
Strategic Behavior in Non-Atomic Games∗

Mehmet Barlo

Sabanci University

Guilherme Carmona†

University of Cambridge

December, 2011

Abstract

In order to remedy the possible loss of strategic interaction in non-atomic
games with a societal choice, this study proposes a refinement of Nash equi-
librium, strategic equilibrium. Given a non-atomic game, its perturbed game
is one in which every player believes that he alone has a small, but positive,
impact on the societal choice; and a distribution is a strategic equilibrium if it is
a limit point of a sequence of Nash equilibrium distributions of games in which
each player’s belief about his impact on the societal choice goes to zero. After
proving the existence of strategic equilibria, we show that all of them must be
Nash. Moreover, it is displayed that in many economic applications, the set of
strategic equilibria coincides with that of Nash equilibria of large finite games.
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1 Introduction

Modeling economic situations featuring a large number of agents with non-atomic

games is especially convenient because the inability of players to affect societal vari-

ables provides significant technical ease. However, this advantageous feature may

result in the dismissal of the strategic behavior desired to be depicted. Although

admittedly extreme, the following example delivers a clear portrait of this point:

Consider a game where players’ choices have to be in {0, 1}, and their payoffs depend

only on the average choice. Because that a player’s action does not affect the average

choice and his own payoff, any player is indifferent between any of his choices, and

as a result any strategy profile is a Nash equilibrium. On the other hand, the unique

plausible Nash equilibrium is one where each player chooses the highest integer, be-

cause this strategy is the unique Nash equilibrium of the finite, but arbitrarily large,

player version of the same game.

Another interesting example is provided in the framework of the mass action

interpretation of Nash equilibrium given in Nash (1950): A (finite) normal form game

is interpreted to consist of a finite number of positions (or islands), each characterized

by a finite action space and a payoff function on the joint action space. One, then,

imagines that the actual players in this game reside on one of those islands, players

on the same island have identical payoffs and are equally likely to be chosen to play

the game. Therefore, starting from the case where there is only one player on each

island, we formulate associated replicas by symmetrically multiplying players on each

island and assuming that each player on an island is equally likely to be selected.

Therefore, for any k ∈ N, the k–replica game is one in which there are k players on

each island who are equally likely to be selected to play the original game, and the

payoff function and the action set of every player on an island are identical. It is,

then, not difficult to see that for any k ∈ N, a strategy is a Nash equilibrium of the

k–replica game if and only if the vector consisting of the average choice across players

of a given island is a Nash equilibrium of the original game. However, this equivalence
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fails to hold in the limit case of a continuum of players in each island, each of whom

are selected according to the Lebesgue measure. Indeed, in this case, no player can

affect the average choice of the island they reside on, and thus, every strategy is a

Nash equilibrium.

Such failures of (lower hemi) continuity of the equilibrium correspondence in non-

atomic games are well documented in the literature. Indeed, as noted in Levine

and Pesendorfer (1995) “equilibria can be radically different in a model with a finite

number of agents than in a model with a continuum of agents”. We refer the reader

to Carmona and Podczeck (2011) and the references therein for more on this subject.

In this paper we propose a refinement of Nash equilibrium in non-atomic games

designed to alleviate that problem in a tractable way. In fact, our goal is to develop

an equilibrium concept for non-atomic games that intuitively has the same properties

of the limit points of equilibria of large finite games (the precise meaning of this will

be illustrated below) and, at the same time, its existence is generally guaranteed.

Furthermore, because the definition of the refined equilibrium concept involves only

non-atomic games, its analysis is relatively easier compared with that of limit points

of equilibria of large finite games.

This study presents and analyzes the concept of strategic equilibrium (henceforth

to be abbreviated by SE) for non-atomic games in which the payoff of each agent

depends on what he chooses and on the distribution of actions chosen by the other

players (henceforth referred to as the societal choice). For any non-atomic game and

ε > 0, we define an ε–perturbed game by requiring each player to imagine that he

alone has an ε impact on the societal choice. Then, the set of SE consists of limits

of Nash equilibrium distributions of ε–perturbed games when ε tends to 0. It needs

to be pointed out that in the ε–perturbed game, players are not rational as in Selten

(1975). This is because each player thinks that he alone has an ε impact on the

societal choice, and does not contemplate that others do the same consideration.

After proving the existence of SE distributions under standard assumptions (e.g.,
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Mas-Colell (1984)) we show that SE is a refinement of Nash equilibrium. Moreover,

using the representation results of Khan and Sun (1995), Carmona (2008) and Car-

mona and Podczeck (2009), it is established that this analysis can be extended to

strategy profiles whenever either one of the following holds: (1) the action space of

every player is finite; or (2) the set of possible types of players is countable; or (3)

the space of players is super-atomless.

The impact of focusing on SE is well illustrated in the two example above: In the

game where players choose either 0 or 1, there is only one SE which consists of almost

all players choosing 1. Hence, the distribution of actions induced by the SE coincides

with the distribution induced by the unique Nash equilibrium of the same game when

played by a finite number of players. A similar strong conclusion holds in the Nash’s

mass action game as well. We prove that a strategy profile in the non-atomic version

is a SE if and only if the vector of the average across players on the same island is a

Nash equilibrium of the original normal form game.

Hence, in these examples, the notion of SE meets our desiderata of always existing

and reproducing the (limit) properties of equilibria of the same game played by a large

finite number of players.

Similar conclusions are reached in other applications we consider. We display

that the notion of SE provides a sharp refinement on non-atomic games of voting with

finitely many political parties (or candidates). Even though in these games any voting

profile is a Nash equilibrium, we prove that that the concept of SE eliminates almost

all implausible Nash equilibria: When players’ payoff functions depend continuously

on the distribution of seats parties get, the set of SE consists of strategy profiles

under which almost every agent votes for his most favored political party. Moreover,

abstention (by a strictly positive measure of players) is not observed in any of the

SE.

The second application we provide is a symmetric Cournot oligopoly (i.e., all cost

functions are alike). There we show that the set of strategic equilibria contains only
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symmetric Nash equilibria, as it would happen when the set of players is finite. On

the other hand, Nash equilibria are characterized by any strategy that yields zero

profits. Technically, this example is of interest as it involves a uncountable actions

space and displays the non-linearities in an agent’s individual maximization problem

in the perturbed game.

In the third application, we demonstrate that in the optimal taxation game of

Levine and Pesendorfer (1995) the use of SE, instead of Nash equilibrium, makes

sure that the first-best can be obtained even with non-atomic players. Indeed, using

the concept of Nash equilibrium in non-atomic optimal taxation games, e.g. Chari

and Kehoe (1989), the government cannot detect (thus, punish) individual deviations

because one single agent cannot affect the societal choice, a phenomenon labeled as

the “disappearance of information” by Levine and Pesendorfer (1995). Even though,

the first-best is uniquely obtained in Nash equilibrium in finite player versions of the

same game, it is well known that the second-best, the Ramsey Equilibrium, is the

best possible with the use of Nash in non-atomic formulations. This, in turn, gives

rise to discussions about whether or not the government may commit in order to

achieve this particular payoff. Besides delivering a sharper conclusion that is not in

“paradoxical” terms with that from finite player cases, this game is also of interest

as it involves the use of SE in a sequential strategic interaction.

