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ABSTRACT 

HIV causes 3 million deaths annually. Advancements in 

medical sciences have enabled us to manage the infection 

with drug therapies in the recent years. However, HIV-1 has 

high viral variability and is likely to evolve resistance 

against these drugs, considering a high correlation between 

the evolutionary rate and disease progression. It is important 

to understand the genetic blueprint of the virus and the 

marker mutations that are linked with disease progression 

under treatment. 

For a data set containing clinical patient data at the be-

ginning of the therapy, and the reverse transcriptase (RT) 

and protease (PR) nucleotide sequences of HIV-1 virus, we 

developed an algorithm to extract a number of features and 

predict the short term progression of the disease with re-

sponse to the therapy and find the important positions within 

the sequences. The algorithm resulted in around 30 positions 

that can predict the disease progression with AUC of 0.824 

and accuracy of 0.737, better than the standard methods and 

comparable to the best methods available on such a data. 

1 INTRODUCTION 

Human immunodeficiency virus (HIV) has caused the 

deaths of approximately 25 million people between its dis-

covery in 1981 to 2006, and further causes 2.4-3.3 million 

deaths annually [1]. Even though newly discovered drug 

therapies have increased the life expectancy in HIV+ people, 

the virus is highly variable and develops mutations that pro-

vides resistance against the drugs in time [2]. The replication 

of the virus is highly error prone (around 1 viral mutation 

occurring every replication cycle), and due to this high evo-

lution rate, the virus exists within a patient as a complex 

mixture of related but distinguishable variants called qua-

sispecies [2]. High evolutionary rate of some HIV-1 variants 

within a patient have been correlated with disease progres-

sion since the selection pressure eliminates non-resistant 

variants [3]. 

For this reason, it is important to find the combination 

of mutations that infer this resistance to specific drugs. The-

se mutations may able us to develop new treatments more 

effectively. Moreover, depending on the viral RNA levels in 

the plasma and the variants of the virus present in a patient, 

the treatment options may change since some drug suscepti-

bility of HIV variants are different  [2] . Therefore it is im-

portant to be able to predict disease progression and re-

sponse to antiretroviral therapy beforehand using the pre-

treatment clinical data and the genetic blueprint of the virus. 

Many computational studies have been conducted on 

HIV, to determine important sequence positions, to predict 

drug resistance of a variant, to predict disease progression 

with time. For estimating drug specific genotypic suscepti-

bility scores (GSS) to predict virologic response, algorithms 

such as HIVdb [4], ViroSeq [5], ANRS [6] and Rega [7] 

have been developed. These algorithms can be used to pre-

dict drug susceptibility of a variant given its RT and protease 

sequences and they can identify mutations that create re-

sistance or susceptibility to specific drugs [8]. These four 

algorithms have been shown to predict the response with 

area under the receiver operator characteristic curve (AUC) 

value of 0.76, and their weighted combination increased the 

AUC to 0.80 on a data set to predict response during treat-

ment change episodes [9].  

For this study, we used clinical information and some of 

the sequence information of the virus present to predict 

whether the viral load decreases 100-fold within a 16-week 

time frame, and tried to pinpoint the markers that affect the 

outcome of the treatment. 

2 METHODS 

2.1 Data Set 

Data set is curated by William Dampier and obtained 

from Kaggle [10]. It consist of samples from 1612 patients 

infected with HIV-1 virus, with each sample containing the 

pre-treatment values of viral load (viral particles in 1mL of 

blood, log10 scale) and CD4+ cell count (in 1 ml of blood), 

plus the nucleotide sequence of Reverse Transcriptase (RT) 

and Protease (PR) enzymes of the virus. The class label is a 

binary value indicating whether the patient has shown re-

sponse to drug therapy after 16 weeks, with response being 

defined as 100-fold decrease in viral load. The data com-

bines samples with different drug therapies due to the varia-

bility of therapeutic intervention. Due to the drug cocktails 

not being universal, patients were treated with different 

combinations of 13 drugs, 1 to 3 at a time [10]. However the 

data set was prepared to question the existence of markers 

that indicate good/bad progression independent of the thera-



py chosen.  In addition, the treatment data is omitted in the 

original dataset due to difficulty of representing different 

cocktails with different (and unknown) dosages. For these 

reasons, the treatment information is not used. 

