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Within the phenomenological Landau–Ginzburg–Devonshire theory, we discuss the paraelectric-

ferrolectric transition in superstructures consisting of ferroelectric and paraelectric layers of equal

thickness. The polar axis of the ferroelectric is perpendicular to the layer plane as expected in fully

strained BaTiO3/SrTiO3 superstructures on SrTiO3 substrates with pseudomorphic electrodes. We

concentrate on the electrostatic effects and do not take into account the boundary conditions other

than the electrostatic ones. We find that when the ferroelectric phase transition in the superstructures

is into a multidomain state, both its temperature and its character, i. e., the profile of the polarization

appearing at the phase transition is strongly influenced by the nature of the near-electrode region.

This is also the case for the layer thickness separating the single-and multidomain regimes of the

transition. Such a finding makes us question the idea that these superstructures can be thought of

as infinite systems, i.e., periodic superstructures similar to a crystal. The irrelevance of this idea in

certain conditions is demonstrated by comparing the phase transitions in two different superstructures

consisting of ferroelectric and paraelectric layers of the same thickness. In one of them, the

ferroelectric layer is in immediate contact with an ideal metallic electrode, whereas at the other

boundary, it is the paraelectric layer that is in contact with the electrode. In another superstructure,

one paraelectric layer is split in two equal parts which are placed as the first and last layer between

the electrodes and the ferroelectric layers which are closest to the electrodes. We show (with some

formal reservations) that the phase transition temperature in the first superstructure can be over

100 �C more than in the second one if the material parameters of BaTiO3/SrTiO3 are used for the

estimations. Moreover, the profile of the polarization arising at the phase transition is inhomogeneous

along the superstructure and has the maximum amplitude in the ferroelectric layer contacting the

electrode. We argue that this situation is general and results in smearing of the phase transition

anomalies for the layer thicknesses corresponding to multidomain transitions. The work is mainly

analyical but numerical methods have been used to support some statements that have been put

forward as hypotheses. VC 2011 American Institute of Physics. [doi:10.1063/1.3662197]

I. INTRODUCTION

Currently there is a lot of attention devoted to

ferroelectric-paraelectric superlattices.1–8 However, the phe-

nomenological theory of phase transitions in these systems is

still far from being complete and consistent. This may seem

surprising because the theory of these systems started9–12

well before the first experimental realization of the superlatti-

ces.13,14 Earlier theoretical works were based on the consider-

ation that the ferroelectric polarization was parallel to the

plane of the structure. This was both natural and correct

because the authors considered superlattices consisting of

layers of cubic ferroelectrics with the layer plane perpendicu-

lar to a cubic axis. It was correct to expect that the ferroelec-

tic polarization would be directed along a cubic axis parallel

to the layer plane because there was no depolarizing field in

this configuration. Multilayers in experimental studies do not,

however, usually consist of cubic ferroelectric materials [see

Refs. 1–8; because of the misfit strains, the cubic paraelectric

phase transforms into (at least) a tetragonal state either with

the polar axis perpendicular to the layer plane (uniaxial

ferroelectric) or with two polar axes parallel to the plane

(two-axial ferroelectric]. In this paper, we are focusing on the

former, uniaxial case, which seems to be the main interest for

experimental works. Because the ferroelectric polarization is

perpendicular to the interface, the depolarizing field deter-

mines both the temperature and the character of the ferroelec-

tric phase transition. Thus the non-electrostatic effects at the

interface (“short-range interlayer interaction”), which was

the main emphasis in Refs. 9–12, become of secondary

importance. This reasonable idea was pursued in Refs. 15 and

16 in which the authors discussed one aspect of the depolariz-

ing field: Lowering of the temperature of the ferroelectric

phase transition into the single domain state, which is an

effect known, in principle, since the work of Batra et al.17 In

other words, the authors took for granted that the ferroelectric

phase transition was into a single domain state. There is,

however, another possibility: That this transition could be

into a multidomain state. It should be noted that the interplay

between single- and multidomain transitions in a ferroelectric

slab between metallic electrodes with two dielectric layers

between the ferroelectric and the electrodes has beena)Electronic mail: burc@sabanciuniv.edu.
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discussed in some detail by Chensky and Tarasenko (ChT)18

in their 1982 paper. The very same approach of ChT has been

used by Stephanovich et al.19 to discuss the ferroelectric

phase transitions in multilayers of the type we are analyzing.

In their work, they supposed that the spatial distribution of

the ferroelectric polarization appearing as a result of the

phase transition is periodic along the superstructure. This

analogy with ordinary crystals looks quite natural, and it is

not surprising that other research groups have adopted this

assumption.19,20 In our work, using the same approach as in

Ref. 19, we show that the periodicity assumption along the

out-of-plane direction is not justified. We consider two spe-

cific cases of superstructures. For one of them, we explicitly

show that assuming periodicity may not hold regardless of

the system size. For another special case, the assumption of

periodicity seems to be, hypothetically, correct but this sys-

tem is a very specific case.

The physical reason prohibiting the periodicity assump-

tion is that the superstructure is never sufficiently thick to con-

sider it as an analog of a periodic crystal. Experimentally, the

lateral sizes of the electrode or external surface are always

much larger than the total thickness of the superstructure.

Theoretically, this corresponds to the supposition that the

layers are laterally infinite. Therefore, no point or region

inside of the superstructure is “sufficiently far” from the boun-

daries. At the same time, the structure of the boundary layers

strongly influences how the depolarizing field is compensated,

and this impacts the whole system. To show this, we compare

the phase transitions in two different superstructures consist-

ing of ferroelectric and paraelectric layers of the same thick-

ness. One of these structures has the ferroelectric layer in

immediate contact with an ideal metallic electrode, while at

the other boundary, it is a paraelectric layer that is in contact

with the electrode. We name such a stack of layers a system

consisting of bilayer cells. In the other superstructure, one

paraelectric layer is split in two equal parts that are situated

between the electrodes and ferroelectric layers. We also name

such a stack of layers starting with half a paraelectric layer

contacting one electrode and ending again with half a para-

electric layer before the other electrode a system consisting of

ChT cells. We were unable to rigorously analyze the phase

transitions in the two systems. However, we were able to

show that the phase transitions are very different both in terms

of the transition temperatures and the profile of the space dis-

tribution of ferroelectric polarization arising at the transition.

The sensitivity of the phase transition to the characteris-

tics of the near-electrode region forces us to be cautious about

comparison of the experimental data with theoretical formulae

for idealized models. That is why we do not try to make this

comparison, although, for the sake of illustration, we use in

our plots the physical parameters of BaTiO3-SrTiO3 super-

structures. To be able to produce results comparable to experi-

ments, the theory should consider further developments, and

we see our paper as no more than a step in this direction.

Throughout the paper we shall not take into account the

non-electrostatic boundary conditions at the ferroelectric-

paraelectric interfaces, similar to ChT18 and unlike Stephano-

vich et al. 19 There is no doubt that for a realistic comparison

with experiments, these conditions should be taken into

account. But this paper is devoted mainly to conceptual prob-

lems, which, as we have already mentioned, prove to be fairly

difficult by themselves. That is why we prefer not to divert

the reader’s attention from these conceptual problems. The

only parameter that we shall try to calculate in this paper is

the phase transition temperature for different total thicknesses

of the pair of the layers in the superstructures. We shall also

analyze the form of the polarization profile setting in at the

phase transition.

The paper is organized as follows: In Sec. II, we con-

sider small systems consisting of either two or three ferro-

electric/paraelectric layers. We begin this part by describing

the ChT results relevant to what is considered in this paper.

