
The Bounded Memory Folk Theorem∗

Mehmet Barlo

Sabancı University

Guilherme Carmona

University of Cambridge

Hamid Sabourian

University of Cambridge

June, 2011

Abstract

We show that the Folk Theorem holds for n-player discounted repeated game with

bounded-memory pure strategies. Our result requires each player’s payoff to be strictly

above the pure minmax payoff but requires neither time-dependent strategies, nor pub-

lic randomization, nor communication. The type of strategies we employ to establish

our result turn out to have new features that may be important in understanding

repeated interactions.
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1 Introduction

The extensive multiplicity of subgame perfect equilibrium (SPE) payoffs in repeated games,

described by Folk Theorems of Fudenberg and Maskin (1986), is due to players’ ability to

condition their behavior arbitrarily on the past. Therefore, it is reasonable to expect, as

suggested by Aumann (1981), that this multiplicity may be reduced by restricting players

to use limited memory strategies.

In Barlo, Carmona, and Sabourian (2009) we show that this intuition, however, does not

hold when the set of actions in the stage game of the repeated game is sufficiently “large”

so that each payoff profile is not isolated. In such games we prove that the Folk Theorem

with SPE as the solution concept (henceforth, we shall refer to such Folk Theorems by FT)

continues to hold with one period memory strategies where at each date players’ behavior

depend only on the outcome of the game in the previous period. The large action space

assumption is critical in establishing this results because it allows players to encode the

entire history of the past into the previous period’s actions.1

In the same study we show that when the action spaces are not “large”, it is possible

that no efficient payoff vector can be supported by a one period memory SPE strategy

profile even if the discount factor is near one, validating the argument of Aumann (1981)

with one period memory strategies and finite actions. Thence, the question is whether or not

the multiplicity of equilibrium payoffs prevails with finite actions and limited memory (not

necessarily restricted to be one period). More specifically, does the FT depend critically on

being able to recall the history of play all the way back to the beginning?

In the current paper, we prove that the FT for discounted repeated game continues to hold

with time-independent bounded memory pure strategies, even when the action sets are finite.

Specifically we show that, when players are sufficiently patient, any strictly individually

rational payoff vector can be approximately sustained by a pure subgame perfect equilibrium

1 More formally, with rich action sets any equilibrium strategy vector in which each player strictly prefers

not to deviate at every history, can be perturbed so that each player chooses different actions at different

histories. With such distinct plays of the game, at each date the players can use the outcome of the previous

period to coordinate their actions appropriately. Thus, the original equilibrium can be approximated by

another that has one period recall.
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strategy profile that at each stage recalls the outcomes of finite number of previous periods.2

Moreover, we show that the bound on the number of periods that the player need to recall

to establish the result is uniform in terms of the set of individually rational payoffs, and

depends only on the desired degree of payoff approximation.

One issue in repeated game literature concerns the multiplicity of equilibrium payoffs.

Another is about understanding the precise behavior that satisfy intertemporal incentives

in repeated contexts. Our result is important not only because it shows that the FT does

not depend on being able to recall the history of play all the way back to the beginning,

but also because the kind of strategies/behaviour needed to ensure intertemporal incentives

with limited memory turn out to have new features that may be significant in understanding

repeated interactions.

There are many reasons why one might be interested in results with limited memory.

First, there is the bounded rationality aspect in which players can only recall a finite amount

of public information concerning the past. The results from psychological literature also in-

dicate that people do not act on the entire history they observe and pay special attention to

recent history. Second, in many institutional set-ups it is the convention to remove all the

records after a certain number of years. Third, information that is not formally recorded is

often conveyed by word of mouth or by short-lived players representing overlapping gener-

ations. Fourth, having access to past information can be costly and in equilibrium players

may choose to recall a finite past. Finally, memory size may have implications for robust-

ness of equilibria. For example, Mailath and Morris (2002) and Mailath and Morris (2006)

show that private monitoring perturbations of public monitoring equilibria are robust if the

equilibria have bounded recall.

To appreciate the difficulties and the novel behavioral features needed in establishing a FT

with bounded memory, consider a typical “simple” strategy SPE profile used in proving the

standard FT in n-player repeated game. Such a strategy profile is described by n+1 infinite

paths π(0), π(1), . . . , π(n) consisting of the equilibrium path of play π(0) and a punishment path

π(i) for each player i. The strategies are such that game begins with π(0) until some player

2We obtain the result without introducing any randomization or any external communication device that

allows the players to communicate.
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deviates singly from π(0). At any stage, a single deviation by a player from any ongoing path

triggers the punishment path for that player; otherwise the game continues with the ongoing

path.

In the first instance, it may seem that the problem of implementing such a simple profile

with bounded memory is trivial if the memory size M is sufficiently large. In particular, if

each of the n + 1 paths has a finite cycle then each can be distinguished and implemented

as long as M is sufficiently large. Even when the paths are not finite one can approximate

the payoff corresponding to each path by a cyclical path. Therefore finite memory should

be sufficient to implement the paths approximately. But this is not enough. Strategies

must also be such that after observing the outcomes of the previous M periods the following

two critical properties hold: First, single player deviations can be detected and second, the

identity of the deviator is revealed. If either of the above two properties were not to hold,

there may be incentives for some player to deviate and manipulate the path of future play.3

With 1-period memory it is easy to see how such simple strategies may violate the above

properties. For example consider any two action profiles a and b respectively belonging to

two paths π(i) and π(j), for some i and j. Then the first property is violated if for some

player k, ak 6= bk and a−k = b−k. This is because when (bk, a−k) = b is observed it is not

clear if k has just deviated from π(i) and the punishment for k needs to be triggered or if the

path π(j) is being followed and no deviation has occurred. Similarly, the second property is

violated if, for a pair of players k and l, al 6= bl, ak 6= bk and a−l,k = b−l,k. This is because

in this case when (bk, al, a−k,l) = (bk, al, b−k,l) is observed, it is not clear which of the two

players k or l has deviated.

Does increasing the memory size help with ensuring that the above two properties hold?

The next two examples show that these difficulties cannot be solved so easily even with large,

but finite, memory.

Example 1: Consider a repeated Prisoners’ Dilemma in which at every date each player

can either cooperate C or defect D. Suppose that the players are sufficiently patient and

we want to implement a cycle path π(0) = {πt}∞t=1 consisting of playing ((C, D), (D, C))

3In Barlo, Carmona, and Sabourian (2009) we refer to simple strategies that satisfy the above two

properties as “confusion-proof”.
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repeatedly. Assume that such a path yields for each player an average payoff strictly higher

than the minmax payoff generated from playing (D, D).4 The simple strategy that plays

π(0) on the equilibrium path and plays (D, D) forever for any history inconsistent with the

equilibrium path, is subgame perfect with unbounded memory. However, this strategy is

not subgame perfect if players can remember at most an arbitrary but finite number M of

past periods. To see this, consider any history with its last M entries (henceforth called

the M -tail) equal to (a1, π2, . . . , πM), for any a1 6= π1. Then the simple strategy prescribes

playing D for both players forever in the continuation game. But if πM = (D, C) then player

1 has the incentive to deviate. This is because if player 1 plays C instead of D at this

history, the play returns to the equilibrium path in the next period, as (π2, . . . , πM , πM+1)

would be recalled. In the case when πM = (C, D), by an analogous reasoning, player 2 has

an incentive to deviate.

One way to overcome this difficulty may be to allow the play to continue along the equilib-

rium path even at some histories that are inconsistent with the equilibrium path. However,

this alone is not sufficient. For example, consider a strategy profile that is otherwise identical

to the above simple strategy profile except that it plays πM+1 at any history whose M -tail

equals (a1, π2, . . . , πM) for any a1. In this case, if πM = (D, C) then player 2 will find it prof-

itable to deviate from D to C at any history with its M -tail equal to (a2, a1, π2, . . . , πM−1),

for any a1 6= π1 and any a2. By doing so, he produces a history with its M -tail equal to

(a1, π2, . . . , πM) and brings the play back to the equilibrium path.5 Thus, if we continue to

change the strategy by allowing the play to return to the equilibrium path at these prob-

lematic histories, an inductive argument would imply that the play must be the equilibrium

path after any possible history, a requirement clearly incompatible with subgame perfection.

The above example shows that increasing the memory size by itself does not guarantee

that the players can identify if there has been a deviation. The next example shows that the

problem of detecting the identify of the deviator can also not be easily resolved by having

large but finite memory.

4Barlo and Carmona (2007), a predecessor to the current paper, consider the repeated Prisoners’ Dilemma

with bounded memory. Example 1 is from this paper, which in turn attributes it to an anonymous referee.
5If πM = (C,D), player 1 has an incentive to deviate when (a2, a1, π2, . . . , πM−1) is recalled.
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Example 2: In this example there are three players, each player i = 1, 2, 3 has three

actions αi, βi and γi in the stage game and the players discount the future by an arbitrarily

small amount. Let α = (α1, α2, α3) and suppose that the stage payoff ui for each i is such that

the action profile that minmaxes i is mi = (βi, α−i). Also, suppose that, for each i = 1, 2, 3,

mi is a Nash equilibrium of the stage game and ui(m
i) < ui(m

j) for all j = 0, . . . , 3, j 6= i,

where m0 = (γ1, γ2, γ3).
6 Then with no memory restriction the simple strategy profile defined

by an equilibrium path π(0) = {m0, m0, . . .} and a punishment path π(i) = {mi, mi, . . .} for

each i = 1, 2, 3, implements m0 as a SPE.

Such simple strategy profile has the two features that when a deviator is identified the

punishment path for that player is implemented and that after any history the continuation

path corresponds to one of the four paths π(0), . . . , π(3). With finite memory, irrespective

of how large the memory is, implementing m0 as a SPE with strategies that have these

two features is no longer feasible. To see this fix the memory to be M and any strategy

profile f with these features. By the second feature, at any history with its M -tail equal to

(α, α, . . . α) the continuation strategy prescribes playing a path π(j), for some j = 0, . . . , 3.

Consider any player i 6= j. Since f must play m0 initially, by the first feature, if i deviates

at date 1 by playing ai 6= m0
i then f induces mi at date 2. Also, if player i deviates again

from mi at date 2 by playing αi instead of mi
i = βi, α will be observed and f would prescribe

playing mi again. Further such deviations by i induces α again and thus, by induction, f

also specifies playing mi after a history consisting of (ai, m
0
−i) followed by α played (M − 1)

times. But then at such a history player i can profitably deviate by playing αi and inducing

a history consisting of M consecutive α’s. This is because his average continuation payoff

from the deviation would be almost ui(m
j), whereas by not deviating he obtains ui(m

i).

The problem in the above example is that α could be the result of single deviation by 1

from m1, 2 from m2 or 3 from m3. Therefore, the history consisting of α played M times

can be induced by any player through a sequence of deviations and cannot be attributed to

deviations by any particular player. Hence, given that ui(m
i) < ui(m

j) for all j = 0, . . . , 3,

j 6= i, there must be some profitable opportunities for some player.

6It is easy to construct an example with payoffs satisfying these properties.
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The problems of detecting the latest deviation and the identity of the deviator clearly do

not arise with unbounded memory because, for any history, one can use induction starting

from the first period of the history to find the latest deviation. With bounded memory, such

inductive reasoning, by definition, is not feasible. Therefore, to deal with these problems

with limited memory one needs to ensure that each of the paths that the candidate strategy

profile prescribes at each history are sufficiently distinct. This can be done if each action

profile in each path is distinct from those in other paths by at least three components (e.g.

Sabourian (1998)).7 In fact, the richness assumption in Barlo, Carmona, and Sabourian

(2009) allows one to prove a Folk Theorem with bounded memory precisely because with

rich action spaces, one can construct such paths at the cost of perturbing all the payoffs by a

small amount. With finite action spaces, such an approach to making each path sufficiently

distinct is clearly not possible.

Nevertheless, in this paper we show that the objective of making each paths sufficiently

distinct, so that deviations and identity of deviators can be detected, can be achieved by

ensuring that each path contains specific sequences of actions, henceforth referred to as signal

sequences. Each of these signal sequences is carefully designed and appears infinitely often

along its respective path so that once any of them is observed the paths or deviations are

identified and the players know how to play the continuation game without the need to know

the entire past history. Effectively, signal sequences can be thought of as a set of rituals that

have to be played every so often so that the players can coordinate their future play in an

appropriate way to preserve the incentives (punishment or reward).

Introduction of such signal sequences, however, generates a new problem: we need to

ensure that it is in the interest of the players to play these sequences, i.e. the strategies with

such signals must still constitute a SPE. This makes the construction of signal sequences

and punishment paths needed to induce them rather intricate and complicated (particularly

for games with more than 2 players). Nevertheless, we show that this is a feasible task and,

thereby, demonstrate that the FT remains valid with bounded memory.

Independently and at the same time Mailath and Olszewski (2009) have considered the

7 Assuming such distinctness, Sabourian (1998) provides a characterization for the set of SPE outcomes

of repeated games for the case of no discounting and finite number of pure actions.
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problem of establishing the FT with bounded memory. Their result is however a special case

of ours. Specifically, they show that the FT holds with time-dependent bounded memory in

games with more than two players. Our result is more general than theirs because we do

not require players to condition their strategies on calendar time and because our FT also

holds for two player.8 The former is important because calendar time is unbounded and one

of the reasons for limiting the analysis to bounded memory is to bound the set of objects on

which the players can condition their behavior.

The main motivation of Mailath and Olszewski (2009) is however different from us as

they are primary interested in demonstrating that the perfect monitoring FT is behaviorally

robust to almost-perfect almost-public private monitoring. As shown by Mailath and Morris

(2002) and Mailath and Morris (2006), time-dependent bounded memory, however, is all that

is required for this. Therefore, their result is sufficient to establish that the above robustness

exercise is valid for games with more than two players.

We are on the other hand interested to the robustness of the FT to bounds on the

set of objects on which the players can condition their behavior (a bounded rationality

exercise). With this in mind, we did not want take the time-dependence route as it allows

for conditioning on an object that is unbounded (infinite “complexity”).

In contrast to our results, in some related literature bounds on the memory do result

in significant reduction in the set of equilibria in repeated set-ups. However, these results

require additional assumption(s) beyond bounded memory. For example, Liu and Skrzy-

pacz (2010) show that in a dynamic model with one long-lived player facing a sequence of

short-lived players and complete information, bounds on the memory can have a dramatical

impact on the equilibrium set (only Nash equilibria of the stage game are consistent with

limited memory).9 Their results, however, is critically dependent on the players being able

to condition their behavior only on past actions of the other players (strategies are reactive).

Cole and Kocherlakota (2005) consider the repeated Prisoners’ Dilemma with imperfect

8The proof of the FT with two players in our first version of the paper were rather cumbersome. We have

simplified the proof as a result of conversations with George Mailath and Wojciech Olszwski. We would like

to thank them for these very useful conversations.
9They also show that, with bounded memory, equilibria in games with complete and incomplete infor-

mation are strikingly different.
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public monitoring and finite memory. They show that for some set of parameters defection

every period is the only strongly symmetric public perfect equilibrium with bounded mem-

ory (regardless of the discount factor), whereas the set strongly symmetric public perfect

strategies with unbounded recall is strictly larger. The example considered by Cole and

Kocherlakota (2005) does not satisfy the identifiability condition used in Fudenberg, Levine,

and Maskin (1994) to establish their Folk Theorems for repeated games with imperfect

monitoring. By strengthening those identifiability conditions and by allowing asymmetric

strategies, Hörner and Olszewski (2009) obtain a perfect Folk Theorem with bounded mem-

ory strategies for games with (public or private but almost public) imperfect monitoring and

finite action and outcome spaces. Their result, however, requires a rich set of public signals

and displays a trade-off between the discount factor and the length of the memory.10

2 Notation and Definitions

The stage game: A normal form game G is defined by G =
(
N, (Ai)i∈N , (ui)i∈N

)
, where

N = {1, . . . , n} is a finite set of players, Ai is the set of player i’s actions and ui :
∏

i∈N Ai →

R is player i’s payoff function. We assume that Ai is finite and |Ai| ≥ 2 for all i ∈ N .

Let A =
∏

i∈N Ai and A−i =
∏

j 6=i Ai. We enumerate the set of action profiles by

A = {a1, . . . , ar} with r = |A|.

For any i ∈ N denote respectively the minmax payoff and a minmax profile for player

i by vi = mina−i∈A−i
maxai∈Ai

ui(ai, a−i) and mi ∈ arg mina−i∈A−i
maxai∈Ai

ui(ai, a−i). If G

is a 2-player game, a mutual minmax profile is m̄ = (m2
1, m

1
2) ∈ A. We shall denote the

maximum payoff in absolute value some player can obtain by B = maxi∈N maxa∈A |ui(a)|.

