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ABSTRACT

The method which is called the “tandem approach” in speech recog-
nition has been shown to increase performance by using classifier
posterior probabilities as observations in a hidden Markov model.
We study the effect of using visual tandem features in audio-visual
speech recognition using a novel setup which uses multiple classi-
fiers to obtain multiple visual tandem features. We adopt the ap-
proach of multi-stream hidden Markov models where visual tandem
features from two different classifiers are considered as additional
streams in the model. It is shown in our experiments that using
multiple visual tandem features improve the recognition accuracy in
various noise conditions. In addition, in order to handle asynchrony
between audio and visual observations, we employ coupled hidden
Markov models and obtain improved performance as compared to
the synchronous model.

Index Terms— Audio-Visual Speech Recognition, Hidden
Markov Models, Tandem Approach, Support Vector Machines,
Neural Networks, Coupled Hidden Markov Models

1. INTRODUCTION

Conventional speech recognition with hidden Markov models
(HMM) [1] processes audio data using hidden state machines with
Markovian transitions and Gaussian mixture emissions. Since audio
channel noise is an important factor that affects recognition accuracy
negatively, audio data may be processed so that it is less sensitive to
noise or supported with visual data to increase accuracy.

In order to increase audio feature robustness, HMM’s generative
modeling of the observation data can be supported with discrimina-
tive classifiers where outputs of the classifiers are used as observa-
tion features, resulting in a tandem HMM system [2] .

Also, supporting the audio information with visual informa-
tion is another popular technique. Usually the visual features are
handled in a separate stream in a multi-stream HMM (MSHMM)
[3]. However, since regular multi-stream HMM handles both chan-
nels synchronously and there may be asynchrony between audio
and video channels, some extensions like coupled hidden Markov
models (CHMM) [4], product hidden Markov models (PHMM) [3]
and multi-stream asynchrony dynamic Bayesian networks [5] have
been proposed to take this asynchrony into consideration. Also as
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investigated in [6], expressions product HMM and coupled HMM
are sometimes referred interchangeably throughout the literature.

In this work we propose architectures of multi-stream and cou-
pled HMMs, which uses both direct audio-visual observation fea-
tures and visual tandem features extracted from support vector ma-
chine (SVM) and neural network (NN) classifiers. Neural networks,
particularly multilayer perceptrons were successfully used in tan-
dem speech recognition studies before [2]. SVMs were also em-
ployed with success in speech recognition as well [7]. These two
different classifiers have strong and complementary properties which
makes them good candidates for extracting separate streams of pos-
terior probabilities. According to the best of our knowledge, it is a
novel idea to use multiple classifier posteriors as separate streams in
speech recognition. Conventionally, classifier combination may be
performed at the frame level by decision fusion of individual clas-
sifiers’ posterior probabilities, however we show that one can have
much higher improvement by using model-level fusion through the
use of multiple streams. We have only used visual tandem streams
since for our problem of interest we have not had much improve-
ment with additional audio tandem streams. However, audio tandem
streams may also be incorporated to the system to improve accura-
cies in general. In addition, we implement the CHMM which allows
asynchrony of audio and visual streams with a modified multi-stream
tied HMM model [8] in this work. This implementation enables effi-
cient initialization and training procedures for the CHMM and yields
much improved results in accuracy.

We organize the rest of the paper as follows. In the next section,
we discuss the tandem approach in speech recognition. In section 3,
we describe the multi-stream and coupled HMMs. We present how
a coupled HMM can be represented as a stream-tied MSHMM in
section 4. Section 5 gives the details about the experimental frame-
work and the architecture of the system. Results of the experiments
are presented and discussed in section 6. Finally, we present our
conclusions in section 7.

2. TANDEM FEATURES FOR SPEECH RECOGNITION

Using posterior probabilities of a classifier as a feature vector is a
well known technique in speech recognition [2]. The idea in this
“tandem approach” is adding a classifier layer after feature extrac-
tion. The class definition for the classifier can be chosen parallel
to the HMM, such that each class can be one of words, sub-words,
phones, monophone states or context-dependent phone states. For
example, consider a monophone HMM model for digit recognition
with ten words (one for each digit), around twenty phones (depend-
ing on the language) and a total of sixty monophone states. The



tandem classifier may be trained to discriminate one of these units
of the model.

The outputs of the classifier are then considered in the HMM
model as observation vectors. Usually the values are directly used,
so for a tandem classifier trained for a number of C classes, HMM
observations are vectors of length C.

