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Abstract. An ISPH method for the simulation of three-phase flows is presented in this
article. The proposed method is investigated through the simulation of a droplet located
at the interface of two immiscible fluids as well as diamond droplet deformation. The
extendibility of the proposed surface tension formulations for three-phase flows to two-
phase flows is also investigated. It is observed that the results obtained from the numerical
simulations are in good agreement with the analytical ones.

1 Introduction

Two-phase flows are investigated extensively numerically in the literature during the
past decades while the physics behind the three and more phase flow problems are rela-
tively unknown despite the fact that Multi-phase flows play an important role in many
industrial and physical phenomena. Typical examples with many applications in chemi-
cal and biomedical industries include mixture of three or more fluids (e.g. oil-water-gas
mixture in oil industry) and compound droplets. The main reason for the scarcity of
numerical simulations for three-phase flows in comparison to two-phase flows can be due
to the complications associated with the modeling of hydrodynamical interactions at the
interface for three-component systems [3, 4, 6].

In this work, we have developed a 2-D multiphase incompressible smoothed particle
hydrodynamics (ISPH) model based on the standard projection method initially used by
Cummins and Rudman [2] for SPH, while the continuum surface force model proposed
by Brackbill et al. [1] is used to model surface tension forces. The method proposed by
Smith et al. [6] is implemented to take into account different surface tension coefficients
between the phases in a three-component system.
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This paper is organized as follows. In section 2, the mathematical formulations as well
as numerical scheme are briefly described. In section 3, numerical results are presented.
Finally in section 4 concluding remarks are provided.

2 Governing Equations

All constituents of the multiphase system are considered to be viscous, Newtonian
and incompressible liquids with constant material properties, DΓ/Dt = 0, where D/Dt =
∂/∂t+(),k vk is the material time derivative operator. The set of equations governing the
motion of the flow under consideration are conservation of mass and linear momentum.
In their local form for volume and discontinuity surface, these equations may be specified
as

Dρ/Dt = −ρvk,k, on V-σ (1)

ρDvl/Dt = τkl,k − ρbl, on V-σ (2)

‖ρ (vk − uk)‖ n̂k = 0, on σ (3)

‖ρvl (vk − uk)− τkl‖ n̂k = fσ
l , on σ (4)

where V-σ denotes total volume, excluding the points lying on the surface of discontinuity,
σ. Equations (1) and (2) are valid within the body excluding σ while equations (3) and
(4) are valid only on the surface of discontinuity and represent the jump condition across
σ. τkl = −pδkl + 2µdkl is the symmetric total stress tensor, dkl = 0.5 (vk,l + vl,k) is
the symmetric deformation tensor, δkl is the Kronecker delta, p is the thermodynamic
pressure, bl is the body force, fσ

l is the surface force per unit area on the interface due to
surface tension for the mixture, vk is the divergence-free velocity, ρ and µ are the density
and viscosity of the mixture. The symbol ‖φ‖ indicates the jump of the enclosed quantity
across the discontinuity surface, φ+ − φ− where φ+ and φ− are the values of φ on the
positive and the negative sides of the discontinuity surface. Here, uk denotes the velocity
of the discontinuity surface, n̂k is the unit normal to the discontinuity surface.

One can write the local form of the jump condition for the momentum balance as

fσ
l = ‖p‖nl = γκn̂l (5)

where surface tension coefficient, γ, is assumed to be constant. Here, κ = −nm,m is the
curvature. For the sake of computational efficiency and simplification, it is preferable to
express local surface force as an equivalent volumetric force (the force per unit volume).
This can be achieved by using the continuum surface force model (CSF) proposed in [1].
Using this approach equation (5) can be expressed as a volume force by multiplying the
local surface tension force with a one-dimensional delta function defined on the interface,
δ,

fσv
l = σκn̂lδ (6)
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In this study, to track the interface each particle is assigned to a color function,

Cα
i =

{
1, if i belongs to fluid α

0, else
(7)

and finally, 1-D delta function on the interface is chosen to be δ = |C,m|.
In the treatment of multiphase immiscible fluids with two constituents, the implemen-

tation of the continuum surface force model is straightforward in that there is only one
interface between the constituents. On the other hand, in the multiphase systems with
more than two constituents, an interface fluid particle may see two or more interfaces at
the same time and in what follows a decision should be made as to which surface tension
coefficient is to be used. To be able resolve this difficulty, in [6] the surface tension coeffi-
cient was decomposed into phase specific surface tension such that γαβ = γα + γβ where
γαβ is the physical surface tension coefficient between the phase α and the phase β, and γα

and γβ are the phase specific surface tension coefficients for αth and βth phases respectively.
For three-phase system, γ12 = γ1 + γ2, γ13 = γ1 + γ3, and γ23 = γ2 + γ3. Upon solving a
linear system of equations for γ1, γ2 and γ3, one can write the following relations among
the physical and phase specific surface tension coefficients as γ1 = 0.5 (γ12 + γ13 − γ23),
γ2 = 0.5 (γ12 − γ13 + γ23), and γ3 = 0.5 (−γ12 + γ13 + γ23). As such, for each particle,
three phase specific normals, curvatures, and the surface tension forces are computed. The
total surface tension force acting on the given interface particle is then the sum of three
phase specific surface tension forces such that fσv

il =
∑3

α=1 f
(σv)α
il where the subscript i

is a particle identifier, and the adjacent Latin letter is the lth component of the surface
force.