Let U = {u ∈ co (u(A)) : ui ≥ vi for all i ∈ N} denote the set of individually rational

payoffs and U0 = {u ∈ co(u(A) : ui > vi for all i ∈ N} denote the set of strictly individually

rational payoffs. The game G is full-dimensional if the interior of U in Rn is nonempty.

The repeated game: The infinitely repeated game consists of an infinite sequence of

repetitions of G. We denote the action of any player i in the repeated game at any date

10Other works on repeated games with bounded (recall) memory include Kalai and Stanford (1988), Lehrer

(1988), Aumann and Sorin (1989), Lehrer (1994), Neyman and Okada (1999), Bhaskar and Vega-Redondo

(2002), and Dutta and Siconolfi (2010).
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t = 1, 2, 3, . . . by at
i ∈ Ai. Also, let at = (at

1, . . . , a
t
n) be the profile of choices at t.

For t ≥ 1, a t-stage history is a sequence h = (a1, . . . , at) ∈ At (the t-fold Cartesian

product of A). The set of all t-stage histories is denoted by Ht = At. We represent the

initial (empty) history by H0. The set of all histories is defined by H =
⋃

t∈N0
Ht.

11 We also

denote the length of any history h ∈ H by `(h).

Let Π = A× A× · · · = A∞ be the set of (infinite) outcome paths in the repeated game.

For any a ∈ A and k ∈ N, we denote a finite path consisting of a being played k times

consecutively by (a; k). Also, for two positive length histories h = (a1, . . . , a`(h)) and h̄ =

(ā1, . . . , ā`(h̄)) in H we define the concatenation of h and h̄ by h·h̄ = (a1, . . . , a`(h), ā1, . . . , ā`(h̄)).

For any non-empty history h = (a1, . . . , a`(h)) ∈ H and any integer 0 < m ≤ `(h), define

the m-tail of h by Tm(h) = (a`(h)−m+1, . . . , a`(h)). We also adopt the convention that T 0(h) is

the empty history. For all h ∈ H and all k′ ∈ N with k′ ≤ `(h), let Bk′(h) = (a1, . . . , a`(h)−k′)

denote the history obtained from h by removing the last k′ actions.

For all i ∈ N , a strategy for player i is a function fi : H → Ai mapping histories into

actions. The set of player i’s strategies is denoted by Fi, and F =
∏

i∈N Fi with a typical

element f = (f1, . . . , fn). Given a strategy fi ∈ Fi and a history h ∈ H we denote the

strategy induced by fi at h by fi|h. Thus, (fi|h)(h̄) = fi(h · h̄) for every h̄ ∈ H. We will use

(f |h) to denote (f1|h, . . . , fn|h) for every f = (f1, . . . , fn) ∈ F and h ∈ H.

Any strategy profile f ∈ F induces an outcome path π(f) = {π1(f), π2(f), . . .} ∈ Π

where π1(f) = f(H0) and πt(f) = f(π1(f), . . . , πt−1(f)) for any t > 1.

We assume that all players discount the future returns by a common discount factor δ ∈

(0, 1). Thus, the payoff in the repeated game is given by Ui(f, δ) = (1−δ)
∑∞

t=1 δt−1ui(π
t(f)).

For any π ∈ Π, t ∈ N, and i ∈ N , let V t
i (π, δ) = (1− δ)

∑∞
r=t δ

r−tui(πr) be the continuation

payoff of player i at date t if the outcome path π is played. For simplicity, we write Vi(π, δ)

instead of V 1
i (π, δ). Also, when the meaning is clear we shall not explicitly mention δ and

refer to Ui(f, δ), V t
i (π, δ) and Vi(π, δ) by Ui(f), V t

i (π) and Vi(π) respectively.

We denote the repeated game described above for discount factor δ ∈ (0, 1) by G∞(δ).

A strategy vector f ∈ F is a Nash equilibrium of G∞(δ) if Ui(f) ≥ Ui(f̂i, f−i) for all i ∈ N

and f̂i ∈ Fi. Also, f ∈ F is a SPE of G∞(δ) if f |h is a Nash equilibrium for all h ∈ H.

11We use N0 and N to denote, respectively, the set of non-negative and positive integers.
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For all M ∈ N, we say that f ∈ F is a M-memory strategy if f(h) = f(h̄) for all h, h̄ ∈ H

such that TM(h) = TM(h̄). A strategy profile f is a M-memory SPE if f is a M -memory

strategy and a SPE.

3 The bounded memory Folk Theorem

Our main result is the following.

Theorem 1 Let G be a n-player game and suppose that either G is full-dimensional or

n = 2 and U0 6= ∅. Then, for all ε > 0, there exists M ∈ N and δ∗ ∈ (0, 1) such that for all

u ∈ U and δ ≥ δ∗, there exists a M-memory SPE f of G∞(δ) such that ‖U(f, δ)− u‖ < ε.

Restricting strategies to have bounded memory immediately implies that, after every

history, the path induced by any bounded memory strategy must eventually enter a cycle.

Thus, with bounded memory the set of individually rational payoffs can at best be imple-

mented approximately. As a result, in the above FT the size of the memory M needed

depends on the degree of approximation ε. However, note that M is independent of the

individual rational payoff u that is being implemented and the discount factor δ.

We next provide an intuition for the proof of Theorem 1. The proof itself can be found

in the Appendix.

3.1 Intuition for the 2-player case

In 2-player games, the standard FT construction for sustaining an individually rational payoff

vector u as a SPE is a simple strategy profile that has the following structure: (i) it has

an equilibrium path π that induces u and (ii) a common punishment path that starts with

a punishment phase consisting of playing the mutual minmax m̄ for some finite number of

time T and then plays the equilibrium path π.

Our FT construction with bounded memory involves modifying the above standard con-

struction to deal with the issues that bounded memory raises. First, as explained above,

with bounded memory the set of individually rational payoffs can at best be implemented

approximately.

Second, as illustrated by the examples in the Introduction, the identification of the on-

going path and whether or not there has been a single player deviation can be difficult with
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bounded memory. This implies that the equilibrium path and the punishment path need to

be chosen carefully so that the above problems can be overcome when players observe only

a fixed window of past outcomes. This issue will be dealt with by designing the equilibrium

cycle appropriately. The key idea is to insert a signalling sequence of actions regularly in

the equilibrium path. The purpose of this signalling sequence is that, once players have

observed it, they can infer that the play is in the equilibrium path and can, therefore, ignore

the part of the history that has occurred before. For such identification to be both possible

and immune to single player deviations, the following must hold: the signalling sequence of

actions must appear infinitely often on the equilibrium path, it should not appear anywhere

else and no single player deviation, either from the equilibrium path or from the punishment

path, should be able to escape the punishment phase.

Specifically, our construction of the bounded memory equilibrium strategy is as follows.

Since the discount factor is close to 1, for any path changing the order by which actions are

played has an insignificant impact on the payoffs the players receive. Therefore, to approx-

imately implement the desired payoff profile u, all that matters is that each action profile

is played a fraction of times sufficiently close to its coefficient in the convex combination of

stage game payoffs yielding u. This irrelevance of the order allows us to define the equilib-

rium path π = {π1, π2, . . .} as the repetition of the cycle ((a1; p1), . . . , (ar; pr)),12 where, (i)

a1 is chosen to be such that it differs from the mutual minmax profile m̄ in every coordinate

(i.e. a1
i 6= m̄i for all i), a2 is set to equal m̄ and all remaining actions are ordered arbitrarily;

(ii) p1 ≥ 2 and p2 ≥ 1; and (iii) pj/
∑r

l=1 pl is close to the coefficient of u(aj) in the convex

combination yielding u, for all j = 1, . . . , r.

The above equilibrium path is then implemented by the following strategy profile. It

first begins at any date t < p1 by playing the equilibrium action a1 if no deviation from

a1 has occurred. It continues with playing the equilibrium path after any history of length

greater or equal to p1 if the M -tail of the history either contains p1 consecutive occurrences

of a1 followed by the subsequent actions of the equilibrium path (if any) or, for some t < p1,

consists of M−t consecutive occurrences of m̄ followed by the first t actions of the equilibrium

12Recall that A = {a1, . . . , ar} and (a; k) denotes the history consisting of the play of action profile a for

k consecutive periods.
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cycle. At any other history, the strategy profile prescribes playing m̄.13’14

In this construction the sequence (a1; p1) at the beginning of the equilibrium cycle is

the required signalling phase described above. It trivially appears infinitely often on the

equilibrium path and it differs from the punishment phase of playing m̄ consecutively.

Furthermore, no single player deviation, either from the equilibrium path or from the

punishment path, can escape the punishment phase. To see this note first that because

a1
i 6= m̄i, for all i = 1, 2, no single player can deviate from the mutual minmaxing phase and

induce the signalling phase that is necessary to escape punishment. The same holds also

regarding deviations from histories whose M -tail consists of consists of M − t consecutive

occurrences of m̄ followed by the first t actions of the equilibrium cycle, for some t < p1,

because a player deviating singly from a1 will lead to an action different from both a1 and

m̄. Last, consider any single-player deviation from the equilibrium path. Such a deviation

does not result in a punishment phase only if the M -tail of the history after the deviation

either contains p1 consecutive occurrences of a1 followed by the subsequent actions of the

equilibrium path (if any) or, for some t < p1, consists of M − t consecutive occurrences of

m̄ followed by the first t actions of the equilibrium cycle. The latter cannot happen because

the M -tail does not contain p1 consecutive a1s and hence the deviation could not be from

the equilibrium path. Consider then the former case. In this case such a deviation is feasible

only if the p1-tail is (a1; p1). Since p1 ≥ 2, both the action profile induced by the deviation

and the action profile just before the deviation must be a1. But, on the equilibrium path,

only a1 or m̄ follow a1. Since the deviation induces a1, then it must be that the deviation is

from m̄. But m̄ differs from a1 in every coordinate, which implies that single-player deviation

cannot produce such a history.

In the above construction of the equilibrium cycle, we have assumed that p1 ≥ 2 and

p2 ≥ 1. To illustrate why these conditions cannot be weakened, consider the repeated

13To complete the result, we need to set M to be large enough so that with M memory (i) all individually

rational payoffs can be approximately obtained by average payoff of a finite cycle paths and (ii) to distinguish

between the different paths and phases.
14Note that the above strategy profile is not simple. This is because the punishment path is not unique:

the number of times the mutual minmax action is to be played in response to a deviation depends on the

number of times the mutual minmax appears before the punishment starts.
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Prisoners’ Dilemma described in the introduction. Since, in this example, m̄ = (D, D) and

the profile that differs from m̄ in every component is (C, C), it follows that, if we order the

set of action profiles as above, then a1 = (C, C), a2 = m̄, a3 = (D, C), a4 = (C, D).

To see why p2 ≥ 1, suppose that the equilibrium cycle is such that p1 = 2, p2 = 0,

and p3 ≥ 1. If the M -tail of a history is given by (a1, . . . , aM−2, (C, C), (C, C)) for some

sequence of action profiles a1, . . . , aM−2, then the signalling phase (C, C), (C, C) is observed

and the players should play (D, C). But if player 1 deviates and plays C at this history, the

next period M -tail of the resulting history would be (a2, . . . , aM−1, (C, C), (C, C)). Since the

signaling phase is observed again such deviation does not trigger the punishment path.

To see why we need p1 ≥ 2, suppose that the equilibrium cycle is such that p1 =

p2 = 1 and p3 ≥ 1. Then the strategy recommends (D, C) at any history whose M -tail

equals (a1, . . . , aM−2, (C, C), (D, D)), for some a1, . . . , aM−2. But if player 1 deviates at

this history and plays C instead, the next period M -tail of the resulting history would be

(a2, . . . , aM−2, (C, C), (D, D), (C, C)). Since this history induces the signalling phase (C, C),

such a deviation does not trigger the punishment path.

3.2 Intuition for the n > 2 case

With no bounds on memory and more than two players, to implement u ∈ U the standard FT

calls for the use of a simple strategy consisting of an equilibrium path π(0) and n punishment

paths π(1), . . . , π(n) with the following property. The punishment path π(i) for player i consists

of playing the minmax profile mi for T periods followed by a path π̂(i), referred to as the

reward path corresponding to π(i); thus

π(i),t =

 mi if t ≤ T

π̂(i),t−T otherwise.

Therefore, the typical FT construction consists of three sets of sequences of action profiles:

(i) the equilibrium path π(0), (ii) the minmax phase for each player i consisting of playing

mi a finite number of times T , and (iii) the reward paths π̂(i) for each i.

As in the above standard construction, the bounded memory strategy profiles we use

to prove our FT is such that the incentives to play the equilibrium and reward paths are

given by the threat of punishments, consisting of a sequence of the deviator’s minmax action

13



profile followed by the appropriate reward path. However, to identify each of the sequences

described in (i)-(iii) and the appropriate action profile that has to be played, we add to the

beginning of each of the above sequences a distinct signalling phase. As with the 2-player

case, once players observe one of these signalling phases, they can identify what needs to be

played and therefore can forget all that has happened before.

For example, each signalling phase could consist of a sequence (s; l) where s ∈ A is some

fixed action profile and l is some number that is different for the different signalling phases.

The idea is that when players observe a sequence of the form (s; l) then, by counting the

number of consecutive s’s, which equals l in this sequence, players can identify which path

to play.

The above, however, may not work as the players need to identify when the signalling

phase starts and when it ends. Specifically, if (s; l) is observed then the history is consistent

with any signalling phase (s; l′) for all l′ ≤ l. To overcome this, we modify each signalling

phase (s; l) so that it is preceded and followed by another action, s′ 6= s.

The addition of s′ to the signalling phases is also not enough. First, we need to ensure that

each signalling phase cannot be induced by single player deviations from another signalling

phase. We deal with this problem by choosing s′ to be such that it differs from s in every

coordinate (i.e. si 6= s′i for all i ∈ N). Second, for reasons that will become clear later,

we also need to assume that each signalling phase starts with two s′’s and has at least

two consecutive s’s. Specifically, each signalling phase in our construction is described by

(s′, s′, (s; l), s′) and we set l in each phase as follows: l = i+1 for the minmax path of player

i, l = n + 2 for the equilibrium path and l = n + 2 + i for the reward path of player i.

As we discussed before, with δ close to 1, to approximately implement u ∈ U , all that

matters is that on the equilibrium path each action profile is played an appropriate fraction

of times. The same holds for approximately implementing the payoffs corresponding to the

reward paths. It may then seem that the simple strategy profile that we need is as follows:

(i) the equilibrium path π(0) = (π(0),1, π(0),2, . . .) consists of the repetition of the following

type of cycle path (
s′, s′, (s; n + 2), s′, (a1; p(0),1), . . . , (ar; p(0),r)

)
;

where p(0),j is chosen appropriately so that π(0) induce approximately u.

14



(ii) the reward path π̂(i) = (π̂(i),1, π̂(i),2, . . .), i ∈ {1, . . . , n}, is the repetition of the cycle

(
s′, s′, (s; n + i + 2), s′, (a1; p(i),1), . . . , (ar; p(i),r)

)
;

where p(i),j is chosen appropriately so that π(i) induce approximately the appropriate reward

payoff.

(iii) the punishment path π(i), i ∈ {1, . . . , n}, is given by

π(i) =
(
s′, s′, (s; i + 1), s′, (mi; T ), π̂(i),1, π̂(i),2, . . .

)
,

where T is chosen appropriately to deter single period deviations.

Unfortunately, the problem is great deal more complicated. An immediate issue is that

we must ensure that the introduction of the signalling phases do not affect the incentives

adversely. On all paths other than one’s own punishment path, we can ensure that the

players play the appropriate continuation path by standard construction that invokes the

punishment for the deviator after any single player deviation from such phases. The same

is however not the case regarding the play of one’s own punishment path.

First, once we introduce a signalling phase at the beginning of each punishment path,

some player may have a profitable deviation in the minmax phase of his own punishment,

if such deviation restarts the punishment path. For example, deviation by i at the begin-

ning of the minmax phase of his own punishment path induces the outcome (s′, s′, (s; i +

1), s′, (mi; T ), π̂(i),1, π̂(i),2, . . .), whereas no deviation induces ((mi; T − 1), π̂(i),1, π̂(i),2, . . .). If

(s′, s′, (s; i + 1), s′) generates a sufficiently high average payoff, then the deviation will be

profitable. To deal with this problem, we modify the above simple strategy construction

by assuming that deviations by a player from his own minmax action in his punishment

path are ignored and punishment path is not restarted. Such a change in the construction

does not affect the incentives because there are no one-period gains to deviations during the

minmax phase.

Second, some player may profitably deviate in the signalling phase of his own punishment

path if such deviation restarts the signalling phase. For instance, if some player i obtains

a high payoff by deviating from s′ to some action ai, he could perpetually deviate in the

first period of the punishment path and obtain a path consisting in the repetition of (ai, s
′
−i)
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delivering him a higher payoff. Similarly, if some player i obtains a high payoff by deviating

from s by playing some action ai, then he could perpetually deviate in the third period of

the punishment path and obtain a path consisting in the repetition of (s′, s′, (ai, s−i)) which

could yield him a higher payoff.

