the aperture was reduced,

conventional SAFT failed to resolve the two rods and instead

merged them into a single object. In contrast, the SDUI

method was able to resolve the two objects even as the aper-

ture was reduced.

Finally, in Figs. 7(c) and 7(d) cross sections are shown

from the reconstructions of the 3.2 mm stainless-steel rod

and the 3.2 mm aluminum rod when they were placed 10 mm

apart. As in the case of the two steel rods, conventional

SAFT method blurred the two rods together as the aperture

was reduced while the proposed SDUI method resolved the

two rods.

B. Experiments with the channel

The aim of this experiment was to demonstrate the

resolution and signal-to-noise ratio enhancement capabil-

ities of the SDUI method by using a more structured object

rather than simple rods. In addition, this experiment is used

to show that including the gradient-based regularization

term in the formulation of SDUI (6) can produce signifi-

cantly improved reconstructions. The channel used in this

experiment is made of 6061 aluminum and has a U-shaped

cross section with each side 12 mm long and a thickness of

2.4 mm. The comparison of the images formed by SDUI and

SAFT will be quantified using a target-to-clutter ratio

(TCR) metric adapted from Ref. 32, which is a measure of

the signal in the target region relative to the signal from the

FIG. 7. Cross sections of the reconstructions

of Fig. 6. (a) SAFT, (b) SDUI, and the

3.2 mm steel and the 3.2 mm aluminum rod at

10 mm separation (c) SAFT, (d) SDUI. SAFT

reconstructions using full aperture (solid

line), 6.25% reduced aperture (dashed line)

and 3.5% reduced aperture (dotted line).

SDUI reconstructions using full aperture

(solid line), 6.25% reduced aperture (dashed

line) and 3.5% reduced aperture (dotted line).
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background region. It can be expressed in decibels as

follows:

TCR ¼ 20 log10

1

Ns
i;jð Þ2T f̂ij

�� ��
1

NC
i;jð Þ2C f̂ij

�� ��

0
BB@

1
CCA; (14)

where f̂ij denotes the pixels of the reconstructed image and

T and C denote target and clutter (background) patches in

the image, respectively. Since TCR is a ratio of target pixels

to clutter pixels it does not depend on the relative amplitude

of the reconstructed images, making it favorable to compare

images reconstructed by two different methods. However,

TCR requires the labeling of the image into target and back-

ground regions, which is not immediately available in real

data cases. To overcome this problem, the theoretical loca-

tion and shape of the cross section of the channel based on

the physical dimensions of the scan plane and the channel

itself were used. The cross section of the channel is illus-

trated in Fig. 8.

The full data reconstructions by SAFT and SDUI were

nearly identical and well represented the channel; therefore,

results are only shown for the reduced data cases, where the

image reconstructions were more challenging. Figure 9

shows reconstructions by SAFT and SDUI of the channel

using 14:06% and 6:25% sparse aperture data. As before, it

can be observed that reconstructions by SAFT exhibited dif-

fraction artifacts and inhomogeneities in the object and the

background regions. Although the channel can be observed

in both sparse aperture SAFT reconstructions, diffraction

artifacts were stronger for the 6.25% case and hence it

became more difficult to distinguish the object from the

background. Reconstructions by the SDUI method that omit

the gradient-based regularization term are shown in Figs.

9(b) and 9(d) for the same two sparse data cases. While these

reconstructions successfully suppressed many of the diffrac-

tion artifacts, they yielded irregular, pointy object regions

making it hard to recognize the underlying structure. In con-

trast, the complete SDUI reconstructions that include the

gradient-based regularization term displayed robustness to

data loss and yielded an accurate representation of the chan-

nel with excellent artifact suppression and greater uniformity

across the target and background regions in spite of the loss

of data.

Figure 10 compares results from SAFT and SDUI using

25%, 14:06% and 6:25% reduced aperture data. Note that

the reduction of the aperture in this manner corresponds to

reducing the spatial resolution of the configuration. With

25% reduced aperture data both methods reconstructed a

shape that captured the concavity in the channel, though the

SAFT-based image was significantly blurred, while the

FIG. 8. Location and shape of the cross section of the U channel. All dimen-

sions are in millimeters.

FIG. 9. Images of the channel using

sparse aperture data. Reconstruc-

tions by SAFT using (a) 14.06%

sparse data and (d) 6.25% sparse

data. Reconstructions by the SDUI

method with k2 ¼ 0 using (b)

14.06% sparse data with k1 ¼ 20

and (e) 6.25% sparse data with

k1 ¼ 5. Reconstructions by the

SDUI method using (c) 14.06%

sparse data with k1 ¼ 600, k2 ¼ 20

and (f) 6.25% sparse data with

k1 ¼ 250, k2 ¼ 10. All dimensions

are in millimeters.
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SDUI-based image retained sharpness of the U shape. With

14:06% reduced aperture data the SAFT-based image was

unable to capture the concavity of the channel, but the SDUI

image retained the concavity, though the shape was starting

to degrade. With 6:25% reduced aperture data neither of the

two methods was able to capture the U shape of the channel.

Figure 11 shows the TCR as a function of the fraction of

data used in the reconstruction for both the reduced and

sparse data sets. It can be seen that the TCR values for the

SDUI reconstructions are 12–36 dB better than those for the

SAFT reconstructions.