2.1 SPH preliminaries and the numerical method

The numerical method used in this work for linearizing the governing equations and
associated interface and boundary conditions is based on the Incompresibble Smoothed
Particle Hydrodynamics method presented in [5], which is briefly described in what fol-
lows.

SPH particles interact with each other by means of an interpolation (weighting, smooth-
ing, kernel) function W (rij, h), concisely designated as Wij for a constant h. Here, rij is
the magnitude of the distance vector ~rij = ~ri−~rj between the particle of interest i and its
neighboring particles j, and h is referred to as the smoothing length which controls the
interaction length among particles.

In the SPH method, an arbitrary function (i.e, scalar f(~ri), vectorial f p(~ri), or tensorial
fps(~ri)) my be approximated as fp

i =
∫
Ω

fp
j Wijd

3~rj where f p(~ri) is briefly denoted by f p
i .

Upon replacing the integral operation with a summation sign over all the particles within
the cut-off distance (i.e. ~rij < Kh, where K is a constant coefficient for the selected
kernel function), and approximating the infinitesimal volume element by reciprocal of the
number density ψj, defined for the particle j, one can write the SPH approximation of f p

i
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Figure 1: Domain size and fluid numbers at the initial condition for different simulations (The bubble
has a diameter of 0.3 with its center coordinates at 0.5, and 0.5.)

as

f p
i = fp (ri) =

∑

j

1

ψj

f p
j Wij (8)

where the number density for particle i is defined as ψi =
∑

j Wij

Upon using a differentiable smoothing function, the spatial first order derivative of the
function fp

i evaluated at the location of particle i can simply be approximated through
multiplying the gradient of the kernel function ∂Wij/∂xs

i (taken with respect to the particle
i) by the field variables and volumes of neighbor particles. There are several ways to
discretize the first order spatial derivative of a field variable. Throughout this work, the
one used is of the following form

∂f p
i

∂xk
i

aks
ij =

∑

j

1

ψj

(
fp
j − f p

i

) ∂Wij

∂xs
i

(9)

where aks
ij is a corrective second-rank tensor given by,

aks
ij =

∑

j

rk
ij

ψj

∂Wij

∂xs
i

(10)

This form is referred to as the corrective SPH gradient formulation that can be used to
eliminate particle inconsistencies. It should be noted that the corrective term aks

ij is ideally

equal to Kronecker delta, δks for a continuous function. As for SPH approximation to
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the second order derivative of a vector-valued function, it can be written in two different
ways as

∂2fp
i

∂xk
i ∂xk

i

apm
ij = 8

∑

j

(
fp
i − f p

j

) rp
ij

r2
ij

∂Wij

∂xm
i

, (11)

∂2fp
i

∂xk
i ∂xk

i

(
2 + ass

ij

)
= 8

∑

j

(
fp
i − fp

j

) rs
ij

r2
ij

∂Wij

∂xs
i

. (12)

For the time integration in the ISPH approach, two-stage predictor-corrector method
with a first-order Euler time step scheme is used. The algorithm starts with the predic-
tor step where the intermediate positions ~r∗i for all particles are calculated through the

knowledge of preceding particle positions ~r
(n)
i and the previous correct velocity field ~v

(n)
i as

~r∗i = ~r
(n)
i +~v

(n)
i ∆t. The intermediate velocity field ~v∗i is calculated on the intermediate par-

ticle locations by solving the momentum balance equations with forward time integration
without the pressure gradient term as ~v∗i = ~v

(n)
i + ~f

(n)
i ∆t . The pressure Poisson equation

is solved to obtain the pressure, p
(n+1)
i , which is required to enforce the incompressibility

condition. The actual velocity field at time step (n + 1), ~v
(n+1)
i ,can be obtained by using

the computed pressure. Finally, with the correct velocity field for time-step (n + 1), all

fluid particles are moved to their new positions ~r
(n+1)
i = ~r

(n)
i + 0.5

(
~v

(n)
i + ~v

(n+1)
i

)
∆t.

3 Results and Discussion

In this section, results of the conducted simulations are presented. Computational
domain for every simulation is taken to be a square with the side length of 1. Each
row and column consists of 100 equally spaced particles for test cases evolving from a
Cartesian particle arrangement. Test cases with non-Cartesian particle arrangement have
the same number of particles as with their Cartesian counterparts. All fluid properties are
set to unity for every phase involved in simulations while binary surface tension coefficient
assumes a value of 0 or 1, depending on the test cases considered. Different phases are
ordered as shown in figure 1. No-slip boundary conditions for the top and bottom, and
side walls are applied. Zero pressure boundary condition is applied for all boundaries.