We deal with this problem by specifying that when there is a deviation by a player

in the signalling phase of his punishment path, the strategy prescribes the continuation of

that particular signalling phase. But this by itself is not enough as we need to ensure that

there is punishment to deter deviations during this phase (if s or s′ were Nash equilibria

of the stage game this would of course be unnecessary). We establish such deterrence by

appropriately increasing the length of the minmax phase of the punishment path for each

such deviation. Specifically, denoting the number of times that player i has deviated during

the signalling phase of his punishment path by θ ∈ {0, 1, . . . , i + 4}, the strategy profile

requires that once the current signalling phase is over, the continuation path consists of

playing ((mi; (θ + 1)T ), π̂(i),1, π̂(i),2, . . .). Such construction implies that for every deviation

during the signalling phase the length of the minmax phase increases by T .15

The above modification involving delayed punishments of deviations during the signalling

phases of the punishment paths has two implications that are worth noting. First, each player

i effectively has i + 5 punishment paths indexed by θ ∈ {0, 1, . . . , i + 4}.16 We denote each

of these by π(i)(θ) = (s′, s′, (s; i + 1), s′, (mi; (θ + 1)T ), π̂(i),1, π̂(i),2, . . .) and define the path

π(i)(θ) without its first t− 1 elements by π(i)(θ, t).

Second, ignoring one-period deviations by any player i during the signalling phases of

i’s punishment path, as proposed above, means that the minmax phase starts after any

sequences

((a1
i , s

′
−i), (a

2
i , s

′
−i), (a

3
i , s−i), . . . , (a

i+3
i , s−i), (a

i+4
i , s′−i)), (1)

with al
i ∈ Si for all l = 1, . . . , i + 4, has been observed. Therefore, it follows that the signal

15The reason for having θ + 1 instead of just θ is that player i needs to be punished even if he does not

deviate in the signalling phase of his punishment path.
16By the number of punishment paths, we mean the number of distinct paths that a player can induce by

a deviation, excluding the continuation path that occurs when the player does not deviate.

Note also that our construction does not constitute a simple strategy profile because it will have, in

addition to the equilibrium path,
∑n

i=1(i + 5) punishments paths.
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for the punishment of player i are effectively all sequences satisfying (1) rather than just

(s′, s′, (s; i + 1), s′). To differentiate between any sequence described (1) from the signalling

phase (s′, s′, (s; i + 1), s′), we shall call the former a generalised signalling phase for player

i’s punishment path.

Given the above, after any history h = (a1, . . . , aτ ), our M period memory strategy

profile f would satisfy the following conditions:

(a) (Equilibrium and reward path histories) Suppose the t-tail of h is (π̂(i),1, . . . , π̂(i),t),

for some i = 0, . . . , n and t ≤ M , and it includes the signalling phase (s′, s′, (s; n + i + 2), s′)

of π̂(i), i.e. n + i + 5 ≤ t. Then f prescribes players to continue with π̂(i).

(b) (Punishment path histories) Suppose for some i = 1, . . . , n and t such that i + 4 ≤

t ≤ M , the t-tail of h has the following properties:

(i) the first i + 4 elements of the t-tail is a generalised signalling phase of i as described

in (1);

(ii) if t ≤ (θ +1)T + i+4, where θ refers to the number of times that player i has deviated

during the signalling phase (1), the remaining elements of the t-tail are such that the

players other than i minmax i by playing mi
−i;

(iii) if t > (θ + 1)T + i + 4, in every period i + 4 < r ≤ (θ + 1)T + i + 4 of the t-tail all

players other than i minmax i by playing mi
−i, and the remaining elements of the t-tail

correspond to the first t− ((θ + 1)T + i + 4) elements of the path π̂(i).

Then f requires the players to continue with π(i)(θ, t + 1).

(c) (Histories involving deviations from (a)–(b)) Suppose case (b) does not apply and,

for some r ∈ {τ − M, . . . , τ}, (a1, . . . , ar−1) satisfies the properties described in either (a)

or (b) above, ar involves a deviation by some player i from f as described in (a) and (b),

and (ar+1, . . . , aτ ) is consistent with a generalised signalling phase for player i’s punishment

path. Then f prescribes π(i)(θ, τ − r + 1), where θ refers to the number of times that player

i has deviated during (ar+1, . . . , aτ ).

Conditions (a)–(c) describe the behaviour after histories that have the following feature:

For some t ≤ M , its t-tail contains the entire signalling phase of one of the equilibrium or
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reward path, or an entire generalised signalling phase for a punishment path. In particular,

(a)–(c) specify the appropriate path to be played once these signalling phases are observed

and are followed by a sequence of actions in which there are either no deviations or only

single-player deviations from the path corresponding to the signalling phase.

What if a complete generalised signalling phase does not appear in the M -tail of the

history? The specification of what should be played at such histories cannot be arbitrary as

the equilibrium should be such that it is not in the interest of any player to deviate during a

generalised signalling phase of another player’s punishment path. To deal with this case, we

assume that if a complete generalised signalling phase does not appear in the M -tail of the

history as in (a)–(c) and if, for some t ≤ M , the t-tail of the history consists of a single-player

deviation from s or s′ by player i followed by an incomplete generalised signalling phase for

the punishment of player i, then the strategy recommends players to continue with such

signalling phase. For any other history, our construction prescribes playing the equilibrium

path.17 More formally, in addition to (a)–(c) above, we assume that the equilibrium strategies

satisfy the following two conditions at every history h = (a1, . . . , aτ ):

(d) (Histories that involve deviations from incomplete signalling phases) If none of the

conditions (a)–(c) are satisfied and if for some r ∈ {τ − M, . . . , τ}, ar involves a deviation

by some player i from s or s′ and (ar+1, . . . , aτ ) is consistent with a generalised signalling

phase of player i’s punishment path, then f prescribes π(i)(θ, τ − r + 1), where θ refers to

the number of times that player i has deviated during (ar+1, . . . , aτ ).18

(e) (Other histories) If none of conditions (a)–(d) are satisfied and the last 0 ≤ t < M

periods corresponds to the first t periods of the equilibrium path π(0), then the strategy

prescribes players to continue with π(0) (when t = 0 the strategy recommends the first

action on the equilibrium path).19

17The specification of the continuation path here is somewhat arbitrary; all that is needed is that the play

results in any of the equilibrium, reward or punishment paths.
18Unlike in the case of condition (c), there may be several values for r such that condition (d) holds. For

example, if h satisfies none of the conditions (a)–(c) and T 3(h) = ((a1
i , s

′
−i), (a

2
i , s

′
−i), (a

3
i , s

′
−i)) for some

i ∈ N and a1
i , a

2
i , a

3
i 6= s′i, then condition (d) is satisfied with r = τ , r = τ − 1 and r = τ − 2. In our proof,

we take the smallest such r (in the example in this footnote, f prescribes π(i)(θ, t) with θ = 2 and t = 3).
19Note that at histories described in (e), it is possible that the path resulting from such a history fails
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To ensure that the above behaviour described (a)-(e) can be implemented when M is

finite, however, several issues have to be addressed.

First, we need to set M to be large enough so that it is possible to distinguish between

the different paths and phases. Specifically, let K be such that all individually rational

payoffs can be approximately obtained by average payoff of cycle paths of length K.20 Also,

note that the length of the longest signalling phase in the different punishment paths, the

length of the longest minmax phase and the length of the longest signalling phase of the

reward paths are respectively n + 4, T (n + 5) and 2n + 5. Then, it follows that for the

strategy profile to implement the punishment paths, the memory size has to be at least

(n + 4) + T (n + 5) + (2n + 5) + K. We show in the appendix it suffices to have M greater

than this bound to implement our strategy profile.

Second, even though the signalling phase of the different paths, including the generalised

signalling phases as described by (1), are all different, this does not necessarily imply that,

once they are observed, they can be used to identify the future path of play. For example, if

the signalling phase (s′, s′, (s; n + i + 2), s′) of π̂(i) appears on π̂(j) for j 6= i then the strategy

described above may not be well-defined. Furthermore, for these signalling phases to have

the required property that once they are observed all previous history can be ignored, it

should also be the case that they cannot be induced by a single player deviation from some

other path. For example, if for some aj 6= s′j, the sequence (s′, s′, (s; n + i + 2), (aj, s
′
−j))

appears on the reward path π̂(j) then there may be an incentive for j to play s′j on the path

π̂(j) after (s′, s′, (s; n + i + 2)), as such a deviation induces the signalling phase of π̂(i).

The issue here is that we not only need the signalling phases to be distinct from each

other, they also need to be appropriately distinct with respect to the equilibrium and reward

paths, as well as with respect to minmax phases. We deal with these issues as follows.

By the same argument as before, the order by which the sequence of actions {a1, . . . , ar}

to be the equilibrium path. For example, suppose that Tn+i+4(h) = (s′, s′, (s;n + i + 2)) for some i ∈ N

and that h does not satisfy (a)-(d). Then, the strategy recommends the first action on the equilibrium path

s′. The resulting history, denoted by h′, satisfies Tn+i+5(h′) = (s′, s′, (s;n + i + 2), s′), which equals the

signalling phase of player i’s reward path. At this point, player i’s reward path will be played henceforth.

This of course does not generate any problems as the strategy profile still implements a SPE path.
20Notice that K, and hence M , will depend on the degree of approximation.
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are played on the equilibrium path and on each of the reward paths, as well as the number of

times they are played on the path, do not matter as long as each action profile is played an

appropriate number of times. This freedom to choose the order of the sequence {a1, . . . , ar}

allow us to construct the equilibrium and the reward paths in such a way so that they are

appropriately distinct from the signalling phases.

Specifically we achieve this as follows. The first action profile a1 is set to be equal to s

and is followed by all the action profiles of the form (ai, s−i) for some i ∈ N and ai 6= si.

These are followed by s′, and then by action profiles of the form (ai, s
′
−i) for some i ∈ N

and ai 6= s′i. The remaining action profiles are ordered arbitrarily.21 With this ordering, on

the equilibrium and reward paths, s′ and action profiles obtained by single player deviations

from s′ are never followed by s or by action profiles consisting of single player deviations

from s, other than in the initial signalling phases. This ordering ensures that (i) for each

i = 0, . . . , n the signalling phase of π̂(i) appears only once on the cycle path of π̂(i) and it does

not appear on π̂(j), for all j 6= i, (ii) the generalised signalling phase for each punishment

path does not appear on π̂(j), for all j = 0, . . . , n and (iii) no signalling phase can be induced

from single player deviations from π̂(j), for all j = 0, . . . , n.

There is still the issue of appropriate distinctness of the signalling phases from the minmax

ones. Since the signalling phases consist of two action profiles s and s′ that are distinct in

every component, it follows trivially that the signalling phases, including the generalised ones,

cannot occur when all players are minmaxing a specific player and furthermore the former

sequences cannot be induced by single player deviations from a minmax phase. However,

in our construction we assume that a deviation by any player i from his minmax profile mi

are ignored and the future play is not affected by such a deviation. This means that we

must also ensure that signalling phase, including the generalised ones, cannot be induced by

single player deviations from sequences ((a1
i , m−i), . . . , (a

τ
i , m−i)) that involve single player

deviations by player i from his own minmax phase. Our requirement that each signalling

phase contains at least two consecutive s’s and two consecutive s′’s at the beginning of these

21For example, when n = 3 and Ai = {α, β} for all i ∈ N , a possible ordering respecting the above

properties would be a1 = s = (α, α, α), a2 = (β, α, α), a3 = (α, β, α), a4 = (α, α, β), a5 = s′ = (β, β, β),

a6 = (α, β, β), a7 = (β, α, β) , a8 = (β, β, α).
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phases deals with this issue.

To see the role of at least two consecutive s’s in the signalling phases, suppose that

instead of assuming that the signalling phases of the punishment path of each i has i + 1

consecutive s’s, we have i consecutive s’s. This means that the signalling phase of player

1’s punishment is such that s appears only once and is given by (s′, s, s′). Consider then

a 3-player game with m3 = (s3, s
′
−3), a history h = ((s′; 2), (s; 3), s′, s′, s′, (s′1, s−1), s

′) and

M ≥ 10. Since s′ = (s′3, ,m
3
−3), (s′1, s−1) = (s2, m

3
−2) and the signalling phase for player i’s

punishment is ((s′; 2), (s; i), s′), it follows that h consists of the signalling phase for player

3’s punishment, followed by (s′3, m
3
−3) being played twice, followed by (s2, m

3
−2) and followed

by s′, the first action of the signalling phase of player 2’s punishment path. Hence, by part

(c) of our construction above, the strategy prescribes continuing with punishing player 2 by

playing
(
(s; 2), s′, (m2; T ), π̂(2),1, π̂(2),2, . . .

)
. But T 4(h) = ((s′; 2), (s′1, s−1), s

′) is a generalised

signalling phase of player 1’s punishment. Thus, part (b) of our construction also applies.

Therefore, the strategy also recommends
(
(m1; 2T ), π̂(1),1, π̂(1),2, . . .

)
.

The problem here arises because s′ = (s′3, m
3
−3) and (s′1, s−1) = (s2, m

3
−2). Hence, single-

player deviations from m3 can induce both s′ and single-player deviations from s, and, as a

result, the continuation strategy after history h is not well-defined.

Having s played i + 1 times in the signalling phase of i’s punishment solves the above

problem as follows. In this case the signalling phase of player 1 is (s′, s′, (s; 2), s′). This means

that if player 1 deviates from s during his signalling phase this is preceded and succeeded

by s and s′ or the reverse. Since it cannot be the case that both s and s′ can be induced by

a player deviating from his own minmax profile, it follows that deviations by player 1 from

his own signalling phase are not consistent with phases involving another player deviating

from his own minmax phase. Hence the problem described above does not arise.

Similarly, to see the role of having two consecutive s′’s at the beginning of the signalling

phases, suppose that instead of assuming that the signalling phases of the punishment path

of each i is (s′, s′, (s; i + 1), s′), we assume that it consists of (s′, (s; i + 1), s′) with only one

s′ at the beginning of these phases. Consider a 3-player game with m1 = (s′1, s−1), a history

h = (s′, (s; 2), s′, (s; 3), (s2, s
′
−2)) and M ≥ 8. Since s = (s1, m

1
−1), (s2, s

′
−2) = (s′3, m

1
−3) and

the signalling phase for player i’s punishment is (s′, (s; i + 1), s′), it follows that h consists
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of the signalling phase for player 1’s punishment, followed by (s1, m
1
−1) being played three

times, followed by (s′3, m
1
−3). Hence, by part (c) of our construction above, the strategy

prescribes π(3). But T 5(h) = (s′, (s; 3), (s2, s
′
−2)) is a generalised signalling phase of player

2’s punishment. Thus, part (b) of our construction also applies. Therefore, the strategy also

recommends
(
(m2; 2T ), π̂(2),1, π̂(2),2, . . .

)
.

The problem here arises because s = (s1, m
1
−1) and (s2, s

′
−2) = (s′3, m

1
−3). Hence, single-

player deviations from m1 can induce both s and single-player deviations from s′, and, as a

result, the continuation strategy after history h is not well-defined.

Having two s′’s at the beginning of the signalling phases solves this problem as follows.

In this case, the signalling phase of player 2 would be ((s′; 2), (s; 3), s′). But such phase is

consistent with the signalling phase of player 1 followed by 1’s minmax phase only if both s

and s′ could be induced by player 1 deviating from his own minmax profile.22 Since s and s′

are distinct in every component, this is not feasible and, hence, the problem described above

does not arise.

A Proof of the bounded memory Folk Theorem

For all x ∈ Rn, let ||x|| = maxi=1,...,n |xi|. Since U is compact, it suffices to show that for all

ε > 0 and all u ∈ U , there exist M ∈ N and δ∗ ∈ (0, 1) such that for all δ ≥ δ∗, there exists a

M -memory SPE f of G∞(δ) with ‖U(f, δ)−u‖ < ε. Furthermore, since U equals the closure

of U0, we only need to show that the above holds for any u ∈ U0. Therefore, in the rest of

this appendix, we show that for all ε > 0 and u ∈ U0, there exist M ∈ N and δ∗ ∈ (0, 1)

such that for all δ ≥ δ∗, there exists a M -memory SPE f of G∞(δ) with ‖U(f, δ)− u‖ < ε.

A.1 2-player case

In this subsection, for convenience, we normalize payoffs so that ui(m̄) = 0 for both i = 1, 2.

Fix any ε > 0 and u ∈ U0. Let 0 < η < mini=1,2(ui − vi), 0 < γ < min{η/3, ε/2} and

ξ > 0 be such that 2ξ < η − 2γ.