It should be emphasized that our analysis is related to, but differs from that of

Green (1980), Sabourian (1990), Levine and Pesendorfer (1995), and Carmona and

Podczeck (2011) who try to justify the set of Nash equilibria of non-atomic games as

limits of equilibria of large finite games with either noisy observations about deviating

players or employing the ε–equilibrium concept. That is, we are not asking “when

agents are negligible in large finite games”, but rather analyzing equilibria of non-

atomic games that are limits of equilibria of games where each player thinks that he

alone is not negligible.

We have chosen to present the formal definitions in the context of applications in
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Section 2 to ease the exposition. Section 3 describes the general framework of non-

atomic games, and in Section 4 we define the concept of SE and prove that it exists

and is a refinement of Nash equilibrium. Finally, Section 5 presents our non-atomic

version of Nash’s mass action game.

2 Applications

In this section, we present three sets of examples in which the concept of SE elim-

inates implausible Nash equilibrium outcomes that arise in non-atomic games. The

first example concerns voting games, the second Cournot competition, and the third

optimal taxation.

2.1 Proportional Voting

We present a non-atomic game of proportional voting in which each player has a

preference ordering on the set of political parties represented by a cardinal utility

function. Moreover, the payoff a player obtains is the weighted average of his utilities

on parties with the weights equal the fractions of seats parties obtain.

First we show that any strategy profile is Nash. In particular, not voting at all

and every fan of an extreme right (left) political party choosing an extreme left (right,

respectively) political party are among Nash equilibria.

The concept of SE provides a sharp refinement: Under the assumption that there

are at least two or more parties who are most favored for a strictly positive measure

of agents, we prove that the unique SE is one where each player votes for his favorite

political party.

The set of agents is given by [0, 1], which is endowed with the Lebesgue measure λ,

and the set of political parties by M = {1, . . . , m̄}. The action set of player t ∈ [0, 1]

is given by A = M ∪ {0} where choosing 0 denotes not voting.

The seats in the parliament that a party receives after an election depends on the

fraction of the population voting for it. Let µ = (µ0, µ1, . . . , µm̄) be a probability
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distribution on A with µ0 representing the fraction of people that has abstained and

µm denoting the fraction of people who has voted for party m ∈ M . Given such a

distribution, each party receives a portion of the parliament equal to the fraction of

votes it receives. Since only a fraction of 1 − µ0 of the people has voted, then party

m ∈ M receives a fraction µm/(1− µ0) of the parliament. Clearly, this formula only

makes sense if µ0 < 1. If µ0 = 1, an alternative definition must be given and we

assume that each party is assigned an equal share of the parliament. Since µ is a

probability distribution, then µa ≥ 0 for all a ∈ A and
∑

a∈A µa = 1. Let M(A)

denote the space of all probability distributions on A; also, let M(M) denote the

space of all probability distributions on M . The above rule governing how to split

the parliament across parties defines the following function π : M(A) →M(M):

π(µ) =





(
µ1

1−µ0
, . . . , µm̄

1−µ0

)
if µ0 < 1,

(
1
m̄

, . . . , 1
m̄

)
otherwise,

(1)

for all µ ∈M(A).

Naturally, we are interested in voting distributions arising from players’ choices.

A strategy is a measurable function x : [0, 1] → A, assigning an action to each player.

Then, a strategy x induces a distribution on A which will be used to measure the set of

players playing each action. Indeed, percentage of abstention is equal to λ({t ∈ [0, 1] :

x(t) = 0}) = λ(x−1(0)) (denoted by λ◦x−1(0)); and the percentage of the population

who voted for party m ∈ M is equal to λ({t ∈ [0, 1] : x(t) = m}) = λ(x−1(m))

(similarly, denoted by λ◦x−1(m)). It should be pointed out that since x is measurable,

then for all a in A we have that x−1(a) = {t ∈ [0, 1] : x(t) = a} is measurable. Hence,

λ ◦ x−1 =
(
λ ◦ x−1

0 , . . . , λ ◦ x−1
m̄

) ∈ M(A). That is, the distribution on A induced by

x is simply the Lebesgue measure of the inverse image of x. Therefore, (1) delivers

the distribution of the seats in the parliament induced by x. That is, we will restrict

attention to π(λ◦x−1) ∈M(M). Finally, for notational purposes, let πx = π(λ◦x−1);

and, for all a ∈ A, πa
x denotes the ath coordinate of πx.

Each player t ∈ [0, 1] is assumed to have a preference ordering on M , characterized
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by a (cardinal) utility function vt : M → R++, where vm
t denotes the utility of player

t when the political party m obtains all the seats in the parliament. We say player t

strictly prefers m to m′ if and only if vm
t > vm′

t . For simplicity we restrict attention

to strict preferences, and thus, for all m,m′ ∈ M , vm
t 6= vm′

t . Moreover, we let m?
t be

the favorite political party of agent t, i.e. v
m?

t
t > vm

t for all m ∈ M . The return of

player t under strategy profile x then is

u(t,x) =
∑
m∈M

πm
x vm

t .

We can define a function, U , assigning each player to a utility function, i.e. U(t) = vt.

Then, U−1(vt) identifies the set of players who have the utility function vt, and we

say all players τ ∈ U−1(vt) are of the same type as player t, because vτ = vt for

all τ ∈ U−1(vt). In order to abstract from non-fruitful technicalities, we assume the

set of players’ types is finite. Therefore, we can partition [0, 1] into finite number of

subsets UJ
j=1, thus, attention is restricted only to a finite number of payoff functions.

Because that the Lebesgue measure assigns measure zero to any one of the players,

for any given x no single player can affect the distribution πx. Thus, it follows that

any strategy is a Nash equilibrium. In particular, the strategy defined by x(t) = 0 for

all t ∈ [0, 1] is a Nash equilibrium in which abstention is a society wide phenomenon.