Also, we apply their approach to other three or two layer sys-

tems as a preparation to analyze the systems given in the

next section. In Sec. III, we try to understand what happens

in large systems, considering first doubled “small systems”

and then generalizing some of the results to systems of

arbitrary length. The physical conclusions we arrive at using

the obtained results are discussed in Sec. IV. In Sec. V, we

summarize the results of our paper.

II. SMALL SYSTEMS

A. The Chensky and Tarasenko approach

The system ChT studied is illustrated in Fig. 1. Upon

cooling, the ferroelectric phase transition in this system may

be either into single or multidomain states. Naturally, when

the thickness of the paraelectric (“dead”) layers is suffi-

ciently small, the transition will be into single domain state.

ChT calculated the maximum dead layer thickness (dc) for

this phase transition. They studied in detail only the case

where the dead layer thickness is much smaller than the film

thickness. For this case, dc proved to be independent of the

ferroelectric slab thickness but depended on ferroelectric ma-

terial constants and the dielectric constant of the paraelectric

layer.21 We are interested in the case where the two thick-

nesses are comparable. Nevertheless, some general formulae

of ChT are relevant to our case also, and the phenomena in

the cases of thin and thick dead layers for similar systems

prove to be qualitatively similar. That is why it makes sense

to discuss some of the ChT results and describe their proce-

dure to some extent.

Note that for d> dc where the phase transition is into a

multidomain state, they found that two types of domain struc-

tures appear. If d� dc< dc, the period of the domain structure

is larger than the thickness of the ferroelectric slab (“wide

FIG. 1. (Color online) Schematic of the ferroelectric layer with thin dead

layers having thickness d/2 between the ferroelectric and the electrode. This

was the system that was investigated in Ref. 18.
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domains,” WD); for d� dc> dc, this period is less than the

thickness (“narrow domains,” ND). In Ref. 19, these two

regimes were called “strong coupling” and “weak coupling”

regimes. In this work, we will show that in the case of suffi-

ciently large dielectric constant of the paraelectric layer, one

has to distinguish between the two different ND regimes.

To find the phase transition temperature, ChT studied

stability of the paraelectric phase. The mathematical indica-

tion of a loss of stability of a state (phase) was obtained by

studying solutions of an appropriate system of linear differ-

ential equations along with relevant boundary conditions.

This method dates back to a paper by Suhl,22 who used it in

another problem. The paraelectric phase is stable when the

only possible solution is zero (trivial). Appearance of non-

zero (non-trivial) solutions indicates a way of loss of stability

of the phase, and specifically this loss is with respect to a

form of the ferroelectric polarization distribution that is rep-

resented by the solution. Within this approach, such a formu-

lation of the problem results in infinite number of ways of

stability loss represented by an infinite set of the polarization

profiles. Of course, they are not real and are virtual possibil-

ities of the stability loss. The loss of stability of the paraelec-

tric phase, corresponding to the theoretically found phase

transition, occurs with respect to a single form chosen from

these infinite number of virtual solutions. The criterion of the

choice is that the loss of stability of the paraelectric phase

with respect to this solution occurs earliest, i.e., it corre-

sponds to the highest temperature.

Similar to ChT we shall suppose that both the ferroelec-

tric and paraelectric layers are isotropic in the x-y plane.

Then the nontrivial inhomogeneous solutions at the stability

loss appear simultaneously for all the directions in this plane.

That is why it is sufficient to consider inhomogeneities along

one direction only, which we identify as the x axis. Thus the

problem is reduced to solving the equations in the x-z plane.

The system of linear differential equations mentioned here

includes the linearized constituent equation for the ferroelec-

tric polarization (Pz)

APz � g
@2Pz

@x2
� g

@2Pz

@z2
¼ Ez; (1)

where Ez is the electric field along z axis. Other equations

should also be included to account for an (indirect) influence

of Pz on other degrees of freedom. The most important of

them is the polarization along x (nonferroelectric) axis.

Because Ez (x) implies the presence of Ex via the electrostatic

equation curlE¼ 0, one has to take into account the Ex com-

ponent together with the polarization, which we shall implic-

itly include by introducing the dielectric constant e? along

the plane of the structure. The electric field due to the

ferroelectric polarization exists, of course, also in the para-

electric, which we consider as isotropic with the dielectric

constant ep. The system of equations become complete by

adding div D¼ 0, where D¼ e0epE in the paraelectric and

D ¼ e0e?Ex; 0; e0ebEz þ Pzð Þ in the ferroelectric layer. In the

latter formula, we have introduced the so-called “base” or

“background” dielectric constant, eb, which is assumed to

reflect the fact that Pz is not the total z component of the

polarization but is only the “soft part,” which corresponds to

the order parameter.23 In this way, we take into account

more non-ferroelectric degrees of freedom.

Because we are considering an infinite slab, we can

present the x dependence of all the functions in form of a

Fourier series: Pz(x, z)¼RkPzk(z) cos kx and u(x, z)¼
Rkuk(z) cos kx to allow the system of the partial differential

equations to be reduced to systems of ordinary differential

equations. We work with the electrostatic potential u(x, z) as

it is convenient to use this instead of the electric field. In

addition, following ChT, we put g¼ 0 in Eq. (1); this consid-

erably simplifies the mathematics and makes it possible to

take into account the electrostatic boundary conditions only,

which we have already commented on in Sec. I. Inserting the

Fourier form of the polarization and the electrostatic poten-

tial into Eq. (1), we obtain an algebraic equation:

Aþ gk2
� �

Pzk ¼ �
duk

dz
(2)

and for a given k the electrostatic equation div D¼ 0

acquires now the form

ek

d2ufk

dz2
� e?k2ufk ¼ 0; (3)

where

ek ¼ eb þ 1=e0 Aþ gk2
� �

(4)

for the ferroelectric and subscript f implies the ferroelectric

layer. For the paraelectric layer, we have

d2upk

dz2
� k2upk ¼ 0 (5)

where p implies the paraelectric layer.

Because of the symmetry of the system, we establish

that there are two families of solutions: symmetric and anti-

symmetric with respect to reflection in the mirror plane at

z¼ 0. ChT considered antisymmetric solutions only guided

by physical arguments. We shall consider both families of

solutions to illustrate our treatment of larger systems where

these two solutions can, in principle, compete in terms of the

earlier stability loss. In both cases, one can use the boundary

conditions at two of the four interfaces, e.g., at z¼ l/2 and

z¼ (lþ d)/2:

uk lþ dð Þ=2ð Þ ¼ 0; (6)

uk l=2þ 0ð Þ ¼ uk l=2� 0ð Þ; (7)

ek
duk

dz
l=2� 0ð Þ ¼ ep

duk

dz
l=2þ 0ð Þ: (8)

One can show that for ek> 0 no nontrivial solution of either

family is possible, i.e., the nonpolar phase is stable. For

ek< 0, we begin with the antisymmetrical case looking for

solutions in the form ufk (z)¼C sin qz, where

q ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e?=jekj

p
(9)
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for the ferroelectric and upk (z)¼F sinh k (z� (lþ d)/2) for

the paraelectric. Equations (7) and (8) attain the form

C sin ql=2þ F sinh kd=2 ¼ 0; (10a)

Cekq cos ql=2� Fepk cosh kd=2 ¼ 0: (10b)

Non-trivial solutions for Equations (10a) and (10b) exist if

tan ql=2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
jekje?

p
=ep

� �
tanh kd=2: (11)

In the limit of d !1, this formula becomes

tan ql=2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
jekje?

p
=ep; (12)

which is relevant to phase transition into multidomain state

in a non-electroded slab in an infinite medium with the

dielectric constant ep. We shall repeatedly revisit this for-

mula throughout this paper.