Although originally proposed for audio-only speech recognition,
the idea can be used for video based features as well by applying the
same process to extracted video features. In this work, we employ
the tandem approach for video data, using multiple classifier outputs
in addition to regular observation features. We model all streams
of data using a MSHMM where each stream comes from different
sources; one for audio features, one for video features and two sets
of features extracted from tandem classifiers.

3. MULTI-STREAM AND COUPLED HMM

In a multi-stream observation sequence (o1,o2, . . . ,oT ), we as-
sume that each observation is oTt = [o1

t
T
, . . . ,oSt

T
], where S is

the number of modeled streams. The emission probability for a state
qt is calculated by:

p(ot|qt) =

S∏
i=1

p(oit|qt)λi . (1)

Here λi are the stream weights. In this model, the probability of
transition from state j to i is given as:

p(qt = i|qt−1 = j). (2)

However, one problem in this assumption is that, real world data
are not always in perfect synchrony. In an audio-visual system, this
asynchrony can be due to the nature of the speech generation pro-
cess or because of small delays in audio-visual data acquisition and
processing. An example is in generation of plosives like the phone
“p” where the lip position changes before the hearing of the plosive
sound. So, one should consider modeling the difference of “genera-
tion timing” across the modalities.

One extension to MSHMM is coupled HMM in which indepen-
dent transitions of streams are allowed. In this model, the probabil-
ity of transition for one stream depends on previous states of both
streams:

p(q1t = i|q1t−1 = i′, q2t−1 = j′), (3)

where q1t and q2t represent individual states corresponding to the first
and the second streams for time t.

The difference between MSHMM and CHMM can be seen visu-
ally by comparing the graphical models of the MSHMM and CHMM
in Figure 1 (a), where squares represent hidden states and circles rep-
resent observations.

4. MODELING CHMM AS A STREAM-TIED MSHMM

Although being different models, a CHMM can be equivalently
modeled as a stream-tied MSHMM as proposed in [8] by adding
hybrid states to the MSHMM model, where these new states have
stream-level tying of their emission probabilities.

For example, considering the case of a two stream MSHMM
where audio stream has moved to another state where q1t 6= q1t−1 but
video stream has stayed at the earlier state that is q2t = q2t−1 which is
easily modeled in CHMM as in equation (3) is not directly handled
by an MSHMM. However this behavior can be incorporated into an

Fig. 1. (a) Graphical model of MSHMM (left) and CHMM (right)
(b) Converting a left-to-right two state MSHMM to a four state
stream-tied MSHMM.

MSHMM by considering joint or hybrid states qt = (i, j) in the
model, where observation probabilities are derived by cloning audio
stream of state i and video stream of state j. The emission likelihood
of the new state is given as:

p(ot|qt = (i, j)) = p(o1
t |q1t = i)λ1p(o2

t |q2t = j)λ2 , (4)

where qit represent stream states, qt is the joint state and λ1 and λ2

are the stream weights. The transition probabilities between hybrid
MSHMM states are related to the CHMM model by the following
formula:

p(qt = (i, j)|qt−1) = p(q1t = i|qt−1)p(q2t = j|qt−1). (5)

This model can be easily generalized for more than two asyn-
chronous streams as well.

This simple example demonstrates how asynchronous transi-
tions of streams can be handled by deriving a new model from an
existing one. To generalize the idea, a MSHMM with Q states and
S streams/channels can be converted to a model behaving like a
CHMM having a total of QS states. Typically, we allow asynchrony
inside an HMM model only, so in a large vocabulary the increase in
the number of states is proportional to the average number of states
in a model (such as the model of a single phone) and not to the total
number of states. Figure 1 (b) also visualizes the process using state
transition diagrams.

4.1. Training the Stream-tied MSHMM

We first train a regular MSHMM model and then form hybrid states
from them. The emission probabilities of the hybrid states are ini-
tialized using the original MSHMM states’ emission probabilities.
Since the original MSHMM describes transitions only between the
original Q states, the transitions involving the new states cannot be
inferred directly from them. One can initially give equal probabili-
ties to transitions:

p(qt = (i, j)|qt−1 = (i′, j′)) = 1/4, (6)

where 0 ≤ i − i′ ≤ 1 and 0 ≤ j − j′ ≤ 1 since we deal with a
left-to-right MSHMM with no skips.

We have experimented with two different training strategies
in our work. The first training strategy (method 1) only updates
the transition probabilities in the stream-tied MSHMM. The second



training strategy (method 2) updates both the transition and emission
probabilities (in a tied fashion) during training. Thus, the second
training approach enables asynchronous learning of the emission
distribution parameters as well.