In order to overcome this unpleasant feature, we propose the concept of SE. Given

any non-atomic game and ε > 0, we define the ε–perturbed game, in which each

player believes that he alone has an ε impact on the distribution of actions resulting

from a strategy (alternatively, each player believes that he alone is an atom with ε

mass). Then, a strategy x is a SE if there exists a sequence {εk,xk}∞k=1 with εk ↘ 0

and xk a Nash equilibrium of εk–perturbed game, and λ ◦ (U,xk)
−1 converges to

λ ◦ (U,x)−1. Convergence of λ ◦ (U,xk)
−1 to λ ◦ (U,x)−1 means that λ({t : U(t) =

vj and xk(t) = m}) converges to λ({t : U(t) = vj and x(t) = m}) for all j = 1, . . . , J

and m = 0, . . . , M .1

1This characterization of the convergence of λ ◦ (U,xk)−1 to λ ◦ (U,x)−1 holds only because both
the set of types and the set of action are finite. See Section 3 for the general definition.
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Given ε > 0, the ε–perturbed game is defined by modifying each player’s payoff

function. This is done by altering the distribution of actions that a strategy induces in

the following way: Player t thinks that his choice has an ε impact on the distribution,

which implies that he thinks that all the other players have an impact of only (1− ε)

in total. This, in turn, implies that if he votes (i.e., chooses m ∈ M), then he believes

that the fraction of voters is at least ε. In fact, he believes that the abstention is only

(1 − ε)π0
x. If he does not vote, then the abstention is ε + (1 − ε)π0

x. Furthermore,

if he votes for party m, then he believes that the fraction of the population voting

for it is ε + (1 − ε)πm
x , while the fraction of party m′ 6= m is (1 − ε)πm′

x . Formally,

the above distribution can be obtained as follows: Let δt be probability measure on

[0, 1] that assigns probability one to t. Then, it is clear that player t is computing

the distribution induced by x using the measure λε,t = εδt + (1 − ε)λ. That is,

player t believes that the distribution on A is λε,t ◦ x−1 instead of λ ◦ x−1. Note that

λε,t ◦ x−1 = εδa + (1− ε)λ ◦ x−1, where a = x(t) and δa is the probability measure on

A concentrated at a.

As a result of employing (1) with λε,t ◦x−1 we obtain a distribution π(λε,t ◦x−1) in

M(M). We denote π(λε,t ◦x−1) by πx,ε,a, where a = x(t). Thus, for all m ∈ M , πm
x,ε,a

denotes the fraction of total votes that party m gets when player t chooses a ∈ A in

the ε–perturbed game.

When player t chooses 0, the distribution on parties remains the same, i.e.

πx,ε,0 = πx. (2)

This is because, when π0
x < 1 and x(t) = 0, player t contemplates the fraction

of players (including himself) who do not vote to be given by 1 − (ε + (1 − ε)π0
x) =

(1−ε)(1−π0
x). Moreover, because x(t) = 0, player t thinks that the measure of players

voting to party m is (1− ε)πm
x . On the other hand, when π0

x = 1, ε + (1− ε)π0
x = 1

showing that in the ε–perturbed game the measure of players not voting does not

change.

In the ε–perturbed game player t thinks that voting to party m would result in
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political parties obtain the following portions of the parliament:

πx,ε,m =

(
(1− ε)π1

x

1− (1− ε)π0
x

, . . . ,
(1− ε)πm−1

x

1− (1− ε)π0
x

,
ε + (1− ε)πm

x

1− (1− ε)π0
x

,
(1− ε)πm+1

x

1− (1− ε)π0
x

,

. . . ,
(1− ε)πm̄

x

1− (1− ε)π0
x

)
(3)

When player t’s choice is m, for m′ 6= m, we can write πm′
x,ε,m = [(1− ε)πm′

x ]/[1− π0
x +

επ0
x], thus, πm′

x,ε,m < πm′
x if and only if πm′

x > 0; and, furthermore, πm′
x,ε,m = πm′

x = 0

if πm′
x = 0. Similarly, πm

x,ε,m > πm
x if and only if πm

x + π0
x < 1 or π0

x = 1. Moreover,

πm
x,ε,m = πm

x = 1 if πm
x + π0

x = 1 and π0
x < 1.

Player t’s payoff is defined using the same expression as before, but with π(λε,t ◦
x−1) instead of πx: The payoff of player t choosing a ∈ A in the ε–perturbed game

for a given strategy x is

ua
ε(t,x) =

∑
m∈M

πm
x,ε,av

m
t .

For all ε > 0 and all strategies x, by voting to his most favorite party m?
t instead

of choosing m, m 6= m?
t , player t would strictly increase his expected utility, unless

π0
x < 1 and π

m?
t

x + π0
x = 1. This is because, for all ε, x and m̂ 6= m?

t ,

um?
t

ε (t,x)− um̂
ε (t,x) =

ε + (1− ε)π
m?

t
x

1− (1− ε)π0
x

v
m?

t
t +

∑

m′ 6=m?
t

(1− ε)πm′
x

1− (1− ε)π0
x

vm′
t

−ε + (1− ε)πm̂
x

1− (1− ε)π0
x

vm̂
t −

∑

m′ 6=m̂

(1− ε)πm′
x

1− (1− ε)π0
x

vm′
t

=
ε

1− (1− ε)π0
x

(v
m?

t
t − vm̂

t ) > 0.

Furthermore, player t would also increase his utility by voting to m?
t instead of not

voting provided that π0
x + π

m?
t

x < 1 or π0
x = 1. This is because in the first case for
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every ε, x satisfying either of these conditions, u
m?

t
ε (t,x)− u0

ε(t,x) is given by

∑
m∈M

(
πm

x,ε,m?
t
− πm

x,ε,0

)
vm

t =
ε

1− (1− ε)π0
x

v
m?

t
t

−
∑
m∈M

(
1

1− π0
x

− 1− ε

1− (1− ε)π0
x

)
πm

x vm
t

=
ε

1− (1− ε)π0
x

v
m?

t
t

−
∑
m∈M

(
ε

(1− π0
x)(1− (1− ε)π0

x)

)
πm

x vm
t

=

(
ε

1− (1− ε)π0
x

) (
v

m?
t

t −
∑
m∈M

(
πm

x

1− π0
x

)
vm

t

)
> 0,

because v
m?

t
t > vm

t for all m 6= m?
t ; The second case, i.e. when π0

x = 1, (u
m?

t
ε (t,x) −

u0
ε(t,x)) equals v

m?
t

t − 1
m̄

∑
m∈M vm

t , clearly strictly positive. Finally, when π0
x < 1

and π
m?

t
x + π0

x = 1, then party m?
t already has all the seats at the parliament, and so

player t is indifferent between voting for m?
t and not voting.

Thus, we have two cases: The first and interesting case happens when there is no

m ∈ M such that λ({t ∈ [0, 1] : vm
t > vm′

t for all m′ ∈ M}) = 1. In this case, x is a

SE if and only if x(t) = m?
t for almost all t, establishing that the unique SE profile is

where almost every player t votes only for his favorite political party.

The second case happens when there exists m ∈ M such that λ({t ∈ [0, 1] :

vm
t > vm′

t for all m′ ∈ M}) = 1. In this case, for all ε > 0, if x is an ε – strategic

equilibrium, then πm
x = 1− π0

x and π0
x < 1. Hence, x is a SE if and only if

πm
x = 1− π0

x.

The assumption that no agent can be indifferent between two political parties is

just to simplify the argument. If we were to allow indifference relations on the set

of political parties by some (possibly all of the) players, the result would essentially

be the same (provided that there are no two or more parties each of which is strictly

preferred to all the others by almost every agent): The set of strategic equilibria will

be strategy profiles in which every agent t would not vote for any of the political
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parties m ∈ M \M(t), where M(t) = {m̃ ∈ M : vt(m̃) ≥ vt(m),∀m ∈ M}. That is,

in any strategic equilibrium agents choose one of their favorite political parties.