For the symmetrical case instead of Eq. (11), we start

from ufk (z)¼C cos qz. Then instead of Eqs. (10a) and

(10b), we have

C cos ql=2þ F sinh kd=2 ¼ 0; (13a)

Cekq sin ql=2þ Fepk cosh kd=2 ¼ 0; (13b)

from where the condition of nontrivial solution is obtained

as

tan ql=2 ¼ � ep=
ffiffiffiffiffiffiffiffiffiffiffi
jekje?

p� �
coth kd=2: (14)

Because the rhs (right hand side) of this equation is negative,

the argument of the tangent should be more than p/2 unlike

to Eq. (11). Therefore, for the same value of k, the value of q
of the symmetric family is larger than of the antisymmetric

family, i.e., jekj is less in the symmetric case than in the anti-

symmetric one. From Eq. (4), one sees that this corresponds

to larger jAj, i.e., to a lower temperature of the stability loss

than for the solution with the same k of the antisymmetric

family. Physically, this is quite natural: A symmetric poten-

tial in the ferroelectric layer means that both the electric field

and the ferroelectric polarization [see Eq. (4)] are zero at the

central plane of the slab, and this is energetically less profita-

ble than to have the polarization of the same sign for all the

values of z. Therefore, one has to discuss Eq. (11) to find the

function Als (k), which defines the limit of stability of the

nonpolar phase with respect to the appearance of the

“polarization wave” with a given k. As we have already men-

tioned, to find the real limit of the stability, one has to find

the “weakest point,” i.e., the value of k that corresponds to

the maximum value of Als (k) where the “first” stability loss

corresponding to the highest temperature occurs.

B. The Chensky-Tarasenko cell with thick dead layer

It is easy to find the function Als (k) for small k and large

k regions. ChT found it for the case of very thin dead layer,

but it is just as straightforward not to make this assumption

and consider dead or paraelectric layers of thickness compa-

rable to that of the ferroelectric. The cell studied in this

section is displayed in Fig. 2. To avoid overloading the paper

with formulae, we shall not consider the general case but

only that of d¼ l, i.e., we have:

tan ql=2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
jekje?

p
=ep

� �
tanh kl=2: (15)

For the small k region, one can expand both sides of Eq. (15)

in terms of k and q taking first into account the first two

terms only:ffiffiffiffiffiffiffiffiffi
1

jekjls

s
1þ e?k2l2

12jekjls

� �
¼

ffiffiffiffiffiffiffiffiffi
jekjls

p
ep

1� k2l2

12

� �
: (16)

Putting in this equation k¼ 0 and also differentiating it with

respect to k2 and then putting k¼ 0, we find two first terms in

the Taylor expansion for jekjls in terms of k2.

jekjls ¼ ep þ
k2l2 ep þ e?
� �

12
: (17)

Using Eq. (4), one obtains

Als ¼ �
1

e0 eb þ ep

� �þ l2 ep þ e?
� �

12e0 eb þ ep

� �2
� g

 !
k2 þ ::: (18)

The first term corresponds to the loss of stability with respect

to a single domain state. Depending on the sign of the coeffi-

cient at k2, the loss of stability with respect to a “polarization

wave” with k= 0 corresponds to larger or smaller values of

A, i.e., to an “earlier” or to a “later” event. Because the

“later” stability loss is of no interest, the phase transition is

into a multidomain state if the coefficient is positive and is to

a single domain state if the coefficient is negative. Zero value

of the coefficient at k2 in Eq. (18) defines the “critical” value

of l (lc), which separates the phase transitions into single and

multi-domain states. For l< lc, the function Als (k) has maxi-

mum at k¼ 0. One can thus see that

l2
c ¼ 12e0g eb þ ep

� �2
= ep þ e?
� �

’ 12e0ge2
p= ep þ e?
� �

; (19)

where we have supposed that ep � eb, which is usually the

case for systems of experimental interest. We shall restrict

ourselves to this case only. Because e0g ’ 1Å
2

(see, e.g.,

Ref. 24) for the case e?� ep one finds from Eq. (19) that lc
is less than unit cell distance, meaning no phase transition

into single domain state is possible. If, on the contrary,

ep>e?, which is what one has for BaTiO3-SrTiO3 super-

structure, the lc can be considerably larger than the unit cell

FIG. 2. (Color online) ChT cell with thick dead layers where each paraelec-

tric layer is l/2.
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distance and our use of a continuous medium theory to con-

sider interplay between single- and multidomain formation

at the phase transition is quite consistent and valid. We shall

keep our focus on this case.

Proceeding further with the analysis of Eq. (15), we

begin focus on the small k (WD) region by finding the next,

k4, term in Eq. (18). One has to take into account the next

terms in expansions of the tan and tanh in Eq. (15) to obtain:ffiffiffiffiffiffiffiffiffi
1

jekjls

s
1þ e?k2l2

12jekjls
þ e2

?k4l4

120jekj2ls

 !

¼
ffiffiffiffiffiffiffiffiffi
jekjls

p
ep

1� k2l2

12
þ k4l4

120

� �
: (20)

In addition to the preceding operations, we differentiate this

equation with respect to k2 two times and put k¼ 0 to find

jekjls ¼ ep þ k2l2 ep þ e?
� �

=12þ k4l4 e2
? � e2

p

� �
= 720ep

� �
;

(21)

e0Als ¼ �
1

ep
þ

l2 � l2
c

� �
ep þ e?
� �

12e2
p

k2

�
e? þ ep

� �
3ep þ 2e?
� �

k4l4

360e3
p

: (22)

For l> lc, the value of k corresponding to the maximum of

function Als (k) and, therefore, to the phase transition is

k2 ¼ k2
c ¼

15 l2 � l2c
� �

ep þ e?
� �

l4 3ep þ 2e?
� � ’

5 l2 � l2c
� �

l4
; (23)

where once more we have assumed that ep > e?: We see

from this formula that the WD regime (kl< 1) is possible

only at, approximately,

l� lc< lc=3; (24)

i.e., the range of l corresponding to WD is fairly small. The

phase transition temperature is determined by

e0Als kcð Þ ¼ �
1

ep
1�

5 l� lcð Þ2 ep þ e?
� �

2l2
c 3ep þ 2e?
� �

 !
; (25)

where Eq. (24) is taken into account. Before making sure

that Eq. (25) is valid in the region defined by Eq. (24), we

have to check if the condition related to the possibility to

expand the tan function in Eq. (15), i.e., qcl< 1, is also satis-

fied. One sees from Eq. (25) that at the boundary of the WD

regime, i.e., at l� lc ’ lc=3, the value of Als (kc) is nearly the

same as for l¼ lc, meaning jekjls ’ ep. Taking into account

Eq. (9), we see that at the boundary of the WD regime

qcl ’
ffiffiffiffiffiffiffiffiffiffiffi
e?=ep

p
�1.