22This is because in this case the number of s′’s at the beginning of the signalling phase of player 2 is

different from that at the end of the signalling phase of player 1.
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Order A = {a1, . . . , ar} so that a1
i 6= m̄i for all i, and a2 = m̄. Also, for any k ∈ N, let

Uk =

{
w ∈ RN : w =

∑
a∈A

pau(a)

k
for some (pa)a∈A such that

pa ∈ N for all a, p1 ≥ 2, p2 ≥ 1 and
∑
a∈A

pa = k

}
.

Using an analogous argument to Sorin (1992, Proposition 1.3), it follows that Uk converges

to co(u(A)) in the Hausdorff distance. Therefore, there must exist K ∈ N such that

co(u(A)) ⊆ ∪x∈UK
Bγ(x). (2)

Let p1, . . . , pr be such that pk ≥ 0 for all 1 ≤ k ≤ r , p1 ≥ 2, p2 ≥ 1,
∑r

k=1 pk = K and∥∥∥∥∥
r∑

k=1

pku(ak)

K
− u

∥∥∥∥∥ < γ. (3)

Note that (2) implies that such a sequence p1, . . . , pr exists. Let u′ =
∑r

k=1 pku(ak)/K and

π consist of repetitions of the cycle ((a1; p1), . . . , (a
r; pr)).

Let T ∈ N and M ∈ N be such that

T > K

(
B

ξ
+ 1

)
and M = 2T + K. (4)

Also, let δ∗ ∈ (0, 1) be such that for all δ ∈ [δ∗, 1)

max

{
δK − δT

1− δK
, δT 1− δT+1

1− δ
, δM

}
> T, (5)

sup
(x1,...,xK)∈[−B,B]K

∣∣∣∣∣ 1− δ

1− δK

K∑
k=1

δk−1xk − 1

K

K∑
k=1

xk

∣∣∣∣∣ < γ. (6)

Note that such δ∗ ∈ (0, 1) exists because the limit of the left hand side (5) and (6) as δ → 1

are, respectively, T + 1 = max{(T −K)/K, T + 1, 1} and 0.

Fix any δ ≥ δ∗. We will prove that there is a M -memory SPE f with ||U(f, δ)− u|| < ε.

Note that

||V (π, δ)− u|| ≤ ||V (π, δ)− u′||+ ||u′ − u|| < 2γ < ε, (7)

where the second inequality follows from (6) and (3) and the third from the assumption that

γ < ε/2. Thus, it suffices to show that there is a M -memory SPE f with π(f) = π.
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Before defining the strategy profile f , note the following properties of u′ and V t(π, δ).

First, for all i = 1, 2,

u′i > ui − γ > vi + η − γ > vi + 2ξ, and (8)

V t
i (π, δ) > u′i − γ > ui − 2γ > vi + η − 2γ > vi + 2ξ for all t ∈ N. (9)

(The first inequality in (9) follows from (6), the first in (8) and the second in (9) from (3),

the second in (8) and the third in (9) since η < ui − vi and the last inequality in both (8)

and (9) because 2ξ < η − 2γ).

Second, the following claim must hold.

Claim 1 For all i = 1, 2, t ∈ N and δ ≥ δ∗, V t
i (π, δ) ≥ δT Vi(π, δ).

Proof. Fix any i = 1, 2, t ∈ N and δ ≥ δ∗. Then, V t
i (π) = (1 − δ)

∑K
l=k δl−kui(π

l) +

δK−k+1Vi(π) ≥ −B(1− δK−k+1) + δK−k+1Vi(π) for some 1 ≤ k ≤ K. Hence, since k ≥ 1, it

follows that V t
i (π) ≥ −B(1− δK) + δKVi(π).

Therefore, it suffices to show that (δK − δT )Vi(π) ≥ B(1 − δK). This inequality holds

since (9) and (5) imply that (δK − δT )Vi(π) > (δK − δT )ξ > B(1− δK).

A.1.1 The strategy profile

We define the desired strategy profile f as follows. For any k ∈ N such that 0 ≤ k ≤ M , let

Hk
1 = {h ∈ H : T k(h) = (π1, . . . , πk)},

Hk
2 = {(π1, . . . , πk)} if k > 0 and Hk

2 = {H0} if k = 0, and

Hk
3 = {h ∈ H : TM(h) = ((m̄; M − k), π1, . . . , πk)}.

We additionally define

Hk =

 Hk
1 if k ≥ p1

Hk
2 ∪Hk

3 if k < p1,

HE = ∪M
k=0H

k and HP = H \HE. Then, f is defined by

f(h) =

 πk+1 if h ∈ Hk for some 0 ≤ k ≤ M,

m̄ otherwise.

Claim 2 The strategy profile f is a well defined M-memory strategy.
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Proof. By the definition of Hk
i , i = 1, 2, 3, the following must hold: (i) If h ∈ Hk

1 ∩ Hk′
1

for some k > k′ ≥ p1 then it must be that k = k′ + αK for some α ∈ N, implying that

πk+1 = πk′+1. (ii) For any k ≥ p1 and k′ < p1, Hk
1 ∩Hk′

2 = ∅ and Hk
1 ∩Hk′

3 = ∅ (if the latter

were not to hold we would have π1 = m̄, a contradiction). (iii) For any k, k′ < p1, k 6= k′,

Hk
i ∩Hk′

j = ∅ for any i, j ∈ {2, 3}. It then follows from (i)–(iii) that f is well-defined.

Finally, note that f is a M -memory strategy because its definition is such that f(h)

depends only on TM(h) for all h ∈ H.

A.1.2 Outcome paths induced by f and by one-shot deviations from f

The next two claims establish the continuation paths f induces after any history.

Claim 3 If h ∈ Hk for some 0 ≤ k ≤ M , then π(f |h) = (πk+1, πk+2, . . .).

Proof. We prove this in several steps.

Step 1: If h ∈ Hk
1 and p1 ≤ k ≤ M then h · f(h) ∈ Hk′+1

1 for some k′ such that

p1 ≤ k′ ≤ M and k = αK+k′ for some α ∈ N. Suppose that p1 ≤ k ≤ M and h ∈ Hk
1 . Then,

we must have that T k(h) = (π1, . . . , πk) and f(h) = πk+1. This implies that T k+1(h ·f(h)) =

(π1, . . . , πk+1). If k < M , the claim of this step holds because (h · πk+1) ∈ Hk+1
1 and

p1 ≤ k+1 ≤ M . If k = M , then since M ≥ 2K, we must have TM(h·f(h)) = (π2, . . . , πk+1) =

(π2, . . . , πK , π1, . . . πk−K+1) with k−K + 1 = M −K + 1 > p1. Hence, the claim of this step

also holds in this case because h · f(h) = h · πk−K+1 ∈ Hk−K+1
1 and k − (k −K) = K.

Step 2: If h ∈ Hk
1 and p1 ≤ k ≤ M then π(f |h) = (πk+1, πk+2, . . .). This follows by

induction from Step 1 and by noting that πk′+1 = πk+1 if k = αK + k′ for some α ∈ N.

Step 3: If h ∈ Hk
2 ∪Hk

3 and 0 ≤ k < p1 then π(f |h) = (πk+1, πk+2, . . .). If h ∈ Hk
2 ∪Hk

3

and 0 ≤ k < p1, then by induction, f induces the outcome (πk+1, . . . , πp1) after h. But, since

h · (πk+1, . . . , πp1) ∈ Hp1

1 , the claim of this step follows from Step 2.

It follows trivially from Claim 3 that π(f) = (π1, π2, . . .). Hence, f implements π.

Claim 4 If h ∈ HP and k = max{0 ≤ k′ ≤ M : T k′(h) = (m̄; k′)}, then k < M and

π(f |h) = ((m̄; M − k), π1, π2, . . .).

Proof. Fix any h ∈ HP and let k be as defined above.

Step 1: k < M . Otherwise, k = M and TM(h) = (m̄; M) producing a contradiction

because then h ∈ H0
3 ⊆ H \HP .
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Step 2: If h · (m̄; l − 1) ∈ HP for some l ∈ {1, . . . ,M − k − 1}, then h · (m̄; l) ∈ HP .

Suppose not; then h · (m̄; l − 1) ∈ HP and h · (m̄; l) ∈ Hk′ for some 0 ≤ k′ ≤ M . Since,

a1 6= m̄ and, for any τ ≤ p1, (π1, . . . , πτ ) = (a1; τ), it follows from h · (m̄; l) ∈ Hk′ that

either h · (m̄; l) ∈ Hk′
1 and k′ ≥ p1 or TM(h · (m̄; l)) = (m̄; M). But, the latter is not

possible, because we have by assumption l < M − k (in fact, if TM(h · (m̄; l)) = (m̄; M),

then TM−l(h) = (m̄; M − l) and so k ≥ M − l); therefore, consider the former case. Then,

T k′−1(h · (m̄; l− 1)) = (π1, . . . , πk′−1). Since h · (m̄; l− 1) ∈ HP , it must be that k′− 1 < p1.

Hence, k′ = p1, k′ − 1 = p1 − 1 ≥ 1 and m̄ = πk′−1 = a1; but, this is a contradiction.

Step 3: h · (m̄; l) ∈ HP for all l = 0, . . . ,M − k − 1. Since h ∈ HP and f(h′) = m̄ for all

h′ ∈ HP , this step follows by induction from the previous step.

Step 4: π(f |h) = ((m̄; M − k), π1, π2, . . .). By the previous step, f results in (m̄; M − k)

after h. Since TM(h · (m̄; M − k)) = (m̄; M) ∈ H0
3 , it then follows from Claim 3 that

π(f |h) = ((m̄; M − k), π1, π2, . . .).

The following three claims characterize the consequences of a single deviation by one

player from f .

Claim 5 If h ∈ HE, ai 6= fi(h) and a−i = f−i(h) for some i ∈ {1, 2}, then h · a ∈ HP .

Proof. Suppose not; then h ∈ HE, ai 6= fi(h), a−i = f−i(h) for some i ∈ {1, 2} and

h · a ∈ Hk for some 0 ≤ k ≤ M. There are three different cases to consider.

Case 1: h ·a = (π1, . . . , πk) ∈ Hk
2 for some k < p1. Then we must have a = πk, h ∈ Hk−1

2

and k − 1 < p1. But then f(h) = πk = a; a contradiction.

Case 2: h · a ∈ Hk
1 for some k ≥ p1. Then T k(h · a) = (π1, . . . , πk), a = πk and

T k−1(h) = (π1, . . . , πk−1). If k > p1, then h ∈ Hk−1
1 and f(h) = πk = a; a contradiction.

Thus, k = p1, a = πk = a1 and T p1−1(h) = (a1; p1 − 1). Also, by construction p1 − 1 ≥ 1.

Therefore, it follows from the construction of π (a1 is followed by a2 = m̄) and the definition

of f that f(h) = a1 or f(h) = m̄. Thus, either f(h) = a or fj(h) 6= aj for all j = 1, 2. But,

both cases contradict our initial supposition that ai 6= fi(h) and a−i = f−i(h).

Case 3: h · a ∈ H3
k for some 0 ≤ k < p1. If k = 0, then TM(h · a) = (m̄; M), a = m̄

and TM(h) = (a′, (m̄; M − 1)) for some a′ ∈ A. But, since h ∈ HE, it must also be that

a′ = m̄. Thus, TM(h) = (m̄; M) and f(h) = a1. But, this is a contradiction, because it

implies that a−i = m̄−i 6= a1
−i = f−i(h). Hence, it must be that k > 0. Then, a = a1 and
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TM(h) = (a′, (m̄; M − k), (a1; k − 1)) for some a′ ∈ A. Since k − 1 < p1, h ∈ HE implies

that a′ = m̄, and thus, TM(h) = ((m̄; M − (k − 1)), (a1; k − 1)). But, this is a contradiction

because it implies that f(h) = a1 = a.

Claim 6 If h ∈ HE, ai 6= fi(h) and a−i = f−i(h) for some i ∈ {1, 2}, then

π(f |h · a) =


((m̄; M), π1, π2, . . .) if a 6= m̄,

((m̄; M − 1), π1, π2, . . .) if a = m̄ and T 1(h) 6= m̄,

((m̄; M − p2 − 1), π1, π2, . . .) if a = T 1(h) = m̄.

(10)

Proof. By Claim 5, h · a ∈ HP . Therefore, it follows from Claim 4 that π(f |h · a) =

((m̄; M − k), π1, π2, . . .), where k = max{0 ≤ k′ ≤ M : T k′(h) = (m̄; k′)}. This means that

π(f |h · a) = ((m̄; M), π1, π2, . . .) if a 6= m̄ and π(f |h · a) = ((m̄; M − 1), π1, π2, . . .) if a = m̄

and T 1(h) 6= m̄. Finally, consider the case a = T 1(h) = m̄. Since f−i(h) = a−i = m̄−i 6= a1
−i,

we have f(h) 6= a1. This rules out the possibility that h ∈ Hk′
2 ∪ Hk′

3 for some k′ < p1.

Therefore, since h ∈ HE, it must be that T k′(h) = (π1, . . . , πk′) for some k′ ≥ p1. Also,

πk′ = T 1(h) = m̄ and πk′+1 = f(h) 6= a = m̄; therefore, we must have k′ = p1 + p2. But, this

implies that k = p2 + 1. Hence, we have π(f |h · a) = ((m̄; M − p2 − 1), π1, π2, . . .).

Claim 7 If h ∈ HP , ai 6= fi(h) and a−i = f−i(h) for some i ∈ {1, 2}, then h · a ∈ HP and

π(f |h · a) = ((m̄; M), π1, π2, . . .).

Proof. It follows from h ∈ HP that f(h) = m̄. Thus, a 6= m̄ and a 6= a1. We will next

prove that h · a ∈ HP by showing that h · a /∈ Hk for any 0 ≤ k ≤ M : First, since πk = a1

for any k < p1, a 6= a1 implies that h · a /∈ Hk
2 for any k < p1. Second, h · a /∈ Hk

3 for any

0 ≤ k < p1 because otherwise a = m̄ (if k = 0) or a = a1 (if k > 0); a contradiction. And

third, if h · a ∈ Hk
1 for some k ≥ p1 then πk = a 6= m̄ and πk = a 6= a1. This implies that

k > p1 + p2. Hence, h ∈ Hk−1
1 for some k − 1 ≥ p1; but, this contradicts h ∈ HP .

It follows from above that h · a ∈ HP . Since a 6= m̄, it follows from Claim 4 that

π(f |h · a) = ((m̄; M), π1, π2, . . .).

A.1.3 Incentive conditions

Claim 8 The strategy profile f is SPE.

Proof. We demonstrate this result by showing that one-shot deviations are not profitable

at any history.
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Fix any player i, any h ∈ H and any strategy gi ∈ Fi that only differs from fi at

h; thus gi(h) 6= fi(h) and gi(h
′) = fi(h

′) for all h′ ∈ H \ {h}. We need to show that

Ui(f |h) ≥ Ui(gi, f−i|h). To show this consider the two possible cases.

Case 1: h ∈ Hk for some 0 ≤ k ≤ M . In this case, by Claim 3 and Claim 6 respectively,

π(f |h) = (πk+1, πk+2, . . .) and π(gi, f−i|h) = ((ai, π
k+1
−i ), (m̄; t), π1, π2, . . .) for some ai ∈ Ai

and t ≥ M − (p2 + 1). Then we have

Ui(f |h)− Ui(gi, f−i|h) = V k+1
i (π)− [(1− δ)ui(ai, π

k+1
−i ) + δVi((m̄; t) · π)] ≥

V k+1
i (π)− [(1− δ)B + δ2T+1Vi(π)] ≥ δT (1− δT )Vi(π)− (1− δ)B

(11)

where the three inequalities in the above follow, respectively, from ui(ai, π
k+1
−i ) ≤ B, ui(m̄) =

0, t ≥ M − (p2 + 1) ≥ M −K = 2T and Claim 1. By (9), we have Vi(π) > vi + ξ ≥ ξ. By

(4) and (5), we have δT (1 − δT )ξ > (1 − δ)Tξ > (1 − δ)B. Therefore, it follows from (11)

that Ui(f |h)− Ui(gi, f−i|h) > 0.

Case 2: h ∈ HP . In this case, by Claim 4 and Claim 7 respectively, π(f |h) = ((m̄; M −

t), π1, π2, . . .) for some 0 ≤ t < M and π(gi, f−i|h) = ((ai, m̄−i), (m̄; M), π1, π2, . . .) for some

ai ∈ Ai. Since ui(m̄) = 0 and ui(ai, m̄−i) ≤ maxa′i∈Ai
ui(a

′
i, m̄−i) = vi, we must then have

Ui(f |h)− Ui(gi, f−i|h) ≥ δM−tVi(π)− [(1− δ)vi + δM+1Vi(π)] ≥

δMVi(π)− [(1− δ)vi + δM+1Vi(π)] ≥ (1− δ)(δMVi(π)− vi).
(12)

By (9), we have that Vi(π) > vi + 2ξ . Also, by (5), we have δM > B
B+ξ

≥ vi

vi+ξ
. Therefore,

δMVi(π)− vi > 0. But then, by (12), we have Ui(f |h)− Ui(gi, f−i|h) > 0.