A slightly modified version of this game can be used in the analysis of allocating

public resources on projects: A fixed amount of perfectly divisible public resources

B ∈ R++, is to be allocated on M projects, all of which do not require any capital

investments. Each player t ∈ [0, 1] chooses an action in A = M∪{0}, where 0 denotes

not voting. Given x, m gets πm
x of B as defined above, and player t’s utility function

is u(t,x) =
∑

m∈M(Bπm
x )vm

t . Due to the above, unless all players strictly prefer the

same project, the unique SE is one where almost all players choose their favorite

project despite the fact that all strategy profiles are Nash equilibria.

2.2 Cournot Oligopoly

In this section we formulate and analyze a symmetric Cournot oligopoly with a con-

tinuum of players, and demonstrate that SE rules out all the non-symmetric Nash

equilibria.

The set of agents is given by [0, 1], endowed with the Lebesgue measure; and each

of them can choose a quantity x(t) ∈ [0, q̄], where q̄ > 1. The symmetric unit cost of

production for each t ∈ [0, 1] is 1. Given the quantity choices x the inverse demand

is given by p = 2− ∫
xdλ.

The profit function of firm t is

Π (t,x) =

(
1−

∫
x

)
x(t).

Let U(t) = Π(t, ·) for all t ∈ [0, 1] be the function assigning payoff functions to all

players in the game.

The set of Nash equilibria in this game is any strategy profile x satisfying
∫

xdλ =

1. The reason is that as long as
∫

xdλ = 1, then p = 1, thus, any player would be

indifferent between any of their choices, since each player is atomless.
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Given a profile x and ε > 0, the profit of t in the ε–perturbed game is

Πε (t,x) =

(
1− (1− ε)

∫
x− εx(t)

)
x(t).

Thus, the best response of t is

xε(t) =
1− (1− ε)

∫
x

2ε
.

In equilibrium,

∫
xε =

∫ (
1− (1− ε)

∫
xε

2ε

)
=

1− (1− ε)
∫

xε

2ε
.

Thus,
∫

xε = 1
1+ε

which gives us (by substituting back to the best response function)

xε(t) =
1

1 + ε
.

Letting x?(t) = 1 for every player t ∈ [0, 1], it follows easily that λ◦(U,xε)
−1 converges

to λ ◦ (U,x?)−1. Conversely, if τ = limε λ ◦ (U,xε)
−1, then τ({(Π, 1)}) = 1 and so for

all SE x, we have x(t) = x?(t) for almost every t. Hence, the set of strategic equilibria

consists of strategies x such that x(t) = 1 for almost every t ∈ [0, 1]. Thus, unlike for

Nash equilibrium, there is a unique SE (up to a measure zero set of players).

2.3 Optimal Taxation

The strategic interaction analyzed in this section concerns the optimal taxation game,

example 3, of Levine and Pesendorfer (1995). We will show that the use of SE, instead

of Nash equilibrium, will make sure that the first-best can be obtained even with a

continuum of non-atomic players. Moreover, this game is of additional interest as it

involves the use of SE in conjunction with sequential rationality.

The strategic interaction between the government, the large player L, and large

number of identical small players, where a representative individual is denoted by S,

takes place over three periods, 0, 1, and 2. The government who can precommit in

the initial period to a reaction (to the choices of the households) in the final period,
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must choose whether to place a tax on capital or use a distortionary tax in order to

raise adequate revenue. Households must choose an action after the precommitment,

but before the actual move of the large player.

The set of households S = [0, 1] and is endowed with the Lebesgue measure λ.

Each household is endowed with 1 unit of capital which can be invested, 0 ≤ xS ≤ 1 to

deliver (1+ r)xS, r > 0. We denote the set of actions of any one of the households by

AS = [0, 1]. The households care about the total amount of capital at the end of the

game. The government has to collect some amount of resources which is strictly higher

than 1+r. In order to raise that amount of resources, the government may use one of

the following two tax schemes. The first tax scheme consists of a non-distortionary tax

on the investments (collecting all the investments plus its interests). In this situation

the tax collected does not suffice to cover the needed resources of the government.

Hence, the government incurs a loss due to the revenue shortfall in the amount of

p(1−xS). The utility of household S would then be given by (1−xS), the amount of

capital net of the investment. The government’s utility is the utility of the household

S minus the penalty resulting from the revenue shortfall: (1−xS)(1−p). The second

tax scheme consists of a distortionary tax on some other resource in the economy (say,

labor), which will cover the amount of needed resources for the government. Because

that it is distortionary, each household incurs a cost of c > 1 + r. The utility of the

household at the end of the game consists of their endowment net of investment, i.e.

(1 − xS), plus the proceeds from their investment, i.e. (1 + r)xS, and finally minus

the cost from the use of a distortionary tax, c. Hence, is equal to (1 + rxS − c). As

there are no revenue shortfalls, the government obtains a utility, equal to that of the

households, i.e. (1 + rxS − c).

The government implements the non-distortionary tax with a probability of xL.

The set of actions of the government is denoted by AL = [0, 1].

The government’s payoff function, uL : AS × AL → R, is defined by

uL(xL, xS) = (1− xL)(1 + rxS − c) + xL(1− xS)(1− p)

14



where c > 1 + r and p > 1. Each household’s payoff function is uS : AS × AL → R

uS(xL, xS) = (1− xL)(1 + rxS − c) + xL(1− xS).

Define uS = minxL
maxxS

uS(xS, xL), denoting the payoff that S can guarantee for

himself. In his best response, S chooses xS = 1 if xL < r/(1 + r), anything in [0, 1] if

xL = r/(1 + r), and xS = 0 otherwise. Thus, the minmax is obtained when xL = 0

and xS = 1, and delivers uS = (1+r− c) < 0. Let, u∗L = maxxS ,xL
uL(xS, xL), subject

to uS(xS, xL) ≥ uS. In this situation, xL = 1 and xS = 1 solves this problem, and

renders u∗L = 0; and, because that the utility of S would be 0, this arrangement is

also individually rational.

Going into the non-atomic case, it is worthwhile to point out that in this game

there is only one type of households. I.e. λ ◦ U−1(uS) = 1. Let xL : AS → AL be a

strategy of the government and xS : [0, 1] → AS a strategy for the households. Let,

for all a, α ∈ AS,

Ut,S (a,xL (α)) = (1− xL (α)) (1 + ra− c) + xL (α) (1− a).

Then, each household t’s payoff function is defined by Ut,S

(
xS(t),xL

(∫
xS

))
and the

government’s payoff function is defined by

UL

(
xL,

∫
xS

)
=

(
1− xL

(∫
xS

))(
1 + r

∫
xS − c

)

+xL

(∫
xS

)(
1−

∫
xS

)
(1− p),

where c > 1 + r and p > 1.

A pair (xS,xL) is a Stackelberg response if

Ut,S

(
xS(t),xL

(∫
xS

))
≥ Ut,S

(
a,xL

(∫
xS

))

for all a ∈ AS and almost all t ∈ [0, 1]. A pair (xS,xL) is a precommitment equilibrium

if it is a Stackelberg response and if

UL

(
xL,

∫
xS

)
≥ UL

(
x̃L,

∫
x̃S

)
(4)
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for all Stackelberg responses (x̃S, x̃L).