The preceding finding would also mean that if ep� e?
there exists a narrow domain (ND) regime (kl> 1) with

small changes of the values (electric field, polarization)

across the ferroelectric layer (ql< 1). We shall call it the

NDS regime. Because within this regime qcl< 1 while

kcl> 1, Eq. (15) can be approximated as

ql=2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
jekje?

p
=ep (26)

or

jekj ¼ epkl=2: (27)

Using Eq. (4) one then obtains

Als kð Þ ¼ �2 e0epkl
� ��1�gk2: (28)

The maximum of this function corresponds to

k ¼ kc ¼ e0epgl
� ��1=3

; (29)

and the expected phase transition temperature is defined by

Als kcð Þ ¼ �2 e0epgl
� �1=3

e0epl
� ��1�g e0epgl

� ��2=3

¼ �3g1=3 e0ep

� ��2=3
l�2=3: (30)

The NDS regime, which evidently begins at l ’ 1:5� 2ð Þlc,

ends when qcl approaches unity. Using Eqs. (26), (27), and

(29), one finds that this happens around

l ’ l� ¼ ep=e?
� �3=2

lc: (31)

One sees that if ep� e?, the NDS regime corresponds to a

broad interval of l.
At l> l�, one has tan ql/2�1 (NDL regime with large

change of values across the thickness of the layer) or

q ’ p=l; (32)

i.e., this is the case well studied by ChT, who showed (see

also Ref. 19) that for the phase transition and the period of

the sinusoidal domain structure one has:

Als kcð Þ ¼ �2pg1=2 e0e?ð Þ�1=2l�1 (33)

k2
c ¼ p e0e?gð Þ�1=2l�1: (34)

We see that here the phase transition point as well as the

period of the domain structure does not depend on ep. We

illustrate the results in Fig. 3 using Eq. (22) for the small l
regime and Eq. (30) for the large l regime in comparison

with the numerical solution of Eq. (15) for a maximum l of

20 nm.

C. Bilayer

Figure 4 illustrates the system we now want to discuss.

It is straightforward to do so within the ChT approach sum-

marized in the previous subsection. The solutions for uk(z)

are now uk(z)¼C sin qz for the ferroelectric layer and

uk(z)¼F sinh k (z� 2l) for the paraelectric one. The bound-

ary conditions at z¼ l are:

C sin qlþ F sinh kl ¼ 0; (35)

Cekq cos ql� Fepk cosh kl ¼ 0: (36)
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Comparing this with Eqs. (10a) and (10b) for d¼ l, we see

that one has to substitute l for 2l in this equation to obtain

Eqs. (35) and (36) so that instead of Eq. (15) one has:

tan ql ¼
ffiffiffiffiffiffiffiffiffiffiffi
jekje?

p
=ep

� �
tanh kl: (37)

In the same way, all the results from the previous subsection

can be transformed into the results for the bilayer. In particu-

lar, one sees that the critical value of l separating the single

domain, and the wide domain regimes is now two times less

than in the previous case. Furthermore, for very large ls, the

difference between the phase transition temperature and

the Curie temperature Tc (A (Tc)¼ 0) is two times smaller in

the case of the bilayer than in the ChT case of a symmetrical

trilayer. The transition temperatures and kc as a function of

layer thickness for three different values of ep are given in

Fig. 5.

D. Non-symmetrical trilayer

Without any algebra, one can expect the value of lc to be

larger than for the bilayer and smaller than for the symmetri-

cal trilayer. The system and the notations are presented in

Fig. 6. We write the solutions for the potential in the form:

uk zð Þ ¼ F1 sinh kz (38)

for 0< z< l1

uk zð Þ ¼ C sin q z� l1ð Þ þ D cos q z� l1ð Þ (39)

for l1< z< l1þ l and

uk zð Þ ¼ F2 sinh k z� 2lð Þ (40)

for l1þ l< z< 2l. The boundary conditions at z¼ l1 read:

C sinh kl1 ¼ D; (41)

epkF1 cosh kl1 ¼ �jekjqC (42)

and at z¼ l1þ l:

C sin qlþ D cos ql ¼ �F2 sinh k l� l1ð Þ; (43)

� jekjq C cos ql� D sin qlð Þ ¼ epkF2 cosh k l� l1ð Þ: (44)

With the help of Eqs. (41) and (42), it is easy to reduce the

system to two equations only:

FIG. 3. (Color online) Comparison between the analytical (thin line) and

the numerical (thick line) results of the transition temperature (in �C) in the

ChT cell for ep¼ 500. The thin curve reflect the small kl and the large kl
limits as given in Eqs. (22) and (30). The material parameter values used

in the calculations are TC¼ 998 �C, Curie constant¼ 1.5� 105 �C,

g¼ 6.2� 10-10 m3/F, e?¼ 50.

FIG. 4. (Color online) Bilayer cell with ferroelectric and paraelectric layers

of equal thickness.

FIG. 5. (Color online) (a) Transition temperatures (in �C) as a function of

layer thickness for the bilayer cell for ep¼ 100 (hollow diamonds), ep¼ 500

(dark thick line), and ep¼ 1000 (gray triangles) and (b) Critical k as a func-

tion of layer thickness for the bilayer cell ep¼ 100 (solid line), ep¼ 500

(dashed line), and ep¼ 1000 (line with the smallest k values). The material

parameter values used in the calculations are TC¼ 998 �C, Curie

constant¼ 1.5� 105 �C, g¼ 6.2� 10�10 m3/F and e? ¼ 50.

FIG. 6. (Color online) Schematic of the non-symmetrical trilayer.
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F1 jekjq sinh kl1 cos ql� epk cosh kl1 sin ql
� �
þ F2jekjq sinh k l� l1ð Þ ¼ 0; (45)

C epk cosh kl1 cos qlþ jekjq sinh kl1 sin ql
� �
� F2epk cosh k l� l1ð Þ ¼ 0: (46)

The condition of existence of non-trivial solutions of this

system reads

epk
� �2�jekj2q2 tanh kl1 tanh k l� l1ð Þ
h i

tan ql

¼ jekjqkep tanh k l� l1ð Þ þ tanh kl1½ �: (47)

To be specific, we shall assume that l1< l/2, i.e., l� l1> l/2.

For large ls, we expect that kl1�1 then also k (l� l1)�1. In

this case, both tanh kl1 and tanh k (l� l1)’ 1, and Eq. (47)

acquires the form

tan ql ¼ 2jekjqkep

epk
� �2�a2q2

or

tan ql=2 ¼ jekjq
epk
¼

ffiffiffiffiffiffiffiffiffiffiffi
jekje?

p
ep

;

which coincides with Eq. (12).

We see that for sufficiently large ls, the system “forgets”

the absence of symmetry. For small l, the situation is, how-

ever, different. Let us find lc for this case. To realize this

aim, one has to expand tanh and tan functions in Eq. (47)

keeping the first two terms only. As a result one finds that

jekj ¼ ep 1þ
e? þ ep

� �
k2

3ep
l2 � 3l1 l� l1ð Þ
� �� �

(48)

Als kð Þ ¼ � 1

e0 eb þ ep

� �
þ

e? þ ep

� �
3e0 eb þ ep

� �2
l2 1� 3

l1 l� l1ð Þ
l2

� �
� g

 !
k2;

(49)

i.e., in this case

l2c ¼
3ge0 eb þ ep

� �2

e?þep

� �
1�3

l1 l�l1ð Þ
l2

� � : (50)

We see that at l1¼ l/2 Eq. (50) coincides with Eq. (19),

whereas at l1¼ 0, it provides lc, which is half of the previous

one. Figure 7 illustrates the dependencies of the phase transi-

tion temperature and of kc on l for all the cases (ChT cell,

bilayer cell and non-symmetrical trilayer) considered in the

preceding text. Note that in all three cases, the transition

temperature into the single domain state is the same.

III. LARGE SYSTEMS

We would now like to discuss systems with many layers.

The schematics of the two systems are given in Fig. 8. The

assumption about periodicity made in Refs. 19 and 20, i.e.,

about irrelevance of conditions at the boundaries of a very

large multilayer structure, can be questioned using simple

physical arguments. Let us consider the virtual loss of stabil-

ity of the paraelectric phase in a very large multilayer struc-

ture with respect to a single domain ferroelectric state

assuming the periodicity along the thickness of the structure.