A.2 More than 2-player case

In this subsection, for convenience, we normalize payoffs so that vi = 0 for all i ∈ N .

Fix any ε > 0 and any u ∈ U0. Then, by Theorem 1 (Step 1) in Abreu, Dutta, and

Smith (1994), for all i ∈ N there exists yi ∈ U0 satisfying the following property: for some

0 < ζ ′ < mini y
i
i, yi

i + ζ ′ < ui and yi
i + ζ ′ < yj

i for all j ∈ N with j 6= i. Define ξ > 0 to be

such that 4ξ < ζ ′ and ζ = ζ ′ − 4ξ.

Fix any s and s′, both in S, such that si 6= s′i for all i ∈ N . For all k ∈ N, let Vk be the

set of u′ ∈ co(u(A)) such that u′ =
∑

a∈S pau(a)/k for some {pa}a∈A satisfying pa ∈ N and

pa ≥ 2n+2 for all a ∈ S, ps′ ≥ 3, ps ≥ 4n+4 and
∑

a∈S pa = k. Using an analogous argument
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to Sorin (1992, Proposition 1.3), it follows that Vk converges to co(u(A)). Therefore, there

must exist K ∈ N such that

co(u(A)) ⊆ ∪x∈VK
Bξ(x). (13)

For all â ∈ A and j ∈ N , let Dj(â) = {a ∈ A : a−j = â−j} and D̄j(â) = Dj(â)\{â}. Define

D(â) = ∪j∈NDj(â) and D̄(â) = ∪j∈ND̄j(â). Order all the actions in A = {a1, . . . , ar} as

follows: a1 = s, a2, . . . , a|D̄(s)|+1 are the different elements D̄(s), in any order, a|D̄(s)|+2 = s′,

a|D̄(s)|+3, . . . , a|D̄(s)|+|D̄(s′)|+2 are the different elements of D̄(s′), in any order, and all the

remaining actions are then ordered arbitrarily.

To simplify notation, we also denote y0 = u. For all i ∈ {0, . . . , n}, let xi ∈ VK be such

that ||xi − yi|| < ξ and {pi
a}a∈S be such that 1

K

∑K
a∈S pi

auj(a) = xi
j, for all j ∈ N . For all

i ∈ {0, . . . , n}, define π̂(i) as the repetition of the cycle

(
(s′; 2), (s; n + i + 2), s′, (a1; p(i),1), . . . , (ar; p(i),r)

)
,

where p(i),j = pi
aj − 3 if aj = s′, p(i),j = pi

aj − (n + i + 2) if aj = s and p(i),j = pi
aj otherwise.

Note that the length of the cycle is K, i.e.,
∑r

j=1 p(i),j +n+5+ i = K, for all i ∈ {0, . . . , n}.

In the construction below, π̂(i) will be the equilibrium path when i = 0 (also sometimes

denoted by π(0)) and the reward path of player i when i > 0.

Let T ∈ N be such that

T > 2 max

{
(K + n + 6)

B

ζ
, K

}
. (14)

Also let π(i) =
(
(s′; 2), (s; i + 1), s′, (mi; T ), π̂(i)

)
and

π(i)(θ, t) =


(
π(i),t, . . . , π(i),i+4, (mi; (θ + 1)T ), π̂(i)

)
if t ≤ i + 4 and(

(mi; (θ + 1)T ), π̂(i)
)

if t = i + 5,

for any i ∈ N , θ ∈ N0 and t ∈ {1, . . . , d + 5}. Define the size of the memory M ∈ N be such

that M ≥ T (n + 5) + (n + 4) + (2n + 5) + K. Also, let δ∗ ∈ (0, 1) be such that δ ≥ δ∗ implies

min

{
δK − δn+6+T

2− δK − δn+6
,
δn+5+(n+4)T (1− δT )

2(1− δn+5)
,

δ(n+5)(T+1)

2− 2δ(n+5)(T+1) − δn+6(1− δT )

}
>

B

ζ
(15)

sup
x∈[−B,B]K

∣∣∣∣∣ 1− δ

1− δK

K∑
k=1

δk−1xk − 1

K

K∑
k=1

xk

∣∣∣∣∣ < ξ. (16)
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Note that such δ∗ ∈ (0, 1) exists because the limit of the left hand side of (15) and (16) as

δ → 1 are, respectively, min{(T +n+6−K)/(K +n+6), T/2(n+5)} and 0, and the former

limit exceeds B/ζ by (14).

Fix any δ ≥ δ∗. We will now demonstrate the result by constructing a M -memory SPE

strategy profile f with ||U(f) − u|| < ε. Before constructing such a profile, note that the

payoffs the different paths π̂(0), . . . , π̂(n) induce satisfy the following.

Claim 9 For all i ∈ {0, . . . , n} and d, d′ ∈ N with d 6= d′:

−B(1− δ(n+5)(T+1)) + δ(n+5)(T+1)Vd(π̂
(d′)) > B(1− δn+6) + δn+6+T Vd(π̂

(d)), (17)

−B(1− δK) + δKVd(π̂
(i)) > (1− δn+6)B + δn+6+T Vd(π̂

(d)), (18)

−(1− δn+5)B + δn+5+(n+4)T Vd(π̂
(d)) > (1− δn+5)B + δ(n+5)(T+1)Vd(π̂

(d)). (19)

Proof. First, by (16) and the definition of {xj}n
j=0, {yj}n

j=0, {π̂(j)}n
j=0, ξ, ζ and ζ ′, we have

the following two conditions:

Vd(π̂
(d)) > xd

d − ξ > yd
d − 2ξ > ζ, (20)

Vd(π̂
(d′)) > xd′

d − ξ > yd′

d − 2ξ > yd
d + ζ ′ − 2ξ > Vd(π̂

(d)) + ζ ′ − 4ξ = Vd(π̂
(d)) + ζ.(21)

By (15), we have δ(n+5)(T+1)ζ > B(2 − 2δ(n+5)(T+1) − δn+6(1 − δT )). Then (17) follows

immediately from (21).

Consider inequality (18). Since K < T , (17) implies (18) when d, i ∈ N and d 6= i.

Therefore, to demonstrate (18), it suffices to consider two cases: i = 0 and d = i ∈ N .

By (21) and (15) we have (Vd(π̂
(0)) − Vd(π̂

(d)))δK > B(2 − δK − δn+6). This, together

with K < T and (20), implies that (18) holds when i = 0.

By (20) and (15), Vd(π̂
(d))(δK − δn+6+T ) > ζ(δK − δn+6+T ) > B(2 − δK − δn+6). This

implies that (18) holds when d = i ∈ N .

Finally, consider (19). By (20) and (15), Vd(π̂
(d))δn+5+(n+4)T (1− δT ) > ζδn+5+(n+4)T (1−

δT ) > 2B(1− δn+5). This implies that (19) holds.

A.2.1 The strategy profile

For all τ ∈ N and d ∈ N , define

Σd,τ =
{
h ∈ H : h = (at)τ

t=1 such that at ∈ Dd(s) if t = 3, . . . , d + 3

and at ∈ Dd(s
′) if t = 1, 2, d + 4

}
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and Σd,0 = {H0} for all d ∈ N . Also, for all τ ≥ d + 4 and all h ∈ Σd,τ , let

θ(h) = |{t ∈ {1, 2, d + 4} : at
d 6= s′d}|+ |{t ∈ {3, . . . , d + 3} : at

d 6= sd}|.

For all d ∈ N and τ ∈ N, define

Γd,τ =
{
h ∈ H : h = (at)τ

t=1 and at ∈ Dd(m
d) for all 1 ≤ t ≤ τ

}
.

Define for all k ∈ {1, . . . ,M}, i ∈ {0, . . . , n}, d ∈ N and τ, r ∈ N0 the following sets:23

H
(i),k
1,a =

{
h ∈ H : T k(h) =

(
π̂(i),1, . . . , π̂(i),k

)}
,

H
(i),k
1,b =

{
h ∈ H : h =

(
π̂(i),1, . . . , π̂(i),k

)}
,

H
(i),k
1 = H

(i),k
1,a ∪H

(i),k
1,b ,

Hk,d,τ
2 =

{
h ∈ H : T k(h) = h̄ · a · h̃ such that for some k′ ≤ k and i ∈ {0, . . . , n}

(1) either h̄ ∈ H
(i),k′

1,a with k′ ≥ n + i + 5 or h̄ ∈ H
(i),k′

1,b with `(h) = k,

k′ < n + 5 and i = 0, (2) a ∈ D̄d(π̂
(i),k′+1), (3) h̃ ∈ Σd,τ and

(4) if T d+3(h̄ · a) = ((s′; 2), (s; d), a) and a ∈ D̄d(s), then `(h̃) = 0
}

,

Hk,d
3 =

{
h ∈ H : T k(h) = h̄ · h̃ such that (1) h̄ ∈ Σd,d+4 and

(2) h̃ ∈ Γd,l for some 0 ≤ l < (θ(h̄) + 1)T
}

,

Hk,d,r
4 =

{
h ∈ H : T k(h) = h̄ · ĥ · h̃ such that (1) h̄ ∈ Σd,d+4,

(2) ĥ ∈ Γd,l with l = (θ(h̄) + 1)T and (3) h̃ ∈ H
(d),r
1,b

}
,

Hk,d,τ
5 =

{
h ∈ H : T k(h) = h̄ · a · h̃ such that for some k′ ≤ k and i ∈ N

(1) either h̄ ∈ Hk′,i
3 , a ∈ D̄d(m

i) and d 6= i

or h̄ ∈ Hk′,i,r
4 and a ∈ D̄d(π̂

(i),r+1) for some r < n + i + 5, (2) h̃ ∈ Σd,τ and

(3) if T d+3(h̄ · a) = ((s′; 2), (s; d), a) and a ∈ D̄d(s), then `(h̃) = 0
}

.

We next define H1,a = ∪n
i=0

(
∪M

k=n+i+5H
(i),k
1,a

)
, H

(0),0
1,b = {H0}, H1,b = ∪n+4

k=0H
(0),k
1,b , H1 =

H1,a ∪H1,b, H2 = ∪M
k=1

(
∪d∈N

(
∪d+3

τ=0H
k,d,τ
2

))
, H3 = ∪M

k=1

(
∪d∈NHk,d

3

)
,

H4 = ∪M
k=1

(
∪d∈N

(
∪n+d+4

r=0 Hk,d,r
4

))
, and H5 = ∪M

k=1

(
∪d∈N

(
∪d+3

τ=0H
k,d,τ
5

))
.

23Note that, for some of these parameters, the sets below may be empty in some cases.
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Let Σ̃d,τ = {h ∈ H : T τ+1(h) = a · h̃, h̃ ∈ Σd,τ and a ∈ D̄d(s) ∪ D̄d(s
′)} for all d ∈ N and

τ ∈ N0. Define, for all d ∈ N and τ ∈ {0, . . . , d + 3},

Hd,τ
6 =

(
H \ ∪5

l=1Hl

)
∩ Σ̃d,τ .

Let H6 = ∪d∈N

(
∪d+3

τ=0H
d,τ
6

)
. Also, for all t ∈ {0, . . . , n + 4}, define

H t
7 = {h ∈ H \ ∪6

l=1Hl : T t(h) ∈ H
(0),t
1,b }.

The strategy f is now defined as follows: For any h ∈ H,

f(h) =



π̂(0),k+1 if h ∈ H
(0),k
1,b for some k ∈ {0, . . . , n + 4},

π̂(i),k+1 if h ∈ H
(i),k
1,a for some i ∈ {0, . . . , n} and k ∈ {n + i + 5, . . . ,M},

s if h ∈
(
∪M

k=1 ∪d∈N ∪d+2
τ=2(H

k,d,τ
2 ∪Hk,d,τ

5 ∪Hd,τ
6 )

)
∪

(
∪n+3

t=2 H t
7

)
,

md if h ∈ ∪M
k=1H

k,d
3 for some d ∈ N,

π̂(d),r+1 if h ∈ ∪M
k=1H

k,d,r
4 for some d ∈ N and r ∈ {0, . . . , n + d + 4},

s′ otherwise.

A.2.2 Auxiliary results

Claim 10 For all i ∈ {0, . . . , n}, the following hold:

1. All actions a 6= s′ are played for t ≥ n + i + 2 consecutive periods in π̂(i).

2. Suppose that, for some t ∈ N, (π̂(i),t, . . . , π̂(i),t+l) = (s′, (s; l)) and 0 < l < 2n+3. Then

either π̂(i),t+l+1 = s or π̂(i),t+l+1 = s′ and l = n + i + 2,

3. Suppose that, for some t ∈ N, (π̂(i),t, . . . , π̂(i),t+l+1) = ((s′; 2), (s; l)) and l > 0. Then

either π̂(i),t+l+2 = s or π̂(i),t+l+2 = s′ and l = n + i + 2, and

4. Suppose that, for some t ∈ N, π̂(i),t ∈ D(s′) and π̂(i),t+1 ∈ D(s). Then π̂(i),t = s′ and

π̂(i),t+1 = s. Furthermore, either (i) π̂(i),t−1 = s′ and t = 2 + βK or (ii) π̂(i),t−1 = s

and t = n + i + 5 + βK for some β ∈ N0.

5. Suppose that, for some t ∈ N, π̂(i),t ∈ D(s) and π̂(i),t+1 ∈ D(s′). Then π̂(i),t+1 = s′.

Proof. This follows immediately from the ordering of A and the definition of π̂(i).

Claim 11 If h ∈ H
(i),k
1,a for some i ∈ {0, . . . , n} and k ∈ {n + i + 5, . . . ,M}, then T k′(h) 6∈

Σd,k′ for all d ∈ N and k′ ∈ N such that d + 4 ≤ k′ ≤ k.
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Proof. Suppose otherwise; then there exists h ∈ H
(i),k
1,a such that T k′(h) ∈ Σd,k′ for some

d ∈ N and k′ ∈ N with d + 4 ≤ k′ ≤ k. Let T k(h) = (a1, . . . , ak). Since T k′(h) ∈ Σd,k′ , we

have ak−k′+2 ∈ D(s′), ak−k′+3 ∈ D(s) and ak−k′+d+4 ∈ D(s′). Therefore, there is an action,

namely ak−k′+3, which is different from s′ and is played at most d + 1 consecutive periods in

T k(h). Since h ∈ H
(i),k
1,a , this contradicts Claim 10.1.

Next, for all τ ∈ N and i ∈ {0, . . . , n}, define

Λi,τ =
{
h ∈ H : h = (at)τ

t=1 such that at = π̂(i),t if t ≤ n + i + 5
}

.

Claim 12 If h ∈ H
(i),k
1,a for some i ∈ {0, . . . , n} and k ∈ {n+i+5, . . . ,M}, and T k′(h) ∈ Λi′,k′

for some i′ ∈ {0, . . . , n} and n + i′ + 5 ≤ k′ ≤ k, then i = i′ and k = k′ + βK for some

β ∈ N0.

Proof. Since h ∈ H
(i),k
1,a and T k′(h) ∈ Λi′,k′ , for some t = k+1−k′, (π̂(i),t, . . . , π̂(i),t+n+i′+4) =

((s′; 2), (s; n + i′ + 2), s′). It then follows from Claim 10.3 that n + i′ + 2 = n + i + 2 and so

i = i′. Hence, by Claim 10.4, t + 1 = 2 + βK for some β ∈ N0 and so k = k′ + βK.

Claim 13 Suppose h ∈ Hk,d
3 ∪ Hk,d,0

4 for some k ∈ {1, . . . ,M} and d ∈ N . Then T k′(h) 6∈

Λi,k′ ∪ Σd′,k′ for all i ∈ {0, . . . , n}, d′ ∈ N and k′ ∈ N such that 3 ≤ k′ < k.

Proof. Suppose otherwise; then T k′(h) ∈ Λi,k′ ∪ Σd′,k′ for some i ∈ {0, . . . , n}, d′ ∈ N and

k′ ∈ N such that 3 ≤ k′ < k. Let T k(h) = (a1, . . . , ak). Since T k′(h) ∈ Λi,k′ ∪ Σd′,k′ and

h ∈ Hk,d
3 ∪ Hk,d,0

4 it follows, respectively, that ak−k′+1, ak−k′+2 ∈ Dd′(s
′) and a3, . . . , ad+3 ∈

D(s). Consequently, k − k′ + 1 ≥ d + 4. This means that ak−k′+2
−d = ak−k′+3

−d = md
−d.

Also, by appealing again to T k′(h) ∈ Λi,k′ ∪ Σd′,k′ , one has ak−k′+3 ∈ Dd′(s). Therefore, by

ak−k′+2 ∈ Dd′(s
′), we have that s−d,d′ = s′−d,d′ ; a contradiction.