Note that Assumptions 1 – 3 of Levine and Pesendorfer (1995) are satisfied. Thus,

by Theorem 1 of Levine and Pesendorfer (1995), it is known that a precommitment

equilibrium exists, and the unique amount received by the government is strictly lower

than the first-best level 0. 2 In what follows, we show that there exists a strategic

precommitment equilibrium and the unique amount received by the large player is

U∗
L = 0.

Let ε > 0. In words, in the ε–perturbed game a.e. player imagines that his

deviation would be affecting the societal choice, thus, deviations would be identifiable

by the government. Indeed, the government, in contrast to the non-atomic case, may

employ the following strategy: Chose of 1 whenever the societal choice in the ε–

perturbed game is 1; otherwise, the government “punishes” the small players by

choosing 0. This, in turn, will make sure that the first-best can be obtained in

equilibrium in the ε–perturbed game, ε > 0. And, it is the unique SE payoff because

the government chooses first and the best responses of the households in the any

ε–perturbed game is uniquely determined. This, then, clearly implies that the limit

as ε tends to 0 (i.e. the strategic precommitment equilibrium) is one in which the

unique SE amount received by the government is the first-best. These are formally

presented below.

A pair (xS,xL) is an ε– Stackelberg response if

Ut,S

(
xS(t),xL

(∫
xS

))
≥ Ut,S

(
a,xL

(
εa + (1− ε)

∫
xS

))

for all a ∈ AS and a.e. t ∈ [0, 1]. A pair (xS,xL) is an ε–precommitment equilibrium

if it is an ε–Stackelberg response and if condition (4) holds for all ε–Stackelberg

responses (x̃S, x̃L). Finally, a pair (xS, xL) is a strategic precommitment equilibrium

distribution if there exists {εk}∞k=1 such that εk → 0, (xk
S,xk

L) is an εk–precommitment

equilibrium for all k ∈ N, λ ◦ (
U,xk

S

)−1
converges to λ ◦ (U,xS)−1 and xk

L converges

2Clearly, the first best strategies cannot be Stackelberg responses. This is because, when xL(1) =
1, due to

∫
xS \t x′t,S =

∫
xS , x′t,S ∈ AS , a.e. t’s best response is x′t,S = 0, and not xS(t) = 1.
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uniformly to xL.

Claim 1 There exists a strategic precommitment equilibrium and the unique payoff

received by the government is 0 (the first-best).

Proof. Consider x∗L defined by

x∗L(z) =





1 if z = 1,

0 if z < 1

and x∗S defined by x∗S(t) = 1 for all t ∈ [0, 1]. For all ε > 0, εa + (1 − ε)
∫

x∗S = 1 if

and only if a = 1. Thus,

Ut,S

(
a,x∗L

(
εa + (1− ε)

∫
x∗S

))
=





0 if a = 1,

1 + ra− c if a < 1.

Because that 1 + ra − c < 0 for all a ≤ 1, we have that (x∗S,x∗L) is a ε-Stackelberg

response for all ε > 0. Since UL

(
x∗L,

∫
x∗S

)
= 0 ≥ UL

(
xL,

∫
xS

)
for all (xL,xS), it

follows that (x∗S,x∗L) is a ε-precommitment equilibrium for all ε > 0. It is then clear

that (x∗S,x∗L) is a strategic precommitment equilibrium. This establishes existence of

a strategic precommitment equilibrium.

We next show the uniqueness of the strategic precommitment equilibrium payoff

for the government. Let (xS,xL) be a strategic precommitment equilibrium and

(xk
L,xk

S) be a sequence of εk-precommitment equilibria satisfying the above conditions.

Fix k ∈ N and note that if UL

(
xk

L,
∫

xk
S

)
< 0, then UL

(
xL,

∫
xS

)
< UL

(
x∗L,

∫
x∗S

)
and,

therefore, (xk
S,xk

L) is not an εk-precommitment equilibrium. Hence, UL

(
xk

L,
∫

xk
S

)
= 0

for all k ∈ N.

We have that
∫

xk
S →

∫
xS since λ ◦ (

U,xk
S

)−1
converges to λ ◦ (U,xS)−1. We also

have that xk
L(

∫
xk

S) → xL(
∫

xS) since xk
L converges uniformly to xL. Thus,

UL

(
xL,

∫
xS

)
=

(
1− xL

(∫
xS

))(
1 + r

∫
xS − c

)

+xL

(∫
xS

)(
1−

∫
xS

)
(1− p)

= lim
k

UL

(
xk

L,

∫
xk

X

)
= 0.
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3 Non-Atomic Games

In this section, we formally describe non-atomic games in which each player has a

compact set of actions and a continuous payoff function that depends only on his

choice and on the distribution of actions. The set of players is a probability space

(T, Σ, λ) such that {t} ∈ Σ for all t ∈ T . The set of actions is denoted by A,

and we assume that it is a non-empty, compact metric space. By a distribution of

actions we mean a Borel probability measure on A. Let M(A) be the space of Borel

probability measures on A endowed with the topology of the weak convergence of

probability measures. By Parthasarathy (1967, Theorem II.6.4), it follows thatM(A)

is a compact metric space. We write µn ⇒ µ whenever {µn}∞n=1 ⊆M(A) converges to

µ, which happens if
∫

A
hdµn converges to

∫
A

hdµ for all bounded, continuous functions

h : A → R. Let ρ denote the Prohorov metric on M(A), which is known to metricize

the weak convergence topology.

In order to accommodate general examples, such as the Nash’s mass action game,

we allow players’ payoff functions to depend on the distribution of choices made by a

finite number of subgroups of players. Formally, each player’s payoff depends on his

choice a ∈ A and on a L – dimensional vector (τ1, . . . , τL), L ∈ N, of distributions

on A. Let L ∈ N and U denote the space of real-valued continuous payoff functions

defined on A × (M(A))L. The set U represents the space of players’ characteristics

or types. We endow it with the supremum norm, thus, making it a complete and

separable metric space.

A game with a continuum of players is defined by assigning a payoff function to

each player and defining a partition of the set of players into the relevant subgroups.

Thus, it is characterized by a measurable function U : T → U and a finite partition

{Ti}L
i=1 of T such that Ti is measurable and λ(Ti) > 0 for all i = 1, . . . , L. Each set Ti

is interpreted as a group or an institution and is endowed with the following measure

λi = λ/λ(Ti). We represent such game by G = ({Ti}L
i=1, U, A).

For convenience, let Ui : Ti → U , i = 1, . . . , L, denote the restriction of U to
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Ti. A strategy x = (x1, . . . ,xL) is a vector of measurable functions xi : Ti → A,

i = 1, . . . , L. A pair ((Ui)
L
i=1, (xi)

L
i=1) induces a vector of probability measures on

U × A denoted by (λ1 ◦ (U1,x1)
−1, . . . , λL ◦ (UL,xL)−1) ∈ (M(U × A))L. The payoff

of player t ∈ Ti is

Ut(xi(t), λ1 ◦ x−1
1 , . . . , λL ◦ x−1

L ).