The assumption of periodic boundary conditions is equiva-

lent to considering the ChT cell as a small system with short-

circuited electrodes. We have found out in the previous sec-

tion that the loss of stability of the paraelectric state to single

domain ferroelectric state occurs at

FIG. 7. (Color online) Comparison of (a) the numerical solutions for transi-

tion temperature for the bilayer cell (solid thick line), the non-symmetrical

cell with l/4, 3l/4 paraelectric layer partitioning (hollow squares) and the

ChT cell (hollow triangles); (b) the kc at the transition for the bilayer cell

(thick solid line), the asymmetrical cell (line starting at 3.7 nm along the

thickness axis), and the ChT cell (dashed line) for the BaTiO3—SrTiO3 sys-

tem. The values used for BaTiO3 fully strained on SrTiO3 in the calculations

are TC¼ 998 �C (computed using the constants given in Ref. 25, Curie

constant¼ 1.5� 105 �C, g¼ 6.2� 10�10 m3/F, e? ¼ 20, ep¼ 300 for SrTiO3

and, for the sake of convenience, is assumed to be constant over the entire

temperature range.

FIG. 8. (Color online) Schematic showing unit cells of the superstructure

consisting of (a) bilayers and (b) ChT cells.
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Als 0ð Þ ¼ �e�1
0 eb þ ep

� ��1
(51)

(compare with Eqs. (18) and (49)). Let us show that this

result is not necessarily correct. Whether Eq. (51) is correct

or not depends on whether the multilayer system as whole is

supplied by metallic electrodes and whether these electrodes

are short-circuited. Imagine that there are no such electrodes.

Then the condition dDz/dz¼ 0 inside the superstructure and

D¼ 0 beyond the multilayer give us the result that D¼ 0 at

every point of the multilayer (recall that we consider a possi-

ble single domain state, i.e., there are no dependencies along

the x and y axes). As a result for a homogeneously polarized

state

Ez ¼ �Pz= ebe0ð Þ; (52)

and from Eq. (1) it follows that

Aþ e�1
0 e�1

b

� �
Pz ¼ 0; (53)

meaning that the loss of stability of the paraelectric phase

with respect to a single domain state occurs at

Als ¼ �e�1
0 e�1

b ; (54)

which differs very substantially from Eq. (51). In other

words, the loss of stability of the paraelectric phase with

respect to appearance of a single domain ferrolectric state

depends on the conditions at the boundaries of the multi-

layer. Therefore the idea about an infinite multilayer cannot

be applied to this problem. Physically, this is quite natural

because both in this work and work of others,19,20 one con-

siders layers of infinite lateral sizes, i.e., the sizes of the

external electrodes or of a non-electroded external surface

are always larger than the full thickness of the multilayer

system. Experimentally, the ratio of the lateral sizes and the

thickness is never less than at least an order of magnitude.

Therefore, no point inside the multilayer system is “far

enough” from the surface. As to the transition into single do-

main state, we argue in Sec. IV that the case of complete ab-

sence of electrodes or any short circuiting is of a fairly

academic nature and the periodic boundary conditions are

acceptable almost irrespective of the presence or absence of

electrodes. This is not however necessarily so for the phase

transition into multidomain states.

To understand the basis of the latter statement, let us

consider a system of two bilayers (Fig. 9). One sees that the

conditions for screening of the stray electric field arising

when a domain structure is formed in the layer are different

for layers 1 and 2. For the layer 1, a stray field exists

mainly near one interface (ferroelectric-paraelectric inter-

face), whereas for the second layer, it exists near the two

interfaces. It is thus evident that the polarization profile at

the phase transition will be different in the two ferroelectric

layers. It is worthwhile considering this case in more detail

because the number of the ferroelectric-paraelectric interfa-

ces is still relatively small, and the treatment of this case can

be performed without too much algebra.

A. Two bilayers

The solutions for uk(z) we shall write in the form

uf1k (z)¼C1sin qz and uf 2k(z)¼C2sin q(z� 2l)þD2 cos q
(z� 2l) for the two ferroelectric layers and up1k(z)¼F1 sinh

q(z� l)þG1 cosh q(z� l) and up2k(z)¼F2 sinh q(z� 4 l) for

the two paraelectric layers. The short-circuited electrodes are

taken into account in the first and in the last formulas.

It is convenient to introduce here dimensionless

parameters:

a ¼ jekj=ep; n ¼ ep=e?: (55)

Note that the loss of stability with respect to homogeneous

polarization corresponds to a¼ 1 and the values of a of inter-

est are larger than unity. From the boundary conditions at

z¼ l, one finds

G1 ¼ C1 sin ql; F1 ¼ �C1

ffiffiffiffiffiffiffiffi
a=n

p
cos ql: (56)

Next, from the boundary conditions at z¼ 2l, we find

C2 ¼ C1 cos ql cosh kl�
ffiffiffiffiffiffiffiffi
n=a

p
sin ql sinh kl

� �
;

D2 ¼ C1 �
ffiffiffiffiffiffiffiffi
a=n

p
cos ql sinh klþ sin ql cosh kl

� � (57)

and from the conditions at z¼ 3l, two formulas for F2 are

F2 ¼ C1

ffiffiffiffiffiffiffiffi
n=a

p
sin2 qlþ

ffiffiffiffiffiffiffiffi
a=n

p
cos2 ql� sin 2ql coth kl

h i
(58)

and

F2 ¼ C1 2�1 sin 2ql tanh kl 1� a=nð Þ �
ffiffiffiffiffiffiffiffi
a=n

p
cos 2ql

h i
:

(59)

The equivalence of these formulas gives us the condition of

the existence of non-trivial solutions, which can be written

as a quadratic equation for tan ql

ffiffiffiffiffiffiffiffi
n=a

p
�

ffiffiffiffiffiffiffiffi
a=n

p� �
tan2 ql

� 1� a=nð Þ tanh klþ 2 coth kl½ � tan qlþ 2
ffiffiffiffiffiffiffiffi
a=n

p
¼ 0;

(60)

the solutions of which are

tan qlð Þ1¼
ffiffiffiffiffiffiffiffi
a=n

p
tanh kl (61a)

tan qlð Þ2¼
2 coth klffiffiffiffiffiffiffiffi

n=a
p

�
ffiffiffiffiffiffiffiffi
a=n

p : (61b)
FIG. 9. (Color online) Two bilayer cell system mentioned in Sec. III A.
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Note that Eq. (61a) coincides with Eq. (37) for a bilayer, but

before concluding that the phase transition temperature in

the two-bilayer is the same as in a single-bilayer, one has to

study the possible stability losses that follow from Eq. (61b)

to figure out if these stability losses correspond to lower tem-

peratures than those following from Eq. (61a). At n� 1,

there is an interval for values of a: 1< a< n, which is both

of interest (a> 1) and corresponds to the positive sign of the

lhs of Eq. (61b). Because q ¼ k
ffiffiffiffiffiffiffiffiffiffi
1=an

p
< k, the solutions of

Eq. (61b) are possible for kl> 1, and coth kl can be replaced

by unity. Equation (61b) then reads

ql ¼ 2
ffiffiffiffiffiffiffiffiffi
a=n;

p
(62)

which coincides with Eq. (26) discussed before. We have

seen there that it is related to the loss of stability of the para-

electric phase in the ChT cell, which occurs at lower temper-

atures than in the bilayer system. This means that the

solution given by Eq. (61b) is irrelevant to our studies. We

shall discuss the physical reason for this irrelevance in

the following text where we explain physically why

Eq. (61b) corresponds to a “later” loss of stability compared

to Eq. (61a).