In our work we model a MSHMM system, where one stream is
audio data, and other three streams are visual data. Since asynchrony
is a problem only between data acquired from different sources, we
take it into consideration between one audio stream and the group of
three video streams.

5. ARCHITECTURE OF THE TANDEM-CHMM SYSTEM

We examine the proposed model with the M2VTS video database
[9], which consists of five videos of 37 different people recorded
in different times and arranged in five tapes. We have used first four
tapes as training data and the fifth tape as testing data, since first four
tapes are recorded under similar conditions and for each subject fifth
tape has some visual differences (e.g. glasses, hat) that add extra
difficulty to the test set. On the videos, the speakers say ten French
digits so we have ten words (digits) and 19 phonemes.

For audio data Mel frequency cepstral coefficients (MFCC) [10]
with 13 static plus ∆ and ∆∆ features are used for each window.
For visual data, lip region from each frame is extracted as region of
interest (ROI) using the method proposed in [11]. After the ROI is
extracted for the whole video, Principle Component Analysis (PCA)
is applied on frames, extracting top 30 principle components for each
frame. Combined with first derivatives over time dimension, a frame
is represented with a vector of 60 dimensions.

The class of each frame is determined using alignment done
from an HMM trained on only clean audio data of the videos since
clean audio is the most reliable data and we use it as a baseline for
our experiments. Input to tandem classifiers are obtained by splic-
ing 9 consecuive frames resulting in 540 features. We take phones
as classes; since using words result in a small number of complex
classes and using phone states would result in too many classes. So
tandem classifiers discriminate 19 classes, and generate feature vec-
tors of length 19 where each dimension corresponds to the output
of the classifier for each class. We use stacked generalization with
four-fold cross-validation to train the tandem classifiers and extract
posterior probabilities [12].

We train two different tandem classifiers; one using NN and one
using SVM algorithms. Both classifiers output normalized contin-
uous values and can be directly used like an observation vector in
a continuous HMM and because of this, both classifiers have been
preferred in speech recognition systems [2, 7]. We have selected pa-
rameters that give the best frame-level cross-validated classification
accuracy; NN classifier having one hidden layer consisting of 100
neurons, and SVM classifier using Radial Basis (RBF) kernel with
parameter values C = 0.5 and γ = 2−5.

After we get features of length 19 from each classifier, we con-
catenate them with their first and second derivatives (i.e. ∆ and ∆∆)
resulting in 57 features. To handle these features in the MSHMM
better, we use maximum likelihood linear transform (MLLT) [13]
which tries to linearly transform data to a space where the class-
dependent likelihood of the data under a diagonal-covariance mod-
eling assumption is maximized.

To simulate noisy recording conditions, we have added noise
in different SNR levels to the audio signal, and trained models using
only clean audio. The noise is the Volvo 340 car noise obtained from
the NOISEX database [14] and the SNR levels are determined using
the “audio voltmeter” program from the G.191 ITU-T STL software
suite [15].

Our MSHMM consists of four streams; (1) audio, (2) visual, (3)
visual tandem using SVM classifier and (4) visual tandem using NN
classifier. The contribution of each stream to the decoding process
differs on each experiment; we examine different stream weights be-
tween 0 and 1, in steps of 0.25. We use stream-tied MSHMM model
equivalent to a CHMM as proposed in section 4. First we model
the phones with three states, and train an audio-only HMM. To ob-
tain an audio-visual MSHMM, we concatenate visual data to audio
data and train the multi-stream model using single-pass retraining
from the audio-only HMM with only one iteration. Next, to create
an initial model for the CHMM, we couple the states by adding the
hybrid states during which we take audio stream alone and couple it
with the remaining streams (since all of them are derived from the
same visual channel) thus resulting in nine states for each phone.
Then using the state coupled regular MSHMM model as the initial
model we apply two different training methods as discussed in sec-
tion 4.1 to train stream-tied MSHMMs equivalent to the CHMM.
Stream weights are given as one during stream-tied training.

6. RESULTS AND DISCUSSION

For each SNR level we get the results by trying out different combi-
nations of stream weights as mentioned in section 5. At each SNR
level we present four different recognition accuracy rates shown in
Table 1 for regular synchronous MSHMM and CHMM obtained
with two different training methods proposed in section 4.1. For the
columns labeled “Audio” and “Video”, only audio or video stream
is active by giving zero weights to the unused streams and one to the
used stream. For the “Audio Visual” column, the audio and video
weight combination that gives the best result is utilized, with zero
weights for tandem streams. For the “AudioVisual and Tandem”
column, the weight combination among all four streams that gives
the best result is used for each SNR value.