Claim 14 If h ∈ Hk,d,r
4 for some k ∈ {1, . . . ,M}, d ∈ N and r ∈ {1, . . . , n + d + 4} and

T k′(h) ∈ Λi,k′ for some i ∈ {0, . . . , n} and 3 ≤ k′ < k, then k′ = r and k′ < n + i + 5.

Proof. Let T k(h) = (a1, . . . , ak). By T k′(h) ∈ Λi,k′ , ak−k′+1 = ak−k′+2 = s′ and, by

h ∈ Hk,d,r
4 , at ∈ D(s) for all t ∈ {3, . . . , d+3}∪{k−r+3, . . . , k}. It then follows that k′ ≥ r

and that k − k′ + 1 ∈ {2, d + 4, . . . , k − r + 2}.

Note, however, that it cannot be that k−k′+1 = k− r+2; otherwise, ak−r+3 = s′. Also,

k − k′ + 1 = k − r − 1 is not possible because otherwise, by T k′(h) ∈ Λi,k′ , ak−k′+3 = s and,
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by h ∈ Hk,d,r
4 , ak−k′+3 = ak−r+1 = s′. Furthermore, k− k′ +1 = k− r is not possible because

otherwise, by T k′(h) ∈ Λi,k′ , ak−k′+3 = s and, by h ∈ Hk,d,r
4 , ak−r+2 = s′.

By Claim 13, it also cannot be that k − k′ + 1 ≤ k − r − 2. The reasoning for this is as

follows. Since h ∈ Hk,d,r
4 and T k′(h) ∈ Λi,k′ , it follows, respectively, that Br(h) ∈ Hk−r,d,0

4

and T k′−r(Br(h)) ∈ Λi,k′−r. But then by Claim 13 it must be that k′ − r < 3.

Hence, it follows from all the above that k − k′ + 1 = k − r + 1, i.e. k′ = r.

Finally, k′ < n + i + 5 because otherwise, by T k′(h) ∈ Λi,k′ , ak−k′+n+i+5 = s′ and, by

h ∈ Hk,d,r
4 , ak−r+n+i+5 = s.

Claim 15 If h ∈ Hk,d,r
4 for some k ∈ {1, . . . ,M}, d ∈ N and r ∈ {1, . . . , n + d + 4}, then

T k′(h) 6∈ Σd′,k′ for all d′ ∈ N and k′ ∈ N such that d′ + 4 ≤ k′ < k.

Proof. Suppose otherwise. Let T k(h) = (a1, . . . , ak). Since h ∈ Hk,d,r
4 and T k′(h) ∈ Σd′,k′ , it

follows, respectively, that Br(h) ∈ Hk−r,d,0
4 and T k′−r(Br(h)) ∈ Σd′,k′−r. But then by Claim

13 it must be that k′−r < 3. Therefore, k−k′+d′+4 > k−r+2. Hence, ak−k′+d′+4 = ak−r+t

for some t > 2. But this is a contradiction since, by T k′(h) ∈ Σd′,k′ , ak−k′+d′+4 ∈ D(s′) and,

by h ∈ Hk,d,r
4 , ak−r+t = s for all t > 2.

Claim 16 If h ∈ Hk,d,τ
5 for some k ∈ {1, . . . ,M}, d ∈ N and τ ∈ {0, . . . , d + 3}, then

T k′(h) 6∈ Σd′,k′ for all d′ ∈ N and k′ ∈ N such that d′ + 4 ≤ k′ < k.

Proof. Suppose not. Then, there exist h = (a1, . . . , at) ∈ Hk,d,τ
5 such that T k′(h) ∈ Σd′,k′

for the parameters given in the statement of the claim. We now derive a contradiction by

considering six different possibilities. Before doing so, let h̄ = Bτ+1(h) and note that, by

h ∈ Hk,d,τ
5 , T k(h) ∈ Σi,k for some i ∈ N .

Case 1: k′ − (τ + 1) ≥ d′ + 4. Then, T k′−(τ+1)(h̄) ∈ Σd′,k′−(τ+1) and h̄ ∈ H
k−(τ+1),i
3 ∪(

∪n+i+4
r=0 H

k−(τ+1),i,r
4

)
. But this contradicts either Claim 13 or Claim 15.

Case 2: k′ − (τ + 1) < d′ + 1. Then, by T k′(h) ∈ Σd′,k′ , at−k′+d′+4 ∈ D(s′) and, by

h ∈ Hk,d,τ
5 and t− k′ + d′ + 4 > t− τ + 2, at−k′+d′+4 ∈ D(s); a contradiction.

Case 3: k′ − (τ + 1) = d′ + 1. Then, by T k′(h) ∈ Σd′,k′ , at−k′+d′+3 ∈ D(s) and, by

h ∈ Hk,d,τ
5 and t− k′ + d′ + 3 = t− τ + 1, at−k′+d′+3 ∈ D(s′); a contradiction.

Case 4: k′− (τ + 1) equals either d′ + 2 or d′ + 3 and h̄ ∈ H
k−(τ+1),i
3 ∪H

k−(τ+1),i,0
4 . Then,

3 ≤ k′ − (τ + 1) < k − (τ + 1) and T k′−(τ+1)(h̄) ∈ Σd′,k′−(τ+1). This contradicts Claim 13.
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Case 5: k′ − (τ + 1) = d′ + 3 and h̄ ∈ H
k−(τ+1),i,r
4 with r > 0. By T k′(h) ∈ Σd′,k′ , (i)

at−k′+2 ∈ D(s′), (ii) at−k′+l ∈ D(s) for all 3 ≤ l ≤ d′ + 3 and (iii) at−k′+d′+4 ∈ D(s′). By

h ∈ Hk,d,τ
5 and h̄ ∈ H

k−(τ+1),i,r
4 , (iv) at−τ ∈ D̄d(π̂

(i),r+1) and (v) at−τ−r′ = π̂(i),r−r′+1 for all

1 ≤ r′ ≤ r.

By r > 0 and t−k′ +d′ +4 = t− τ , (iii) and (iv) imply that either r = 1 or r = n+ i+4.

If r = 1, by (v), at−τ−1 = π̂(i),1 = s′. This, together with t−τ−1 = t−k′+d′+3, contradicts

(ii). If r = n + i + 4, then, by (v) and n + i− d′ + 3 ≥ 3, at−τ−d′−2 = π̂(i),n+i−d′+3 = s. This,

together with t− τ − d′ − 2 = t− k′ + 2, contradicts (i).

Case 6: k′ − (τ + 1) = d′ + 2 and h̄ ∈ H
k−(τ+1),i,r
4 with r > 0. Then, by (ii) and

t− τ = k − k′ + d′ + 3, at−τ ∈ Dd′(s). Therefore, by (iv), at−τ ∈ D̄d(s) and d = d′.

Next, we show that r = d+2. If r > d+2, then, by (v), at−τ−d−1 = π̂(i),r−d = s. But this is

a contradiction because t−k′+2 = t−τ−d−1 and, by (i), at−k′+2 ∈ Dd(s
′). If r < d+2, then,

by (ii), at−k′+d−r+4 ∈ D(s). But this is a contradiction because t−τ−r+1 = t−k′+d−r+4

and, by (v), at−τ−r+1 = π̂(i),2 = s′.

By h̄ ∈ H
k−(τ+1),i,r
4 and r = d + 2, we have T d+2(h̄) = ((s′; 2), (s; d)). Since at−τ ∈ D̄d(s),

it then follows from the definition of Hk,d,τ
5 that τ = 0. But this contradicts k′−(τ+1) = d′+2

and k′ ≥ d′ + 4.

Claim 17 If T k(h) ∈ Σd,k ∩Σd′,k for some d, d′ ∈ N and k ∈ {min{d, d′}+ 4, . . . ,M}, then

d = d′.

Proof. Suppose not; assume that d > d′. Let T k(h) = (a1, . . . , ak). Since T k(h) ∈ Σd,k,

ad′+4 ∈ Dd(s) and, since T k(h) ∈ Σd′,k, ad′+4 ∈ Dd′(s
′). But this is a contradiction.

Claim 18 Let h ∈ H \ ∪5
l=1Hl and a ∈ S. Then, one of the following conditions hold: (a)

h · a 6∈ ∪5
l=1Hl, (b) h · a ∈ H

(i),n+i+5
1,a for some i ∈ {0, . . . , n} and (c) T d+4(h · a) ∈ Σd,d+4 for

some d ∈ N . Furthermore, if a ∈ D(s), then h · a 6∈ ∪5
l=1Hl.

Proof. Suppose that h · a does not satisfy (a)–(c). Then there are six cases to consider. (i)

h · a ∈ H
(i),k
1,a for some i and k > n + i + 5: then h ∈ H1,a; a contradiction. (ii) h · a ∈ H1,b:

then h ∈ H1,b; a contradiction. (iii) h · a ∈ H2: then h ∈ H1 ∪ H2; a contradiction. (iv)

h ·a ∈ H3 and T d+4(h ·a) 6∈ Σd,d+4 for all d ∈ N : then h ∈ H3; a contradiction. (v) h ·a ∈ H4:

then h ∈ H3 ∪H4; a contradiction. (vi) h · a ∈ H5: then h ∈ H3 ∪H4 ∪H5; a contradiction.

Furthermore, if a ∈ D(s), by the definition of H
(i),n+i+5
1,a and Σd,d+4, (b) and (c) cannot

hold. Therefore, (a) must hold, i.e. h · a 6∈ ∪5
l=1Hl.
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Claim 19 If h ∈ H
(i),M
1,a for some i ∈ {0, . . . , n}, then h ∈ H

(i),k
1,a for some k < M .

Proof. Since h ∈ H
(i),M
1,a , TM(h) = (π̂(i),1, . . . , π̂(i),M). Also, by assumption, M > K + n +

i + 5. Therefore, h ∈ H
(i),M−K
1,a .

Claim 20 If h ∈ HM,d,τ
2 for some d ∈ N and τ ∈ {0, . . . , d + 3}, then h ∈ Hk,d,τ

2 for some

k < M .

Proof. Since h ∈ HM,d,τ
2 , TM(h) = h̄ · a · h̃, where h̄, a, and h̃ are as in the definition of

HM,d,τ
2 . In particular, h̄ ∈ H

(i),k′

1,a ∪ H
(0),k′

1,b for some i ∈ {0, . . . , n} and k′ ≤ M − (τ + 1).

Therefore, h ∈ Hk′+τ+1,d,τ
2 .

If k′+τ+1 < M , the claim trivially follows. If k′+τ+1 = M , then h̄ = (π̂(i),1, . . . , π̂(i),M−(τ+1))

for some i ∈ {0, . . . , n}. Also, by assumption, M ≥ (n + 4) + (2n + 5) + K. Therefore,

h̄ ∈ H
(i),M−(τ+1)−K
1,a and hence h ∈ HM−K,d,τ

2 .

Claim 21 If h ∈ Hk,d
3 for some k ∈ {1, . . . ,M} and d ∈ N , then k < M .

Proof. Let h̄ and h̃ be such that T k(h) = h̄ · h̃ and satisfy the conditions in the definition

of Hk,d
3 . Then k = `(h̄) + `(h̃) < d + 4 + (θ(h̄) + 1)T ≤ n + 4 + (n + 5)T < M .

Claim 22 If h ∈ Hk,d,r
4 for some k ∈ {1, . . . ,M}, d ∈ N and r ∈ {0, . . . , n + d + 4}, then

k < M .

Proof. Let h̄, ĥ and h̃ be such that T k(h) = h̄ · ĥ · h̃ and satisfy the conditions in the

definition of Hk,d,r
4 . Then k ≤ `(h̄) + `(ĥ) + `(h̃) = d + 4 + (θ(h̄) + 1)T + n + d + 4 ≤

n + 4 + (n + 5)T + 2n + 4 < M .

Claim 23 If h ∈ Hk,d,τ
5 for some k ∈ {1, . . . ,M}, d ∈ N and τ ∈ {0, . . . , d + 3}, then

k < M .

Proof. Let h̄, a and h̃ be such that T k(h) = h̄ · a · h̃ and satisfy the conditions in the

definition of Hk,d,τ
5 . By the proof of Claims 21 and 22, `(h̄) ≤ n + 4 + (n + 5)T + 2n + 4.

Therefore, k = `(h̄) + `(a · h̃) ≤ [n + 4 + (n + 5)T + 2n + 4] + 1 + K < M .

A.2.3 Well-definedness of the strategy profile

In this subsection we show that f is well defined.

Claim 24 If h ∈ H
(i),k
1,a ∩ H

(i′),k′

1,a for some i, i′ ∈ {0, . . . , n}, k ∈ {n + i + 5, . . . ,M} and

k′ ∈ {n + i′ + 5, . . . ,M}, then i = i′ and k = k′ + βK for some β ∈ Z.

Proof. It follows immediately by Claim 12.
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Claim 25 For all i ∈ {0, . . . , n}, k ∈ {n + i + 5, . . . ,M} and k′ ∈ {0, . . . , n + 4}, H
(i),k
1,a ∩

H
(0),k′

1,b = ∅.
Proof. If h ∈ H

(0),k′

1,b , then `(h) < n + 5, whereas if h ∈ H
(i),k
1,a , then `(h) ≥ n + i + 5 for

some i ∈ {0, . . . , n}. Hence, H
(i),k
1,a ∩H

(0),k′

1,b = ∅.
Claim 26 For all i ∈ {0, . . . , n}, k ∈ {n + i + 5, . . . ,M}, k′ ∈ {1, . . . ,M}, d ∈ N and

τ ∈ {0, . . . , d + 3}, H
(i),k
1,a ∩Hk′,d,τ

2 = ∅.
Proof. Suppose not; then there exist h = (a1, . . . , at) ∈ h ∈ H

(i),k
1,a ∩Hk′,d,τ

2 for some i, k, k′,

d and τ as described in the claim. Since h ∈ H
(i),k
1,a , then π̂(i),r = at−k+r for all 1 ≤ r ≤ k.

Also since h ∈ Hk′,d,τ
2 , then T k′(h) = h̄ · at−τ · h̃, where h̃ ∈ Σd,τ , at−τ ∈ D̄d(π̂

(i′),k′−τ ) and

h̄ ∈ H
(i′),k′−(τ+1)
1 for some i′ ∈ {0, . . . , n} satisfying either k′ − (τ + 1) ≥ n + i′ + 5 or i′ = 0,

k′ = t and k′ − (τ + 1) < n + 5. Next, consider each of these possibilities separately.

Case 1: h̄ ∈ H
(0),k′−(τ+1)
1,b , k′ = t and k′−(τ +1) < n+5. In this case ak′−k+1 = ak′−k+2 =

s′, h̄ = ((s′; 2), s, . . . , s) and `(h̄) = k′ − (τ + 1). Thus, since τ ≤ d + 3 and k ≥ n + i + 5,

it must be that k′ − k + 1 < k′ − τ and so k′ = k. But then at−τ ∈ D̄d(s) ∪ D̄d(s
′) and

at−τ = π̂(i),t−τ ∈ {s, s′}, a contradiction.

Case 2: h̄ ∈ H
(i′),k′−(τ+1)
1,a and k′ − (τ + 1) ≥ n + i′ + 5. We consider two subcases.

Subcase 1: k ≥ n+ i+5+τ +1. Let ĥ = Bτ+1(h). Since k− (τ +1) ≥ n+ i+5, it follows

that ĥ ∈ H
(i),k−(τ+1)
1,a . Also, since T k′−(τ+1)(ĥ) = h̄, ĥ ∈ H

(i′),k′−(τ+1)
1,a . Then, by Claim 24,

i = i′ and k − (τ + 1) = k′ − (τ + 1) + βK for some β ∈ Z. This, together with a = π̂(i),k−τ

and a ∈ D̄d(π̂
(i′),k′−τ ), imply that π̂(i),k′−τ = π̂(i),k−τ ∈ D̄d(π̂

(i),k′−τ ), a contradiction.

Subcase 2: k = n + i + 5 + τ . By h ∈ H
(i),k
1,a , at−τ−1 = s and at−τ = s′. Also, by

h ∈ Hk′,d,τ
2 , at−τ−1 = π̂(i′),k′−τ−1 and at−τ ∈ D̄d(π̂

(i′),k′−τ ). Hence, it follows from at−τ−1 = s

and at−τ = s′, respectively, that π̂(i′),k′−τ−1 = s and π̂(i′),k′−τ ∈ D̄d(s
′). But this contradicts

Claim 10.5.

Subcase 3: k = n + i + 4 + τ . First, we show that k′ ≥ k. Suppose otherwise. Since

h̄ ∈ H
(i′),k′

1,a then T k′(h) ∈ Λi′,k′ . By Claim 12, this together with h ∈ H
(i),k
1,a imply that

k = k′ + βK for some β ∈ N. Also, by the supposition that k < n + i + 5 + τ + 1 and

k′ − (τ + 1) ≥ n + i′ + 5, we have k − k′ ≤ n. Since n < K, we have a contradiction.