It is worthwhile discussing the profile of the polarization

arising at the phase transition. From Eqs. (57) and (61a) one

sees that D2¼ 0 and

C2 ¼ C1 cos ql= cosh kl; (63)

i.e., the polarization in the first and second ferroelectric layer

is

Pz f 1 ¼ C1jekj cos qz cos kx; (64a)

Pz f 2 ¼
C1q cos ql

cosh kl
jekj cos q z�2lð Þ cos kx: (64b)

Note that the amplitude of the “polarization wave” is smaller

in the second ferroelectric layer than in the first one

(Eq. (38)), as we expected from the beginning, and becomes

exponentially small in the narrow domain regime. For the

paraelectric layers, we have

up1 ¼ �
C1 sin ql

sinh kl
sinh k z�2lð Þ; (65a)

up2 ¼ �C1

cos ql sin ql

cosh ql sinh kl
sinh k z�4lð Þ: (65b)

Note that although there is no electrode between the first

paraelectric and the second ferroelectric layer (z¼ 2l), the

potential at this interface is zero.

Now we would like to find the polarization profile that

corresponds to the second option given by Eq. (61b). We

shall compare the amplitude of the “polarization wave” in

the two ferroelectric layers. To this end, we should use Eq.

(57) together with Eq. (61b). For the same conditions of the

parameters that are necessary for existence of solution of

Eq. (61b) (a< n, kl> 1), we find for the polarization in the

second ferroelectric layer

Pzf 2 ¼ �C1q cos ql cosh kljekj cos q z� 2lð Þ � 2 a=nð Þ3=2
h i

:

(66)

We see that for this option the ferroelectric polarization in

the second layer is larger than in the first one (it is also in the

opposite direction). So it is quite natural that this latter

option is less profitable for the system and corresponds to a

loss of stability at a lower temperature.

B. Many bilayers

The calculations for a three-bilayer system are already

cumbersome. Instead of Eq. (60), one obtains a third-order

equation for tan ql with coefficients given by inconvenient

formulae. Although one of the three solutions is still given

by Eq. (61a), to analyze the stability loss corresponding to

two other possible families (in the case that the third order

equation has three real roots) seems to be beyond the present

work. Considering more bilayers presents an even more pro-

hibitive analysis. What we can easily show is that Eq. (61a)

applies to systems with any number of bilayers. It is tempt-

ing to conclude from this fact that the phase transition tem-

perature is the same for a short-circuited multilayer system

consisting of any number of bilayers. This seems physically

reasonable, but, unfortunately, we cannot show this mathe-

matically because to do so we are obliged to study loss of

stability with respect to solutions corresponding to all the

families of solutions and the number of the families seem to

increase concurrently with the number of ferroelectric layers

in the system. We have seen for the case of the two-bilayer

system that the second family cannot compete with the first

one corresponding to Eq. (61a). But we see no easy way to

show this for any number of the bilayers when the number of

the families could be equal or at least comparable with the

number of the bilayers. Thus we can only propose physical

arguments to elaborate on the earliest loss of stability. One

must note that the phase transition temperature in a single

bilayer system is higher than in what we called the ChT cell

with the same total thickness of the ferroelectric and the

paraelectric because the ferroelectric in the bilayer system is

in a “better position” for forming a multidomain system than

in the ChT one. This privilege of the first ferroelectric layer,

which is in contact with the electrode, is conserved in a sys-

tem with any number of the bilayers. It is therefore quite nat-

ural that the profile of the polarization amplitude of the

“polarization wave” appearing at the phase transition is

larger in the first layer than in other layers that have no direct

contact with an electrode. This is precisely what is given by

the solution of Eq. (61a) that we have seen for the case of a

two-bilayer system. We think that this property of solutions

such as Eq. (61a) is the reason that other solutions are irrele-

vant to the transition similar to the one given by Eq. (61b).

This is also supported by the results of our numerical simula-

tions as discussed in the following section.

Technically, to show that the option given by Eq. (61a)

exists, we first make a conjecture about the form of the solu-

tions that correspond to this option for a system with any

number of bilayers, and then we show that for this form the
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boundary conditions are satisfied if Eq. (61a) holds. The for-

mulation of the conjecture is based on the consideration of

three-and four-bilayer systems. With the assumption that

Eq. (61a) holds for three- and four-bilayer systems, the prob-

lem related to these systems is drastically simplified, and we

are able to satisfy the boundary conditions, rendering this

assumption valid. As a result we have conjectured that for

any number of bilayers, the solution is of the form

ufn ¼ C1

cosn�1 ql

coshn�1 kl
sin q z� 2 n� 1ð Þlð Þ (67)

for nth ferroelectric layer and

upn ¼ �C1

cosn�1 ql sin ql

coshn�1 kl sinh kl
sinh k z� 2nlð Þ (68)

for nth paraelectric layer.

Now we have to check whether Eqs. (61a), (67), and

(68) allow us to satisfy the boundary conditions at the two

interfaces of the nth ferroelectric layer. To check the bound-

ary conditions between the (n� 1)-th paraelectric layer layer

and the nth ferroelectric layer (z¼ 2 (n� 1) l), we first note

that

upn�1 ¼ �C1

cosn�2 ql sin ql

coshn�2 kl sinh kl
sinh k z� 2 n� 1ð Þlð Þ: (69)

Comparing Eqs. (67) and (68), we see that the continuity of

the potential is satisfied. The condition of continuity of the

normal component of the dielectric displacement reads

epkC1

sin ql

sinh kl
¼ aqC1

cos ql

cosh kl
(70)

and is satisfied if Eq. (61a) holds.

At the interface between the n-ferroelectric layer and the

n-th paraelectric layer (z¼ (2n� 1) l), the potential is non-

zero, but it is the same at the ferroelectric and at the para-

electric sides. The condition of continuity of the normal

component of the dielectric displacement now reads

aqC1 cos ql ¼ epkC1

sin ql

sinh kl
cosh kl (71)

and is once more satisfied if Eq. (61a) holds. Therefore, we

have proved that Eq. (61a) provides the condition of exis-

tence of non-trivial solutions given by Eqs. (67) and (68) for

a system consisting of any number of bilayers. Figure 10

presents dependence of the amplitude of the “polarization

wave” in ferroelectric and paraelectric layers appearing at

the loss of stability of the paraelectric phase computed using

Eqs. (67) and (68).

C. Two ChT cells

The system we consider in this subsection is presented

in Fig. 11. We can use its symmetry with respect to the mir-

ror plane at the middle of the central paraelectric layer to

find the possible solutions. Apart from antisymmetric solu-

tions of potential, which correspond to identical polarization

profiles in the two ChT cells, it is possible to have symmetric

solutions. It is evident that the condition of existence of

antisymmetric solutions is given by Eq. (15). Let us now find

the condition for existence of symmetrical solutions. For

the central paraelectric layer, such a solution can be only

of type up2¼G2 cosh kz and for the third layer, it is

up3¼F3 sinh k (z� 2l). For the second ferroelectric layer,

we shall take the solution in a general form: uf2¼C2 sin

qzþD2 cos qz, whereas for the first ferroelectric layer, it is

to be found using the symmetry. From the boundary condi-

tions at z¼ l/2 one finds that

C2 ¼ G2 sin ql=2 cosh kl=2�
ffiffiffiffiffiffiffiffi
n=a

p
sinh kl=2 cos ql=2

� �
(72)

and

D2 ¼ G2 cos ql=2 cosh kl=2þ
ffiffiffiffiffiffiffiffi
n=a

p
sin ql=2 sinh kl=2

� �
:

(73)

From the boundary conditions at z¼ 3l/2, we find

C2 ¼ �G3 sin q3l=2 sinh kl=2þ
ffiffiffiffiffiffiffiffi
n=a

p
cosh kl=2 cos q3l=2

� �
(74)

and

FIG. 10. (Color online) Polarization profile at the temperature of loss of sta-

bility of the paraelectric phase in the superstructure consisting of 4 bilayers

(rapidly decaying curve from left to right with large period) and 8 bilayers

(slowly decaying curve from left to right with small period) with 5 nm and

2.5 nm layer thickness, respectively. Note that the total thickness of the sys-

tem in both cases is the same and fixed at 40 nm. The ferroelectric layers are

BaTiO3 and the paraelectric ones are SrTiO3. Critical thickness for single

domain state stabilization is 2.2 nm. The 5 nm layer has a much more rap-

idly decaying polarization along the thickness. The values used for BaTiO3

in the calculations are TC¼ 998 �C (computed using the constants given in

Ref. 25, Curie constant¼ 1.5� 105 �C, g¼ 6.2� 10�10 m3/F, e? ¼ 20,

ep¼ 300 for SrTiO3 and for the sake of convenience is assumed to be con-

stant over the entire temperature range.

