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ABSTRACT 
 

The integration of catalyst metals into the graphene-based composites can be a new way 

to ensure thermal and electronic conductivities of the catalyst support materials in polymer 

electrolyte membrane fuel cells. In this work, graphene nanosheets were synthesized via a mild 

and safer chemical route including three major steps: graphite oxidation, ultrasonic treatment and 

chemical reduction. Then, polypyrrole was coated on graphene nanosheets by in-situ 

polymerization to fabricate polypyrrole/graphene nanosheet-based nanocomposites as the 

catalyst supports. Pt nanoparticles were uniformly dispersed on the surface of nanocomposites by 

sonication technique.  

 

INTRODUCTION 

 

Polymer nanocomposites incorporating carbon black, carbon nanotubes, and carbon 

nanofibers have been utilized for improved mechanical, thermal, electrical and gas barrier 

properties of polymers especially in the field of energy storage and electronics [1]. Recently, 

graphene sheets are promising materials to be used as nanofillers in the polymer matrices due to 

their high electrical conductivity, excellent mechanical strength, high surface area and high 

chemical stability [2]. Graphene is a single flat monolayer of sp
2
-carbon atoms in 2D crystal 

structure. With the proper surface modifications, single graphene sheets can be separated from 

the graphite material and the layer-to-layer distance can be extended [3]. Chemical exfoliation is 

one of the extensively used methods to break van der Waals forces between graphene sheets in 

graphite and to receive monolayer graphene sheet. 

In fuel cells, the catalyst layer must be very effective at breaking molecules into protons 

and electrons have high surface area, adequate porosity, high electronic conductivity, and it 

should be chemically and mechanically stable [4]. Catalyst has a great effect on both the cost and 

durability of polymer electrolyte membrane fuel cells (PEMFCs). In PEMFCs, platinum (Pt) can 

be considered as the best electrocatalyst in acidic media since it serves the lowest overpotentials 

and the highest activity [5]. Conducting polymers, especially polypyrrole (PPy), are widely 

preferred for fuel cell operations because of good electronic and proton conductivity, and 

dispensability [6]. PPy-modification can increase the electrochemical surface area and enhance 

the electrocatalysis ability of Pt/carbon catalyst [7]. 

In present work, graphene nanosheets as nanofillers were reinforced in polypyrrole by in 

situ polymerization to be used as the catalyst support material.  In these nanocomposites, 

graphene sheets act as electron acceptors while PPy serves as an electron donor. Graphene 

nanosheets were exfoliated from graphite flakes in large amounts by applying a mild and safer 
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method. The distribution and the size of Pt nanoparticles on the surface of composites were 

investigated to understand the importance of deposition technique.  

EXPERIMENT 

 

Chemical exfoliation of graphene nanosheets 

 

 Graphene nanosheets were produced by a safer and mild chemical route consists of 

oxidation, ultrasonic treatment and chemical reduction in large quantities [8]. Potassium 

permanganate (KMnO4) is mostly used as an oxidizing agent in oxidation process but this 

chemical is very severe and leads to explosions when it is used together with H2SO4.  Hence, 

potassium dichromate (K2Cr2O7) was used as a milder oxidant in order to reduce the risks. In 

graphite oxidation, graphite flakes (1 g) was added into chromic acid prepared by using 

potassium dichromate, sulfuric acid and distilled water and then acetic anhydride (1 g) was 

poured dropwise into the mixture and the mixture was stirred at 45 
o
C for 10 days. The amounts 

of K2Cr2O7 and H2SO4 were adjusted in the weight ratio 2.1:55. Filtration and neutralization of 

samples were conducted by using 0.1 M NaOH and distilled water until washings were 

neutralized. After oxidation process, ultrasonic treatment was performed for the homogenous 

dispersion of graphite oxide (GO) sheets. At last, sonicated GO sheets were chemically reduced 

through refluxing with hydroquinone in water to produce graphene nanosheets. 

 

Synthesis of PPy/graphene nanosheet-based nanocomposites 

 

 PPy was coated on graphene nanosheets by in situ polymerization of pyrrole (Py) using 

FeCl3 as the oxidant in the mixture of H2O and ethanol in 1:1 (v/v) at room temperature for 24 hr 

[9]. The Fe
3+

/Py molar ratio was approximately 2.4 [10]. The precipitated sample was filtered 

and rinsed several times by ethanol and distilled water to remove excess Py, catalyst and side 

products. The black powder was dried overnight in a vacuum oven at 60
◦
C. The feeding mass 

ratio of Py and graphene nanosheets was adjusted as 1:1. 

 

Pt nanoparticle deposition on nanocomposites 

 

Pt deposition on the surface of composites was conducted by applying sonication 

technique. At first, graphene nanosheets were exposed to ultrasonic vibration for the 

homogeneous dispersion of sheets, and 8 % H2PtCl6 solution was added into mixture, and then 1 

M NaBH4 as a reducing agent was poured into mixture, respectively. The deposition time was 

adjusted to 2 hr. 

All samples were characterized by Scanning Electron Microscopy (SEM), X-Ray 

Diffraction (XRD), Thermal Gravimetric Analyzer (TGA), Atomic Force Microscope (AFM), 

Raman spectroscopy and surface area analyzer. The electrical conductivities of pellet electrodes 

were measured by a conventional four-probe method at room temperature. 
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DISCUSSION  

 

Graphene nanosheets 

 

Pristine graphite contained smooth and sharp layers as shown in Figure 1 a. The 

oxidation process led to the formation of expanded and ripple structure as shown in Figure 1 b. 