C. The effect and selection of regularization
parameters

Our aim in this section is to present some general guid-

ance on the selection of the values k1 and k2 as well as some

insight into their effect and sensitivity. Recall that k1 scales

the term that emphasizes preservation of strong scatterers

whereas k2 scales the gradient of the image and emphasizes

smoothness and sharp transitions. Therefore, if the object

features of interest are below the size of a nominal resolution

cell, that is they should appear as “points,” then they can be

accentuated by choosing k1 	 k2. This case leads to

sparse reconstructions and can produce super-resolution. If

instead the object features of interest span multiple pixels,

and thus form regions, these homogeneous regions can be

recovered with sharp boundaries by choosing k1 
 k2. In

this work, the regularization parameters were chosen man-

ually on a case-by-case basis. Automated selection of multi-

ple regularization parameters is a field in its own right (see

Refs. 36–38) and is beyond the scope of the work presented

here.

The sensitivity of SDUI reconstructions to regulariza-

tion parameter selection was carried out for the case of the

3.2 mm steel and the 3.2 mm aluminum rod separated

by 10 mm imaged with 6.25% reduced aperture data. The

parameters that were chosen manually, that is the values

that were judged by eye to give the “best” reconstructions,

are denoted k�1 and k�2 and have values of 5 and 0.4, respec-

tively. Reconstructions were then carried out correspond-

ing to regularization parameters that varied over 2 orders

of magnitude from the manually selected values, i.e.,

k1 2 k�1=10; k�1; 10k�1
	 


and k2 2 k�2=10; k�2; 10k�2
	 


. The

reconstructions are shown in Fig. 12. The images along the

main diagonal are robust to changes in the regularization

parameters with both rods clearly visualized. The images

in the upper right-hand side of Fig. 12, where k1 domi-

nates, show distinct scatters but the size of each rod is

lost. The images in the lower left-hand side, where k2 dom-

inates, resulted in the rods merging together into one

homogeneous object. These results are consistent with how

the regularization parameters should control the image

formation.

FIG. 10. Images of the channel using reduced aperture data. Reconstruc-

tions by SAFT using (a) 25% reduced aperture, (c) 14.06% reduced aperture,

and (e) 6.25% reduced aperture. Reconstructions by the SDUI method using

(b) 25% reduced aperture with k1 ¼ 900, k2 ¼ 20, (d) 14.06% reduced aper-

ture with k1 ¼ 900, k2 ¼ 15, and (f) 6.25% reduced aperture with k1 ¼ 500,

k2 ¼ 15. All dimensions are in millimeters.

FIG. 11. Quantitative comparison of SAFT sparse (dashed and dotted line),

SAFT reduced (dotted line), SDUI sparse (solid line), SDUI reduced (dashed

line) using target-to-clutter ratio.
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V. CONCLUSIONS

A new method, namely SDUI, for ultrasound image for-

mation has been described that offers improved resolvability

of fine features, suppression of artifacts, and robustness to

challenging reduced data scenarios. The SDUI method

makes use of a physical wave-based linear model of the

ultrasound observation process coupled with nonquadratic

regularization functionals that incorporate the prior informa-

tion about the behavior of the underlying complex-valued

field and its magnitude. The complex nature of the field is

handled in a natural way. The resulting nonlinear optimiza-

tion problem was solved through efficient numerical algo-

rithms exploiting the structure of the SDUI formulation.

The SDUI method was applied on ultrasound pulse-echo

data from metal targets in water. The results from SDUI

were compared with conventional SAFT. Challenging data

collection scenarios, sparse and reduced apertures, were

used to test the robustness of the conventional and the pro-

posed method. In sparse aperture scenarios conventional

SAFT suffered excessive diffraction artifacts, whereas the

SDUI method successfully suppressed the diffraction arti-

facts and yielded an accurate representation of the underly-

ing reflectivity field. In reduced aperture scenarios, as the

aperture support was reduced SAFT suffered resolution loss

and was unable to resolve closely spaced objects, whereas

SDUI showed super-resolution-like behavior and resolved

closely spaced objects most of the time. Examination of the

limits of the super-resolution capabilities of SDUI, e.g., in

terms of the number of point objects that can be localized

and resolved given a particular amount of data, could be a

topic for future work. Such an analysis could benefit from

recent and ongoing work and theoretical results in the do-

main of compressed sensing.39,40

The performance of the SDUI method was tested using

strong, spatially compact inclusions in a homogeneous back-

ground using single-frequency Fourier domain data. It has

been observed that the proposed method exhibits better TCR

than conventional imaging, suggesting that it might perform

well in limited contrast scenarios, such as those involving

weakly inhomogeneous backgrounds. In such scenarios, the

proposed approach could produce solutions with less data

fidelity than the homogeneous background case, due to the

nature of the regularizing constraints. Such data mismatch

errors are allowed and balanced with regularization errors in

the optimization-based framework. More severe mismatches

due to model errors involving phase aberration and attenua-

tion effects encountered in biomedical applications may

require more complex forward models or explicit treatment

of model uncertainty. Based on all of these observations,

ultrasound imaging applications that aim to detect and/or

FIG. 12. SDUI reconstructions of

the 3.2 mm steel and the 3.2 mm alu-

minum rod separated by 10 mm

reconstructed from 6.25% reduced

aperture data for various choices of

the regularization parameters. All

dimensions are in millimeters.
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localize strong, spatially compact inclusions in a weak scat-

tering background such as detection of kidney stones and

localizing medical instruments are potential applications for

the proposed method. Also, results obtained from sparse

aperture data scenarios suggest that SDUI can alleviate

the motion artifact problem observed when SAFT is used

in medical imaging. The performance of the SDUI could

be likely enhanced using multifrequency data where the

choice of number of frequency components and the appro-

priate weightings will be key factors to consider. Three-

dimensional reconstructions can be either performed by

sequential reconstructions at a series of depths or alterna-

tively, a larger inverse problem can be posed by reconstruct-

ing the reflectivity field with spatial smoothness constraints

between successive slices where in the latter case memory

issues can arise depending on the problem size.
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