FIG. 11. (Color online) Two ChT cell system mentioned in Sec. III C.
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D2 ¼ �G3 cos q3l=2 sinh kl=2�
ffiffiffiffiffiffiffiffi
n=a

p
sin q3l=2 cosh kl=2

� �
:

(75)

Equating then the two formulae for C2 and D2, we obtain a

system of two equations for G2 and G3 and find the condition

of existence of non-trivial solutions of this system. The latter

turns out to be given by Eq. (61b), which we have already

discussed considering two bilayers.

One should note that the importance of this family of

solutions is, however, quite different. For large n, there is an

interval of l where the two families of the solutions appear

practically at the same temperature (see Fig. 12). Recall that

a symmetrical solution means that the vectors of the ferro-

electric polarizations are of opposite directions in the two

ferroelectric layers. In a real, not exactly equilibrium situa-

tion, loss of stability may occur with respect to solutions of

the two families, i.e., the profile of the polarization arising at

the phase transition can consist of any linear combination of

these solutions. Physically this is quite natural and corre-

sponds to the situation that at large values of l the domain

structures form practically independently in the two ferro-

electric layers.

D. Many ChT cells

The same method that we applied to many bilayers can

also be applied to a multilayer consisting of integer number

of ChT cells the schematic of which is already given in

Fig. 8(b). Here there are no “privileged” ferroelectric layers,

and it is natural to expect that the profile of the polarization

will be the same in all the ferroelectric (paraelectric) layers.

Starting from Eqs. (10a) and (10b), we can express the

expected solution for this case as

ufnk ¼ C sin q z� 4n� 3

2
l

� �
; (76a)

upnk ¼ C
sin ql=2

sinh kl=2
sinh k z� 4n� 1

2
l

� �
: (76b)

One can easily check that the both boundary conditions are

satisfied at both interfaces (z¼ 2 (n� 1) l and z¼ (2n� 1) l
of nth ferroelectric layer if Eq. (15) holds. The polarization

profile in the case of stability loss of the paraelectric phase to

a multidomain polar state (l¼ 5 nm and 8 nm) is given in

Fig. 13.

IV. DISCUSSION

We have considered two types of superstructures con-

sisting of either an arbitrary number of bilayers or what we

have called ChT cells. The two superstructures are different

only in the configuration of the layers neighboring the elec-

trodes. In the bilayer case, namely the first superstructure,

there is immediate contact between a ferroelectric layer and

the ideal metallic electrode while the other electrode is in

contact with a paraelectric layer. In the second case (second

superstructure), both layers contacting the electrodes are

paraelectric, having a thickness l/2. We have tried to calcu-

late the ferroelectric phase transition temperature and to

define the space distribution of ferroelectric polarization

appearing at the phase transition when the electrodes are

short-circuited. The method we have pursued is to study the

possible ways of stability loss of the nonpolar phase and to

identify the one that occurs first upon lowering the tempera-

ture. In this manner, one obtains both the phase transition

temperature and the profile of the space distribution of the

polarization just below the phase transition temperature.

The problem we attacked has proved to be too difficult

to be rigorously solved because it became clear that, in gen-

eral, in a large superstructure containing uniaxial ferroelec-

tric layers with polar axis perpendicular to the layer plane,

FIG. 12. Comparison of the transition temperatures (in �C) of the two-

bilayer cell (solid line), the two-ChT cell (hollow squares) and the secondary

solution (hollow triangles) of the two-bilayer and the two-ChT cell as a

function of layer thickness for ep¼ 100 (a) and (b) ep¼ 500. The material

parameter values used in the calculations are TC¼ 998 �C, Curie

constant¼ 1.5� 105 �C, g¼ 6.2� 10�10 m3/F, e? ¼ 50.

FIG. 13. (Color online) Polarization wave profile at the temperature of

loss of stability of the paraelectric phase in the superstructure consisting of

3 ChT cells, each layer having 8 nm thickness (curve with large period), and

4 ChT cells with each layer being 5 nm thick (curve with small period). Criti-

cal thickness for single domain state stabilization is 4.4 nm. The values used

for BaTiO3 in the calculations are TC¼ 998 �C, Curie constant¼ 1.5� 105 �C,

g¼ 6.2� 10�10 m3/F, and e? ¼ 20, ep¼ 300 for SrTiO3 and for the sake of

convenience is assumed to be constant over the entire temperature range.
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the ferroelectric polarization appearing at the phase transi-

tion is not periodic along the superstructure if the phase tran-

sition is into a multidomain state. This makes the number of

different types of the polarization profiles with respect to

which the nonpolar phase loses its stability comparable with

the number of unit cells in a given superstructure. We were

able to perform an exhaustive analysis of the loss of stability

of the nonpolar phase only in the two smallest “super-

structures” consisting of two bilayers or two ChT cells. We

found two families of stability loss for every “small super-

structure.” A comparison of these families of solutions is

presented in Fig. 12. We have also shown that one of the

solution families for both systems, specifically, those that

correspond to the phase transitions in two-bilayer or in two-

ChT cell systems is present in systems of any number of

bilayers or ChT cells. We cannot prove mathematically that

these families of the stability loss correspond to the phase

transitions in very large superstructures as well, but we find

this feasible physically and we assume this as a hypothesis.

Therefore, when we mention “phase transition” in a super-

structure we mean, strictly speaking, a hypothetical phase

transition, which is also supported by our numerical simula-

tions (see Fig. 14).

We found that if the dielectric constant of the paraelec-

tric layer, ep, is larger than e?, there is an interval of ls for

which the ferroelectric phase transition is into a single do-

main state. This interval goes from formally zero l (physi-

cally, of course, not less than unit cell distance) to some l
that can be considerably larger than the unit cell size if ep is

sufficiently large. We focused our attention on this case,

where our continuous medium approach is well justified.

The maximum l that corresponds to the single domain re-

gime we call lc. Importantly, the value of lc for the second

superstructure (lc2) is two times that for the first one

(lc2¼ 2lc1). The physical reason for this is that in the first

superstructure consisting of bilayers, the ferroelectric layer

in immediate contact with the electrode is in a favorable

position for formation of the domain structure: A part of the

stray electric field associated with this structure is removed

by the electrode. This is why for l> lc1, the phase transition

temperature in the first superstucture is higher than in the

second one with the same material parameters and period of

the superstructure. The difference in the phase transition

temperatures can be considerable. For the superstructure

with the parameters of BaTiO3 � SrTiO3 system, this differ-

ence can be nearly 100 �C (see Fig. 7). Also note that the

phase transition temperature in either superstructure does not

depend on the number of unit cells comprising the super-

structure and is the same as the phase transition temperature

for a single bilayer or a single ChT cell.