Given a vector of Borel probability measures (τ1, . . . , τL) ∈ (M(U × A))L, we

denote by τi,U and τi,A the marginals of τi on U and A respectively. The expression

u(a, τ1,A, . . . , τL,A) ≥ u(A, τ1,A, . . . , τL,A) means u(a, τ1,A, . . . , τL,A) ≥ u(a′, τ1,A, . . . , τL,A)

for all a′ ∈ A.

Given a game G = ({Ti, Ui}L
i=1, A), a vector of Borel probability measures (τ1, . . . , τL) ∈

M(U × A)L is an equilibrium distribution for G if for all i = 1, . . . , L,

1. τi,U = λi ◦ U−1
i , and

2. τi({(u, a) ∈ U × A : u(a, τ1,A, . . . , τL,A) ≥ u(A, τ1,A, . . . , τL,A)}) = 1.

We will use the following notation: Bτ = {(u, a) ∈ U × A : u(a, (τi,A)i) ≥
u(A, (τi,A)i)}. Note that Bτ is closed, and so a Borel set; hence τi(Bτ ) is well de-

fined. Also, if (u, a) belong to Bτ , then a maximizes the function ã 7→ u(ã, (τi,A)i).

Thus, we implicitly assume that no player can affect the distribution of actions, and

in this sense the above describe a game with a continuum of players.

A strategy x = (x1, . . . ,xL) is a Nash equilibrium of G if Ut(x(t), λ1◦x−1
1 , . . . , λL◦

x−1
L ) ≥ Ut(a, λ1 ◦x−1

1 , . . . , λL ◦x−1
L ) for almost all t ∈ T and all a ∈ A. Nash equilibria

exist if either A or U(T ) (or both) are countable, or if (T, Σ, λ) is super-atomless (see,

respectively, Khan and Sun (1995), Carmona (2008) and Carmona and Podczeck

(2009)) but may fail to exist otherwise as shown by Khan, Rath, and Sun (1997).3

3Formally, (T, Σ, ϕ) is super-atomless if for every E ∈ Σ with ϕ(E) > 0, the subspace of L1(ϕ)
consisting of the elements of L1(ϕ) vanishing off E is non-separable. This notion was first introduced
by Podczeck (2008).
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4 Strategic equilibria

4.1 Strategic Equilibrium Distributions

As was stressed in the introduction, we wish to consider those Nash equilibria that

can be seen as a limit of equilibria in games in which each player imagines that he

alone has a small, yet positive, impact on the distribution of actions (societal choice)

of the group he belongs to. Clearly, the need for a modification arises because for

each player t, λi({t}) = 0.

Associating a player with such a weight on his group’s societal choice, is done with

the help of the following measures: For each 1 ≤ i ≤ L, ε > 0, and t ∈ Ti ⊆ T ; let

δt be the probability measure on T concentrated at t (i.e., δt({t}) = 1), and define

a measure λi,t,ε = εδt + (1 − ε)λi. Thus, under λi,t,ε player t alone is an atom in

group i with mass ε. In other words, in the game described by λi,t,ε, t believes that

he alone has an ε impact on the societal choice of group i. In fact, for all strategies

xi : Ti → A,

λi,t,ε ◦ x−1
i = εδxi(t) + (1− ε)λi ◦ x−1

i . (5)

In order to construct a game where each player imagines that he, but no other

player, has an ε impact on the distribution of the choices of the type he belongs to,

we define the ε – perturbed game by altering players’ payoff functions using the above

measures:

For all ε > 0, t ∈ Ti, a ∈ A and τ = (τj)
L
j=1 ∈ (M(A))L, define

Ui,ε(t) (a, τ) = Ui(t) (a, (εδa + (1− ε)τi, τ−i)) .

We then define the ε – perturbed game Gε of G as Gε =
({Ti, Ui,ε}L

i=1, A
)
. Note that

the ε – perturbed game Gε has the same players, and actions spaces as the original

game G and that, for every strategy x,

Ui,ε(t)(x) = Ui(x(t), (εδx(t) + (1− ε)λi ◦ x−1
i , (λj ◦ x−1

j )j 6=i)).
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We say that a distribution τ ∗ = (τ ∗i )L
i=1 ∈ M(U × A)L is a strategic equilibrium

distribution of G if there exists a sequence {εk}∞k=1 ⊆ (0, 1) decreasing to zero and a

sequence {τ ∗k}∞k=1 converging to τ ∗ such that τ ∗k is an equilibrium distribution of Gεk
,

for every k ∈ N.

Theorem 1 establishes the existence of SE distributions.

Theorem 1 Every game with a continuum of players has a SE distribution.

Proof. Let ε > 0 and 1 ≤ i ≤ L. Note first that Ui,ε : Ti → U is Borel measurable.

To see this define, for all a ∈ A and τ ∈ M(A)L, U
(a,τ)
i,ε by t 7→ Ui,ε(t)(a, τ) and

U
(a,τ)
i by t 7→ Ui(t)(a, τ). Since U

(a,τ)
i,ε = U

(a,(εδa+(1−ε)τi,τ−i))
i and U

(a,(εδa+(1−ε)τi,τ−i))
i is

measurable by Carmona (2009, Proposition 1), it follows that U
(a,τ)
i,ε . Then, it follows

again by Carmona (2009, Proposition 1) that Ui,ε is measurable.

Next, we show that Ui,ε(t) is continuous for all t ∈ Ti. In fact, if a ∈ A, τ ∈
M(A)L, {ak}∞k=1 ⊆ A and {τk}∞k=1 ⊆M(A)L are such that limk ak = a and limk τk =

τ then εδak
+ (1 − ε)τ k

i ⇒ εδa + (1 − ε)τi and the continuity of Ui implies that

limk Ui,ε(t)(ak, τk) = limk Ui(ak, (εδak
+(1− ε)τ k

i , τ k
−i)) = Ui(a, (εδa +(1− ε)τi, τ−i)) =

Ui,ε(t)(a, τ).

Since Ui,ε is measurable and Ui,ε(t) is continuous for all i ∈ {1, . . . , L} and t ∈ Ti,

it follows by (a straightforward generalization of) Theorem 1 in Mas-Colell (1984)

that Gε has an equilibrium distribution.

To finish the proof, we let τ ∗n be an equilibrium distribution of G1/n. Since {Ui,1/n}n

converges uniformly to Ui, then it follows that λi ◦U−1
i,1/n converges to λi ◦U−1

i for all

i = 1, . . . , L.

For all i ∈ {1, . . . , L}, let Ki = {λi ◦ U−1
i , λi ◦ U−1

i,1 , λi ◦ U−1
i,1/2, . . .} and Ci = {µ ∈

M(U × A) : µi,U ∈ Ki}. It follows by Hildenbrand (1974, Theorems 32 and 33) that

Ki is tight, and so again by Hildenbrand (1974, Theorems 34, and 35) implies that

Ci is tight. Since {τ ∗k} ⊆ C1 × · · · × CL, it follows by Hildenbrand (1974, Theorem

31) that it has a converging subsequence. Hence, its limit point is a SE distribution

of G.
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Next, we show that any SE distribution is an equilibrium distribution.