2.2 Feature Extraction and Selection 

The data contains both clinical data in the format of 

numerical values and sequences. To use the sequence infor-

mation we need to extract features to formats usable by the 

machine learning algorithms. For that purpose, the RT and 

the PR sequences are aligned within themselves using Clus-

talW [11] for both classes. After alignment, each nucleotide 

in the aligned RT and PR sequence of a sample is expanded 

into a binary vector of size 5 (A, C, G, T, and gap). If the 

nucleotide in the current position of the current row is A, the 

vector is created as 1 for the “A” and 0 for the remaining 

four elements. The ambiguous characters that define more 

than one nucleotide (e.g. R for purine, Y for pyrimidine, N 

for any nucleotide and others as well) are also converted 

accordingly using IUPAC nucleotide code definitions.  

Another feature that is commonly used in sequence da-

tasets is the frequency of all k-mers in the sequences. We 

created features for all possible 3-mers and added their fre-

quencies for all of the samples. 

The features up to now include only the posi-

tion/mutation information in the sequences and local k-mer 

frequencies. To capture further information that may exist in 

a  combination of different positions, a hidden Markov mod-

el (HMM) of the sequences are built using the software 

HMMER [12]. The profile HMM is built for both the posi-

tive and the negative class using the alignment of the se-

quences (by aligning each class within themselves), and 

each sequence is tested against both of those profiles, result-

ing in a score and an e-value for both classes and both RT 

and PR sequences, for a total of 8 features.  

Apart from the mutation positions that discriminate be-

tween two classes and the global HMM profiles, we also 

looked at the possibility of more generalized local sequence 

motifs in the RT and PR sequences.  We used MEME (Mul-

tiple EM for Motif Elicitation) motif discovery suite [13] 

and DEME algorithm [14] for discriminative motif discov-

ery. Discriminative motifs are sequence motifs that differen-

tiate the two sets of sequences, and are found by searching 

for patterns that are overrepresented in one class and un-

derrepresented in the other. We searched for overrepresented 

sequences in both positive and negative sets using the train-

ing set. The discovered motifs for both classes were 

searched in the test set and the search score with the respec-

tive software is taken as the motif score. However, due to 

high mutability of HIV, the found motifs were either not 

consistent in the class they are supposed to be in, or oc-

curred both in positive and negative classes with very high 

probability. Due to the low information gain, they were re-

moved by the feature selection algorithms in nearly all of the 

runs. 

The above steps results in more than 9,000 separate se-

quence features, majority from the expansion of gene se-

quences. Many of those features are unimportant and carry 

no information with regards to the class value; this reduces 

the classification accuracy significantly. Also, to find the 

important mutations and positions that affect the therapy 

response, we need a way to filter out the unimportant fea-

tures. For these reasons, application of feature extraction 

methods was necessary. 

We used Evomarker [15, 16], a genetic algorithm based 

biomarker detection method, to find a near optimal subset of 

features. This resulted in 7 features. However, Evomarker 

assumes the resulting feature set will be used as biomarkers 

and tries to minimize the feature count aggressively. This 

may remove some important features if they are correlated 

with other features in the subset. Since we want to find the 

important positions as well as obtain high prediction accura-

cy, we also added the selected features in an SVM based 

sequential floating forward selection (SFFS) and the top 100 

features when ranked by their information gain [17]. We 

created multiple feature sets with feature count ranging from 

7 to 180 using the combination of these 3 methods. Of those, 

results of 2 are presented here, one with 32 features and one 

with 112 features. The other sets fared nearly the same in 

terms of accuracy. 

To see the importance of each feature and a visual rep-

resentation of their relationship with samples, we created a 

2D linear projection [18] of the data using 5 features. Those 

5 features were selected from all of the features excluding 

sequence position data by running the VizRank heuristic 

[19] for 2000 generations. The rotation of the axes and the 

final projection was optimized using the FreeViz algorithm  

[20] to optimize separation of data points. The result is given 

in Figure 1. The viral load before the treatment has been 

consistently selected in all of the feature sets and we can see 

that it is the most single important feature for separation of 

two classes. Interestingly, the other clinical information, 

CD4+ cell count, has not been selected in neither of the fea-

ture sets and was not used in the projection even if added 

manually.  

Another point is that higher viral load at the start of 

treatment is significantly correlated with better therapy re-

sponse (can also be seen in Figure 1), which is directly the 

opposite of what one would expect. 

Sequence positions were not added to the pool of fea-

tures during the course of the VizRank algorithm due to their 

count and the computational complexity of the selection. To 

gather the informative sites in sequences, we calculated the 

information gain and the gain ratio [17] of each position 

separately. The results for both RT and PR sequences are 

given in Figure 2. On average, we can see some single peaks 

(very specific informative sites, such as position 559 in RT 

sequences) and regions with higher average information 

count (from positions 250 to 350 in RT sequences). It is im-

portant to note that the given position data is from the com-

plete multiple alignment, and the numbers will change be-



tween different sequences due to the presence of gaps in the 

complete alignment. 