In order to test the applicability of the three-phase surface tension treatment to two-
phase flow systems, the deformation of the initially diamond-shaped droplet under the
effect of the surface tension force is considered. Particles of fluid 3 are initially positioned
on a diamond surrounded by fluid 1 and 2 particles. The binary surface tension coefficient
between fluids 1 and 2 is set to zero so as to make them act like a single fluid. Figure 2
provides the sequences of shape-evolution of the diamond bubble in the aforementioned
test case in detail. The initial diamond evolves in time hence becoming a circle as the
simulation continues. The circle obtained in this way is also used for the initial positioning
of particles in some other test cases. As expected, the new surface tension treatment
method presented for SPH of three-phase fluid flow is also applicable to a two-phase fluid
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Figure 2: The time evolution of a diamond shaped bubble to a circle shape bubble; Left: particle positions,
Right: color contour showing bubble boundary.
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Figure 3: Contours of surface tension force magnitude for different initial particle positioning at t =
0.015 s; (a) crude circle marked in cartesian distribution, (b) circle obtained from evolution of a diamond.

system.
In this study, two different methods are used for the initial arrangement of particles in a

circular bubble positioned in a rectangular domain for the liquid lens. In the first method,
all the particles are placed on a Cartesian grid and the bubble is formed through assigning
different phases to each particle in accordance with their positions. The circular bubble
obtained by this method is rather crude thereby presenting many irregularities in shape
which eventually result in an intermittent surface tension force as shown in figure 3-a. In
the second method, an initial diamond shaped bubble is allowed to deform into a circular
bubble in a two phase flow as described previously. The simulation using an initial circular
bubble generated by the second method leads to improvements in the surface tension force
and particle positions, as seen in figure 3-b. The initial diameter for the crude bubble
used here is 0.293 while the bubble obtained from the diamond shape has a diameter of
0.299. The reason behind this difference is that it is almost impossible to create a circular
bubble shape of desired initial diameter (in this work, the initial diameter of interest is
0.3) from limited number of equally spaced particles on a Cartesian grid. The crude circle
experiences an abrupt change in particle positions at early stages of the simulation due to
the aforementioned irregular surface tension force. This affects the initial reading for the
diameter, rendering it difficult to compare the results with analytical data. This problem
is more evident in figure 4-a, where lens diameter versus time is shown for both test
cases. While both test cases show the same characteristics, the crude bubble has smaller
elongation rate along the major axis. The results are more evident when the transverse
diameter of the lens is normalized by the analytically obtained equilibrium diameter, as
shown in 4-b.
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Figure 4: Change in transverse lens diameter versus time for different initial conditions; Solid line: crude
circle marked in Cartesian distribution, Dashed line: circle obtained from evolution of a diamond.
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Figure 5: The time evolution of the liquid lens visualized by color contours.

The shape of the droplet is controlled by the values of the surface tension forces. There-
fore, under the effect of these surface tension forces, the initially circular droplet deforms
into an elliptic or lens shape. The equilibrium three-phase contact angle is formulated as
sin ϕ1/γ23 = sin ϕ2/γ13 = sin ϕ3/γ12. The transverse diameter of the lens along the major
axis (the distance between triple junctions) is computed through [4]

d =

(
2 (π − ϕ1)− sin (2π − 2ϕ1)

8A sin2 (π − ϕ1)
+

2 (π − ϕ3)− sin (2π − 2ϕ3)

8A sin2 (π − ϕ3)

)
(13)
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where ϕα is the contact angle of the αth phase, and A is the area of the liquid lens.
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Figure 6: Particle positions for liquid lens at different simulation times.

Based on the initial diameter of circle obtained from a diamond, equation (13) predicts
a diameter of 0.415 while the result obtained from the simulation is 0.413. It is obvious in
figure 4-a that the difference between theory and simulation is much greater in the case
where a crude circle is used as the initial condition for the simulations. The analytical
result for the crude circle is 0.406 and the simulation results in an equilibrium diameter
of 0.389. It is obvious in figure 4-b that the difference between theory and simulation
is much greater in the case where a crude circle is used as the initial condition for the
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simulations.
Having chosen the second method for generating an initial circular bubble geometry,

figure 5 shows the time evolution of a fluid lens between two layers of fluid. In this case,
all fluid properties are set to 1 while binary surface tension coefficients, γij, are equal
between each pair of surfaces. The time snapshots for particle positions inside the lens is
also provided in figure 6.

4 Conclusions

In this study, a three-phase ISPH method is developed and presented for the simulation
of the three-phase flows. Phase specific surface tension coefficient [6] is used to obtain
the surface tension force for the systems with three components. The applicability of
this formulations for two-phase flows is demonstrated. In addition, It is observed that
choosing appropriate initial condition is crucial to obtain accurate results. And finally,
it is shown that the equilibrium three-phase transverse lens diameter obtained is in good
agreement with the analytical one.
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