Spectacularly, the polarization profile in the first super-

structure (consisting of bilayers) is very different from that

of the second superstructure (consisting of ChT cells) as

shown in Figs. 10 and 13. We see that it is incorrect to

assume periodicity along the out-of-plane direction of the

superstructure if this is the superstructure consisting of what

we call the bilayer cells. For the second superstructure, this

is possible, but this superstructure is very specific because it

is symmetric. The cause of the periodic nature of the profile

is this symmetry not the large number of the unit cells in the

superstructure. The first superstructure is not symmetric and

this is also the case for any real superstructure. In Sec. II, we

considered, as an example, a nonsymmetrical trilayer where

the thickness of a paraelectric layer neighboring one of the

electrodes is less than l/2 and the other paraelectric layer

neighboring the opposite electrode is thicker than l/2 with

the total thickness of these layers being l. We have seen that

the maximum value of l corresponding to the phase transition

into a single domain structure (lcn) falls between lc1 and lc2.

It proved to be algebraically too laborious to consider even a

structure of two nonsymmetrical trilayers not to mention

larger structures. It is of little doubt, however, that a super-

structure the paraelectric layers of which contacting the elec-

trodes with thickness different from l/2 behaves qualitatively

similarly to the first superstructure, i.e., the profile of the

polarization arising at the phase transition is not periodic

along the superstructure. To be fair, we should also mention

that at sufficiently large l the lack of symmetry becomes

FIG. 14. (Color online) Polarization maps obtained in our numerical simulations 5 �C below the phase transition for the BaTiO3-SrTiO3 system strained on a

thick electroded SrTiO3 substrate consisting of (a) 8 ChT cells and (b) 8 bilayers with each system having 80 nm total thickness. The system in (a) has a phase

transition temperature around 300 �C and the one in (b) 440 �C, which agrees well with analytical results. The perpendicular colorbar scales are for normalized

polarization. The values used for BaTiO3 in the calculations are TC¼ 998 �C, Curie Constant¼ 1.5 � 105 �C, g¼ 6.2� 10�10 m3/F, e? ¼ 20, ep¼ 300 for

SrTiO3 and for the sake of convenience is assumed to be constant over the entire temperature range.
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unimportant and the phase transition in a nonsymmetrical tri-

layer is quite similar to that in the symmetrical ChT cell.

This is quite natural and physically means that, at large l, for-

mation of the domain structure in the ferroelectric layers pro-

ceeds similarly to what occurs in a ferroelectric layer in an

infinite paraelectric medium. Clearly, the same phenomenon

is expected in superstructures with large ls where the neigh-

boring ferroelectric layers “do not feel each other” because

intermediate paraelectric layers are too thick. Everything

that we are discussing in this paper is of some real interest

for superstructures with small ls. Here we mean the ls that

are not very different from lc for a given superstructure,

which has to be calculated, of course, with a proper account

of all its specific features. These features include the non-

electrostatic effects at the interfaces and the configuration of

the near electrode region. The latter is what is emphasized in

this paper.

We should emphasize that the focus of our analysis in

the preceding text is on multidomain phase transitions. For

single domain states, however, the situation is quite different.

As an example, consider a hypothetical single domain transi-

tion in a system with real electrodes. A real electrode can be

modeled as an ideal metallic one with a dielectric “dead

layer” at its surface (see, e.g., Ref. 24). It is easy to show

that these parameters of the electrode do not influence the

phase transition temperature and its other characteristics.

Indeed, consider the superstructure presented in Fig. 15.

Because the electric displacement is the same through the

superstructure, one can see that the electric field is the same

(Ef) in all the ferroelectric layers and it is also the same (Ep)

in all the paraelectric ones. Therefore we have

� jef jEf ¼ epEp ¼ eeEd: (77)

The condition of the short-circuiting reads:

Edd þ Nlf Ef þ NlpEp ¼ 0: (78)

This system of three linear equations has non-trivial solu-

tions (point of the stabilitity loss of the paraelectric phase) if

ef ¼ �
lf ep

lp 1þ dep

Nee

� � ’ lf ep

lp
: (79)

For sufficiently large N, the last approximate equality is

almost exact even for very poor electrodes, i.e., those with

large d and small ee. Physically, this means that even the

presence or absence of the electrodes is not important for the

phase transition into a single domain state.

But to define conditions for a single domain transition

and to find the temperature and other characteristics of a

phase transition into a multidomain state, one has to take

into account the parameters of the electrodes as our paper

convincingly shows. This is not, unfortunately, an easy task

in realistic cases. It is also natural to expect that the differ-

ence between the first and second superstructures will be less

dramatic than we have found in this paper if these super-

structures are supplied with real electrodes. All in all, at the

moment, we do not propose to carry our work further and

take into account the real nature of the electrodes as we think

that this question deserves a separate study.

V. CONCLUSIONS

We considered the phase transition in superstructures

consisting of ferroelectric-paraelectric units having equal

layer thicknesses and the case where the polar axis is perpen-

dicular to the film plane. Our aim was to find the phase tran-

sition temperature and the profile of the polarization

appearing at the transition. To do so, we used the phenome-

nological Landau—Ginzburg–Devonshire theory together

with the equations of electrostatics. The effects of non-

electrostatic boundary conditions have been neglected. The

approach was general but to illustrate the results we referred

to the BaTiO3–SrTiO3 system. The ferroelectric phase tran-

sition in the superstructures is known to be into a multido-

main state if the thickness of the layers is larger than a

certain (“critical”) thickness. For such transitions, we

showed that the transition temperature and domain structures

appearing at the transition are very sensitive to the nature of

the near-electrode regions. Specifically, whether electrodes

are in contact with the ferroelectric layers or not has a promi-

nent impact on these characteristics as well as on the value

of the critical thickness. Moreover, the typical situation

proved to be that the amplitude of the appearing polarization

“waves” in the plane of a given layer is a function of the

layer position with respect to the electrodes. This is irrespec-

tive of the number of the units in the superstructure and,

therefore, the usual assumption about periodicity in super-

structures with sufficiently large number of units is not justi-

fied. The periodicity is possible in a special case only when

the near-electrode layers are paraelectric with half layer

thickness. This is once again valid irrespective of the number

of the units and is connected with a symmetry that the whole

structure has in this case. There are many types of inhomoge-

neous polarization distributions that should in principle be

considered as candidates for the polarization distribution

appearing at the phase transition. It proves unfeasible to find

all these distributions even for systems with a small number

of units, not to mention the general case. We were, however,

able to find a type of polarization distribution that should be

considered as the strongest candidate for the polarization at

the transition if one of the electrodes is in direct contact

FIG. 15. (Color online) Schematic of a superstructure with real electrodes

(denoted by the presence of dead layers at the oxide-electrode interfaces).

The electric field in the paraelectric (EP) and in the ferroelectric (EF) are in

opposite directions to satisfy D¼ constant in the system.
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with the ferroelectric layer and the number of repeating units

is arbitrary. The same is possible for the symmetrical super-

structure mentioned in the preceding text. Using physical

arguments, we have put forward a hypothesis that exactly

these distributions appear at the phase transition in the re-

spective superstructures. Our numerical simulations have

supported this hypothesis. Note that the inherent inhomoge-

neity along the superstructure of the domain structures

appearing at the phase transition should result in consider-

able smearing of the phase transition anomalies observed for

multidomain transitions. This smearing is not present and the

structure of the near electrode region is not felt for the single

domain transition expected for thicknesses lower than the

critical one. It should be recalled, however, that the value of

the critical thickness does depend on the structure of the near

electrode region.
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