2.3 Classification 

For classification, the continuous features such as viral 

load, CD4 cell count, e-values from HMMER results are 

normalized between 0 and 1. The resulting data is classified 

using SVM (support vector machines) and random forest. 

Random forest classification is performed under Orange 

[21]. SVM classification is performed under Weka using 

LibSVM [22-24]. For SVM kernel, radial basis function is 

used with cost parameter of 200. Since the data set is unbal-

anced, the positive class was weighted 4 times the negative 

class, taken as the inverse square of the ratio of 1:2 positive 

to negative samples. 

This imbalance in the data set also affects the perfor-

mance estimates. Since there are roughly twice the number 

of negative samples, classifying all samples as negative 

yields an accuracy of 66%, which is an overestimate. To 

correct for this bias, we used balanced accuracy in our tests, 

given as: 

Balanced Accuracy =  1 – 

FP
N

+
FN
P

2
 

 

where FP and FN are the count of, respectively, false posi-

tives and false negatives, N and P are the count of all nega-

tive and positive samples. 

If the classifier has equal discriminatory power for both 

classes, this term becomes equal to the normal accuracy. 

However if the accuracy is high just because the classifier 

takes advantage of the imbalanced data set, balanced accu-

racy will reduce and normalize the accuracy [25]. By this 

normalization, classification of an unbalanced set (with re-

spect to number of positive and negative samples) will al-

ways give the baseline accuracy of 0.5 if all of the samples 

are classified as the majority class, instead of the probability 

of the class with the higher prior. Using the balanced accu-

racy was shown to be a better estimate of performance [26]. 

This balanced accuracy measure was used as the metric to 

optimize in the Evomarker genetic algorithm for feature 

selection. This ensures that the genetic algorithm weighs 

both classes the same and does not try to select features by 

their accuracy dominantly on the negative class. 

3 RESULTS 

Results of the classification with two different feature 

sets are given in Table 1. Our results are from 5-fold cross 

validation, whereas the comparison results are trained and 

tested on separate sets. 

AUC (area under the ROC curve) value is a better esti-

mate of classifier performance than accuracy. The classifica-

tion with highest AUC, SVM using 112 features, has AUC 

of 0.824, which means that a randomly selected positive 

sample will get a higher score in prediction than a randomly 

selected negative sample with 82.4% probability. Even 

though SVM using 32 features has less AUC and lower con-

ventional accuracy, it has the highest balanced accuracy with 

0.737, which means that this prediction method would fare 

better if we weigh both of the classes the same in the loss 

function and not proportional to the sample size in the class. 

Although AUC and accuracy values are quite high, 

which means a good portion of the data from both classes 

are separated cleanly, specificity values are low enough to 

cause problems. The threshold separating the classes can be 

shifted with weighing one class more than the other; howev-

er either specificity or sensitivity will suffer in any case. 

Even though the errors in the positive class are weighted 

more than the errors in the negative class, the data unbalance 

still makes it harder to separate both classes at once. Since 

the classifiers we use are greatly affected by unbalanced 

class priors, we evaluated our method on a balanced set. The 

balanced set was created by randomly undersampling the 

negative class to create 1:1 ratio of positive to negative ex-

amples and repeating the 5-fold cross validation. As we can 

see in Table 1, this significantly increases specificity without 

sacrificing much sensitivity, giving a more balanced predic-

tion for both classes. Although the ratio of positive examples 

to negative examples may not be near 1:1 in real world ex-

amples, using bootstrapping with undersampling to achieve 

uniform classes will increase the accuracy. 