The results clearly show that, as the SNR decreases (i.e. noise
increases) the weight combinations that emphasize visual data tend
to give better results (can be seen by comparing audio only results
with video only or audiovisual results). This is a well known result
in audio-visual speech recognition, since due to audio noise, con-
tribution of audio channel to the accuracy decreases and eventually
becomes zero. Also as proposed, contribution of tandem data to
the accuracy can clearly be seen since for each model (whether reg-
ular MSHMM or stream-tied MSHMMs) tandem stream employed
results are better from audio-visual results without tandem data at al-
most every SNR level. The increase in accuracy achieved by visual
tandem streams evidence the improvement of the proposed method
over conventional observation only based audio-visual speech recog-
nisers, which are state of the art in audio-visual speech recognition.

Comparing results across different models can give information
about using regular MSHMM or two different training strategies for
stream-tied MSHMM. The regular MSHMM model is used as an ini-
tial model to generate stream-tied models and since state coupling,
stream tying and parameter (whether only transition or both transi-
tion and emission probabilities) training changes the structure of the
models, the results do differ for audio-only and video-only columns
across models. The increase in the accuracy for tandem employed
models between regular and stream-tied MSHMM trained with first
method shows the benefit of taking asynchrony into consideration.
The increase in the accuracy for tandem employed models at lower
SNR values between stream-tied MSHMM trained with two meth-
ods shows that training emission parameters together with transi-
tion probabilites increase accuracy when weights of the video based
streams are higher than the audio stream. Curiously, for higher SNR



Table 1. Best results using synchronous MSHMM and CHMM implemented as stream-tied MSHMM.
Synchronous MSHMM CHMM (Trained with Method 1) CHMM (Trained with Method 2)

SNR Audio Video Audio AV and Audio Video Audio AV and Audio Video Audio AV and
Visual Tandem Visual Tandem Visual Tandem

Clean 100 36.67 100 100 100 35.56 100 100 100 36.94 100 100
20 99.17 36.67 100 100 99.72 35.56 99.72 99.72 97.22 36.94 98.61 99.72
15 93.61 36.67 96.67 96.67 92.50 35.56 96.67 96.67 85.55 36.94 93.61 93.61
10 74.44 36.67 81.67 85.00 74.17 35.56 82.22 89.44 60.28 36.94 75.55 80.83
5 37.50 36.67 54.44 62.50 36.67 35.56 49.44 66.11 31.11 36.94 43.89 67.22
0 11.39 36.67 36.67 52.78 11.94 35.56 36.94 58.33 17.78 36.94 39.44 56.39
-5 9.44 36.67 36.67 46.39 10.00 35.56 35.56 54.44 10.56 36.94 36.94 54.72
-10 6.11 36.67 36.67 45.56 6.11 35.56 35.56 48.33 8.33 36.94 36.94 54.72
-15 2.78 36.67 36.67 45.56 3.33 35.56 35.56 48.33 9.72 36.94 36.94 54.72
-20 6.94 36.67 36.67 45.56 6.94 35.56 35.56 48.33 7.5 36.94 36.94 54.72

values, the transition-only update method seems to work better. In
our future studies, we will work on developing training strategies
that will work best for all SNR values.

7. CONCLUSION

We presented a new method for audio-visual speech recognition
which uses multiple visual tandem features in parallel with regular
audio and video features in a multi-stream HMM framework. We
experimented with synchronous and asynchronous HMM methods
using multi-stream HMM and coupled HMM. It is shown that using
visual tandem features improve recognition accuracy for high and
low SNR values. In addition, asynchrony modeling greatly improves
accuracy in low SNR conditions. We believe this method is an at-
tractive approach in audio-visual speech recognition and there are
many potential areas for improving the method such as using differ-
ent classifiers, utilizing an increased number of tandem streams and
employing better initilization and training methods for the coupled
HMM which we plan to pursue as future work.

Table 2. Stream weights for the results in the last column of Table
1.

SNR Audio Video NN SVM
Clean 0.75 0.25 0 0

20 0.75 0 0 0.25
15 0.75 0.25 0 0
10 0.5 0.25 0 0.25
5 0.5 0 0.25 0.25
0 0.25 0 0.25 0.5
-5 0 0.75 0.25 0
-10 0 0.75 0.25 0
-15 0 0.75 0.25 0
-20 0 0.75 0.25 0
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