Theorem 2 Every SE distribution is an equilibrium distribution.

Proof. Let τ be a SE distribution, and let {εk} and {τk} be such that εk ∈ (0, 1),

limk εk = 0, τk converges to τ , and τk is an equilibrium distribution of Gεk
, for all

k ∈ N.

Note that, for all k ∈ N, {(u, a) ∈ U × A : u(a, τA) ≥ u(A, τA)} is closed and

τk({(u, a) ∈ U × A : u(a, τ k
A) ≥ u(A, τ k

A)}) = 1. Hence, supp(τk) ⊆ {(u, a) ∈ U × A :

u(a, τ k
A) ≥ u(A, τ k

A)}.
We next show that supp(τ) ⊆ {(u, a) ∈ U × A : u(a, τ k

A) ≥ u(A, τA)}, which

implies that τ is an equilibrium distribution as desired.

Let (u∗, a∗) ∈ supp(τ). By Carmona and Podczeck (2009, Lemma 12), there exists

a subsequence {τkm}m of {τk}k and, for each m ∈ N, (um, am) ∈ supp(τm) such that

limm(um, am) = (u∗, a∗). Hence, for all m ∈ N and a′ ∈ A, um(am, τm
A ) ≥ um(a′, τm

A )

and so u∗(a∗, τA) ≥ u∗(a′, τA). Thus, (u∗, a∗) ∈ {(u, a) ∈ U ×A : u(a, τA) ≥ u(A, τA)}.

4.2 Strategic Equilibrium Strategies

We say that a strategy x = (xi)
L
i=1 is a SE strategy of G if there exists a sequence

{εk}∞k=1 ⊆ (0, 1) decreasing to zero and a sequence {xk}∞k=1 such that xk is a Nash

equilibrium of Gεk
for every k ∈ N and λ ◦ (Uεk

,xk)
−1 ⇒ λ ◦ (U,x)−1.

Proposition 1 Let G be a non-atomic game. Then the following conditions are

equivalent:

(a) x is a SE.

(b) there exists a sequence {εk}∞k=1 ⊆ (0, 1) decreasing to zero and a sequence

{xk}∞k=1 such that xk is a Nash equilibrium of Gεk
for every k ∈ N and λ ◦

(U,xk)
−1 ⇒ λ ◦ (U,x)−1.

Furthermore, if either A is countable or U(T ) is countable or (T, Σ, λ) is super-

atomless, then both (a) and (b) are equivalent to
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(c) λ ◦ (U,x)−1 is a SE distribution.

Proof. The equivalence between (a) and (b) follows from the fact that λ ◦
(Uεk

,xk)
−1 ⇒ λ ◦ (U,x)−1 if and only if λ ◦ (U,xk)

−1 ⇒ λ ◦ (U,x)−1. To see the

latter equivalence, suppose first that λ ◦ (U,xk)
−1 ⇒ λ ◦ (U,x)−1.

Let ε > 0 and h : U × A → R be a bounded uniformly continuous real-valued

function. We will show that there exists K ∈ N such that | ∫U×A
hdλ ◦ (Uεk

,xk)
−1 −

∫
U×A

hdλ ◦ (U,x)−1| < ε for all k ≥ K.

Since h is bounded, there exists B > 0 such that ||h|| ≤ B. Let η > 0 be such

that η < ε/[2(1 + 2B)]. Since h is uniformly continuous, there exists δ > 0 such that

|h(u, a) − h(u′, a′)| < η for all u, u′ ∈ U and a, a′ ∈ A such that ||u − u′|| < δ and

d(a, a′) < δ. Since Uεk
(t) converges uniformly to U(t), then the function fk : T → R

defined by fk(t) = ||Uεk
(t) − U(t)|| for all k ∈ N and t ∈ T converges pointwise to

zero. Hence, by Ergorov’s Theorem, there exists a measurable F ⊆ T and K ′ ∈ N
such that λ(T \ F ) < η and |fk(t)| ≤ δ/2 for all t ∈ F and k ≥ K ′.

Since λ◦ (U,xk)
−1 ⇒ λ◦ (U,x)−1, there exists K ∈ N such that K ≥ K ′ such that

| ∫U×A
hdλ ◦ (U,xk)

−1 − ∫
U×A

hdλ ◦ (U,x)−1| < ε/2 for all k ≥ K.

Hence, for all k ≥ K,
∣∣∣∣
∫

U×A

hdλ ◦ (Uεk
,xk)

−1 −
∫

U×A

hdλ ◦ (U,x)−1

∣∣∣∣

≤
∣∣∣∣
∫

U×A

hdλ ◦ (Uεk
,xk)

−1 −
∫

U×A

hdλ ◦ (U,xk)
−1

∣∣∣∣

+

∣∣∣∣
∫

U×A

hdλ ◦ (U,xk)
−1 −

∫

U×A

hdλ ◦ (U,x)−1

∣∣∣∣

<

∫

T

|h(Uεk
(t),xk(t))− h(U(t),xk(t))|dλ(t) +

ε

2

=

∫

T\F
|h(Uεk

(t),xk(t))− h(U(t),xk(t))|dλ(t)

+

∫

F

|h(Uεk
(t),xk(t))− h(U(t),xk(t))|dλ(t) +

ε

2
< 2Bη + η +

ε

2
< ε.

Note that a similar argument to the above show that λ◦(Uεk
,xk)

−1 ⇒ λ◦(U,x)−1

implies λ ◦ (U,xk)
−1 ⇒ λ ◦ (U,x)−1.
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We finally turn to the proof of the equivalence between (a) and (c). Suppose that

x is a SE strategy of G. Let {εk}k and {xk}k be such that εk ↘ 0, xk is a Nash

equilibrium of Gεk
and that λ ◦ (Uεk

,xk)
−1 ⇒ λ ◦ (U,x)−1. Since λ ◦ (Uεk

,xk)
−1 is an

equilibrium distribution of Gεk
, then λ ◦ (U,x)−1 is a SE distribution of G.

Conversely, let τ = λ ◦ (U,x)−1 be a strategic equilibrium distribution. Let {εk}k

and {τk}k be such that εk ↘ 0, τk is an equilibrium distribution of Gεk
and that

τk ⇒ τ . Then, since A is countable or U(T ) is countable or (T, Σ, λ) is super-

atomless, it follows by Khan and Sun (1995, Theorem 2), Carmona (2008, Theorem 1)

or Carmona and Podczeck (2009, Lemma 7) respectively that there exist xk such that

xk is a Nash equilibrium of Gεk
and λ◦(Uεk

,xk)
−1 = τk for all k. Since λ◦(Uεk

,xk)
−1 =

τk ⇒ τ = λ ◦ (U,x)−1, it follows that x is a strategic equilibrium of G.