By h ∈ H
(i),k
1,a , (at−τ−(n+i+3), . . . , at−τ ) = ((s′; 2), (s; n + i + 2)). Also, by h ∈ Hk′,d,τ

2 ,

(at−τ−(n+i+3), . . . , at−τ ) = (π̂(i′),k′−τ−(n+i+3), . . . , π̂(i′),k′−τ−1, at−τ ). Hence, it follows from

at−τ = s that π̂(i′),k′−τ ∈ D̄d(s). But this contradicts Claim 10.3.
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Subcase 4: k < n + i + 4 + τ . By k ≥ n + i + 5 and τ ≤ d + 3, it follows that τ > 0 and

k − τ ≥ 2. Hence, by h ∈ Hk′,d,τ
2 , at−τ+1 ∈ D(s′) and, by h ∈ H

(i),k
1,a and k − τ < n + i + 4,

at−τ+1 = s; but this is a contradiction.

Claim 27 For all k ∈ {0, . . . , n + 4}, k′ ∈ {1, . . . ,M}, d ∈ N and τ ∈ {0, . . . , d + 3},

H
(0),k
1,b ∩Hk′,d,τ

2 = ∅.

Proof. Suppose otherwise; then there exists h ∈ H
(0),k
1,b ∩ Hk′,τ,d

2 . This means that h =

(π(0),1, . . . , π(0),k) and T k′(h) = h̄ · a · h̃ satisfying the remaining conditions in the definition

of Hk′,d,τ
2 . Therefore, for some k̂ < n + 5, h̄ · a ∈ H

(0),k̂+1
1,b . But this is a contradiction as, by

h ∈ Hk′,d,τ
2 , a ∈ D̄(π̂(0),k̂+1).

Claim 28 If h ∈ Hk,d,τ
2 ∩Hk′,d′,τ ′

2 for some k, k′ ∈ {1, . . . ,M}, d, d′ ∈ N , τ ∈ {0, . . . , d + 3}

and τ ′ ∈ {0, . . . , d′ + 3}, then τ = τ ′, d = d′ and k = k′ + βK for some β ∈ Z.

Proof. Let h = (a1, . . . , at). First, we establish that τ = τ ′. Suppose, without loss

of generality, that τ < τ ′. Define ĥ = Bτ+1(h) = (a1, . . . , at−(τ+1)) and note that ĥ ∈(
∪n

i=0H
(i),k−(τ+1)
1

)
∩H

k′−(τ+1),d′,τ ′−(τ+1)
2 . But this contradicts Claims 26 or 27.

By τ = τ ′ and the definition of Hk,d,τ
2 and Hk′,d′,τ ′

2 , we have that ĥ ∈ H
(i),k−(τ+1)
1 and

ĥ ∈ H
(i′),k′−(τ ′+1)
1 for some i, i′ ∈ {0, . . . , n}. It then follows from Claims 24 and 25 that

k = k′ + βK for some β ∈ Z and i = i′. Also, by h ∈ Hk,d,τ
2 , at−τ = (ad, π̂

(i),k−τ
−d ) and,

by h ∈ Hk′,d′,τ ′

2 , at−τ ′ = (ad′ , π̂
(i′),k′−τ ′

−d′ ). Since i = i′, k = k′ + βK and τ = τ ′, then

(ad, π̂
(i),k−τ
−d ) = (ad′ , π̂

(i),k−τ
−d′ ) and so d = d′.

Claim 29 For all i ∈ {0, . . . , n}, k ∈ {n + i + 5, . . . ,M}, k′ ∈ {1, . . . ,M} and d ∈ N ,

H
(i),k
1,a ∩Hk′,d

3 = ∅.

Proof. Suppose that h ∈ H
(i),k
1,a ∩Hk′,d

3 . Since Hk′,d
3 ⊆ Σd,k′ and, by h ∈ Hk′,d

3 , k′ ≥ d+4, we

have a contradiction to Claim 11 when k ≥ k′. Also, since H
(i),k
1,a ⊆ Λi,k and k ≥ n + i + 5,

we have a contradiction to Claim 13 when k < k′.

Claim 30 For all k ∈ {0, . . . , n + 4}, k′ ∈ {1, . . . ,M} and d ∈ N , H
(0),k
1,b ∩Hk′,d

3 = ∅.

Proof. Suppose there exists h = (a1, . . . , at) ∈ H
(0),k
1,b ∩ Hk′,d

3 . By h ∈ Hk′,d
3 , at−k′+d+4 ∈

D(s′) and, by h ∈ H
(0),k
1,b , ar = s for all r > 2. But this is a contradiction as it implies

d + 4 ≤ t− k′ + d + 4 ≤ 2.

Claim 31 For all k, k′ ∈ {1, . . . ,M}, d, d′ ∈ N and τ ∈ {0, . . . , d + 3}, Hk,τ,d
2 ∩Hk′,d′

3 = ∅.
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Proof. Suppose that h = (a1, . . . , at) ∈ Hk,d,τ
2 ∩Hk′,d′

3 . There are two possibilities.

Case 1: k′ > k. First, note that, for some i ∈ {0, . . . , n}, Bτ+1(h) ∈ H
(i),k−(τ+1)
1,a with

k− (τ +1) ≥ n+ i+5; otherwise, Bτ+1(h) ∈ H
(0),k−(τ+1)
1,b and `(h) = k < k′; a contradiction.

It follows from Bτ+1(h) ∈ H
(i),k−(τ+1)
1,a , for some i ∈ {0, . . . , n}, and k ≥ n + i + 5, that

T k(h) ∈ Λi,k. But this contradicts Claim 13 because h ∈ Hk′,d′

3 and k′ > k ≥ n + i + 5.

Case 2: k ≥ k′. There are two possibilities.

Subcase 1: k′ − τ > d′ + 4. In this case, Bτ+1(h) belongs to H
(i),k−(τ+1)
1 , for some

i ∈ {0, . . . , n}, and to H
k′−(τ+1),d′

3 . But this contradicts Claim 29 or 30.

Subcase 2: k′− τ ≤ d′ + 4. Since h ∈ Hk′,d′

3 , we have (i) at−k′+r ∈ Dd′(s
′) for r = 1, 2, (ii)

at−k′+r ∈ Dd′(s) for r = 3, . . . , d′ + 3 and (iii) at−k′+d′+4 ∈ Dd′(s
′). When k′ − τ = d′ + 4,

by (i), (ii) and Bτ+1(h) ∈ H
(i),k−(τ+1)
1 for some i ∈ {0, . . . , n}, Claim 10.4 implies that

(at−τ−d′−3, . . . , at−τ−1) = ((s′; 2), (s; d′ + 1)) and at−τ ∈ D̄d(s). But the latter contradicts

(iii). Therefore, it must be that k′ − τ < d′ + 4.

By h ∈ Hk,d,τ
2 , it must be that (iv) at−τ+r ∈ Dd(s

′) for all r = 1, 2 and (v) at−τ+r ∈ Dd(s)

for all r ≥ 3. But then by t − k′ + d′ + 4 > t − τ , (iii) and (v), it must be that either

t − k′ + d′ + 4 = t − τ + 1 or t − k′ + d′ + 4 = t − τ + 2. The latter, however, cannot

hold because, by (ii), at−k′+d′+3 ∈ D(s) and, by (iv), at−τ+1 ∈ D(s′). Therefore, assume

the former. This, together with (i), (ii), Bτ+1(h) ∈ H
(i),k−(τ+1)
1 for some i ∈ {0, . . . , n} and

Claim 10.4 imply that (at−k′+1, . . . , at−k′+d′+2) = ((s′; 2), (s; d′)) and at−k′+d′+3 ∈ D̄d(s). But

the latter, together with (ii), implies d = d′. Hence, by part (4) of the definition of Hk,d,τ
2 ,

τ = 0. Thus, k′ < d′ + 4; but this contradicts h ∈ Hk′,d′

3 .

Claim 32 If h ∈ Hk,d
3 ∩ Hk′,d′

3 for some k, k′ ∈ {1, . . . ,M} and d, d′ ∈ N , then k = k′ and

d = d′.

Proof. First we show that k = k′. Suppose otherwise and assume, without loss of generality,

that k > k′. By h ∈ Hk′,d′

3 , we have T k′(h) ∈ Σd′,k′ and k > k′ ≥ d′ + 4. But this contradicts

Claim 13 because h ∈ Hk,d
3 .

To show that d = d′, by h ∈ Hk,d
3 ∩ Hk,d′

3 , we have T k(h) ∈ Σd,k ∩ Σd′,k, k ≥ d + 4 and

k ≥ d′ + 4. Hence, by Claim 17, d = d′.

Claim 33 For all i ∈ {0, . . . , n}, k ∈ {n + i + 5, . . . ,M}, k′ ∈ {1, . . . ,M}, d ∈ N and

r ∈ {0, . . . , n + d + 4}, H
(i),k
1,a ∩Hk′,d,r

4 = ∅.
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Proof. Suppose that h ∈ H
(i),k
1,a ∩Hk′,d,r

4 . Then, T k(h) ∈ Λi,k, k ≥ n + i + 5, T k′(h) ∈ Σd,k′

and k′ ≥ d + 4. But these contradict Claim 11 if k ≥ k′ and Claim 14 if k < k′.

Claim 34 For all k ∈ {0, . . . , n + 4}, k′ ∈ {1, . . . ,M}, d ∈ N and r ∈ {0, . . . , n + d + 4},

H
(0),k
1,b ∩Hk′,d,r

4 = ∅.

Proof. If h ∈ Hk′,d,r
4 then `(h) > T . If h ∈ H

(0),k
1,b then `(h) < n + 5 < T by (14).

Claim 35 For all k, k′ ∈ {1, . . . ,M}, d, d′ ∈ N , r ∈ {0, . . . , n+d′+4} and τ ∈ {0, . . . , d+3},

Hk,d,τ
2 ∩Hk′,d′,r

4 = ∅.

Proof. Suppose that h ∈ Hk,d,τ
2 ∩Hk′,d′,r

4 . By h ∈ Hk,d,τ
2 , Bτ+1(h) ∈ H

(i),k−(τ+1)
1 . Also, since

h ∈ Hk′,d′,r′

4 and T > τ + 1, then Bτ+1(h) belongs to H
k′−(τ+1),d′,r−(τ+1)
4 if r − (τ + 1) ≥ 0 or

to H
k′−(τ+1),d′

3 otherwise. But, by Claims 29, 30, 33 or 34, this is a contradiction.

Claim 36 For all k, k′ ∈ {1, . . . ,M}, d, d′ ∈ N and r ∈ {0, . . . , n+d′+4}, Hk,d
3 ∩Hk′,d′,r

4 = ∅.

Proof. Suppose that h ∈ Hk,d
3 ∩Hk′,d′,r

4 . Assume first that k = k′. By Claim 17, this implies

d = d′. Since h ∈ Hk,d
3 , it follows that k < (θ(T k(h)) + 1)T + d + 4 and, since h ∈ Hk′,d′,r

4 ,

k = k′ and d = d′, it follows that k ≥ (θ(T k(h)) + 1)T + d + 4. But this is a contradiction.

Suppose next that k > k′. Then, by h ∈ Hk′,d′,r
4 , T k′(h) ∈ Σd′,k′ with d′ + 4 ≤ k′ < k.

But this together with h ∈ Hk,d
3 , contradicts Claim 13.

Finally, suppose that k′ > k. Then, by h ∈ Hk,d
3 , T k(h) ∈ Σd,k with d + 4 ≤ k < k′. But

this together with h ∈ Hk′,d′,r
4 contradicts Claim 15.

Claim 37 If h ∈ Hk,d,r
4 ∩Hk′,d′,r′

4 for some k, k′ ∈ {1, . . . ,M}, d, d′ ∈ N and r, r′ ∈ N0, then

k = k′, d = d′ and r = r′.

Proof. To show that k = k′, suppose, without loss of generality, that k > k′. Then, by

h ∈ Hk′,d′,r′

4 , T k′(h) ∈ Σd′,k′ with d′+4 ≤ k′ < k. But this together with h ∈ Hk,d,r
4 contradicts

Claim 15. Hence, k = k′ and, by Claim 17, d = d′. Thus, r = k− (d+4+(θ(T k(h))+1)T ) =

k′ − (d′ + 4 + (θ(T k(h)) + 1)T ) = r′.

Claim 38 For all i ∈ {0, . . . , n}, k ∈ {n + i + 5, . . . ,M}, k′ ∈ {1, . . . ,M}, d ∈ N and

τ ∈ {0, . . . , d + 3}, H
(i),k
1,a ∩Hk′,d,τ

5 = ∅.

Proof. Suppose that h = (a1, . . . , at) ∈ H
(i),k
1,a ∩Hk′,d,τ

5 . Then h ∈ H
(i),k
1,a , T k′(h) ∈ Σd,k′ and

k′ ≥ d + 4. Therefore, k′ > k; otherwise we would contradict Claim 11.

Consider next the case k < k′ and let ĥ = Bτ+1(h). Then, ĥ ∈ H
k′−(τ+1),d′

3 ∪H
k′−(τ+1),d′,r
4

for some d′ ∈ N and 0 ≤ r ≤ n + d′ + 4. Also, by h ∈ H
(i),k
1,a , T k−(τ+1)(ĥ) ∈ Λi,k−(τ+1).
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Furthermore, since 0 ≤ τ ≤ d + 3 ≤ n + 3, we have that k − (τ + 1) ≥ 1. Therefore, by

Claims 13 and 14, one of the following must hold: (1) k − (τ + 1) = 1, (2) k − (τ + 1) = 2

and (3) Bτ+1(h) ∈ H
k′−(τ+1),d′,r
4 , r > 0, k − (τ + 1) = r and 3 ≤ k − (τ + 1) < n + i + 5.

Case (1) implies that t− τ + 1 = t− k + 3 and case (2) implies that t− τ + 1 = t− k + 4.

Since T k(h) ∈ H
(i),k
1,a , we have at−k+3 = at−k+4 = s, and so, at−τ+1 = s in both cases. Since

h ∈ Hk′,d,τ
5 , we also have T τ (h) ∈ Σd,τ . But this implies at−τ+1 ∈ Dd(s

′); a contradiction.

In case (3), we have that t− τ ≤ t− k + n + i + 5. This, together with h ∈ H
(i),k
1,a , imply

that at−τ ∈ {s, s′}. Since h ∈ Hk′,d,τ
5 , Bτ+1(h) ∈ H

k′−(τ+1),d′,r
4 and π̂(d′),r+1 ∈ {s, s′}, it must

be that at−τ ∈ D̄d(s) ∪ D̄d(s
′); a contradiction.

Claim 39 For all k ∈ {0, . . . , n + 4}, k′ ∈ {1, . . . ,M}, d ∈ N and τ ∈ {0, . . . , d + 3},

H
(0),k
1,b ∩Hk′,d,τ

5 = ∅.

Proof. Suppose h = (a1, . . . , at) ∈ H
(0),k
1,b ∩Hk′,d,τ

5 . By h ∈ Hk′,d,τ
5 , at−k′+1, at−k′+i+4 ∈ D(s′)

for some i ∈ N and, by h ∈ H
(0),k
1,b , h = ((s′; 2), (s; k − 2)); a contradiction.

Claim 40 For all k, k′ ∈ {1, . . . ,M}, d, d′ ∈ N , τ ∈ {0, . . . , d + 3} and τ ′ ∈ {0, . . . , d′ + 3},

Hk,d,τ
2 ∩Hk′,d′,τ ′

5 = ∅.

Proof. Suppose that h ∈ Hk,d,τ
2 ∩ Hk′,d′,τ ′

5 . Assume first that τ ≤ τ ′. Then, Bτ+1(h) ∈ H1

and Bτ+1(h) ∈ H3 ∪H4 ∪H5. But, this contradicts Claims 29, 30, 33, 34, 38 or 39.

Suppose next that τ > τ ′. Then, Bτ ′+1(h) ∈ H2 and Bτ ′+1 ∈ H3 ∪ H4. But, this

contradicts Claim 31 or Claim 35.

Claim 41 For all k, k′ ∈ {1, . . . ,M}, d, d′ ∈ N and τ ∈ {0, . . . , d′ + 3}, Hk,d
3 ∩Hk′,d′,τ

5 = ∅.

Proof. Suppose that h = (a1, . . . , at) ∈ Hk,d
3 ∩ Hk′,d′,τ

5 . By h ∈ Hk,d
3 , T k(h) ∈ Σd,k with

k ≥ d+4, and, by h ∈ Hk′,d′,τ
5 , T k′(h) ∈ Σi′,k′ with k′ ≥ i′ +4 for some i′ ∈ N . By appealing

to Claims 13, 16 and 17, it then follows that k = k′ and d = i′.