For comparison, the top results from the Kaggle compe-

tition are also shown [10]. Note that these results are from a 

separate training and test set (training with 1000 samples, 

testing with 692 samples), and may not be directly compa-

rable. A problem in the competition was that the training set 

was not representative of the test set and the selection was 

not random (e.g. “Patient id”/row number was correlated 

with the response, class priors were significantly different in 

training and testing sets etc.). Due to these reasons we opted 

to use 5-fold cross validation instead of testing the method 

on a separate test set. In addition, since the alignments and 

feature selection of our method were done in a cross valida-

tion scheme, using those features in the test set would have 

introduced some selection bias into our results. But for com-

pleteness, the (possibly slightly biased) test results for SVM 

has an AUC of 0.734 and accuracy of 0.727. With these re-

sults, our method performs higher than the maximum accu-

racy in literature, but is surpassed by the competition winner 

in terms of accuracy (AUC values unknown). It is important 

to note that the competition winner uses data segmentation 

to combine samples into groups and classifies them sepa-

rately, in a way performing ensemble classification [10]. As 

mentioned, the data is from a collection of patients treated 

with different drug cocktails and it is possible that different 

groups overlap partially/completely with those treatment 

types.  It is known that variants have different susceptibility 

to different drugs and there are methods that exploit this 

information to predict which treatment should be used to 

maximize treatment response. We created a heat map of the 

distance matrix of samples using Euclidian distance between 

their feature vectors to show whether there were any obvi-

ous groupings. As we can see in Figure 3, the samples can 

be clustered into specific units with low intra-class distance 



and higher inter-class distance. Our method can be improved 

by training different classifiers for different clusters to 

achieve greater accuracy. However there is no way to know 

if those clusters overlap with the treatment type since that 

information is missing. 

4 DISCUSSION 

It is possible to predict HIV progression in patients us-

ing clinical data and the sequence markers from virus vari-

ants up to acceptable accuracy, even in the absence of treat-

ment information. Although the accuracy can be increased 

using multiple time points and more clinical information, the 

data easily obtainable from plasma at one time point is still 

useful and much easier to obtain and track. Apart from the 

prediction step, we were able to determine important posi-

tions that are useful for class separation, though checking 

the validity of those mutations and annotating them requires 

expert review to be useful for patient treatment. When 

found, such markers are useful for selecting antiretroviral 

drugs to increase drug susceptibility for a specific variant 

present in the patient. 

It should be noted that aligning these sequences is quite 

hard as a result of the high mutability of HIV-1. Since the 

alignment is crucial in the latter stages, this presents a seri-

ous problem. While there are expert curated alignments of 

sequences obtained from specific clinical trials, there were 

none containing all of our sequences, and the ambiguity in 

the final alignment is high, even for curated data. For future 

work, using machine learning methods that can work with 

unaligned sequences can be necessary. An extension to SVM 

method is the string kernel [27]. The string kernel works 

directly with strings without the need for an alignment [28]. 

Another alignment-free method is to use semi-supervised 

learning on a network created by the relative complexity 

measure as the distance measure. The class labels can be 

propagated through the links using the network topology 

and the distances. This step was removed from our algo-

rithm due to time limitations; however this method is very 

suitable to the context of the problem and may provide bet-

ter predictions. 
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AUC Accuracy 
Balanced 

Acc. 
Precision Sensitivity Specificity 

Our method, Feature Set A 

(1692 samples, 112 features)       

    SVM 0.824 0.745 0.660 0.757 0.912 0.407 

    Random Forest 0.800 0.727 0.632 0.740 0.913 0.351 

    LAD Tree 0.769 0.719 0.666 0.773 0.822 0.510 

 
      

Our method, Feature Set B 

(1692 samples, 32 features)       

    SVM 0.736 0.679 0.737 0.919 0.927 0.547 

    Random Forest 0.778 0.731 0.659 0.767 0.867 0.450 

    LAD Tree 0.775 0.738 0.683 0.781 0.845 0.520 

 
      

Our method, Balanced set 

(32 features, 1062 samples)       

    SVM 0.800 0.728 0.728 0.738 0.707 0.749 

    Random Forest 0.762 0.685 0.685 0.685 0.685 0.685 

 
      

SVM on data w/o feature selec-

tion (8990 features) 
0.668 0.656 0.612 0.744 0.888 0.448 

       
Comparison (on a separate 

test set, 692 samples)       

    Kaggle, literature max. - 0.708 0.708 - - - 

    Kaggle, competition max.  - 0.773 0.773 - - - 

Table 1: Accuracy of our method in 5 fold cross validation, and comparison to  other methods. Note that the sets are not exact-

ly the same and not directly comparable. 

 

 
Figure 1: 2D Linear projection of 5 attributes selected by the VizRank algorithm. Red circles represent class 0 (no/little re-

sponse o treatment) and green boxes represent class 1 (favorable response). The background color is the probability of a point 

belonging to either class, calculated by weighted k-NN algorithm. Shown axes: VL-t0 is the viral load before beginning of the 

treatment, PRscoreC0 is the HMM score when a sample is matched against the PR sequences profile of class 0, and CAG,GAT 

and ACC are the relative frequencies of those 3-mers in a sample. 



 

 

Figure 3: Heat map of the distance matrix of samples, created by taking the Euclidian distance between the feature vectors. 

Green indicates higher similarity. The clusters in the samples can be seen along the diagonal. 

a-)                b-) 

 
c-)                d-) 

 

Figure 2: Information of the RT and PR sequences with respect to alignment position. a- Information gain for RT sequences, b- 

Gain Ratio for RT sequences, c-Information gain for PR sequences, d- Gain ratio for PR sequences.  
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