During the oxidation, acetic anhydride diffused into layers and layers started to extend.   

 

 
Figure 1. SEM images of (a) graphite flakes and (b) partially oxidized GO sheets 

 

The XRD pattern of pristine graphite had a very sharp and high intense 002 peak but the 

intensity of this peak decreased comparably due to the destruction of structure (Figure 2 a and 2 

b). Furthermore, the change of crystal structure can be estimated by using XRD data by applying 

Debye Scherrer equations [11]:  

  

           (1) 

           (2)  

 

(La : stacking height, β : full width half maxima (FWHM), n: average number of graphene 

layers, d002 : interlayer spacing). Average number of graphene layers for pristine graphite and 

GO sheets were estimated as 86 and 21, respectively. This also revealed how oxidation process 

destruct the graphitic structure.   

    
Figure 2. XRD patterns of (a) pristine graphite and (b) partially oxidized GO sheets 

 

(a) (b) 

002002 cos89.0 θβλ=aL
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After ultrasonic treatment of GO sheets, samples were reduced by using hydroquinone in 

order to receive graphene nanosheets, Figure 2. There are several attempts in literature to 

separate graphene nanosheets from graphite. Herein, there are two distinct differences which are 

a milder oxidant and a simplified and cost effective procedure. Graphene nanosheets can be 

produced in large quantities to be used as the nanofillers in polymer composites.   

 

 
Figure 2. SEM image of graphene nanosheets after chemical reduction 

 

PPy/Graphene nanosheet-based nanocomposites 

 

Py as a monomer diffused into graphene nanosheets during in situ polymerization and 

polymerized on the surface of graphene nanosheets layer by layer. Figure 3 depicted the 

successful layer by layer coating and sphere-like morphology of PPy particles. In this composite, 

graphene sheets act as electron acceptors while PPy serves as an electron donor. 

 

 
Figure 3. SEM image of PPy/graphene nanosheet-based nanocomposite 

 

Raman spectroscopy is an efficient technique to estimate the layer numbers and observe 

the change of crystal structure. All measurements were conducted using a 514 nm argon ion 

laser. There are three distinct peaks in Raman spectrum of graphene nanosheets which are the D 

band around 1364 cm
-1

, the G band around 1582 cm
-1 

and the 2D band around 2709 cm
-1

, Figure 

4. G band intensity is directly proportional to crystallite size, La [12]. After coating PPy on the 
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surface of graphene nanosheets, G band was broadened and its intensity was increased. This 

showed that crystallite size of structure was increased due to coating.  

 

 
Figure 4. Raman spectra of graphene nanosheets and PPy/graphene nanosheets 

 

The electrical conductivity of samples in the pellet form was measured by a conventional 

four-probe method. Conductivity of pristine PPy was relatively poor because of weak 

compactness and weak orientation of PPy particles [13] but conductivity was enhanced by using 

graphene sheets as filler in polymer matrix (Table I).  

 

Table I. Electrical conductivities of PPy, graphene nanosheets and PPy/graphene nanosheet 

composites 

 Electrodes Conductivity (S/cm) 

Pristine PPy  0.00076 

Graphene nanosheets 1.5 

PPy/graphene nanosheet composites 0.13 

 

High surface area has a significant influence on the dispersion and distribution of 

catalytic metals on catalyst supports. Nitrogen adsorption isotherms exhibited that BET surface 

area of reduced GO sheets was 507 m
2
/g and after coating BET surface area decreased down to 

290 m
2
/g.  

 

Pt/PPy/Graphene nanosheet composites 

 

The particle size of Pt might be correlated with the degree oxidation of graphite which 

means that the efficient deposition of Pt nanoparticles is due to the strong interaction between the 

metal salt precursor and the functional group of GO sheets [14]. Herein, functionalized graphene 

nanosheets after 10 days of oxidation acting as the metal-anchoring sites provide metal nuclei 

formation and electrocatalysts deposition. During Pt deposition on graphene nanosheets, some Pt 

particles were aggregrated and some of them were dispersed uniformly on the surface. Figure 5 a 

exhibited that Pt particles were aggregated during deposition of Pt on the surface of graphene 

nanosheets. However, uniform dispersion of Pt particles was observed when graphene sheets 

were coated by PPy, Figure 5 b. This indicated a strong interaction between support and catalyst 

particles. Size distribution of Pt particles on the surface of the nanocomposites changed from 20 

nm to 30 nm. Furthermore, sonication process provided the best exfoliation and dispersion of 

both Pt nanoparticles and graphene nanosheets.  

D 

G 

2D 
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Figure 5. SEM images of (a) Pt/graphene nanosheets via inlens detector and (b) 

Pt/PPy/graphene nanosheets via secondary electron detector 

CONCLUSIONS  

Graphene nanosheets were exfoliated from graphite by applying a mild and cost effective 

chemical route including oxidation, sonication and reduction.  Graphene nanosheets based 

nanocomposites were prepared by a layer-by-layer PPy coating by in situ polymerization of Py 

monomer. The incorporation of graphene sheets in polymer matrix provided uniform dispersion 

of Pt nanoparticles on the surface with the help of sonication process. The support material has 

great importance to achieve high catalytic activity of fuel cell catalyst by lowering the catalyst 

deposition. Therefore, PPy/Graphene nanosheet-based nanocomposites having enhanced thermal 

stability, and electrical conductivity, and high surface can be a good alternative to carbon black 

and utilized as a catalyst support for Pt in PEMFCs. 
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