5 Mass-action Interpretation of Nash Equilibria

In his Ph.D. dissertation (see Nash (1950)), John Nash proposed two interpretations

of his equilibrium concept, with the objective of showing how equilibrium points “(...)

can be connected with observable phenomenon.” One interpretation is rationalistic:

if we assume that players are rational, know the full structure of the game, the game

is played just once, and there is just one Nash equilibrium, then players will play

according to that equilibrium.4

A second interpretation, that Nash referred to by the mass action interpretation,

is less demanding on players: “[i]t is unnecessary to assume that the participants

have full knowledge of the total structure of the game, or the ability and inclination

to go through any complex reasoning processes.” What is assumed is that there

is a population of participants for each position in the game, which will be played

throughout time by participants drawn at random from the different populations. If

there is a stable average frequency with which each pure strategy is employed by the

“average member” of the appropriate population, then this stable average frequency

4For a formal discussion of these ideas, see Aumann and Brandenburger (1995) and Kuhn (1996).

24



constitutes a Nash equilibrium.

Below we consider a continuum-of-player mass-action version of a normal-form

game and we present a new interpretation of Nash equilibrium: The (mixed) Nash

equilibria of the normal-form game are exactly the profiles of distributions over actions

induced by the strategic equilibria of its continuum-of-player mass-action version.

Consider a finite normal form game Γ = (N, (∆(Ai), vi)i∈N), where N = {1, . . . , n}
is the set of positions, ∆(Ai) is the set of mixed strategies over the finite action set

Ai, and vi is the usual extension to mixed strategies of the payoff function. As in

Nash’s mass action interpretation, imagine that this game is played in a large society

divided into n groups, from each of which a participant is drawn at random.

For any k ∈ N, we define the k–replica game as follows: There are k players in

each position, and we assume that each player is matched with n− 1 players selected

from the other positions. This gives rise to the k–replica game, Gk, where the set of

players is Nk = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ k} and player (i, j) has ∆(Ai) as his action

space. Under the assumption that all matchings are equally likely, the probability

that an action a ∈ A = A1 × · · · × An is played when players are using a strategy

σ = (σi,j)i∈N,j=1,...,k is
n∏

i=1

k∑
j=1

σi,j(ai)

k
.

Let σ̄ = (σ̄1, . . . , σ̄n) ∈ ∆(A1) × · · · × ∆(An) be defined by σ̄i(ai) =
∑k

j=1 σi,j(ai)/k

and let the payoff of a player in position i be defined by

vk
i (σ) =

∑
a∈A

(∏

i′∈N

σ̄i′(ai′)

)
vi(a).

It is then easy to see (after going over the proof of Theorem 3) that for any k ∈ N,

σ is a Nash equilibrium of Gk if and only if σ̄ is a Nash equilibrium of Γ. In words,

Nash equilibria of Gk are precisely those strategies under which the average behavior

in all positions is part of the same Nash equilibrium of the original game Γ. I.e., on

average, every position is best-replying to the others.
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Even though this equivalence holds for every k ∈ N, it fails to do so in the limit

case of a continuum of players: let Ti = [0, 1] for all i ∈ N ; a player t ∈ Ti chooses an

element of Ai. Let x = (x1, . . . ,xn) be a strategy. A player is selected from each Ti

according to the Lebesgue measure, and thus, the probability that the player selected

from the ith group will play action ai ∈ Ai is λi◦x−1
i (ai). We thus define x̄i = λi◦x−1

i

and

Ui(t)(ai, λ1 ◦ x−1
1 , . . . , λn ◦ x−1

n ) = vi(x̄1, . . . , x̄n) =
∑
a∈A

(∏

i′∈N

x̄i′(ai′)

)
vi(a).5

We denote by G the game (Ti, Ai, Ui)i∈N .

It is easy to see that every strategy is a Nash equilibrium of G, because no t ∈ Ti

can affect x̄i, i = 1, . . . , n. On the other hand, the following Theorem shows that SE

of G are characterized by the property that, on average every position is best-replying

to the others. Hence, the distribution of actions induced by SE of G correspond to

the limit points of the corresponding distributions of Nash equilibria of Gk when k

converges to infinity.

Theorem 3 A strategy profile x∗ = (x∗1, . . . ,x
∗
n) is a SE of G if and only if (x̄∗1, . . . , x̄

∗
n)

is a Nash equilibrium of Γ.

Proof. (Sufficiency) Let (x∗1, . . . ,x
∗
n) be a strategy in G, and assume that x̄∗ =

(x̄∗1, . . . , x̄
∗
n) is a Nash equilibrium of Γ. Let i ∈ N . We have that vi(x̄

∗) ≥ vi(σi, x̄
∗
−i)

for all σi ∈ ∆(Ai). This implies, in particular, that vi(x̄
∗) ≥ vi(εx(t)+ (1− ε)x̄∗i , x̄

∗
−i)

for all t ∈ Ti, and ε > 0. Hence, (x∗1, . . . ,x
∗
n) is a Nash equilibrium of Gε for all ε > 0,

thus, a SE of G.

(Necessity) Let (x∗1, . . . ,x
∗
n) be a SE of G, and let x̄∗ = (x̄∗1, . . . , x̄

∗
n). We show

that for all i ∈ N , and ai ∈ Ai if x̄∗i (ai) > 0, then ai maximizes âi 7→ vi(âi, x̄
∗
−i) in Ai,

which then implies that x̄∗ is a Nash equilibrium of Γ. Let i ∈ N and ai ∈ Ai. If ai

5The above notation is appropriate in the following sense: represent Ai by the unit vectors
{ei

1, . . . , e
i
|Ai|} in R|A| and define x̂i(t) = ei

j if and only if xi(t) = aj ∈ Ai. Then, λi◦x−1 =
∫

Ti
x̂idλi.

Hence, λi ◦ x−1 can, in fact, be understood as an average.

26



does not maximize âi 7→ vi(âi, x̄
∗
−i) in Ai, then ai does not maximize âi 7→ vi(âi, x̄

ε
−i)

in Ai for all ε > 0 sufficiently small, where x̄ε := (λ1 ◦ (xε
1)
−1, . . . , λ ◦ (xε

n)−1), and

(xε
1, . . . ,x

ε
n) is a Nash equilibrium of Gε, xε

i converges in distribution to x∗i for all

i ∈ N and ε → 0. Since

Ui,ε(t)(âi, x̄
ε) = εvi(âi, x̄

ε
−i) + (1− ε)vi(x̄

ε)

and xε is a Nash equilibrium of Gε, then xε
i (t) 6= ai a.e. t ∈ Ti and so x̄ε

i (ai) = 0.

Thus, x̄∗i (ai) = 0 since xε
i converges in distribution to x∗i .

Theorem 3 provides a new interpretation of Nash equilibria: they constitute pre-

cisely the vector of distributions of actions, one for each position, that are induced

by a (pure strategy) SE. Similarly as in Nash’s mass action interpretation, a Nash

equilibrium can be understood as a “stable” average behavior in a large society. How-

ever, since every SE is a Nash equilibrium, our interpretation is rationalistic and so

different from Nash’s. Nevertheless, it is interesting to see that for our interpretation

one needs to regard full rationality as a limit case of incomplete rationality as in

Selten (1975).
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