By h ∈ Hk′,d′,τ
5 and the last two equalities, k − (τ + 1) ≥ d + 4. But then, by h ∈ Hk,d

3 ,

we have Bτ+1(h) ∈ H
k−(τ+1),d
3 . This, together with h ∈ Hk′,d′,τ

5 , implies at−τ ∈ D̄d′(m
d) and

d′ 6= d. But, since h ∈ Hk,d
3 and k − (τ + 1) ≥ d + 4, at−τ ∈ Dd(m

d); a contradiction.

Claim 42 For all k, k′ ∈ {1, . . . ,M}, d, d′ ∈ N , r ∈ {0, . . . , n+d+4} and τ ∈ {0, . . . , d′+3},

Hk,d,r
4 ∩Hk′,d′,τ

5 = ∅.
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Proof. Suppose that h = (a1, . . . , at) ∈ Hk,d,r
4 ∩ Hk′,d′,τ

5 . By h ∈ Hk,d,r
4 , T k(h) ∈ Σd,k with

k ≥ d+4, and, by h ∈ Hk′,d′,τ
5 , T k′(h) ∈ Σi′,k′ with k′ ≥ i′ +4 for some i′ ∈ N . By appealing

to Claims 15 and 16, it then follows that k = k′.

Suppose r ≥ τ +1. By h ∈ Hk,d,r
4 , Bτ+1(h) ∈ H

k−(τ+1),d,r−(τ+1)
4 . This implies that at−τ =

π̂(d),r−τ and, by h ∈ Hk′,d′,τ
5 and Claims 36 and 37, at−τ ∈ D̄d′(π̂

(d),r−τ ); a contradiction.

Finally, suppose r < τ + 1. By h ∈ Hk,d,r
4 , Bτ+1(h) ∈ H

k−(τ+1),d
3 . This implies that

at−τ ∈ Dd(m
d) and, by h ∈ Hk′,d′,τ

5 and Claims 32 and 36, at−τ ∈ D̄d′(m
d) and d′ 6= d; a

contradiction.

Claim 43 If h ∈ Hk,d,τ
5 ∩Hk′,d′,τ ′

5 for some k, k′ ∈ {1, . . . ,M}, d, d′ ∈ N , τ ∈ {0, . . . , d + 3}

and τ ′ ∈ {0, . . . , d′ + 3}, then k = k′, τ = τ ′ and d = d′.

Proof. Suppose h ∈ Hk,d,τ
5 ∩Hk′,d′,τ ′

5 . First, note that τ = τ ′. Otherwise, say τ < τ ′; then,

by h ∈ Hk,d,τ
5 , Bτ+1(h) ∈ H5 and, by h ∈ Hk′,d′,τ ′

5 , Bτ+1(h) ∈ H3 ∪ H4. This contradicts

Claim 41 or Claim 42. Second, note that Bτ+1(h) ∈ ∪i∈N

(
H

k−(τ+1),i
3 ∪

(
∪rH

k−(τ+1),i,r
4

))
and Bτ ′+1(h) ∈ ∪i∈N

(
H

k′−(τ ′+1),i
3 ∪

(
∪rH

k′−(τ ′+1),i,r
4

))
. Since τ = τ ′, by Claims 32, 36 and

37, k = k′. Finally, it follows immediately from the definitions of Hk,d,τ
5 and Hk′,d′,τ ′

5 , k = k′

and τ = τ ′ that d = d′.

Claim 44 If h ∈ Hd,τ
6 ∩Hd′,τ ′

6 for some d, d′ ∈ N , τ ∈ {0, . . . , d+3} and τ ′ ∈ {0, . . . , d′+3},

then d = d′.

Proof. Let h = (a1, . . . , at) ∈ Hd,τ
6 ∩ Hd′,τ ′

6 . We may assume, without loss of generality,

that τ ≥ τ ′. Then, by h ∈ Hd′,τ ′

6 , at−τ ′ ∈ D̄d′(s) ∪ D̄d′(s
′) and, by τ ≥ τ ′ and h ∈ Hd,τ

6 ,

at−τ ′ ∈ Dd(s) ∪Dd(s
′). Thus, d = d′.

A.2.4 Outcome paths induced by f and by one-shot deviations from f

Claim 45 If h ∈ H
(i),k
1,a for some i ∈ {0, . . . , n} and k ∈ {n + i + 5, . . . ,M}, then π(f |h) =

(π̂(i),k+1, π̂(i),k+2, . . .).

Proof. By Claim 19, we may assume that k < M . Hence, f(h) = π̂(i),k+1 and h · f(h) ∈

H
(i),k+1
1,a . Thus, by induction, π(f |h) = (π̂(i),k+1, π̂(i),k+2, . . .).

Claim 46 If h ∈ H
(0),k
1,b for some k ∈ {0, . . . , n + 4}, then π(f |h) = (π(0),k+1, π(0),k+2, . . .).

Proof. If k < n + 4, then h · f(h) ∈ H
(0),k+1
1,b . If k = n + 4, then h · f(h) ∈ H

(0),n+5
1,a . Thus,

by Claim 45, π(f |h) = (π(0),k+1, π(0),k+2, . . .).
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Claim 47 If h ∈ Hk,d,r
4 for some k ∈ {1, . . . ,M}, d ∈ N and r ∈ {0, . . . , n + d + 4}, then

π(f |h) = (π̂(d),r+1, π̂(d),r+2, . . .).

Proof. If r = n + d + 4, then h · f(h) ∈ H
(d),n+d+5
1,a , thus, π(f |h) = (π̂(d),r+1, π̂(d),r+2, . . .)

by Claim 45. If r < n + d + 4, then f(h) = π̂(d),r+1 and therefore h · f(h) ∈ Hk+1,d,r+1
4 .

Furthermore, by Claim 22, k < M . Hence, by induction, π(f |h) = (π̂(d),r+1, π̂(d),r+2, . . .).

Claim 48 If h ∈ Hk,d
3 for some k ∈ {1, . . . ,M} and d ∈ N , then π(f |h) = ((md; (θ + 1)T −

k + d + 4), π̂(d),1, π̂(d),2, . . .) where θ = θ(T k(h)).

Proof. Since f(h) = md, we have h · f(h) ∈ Hk+1,d,0
4 if k − (d + 4) = (θ + 1)T − 1 and

h · f(h) ∈ Hk+1,d
3 if k − (d + 4) < (θ + 1)T − 1. Also, by Claim 21, k < M . Therefore, by

Claim 47, the claim follows by induction.

Claim 49 Let h ∈ Hk,d,τ
2 ∪Hk,d,τ

5 ∪Hd,τ
6 for some k ∈ {1, . . . ,M}, d ∈ N and τ ∈ {0, . . . , d′+

3} and ā ∈ Dd(f(h)). Then there exists θ̄(ā) ∈ {0, . . . , d + 4} and t(ā) ∈ {1, . . . , d + 5} such

that π(f |h · ā) = π(d)(θ̄(ā), t(ā)) and θ̄(f(h)) < θ̄(ā) for any ā ∈ D̄d(f(h)).

Proof. We establish this claim by considering the different possible cases.

Case 1: One of the following conditions hold: (a) τ = d + 3, (b) τ = 0, T d+3(h) =

((s′; 2), (s; d), a) and a ∈ D̄d(s), and (c) h ∈ Hd,0
6 and T d+3(h) ∈ Σd,d+3. In this case, it

follows that f(h) = s′, ā ∈ Dd(s
′) and h · ā ∈ Hd+4,d

3 . Thus, by Claim 48, π(f |h · ā) =

π(d)(θ̄(ā), t(ā)) where t(ā) = d + 5 and θ̄(ā) = θ(T d+3(h) · ā). Furthermore, if ā ∈ D̄d(f(h)),

then θ(T d+3(h) · ā) = θ(T d+3(h) · f(h)) + 1. Hence, θ̄(f(h)) < θ̄(ā).

Case 2: h ∈ Hk,d,τ
2 ∪Hk,d,τ

5 and none of the conditions (a)–(c) hold. In this case, f(h) =

π(d),τ+1 and h · ā ∈ Hk+1,d,τ+1
2 ∪ Hk+1,d,τ+1

5 . Thus, by Claims 20 and 23, f(h · ā) = π̂(d),τ+2.

Then, by induction, it follows that f(h·ā·π̂(d),τ+2) = π̂(d),τ+3, . . . , f(h·ā·π̂(d),τ+2·· · ··π̂(d),d+2) =

π̂(d),d+3. Therefore, by appealing to Case 1, we have π(f |h · ā) = π(d)(θ̄(ā), t(ā)) where

t(ā) = τ + 2 and θ̄(ā) = θ(T τ (h) · (ā, π(d),τ+2, . . . , π(d),d+4)). It also follows from the latter

that θ̄(ā) = θ̄(f(h)) + 1 if ā ∈ D̄d(f(h)).

Case 3: h ∈ Hd,τ
6 and none of the conditions (a)–(c) hold. For any history h′ ∈ H, define

v(h′) = max{t ∈ {0, . . . , d + 3} : T t(h) ∈ Hd,t
6 } and let τ ′ = v(h). Then (i) h ∈ Hd,τ ′

6 , (ii)

T 1(h) ∈ D̄d(s) ∪ D̄d(s
′) if τ ′ = 0, (iii) T 1(h) ∈ Dd(s

′) if τ ′ = 1 and (iv) f(h) = π(d),τ ′+1. To

complete the proof in this case, we first establish two subclaims.
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Subclaim 1: h · ā ∈ Hd,τ ′+1
6 . Suppose not. By (iv), h · ā ∈ Σ̃d,τ ′+1 and hence h · ā ∈ ∪5

l=1Hl.

Also, if τ ′ ≥ 2, then ā ∈ D(s). Therefore, by Claim 18, τ ′ = 0 or 1 and either h·ā ∈ H
(i),n+i+5
1,a

for some i ∈ {0, . . . , n} or T d̂+4(h · ā) ∈ Σd̂,d̂+4 for some d̂ ∈ N .

If h · ā ∈ H
(i),n+i+5
1,a , then T 1(h) = s, contradicting (ii) and (iii). If T d̂+4(h · ā) ∈ Σd̂,d̂+4,

then T 1(h) ∈ Dd̂(s). Therefore, by (iii), τ ′ = 0. Then, by (ii), it follows that T 1(h) ∈ D̄d̂(s)

and d = d̂. This implies that T d+3(h) ∈ Σd,d+3. Thus, by (i) and τ ′ = 0, condition (c) is

satisfied. But this contradicts our supposition.

Subclaim 2: v(h · ā) = τ ′ + 1. Since h · ā ∈ Hd,τ ′+1
6 , v(h · ā) ≥ τ ′ + 1 > 0. Therefore,

h ∈ Σ̃d,v(h·ā)−1. Hence, τ ′ ≥ v(h · ā)− 1 and thus v(h · ā) = τ ′ + 1.

It follows from the above two subclaims that f(h · ā) = π̂(d),τ ′+2. Then, by induction, it

follows that f(h·ā·π̂(d),τ ′+2) = π̂(d),τ ′+3, . . . , f(h·ā·π̂(d),τ ′+2 ·· · ··π̂(d),d+2) = π̂(d),d+3. Therefore,

by appealing to Case 1, we have π(f |h · ā) = π(d)(θ̄(ā), t(ā)), where t(ā) = τ ′ + 2 and

θ̄(ā) = θ(T τ ′(h) · (ā, π(d),τ ′+2, . . . , π(d),d+4)). Furthermore, from the latter, θ̄(ā) = θ̄(f(h)) + 1

for all ā ∈ D̄d′(f(h)).

Claim 50 Let h ∈ Hk
7 for some k ∈ {0, . . . , n+4}. If k 6∈ {2, . . . , n+3} and T d+3(h) ∈ Σd,d+3

for some d ∈ N , then π(f |h) =
(
s′, (md; (θ + 1)T ), π̂(d),1, . . .

)
, where θ = θ(T d+3(h) · s′).

Otherwise, π(f |h) =
(
π̂(i),k′+1, π̂(i),k′+2, . . .

)
for some i ∈ {0, . . . , n} and k′ ∈ {0, . . . , n+i+4}.

Proof. If k 6∈ {2, . . . , n + 3} and T d+3(h) ∈ Σd,d+3 for some d ∈ N , then f(h) = s′ and

T d+4(h · f(h)) ∈ Σd,d+4. Hence, h · f(h) ∈ Hd+4,d
3 and the conclusion follows from Claim 48.

If k 6∈ {2, . . . , n + 3} and T n+i+4(h) = ((s′; 2), (s; n + i + 2)) for some i ∈ {0, . . . , n}, then

f(h) = s′ and T n+i+5(h) = ((s′; 2), (s; n + i + 2), s′). Hence, h · f(h) ∈ H
(i),n+i+5
1,a and the

conclusion follows from Claim 45. For the remainder of the proof, therefore assume that the

following holds:

if k 6∈ {2, . . . , n + 3}, then T n+i+4(h) 6= ((s′; 2), (s; n + i + 2)),

for all i ∈ {0, . . . , n}, and T d+3(h) 6∈ Σd,d+3, for all d ∈ N.
(22)

Next, for any history h′ ∈ H, define v(h′) = max{t ∈ {0, . . . , n + 4} : T t(h′) ∈ H
(t),0
1,b }

and let k′ = v(h). If k′ = n + 4, then f(h) = s′ and h · f(h) ∈ H
(0),n+5
1,a , and the conclusion

follows from Claim 45.
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If k′ ∈ {0, . . . , n + 3}, then the claim follows by induction if it is the case that h · f(h) ∈

Hk′+1
7 and v(h · f(h)) = k′ + 1. Next, we show that the latter is indeed the case in several

steps.

Step 1: h · f(h) 6∈ H6. Otherwise, h · f(h) ∈ Hd,τ
6 for some d ∈ N and τ ∈ {0, . . . , d + 3}.

Then if τ > 0, T τ−1(h) ∈ Σ̃d,τ−1; but this is a contradiction as this implies that h ∈ H6.

If τ = 0, then by the definition of H0
6 , f(h) = T 1(h · f(h)) ∈ D̄(s) ∪ D̄(s′). But this is a

contradiction because, by h ∈ Hk′
7 , f(h) ∈ {s, s′}.

Step 2: h · f(h) 6∈ ∪5
l=1Hl. When k′ ≥ 2, then f(h) = s. Therefore, the claim in this step

follows immediately from Claim 18. Next suppose that k′ ∈ {0, 1} and that h·f(h) ∈ ∪5
l=1Hl.

Then Claim 18 implies that either h ∈ H
(i),n+i+4
1,a for some i ∈ {0, . . . , n} or T d+3(h) ∈ Σd,d+3

for some d ∈ N . But this contradicts our supposition in (22).

Step 3: T k′+1(h · f(h)) ∈ H
(0),k′+1
1,b and v(h · f(h)) = k′ + 1. By h ∈ Hk′

7 , f(h) = π(0),k′+1

and so T k′+1(h · f(h)) ∈ H
(0),k′+1
1,b . Hence, v(h · f(h)) ≥ k′ + 1. If it were the case that

v(h · f(h)) > k′ + 1, then T v(h·f(h))−1(h) ∈ H
(0),v(h·f(h))−1
1,b , implying v(h) ≥ v(h · f(h)) − 1.

Since k′ = v(h) and v(h · f(h)) > k′ + 1, this is a contradiction.

Claim 51 Let h ∈ H1 and ā ∈ D̄d(f(h)) for some d ∈ N . Then π(f |h · ā) = f(h · ā) ·πd(θ, t)

for some θ ∈ {0, . . . , d + 4} and t ∈ {1, . . . , d + 5}.

Proof. By assumption, h ∈ H
(i),k
1,a ∪ H

(0),l
1,b for some i, k and l, and ā ∈ D̄d(f(h)). Thus,

h · ā ∈ Hk+1,d,0
2 . Also, by Claim 49, π(f |h · ā · f(h · ā)) = π(d)(θ, t) for some θ and t.

Claim 52 Let h ∈ Hk,d′,τ ′

2 ∪ Hk,d′,τ ′

5 ∪ Hd′,τ ′

6 for some k ∈ {1, . . . ,M}, d′ ∈ N and τ ′ ∈

{0, . . . , d′ + 3}. Let d 6= d′ and ā ∈ D̄d(f(h)). Then π(f |h · ā) = f(h · ā) · π(d)(θ, t) for some

θ ∈ {0, . . . , d + 4} and t ∈ {1, . . . , d + 5}.

Proof. We first argue that it is sufficient to show that either h · ā ∈ Hd+4,d
3 or h · ā 6∈ ∪5

l=1Hl.

If the former holds, then the claim follows from Claim 48. If the latter holds, then this

together with f(h) ∈ {s, s′} and ā ∈ D̄d(f(h)) imply that h · ā ∈ Hd,0
6 . Then the claim

follows from Claim 49.

We next establish that either h · ā ∈ Hd+4,d
3 or h · ā 6∈ ∪5

l=1Hl. Suppose not; then we

derive a contradiction for the different possible cases as follows.

Case 1: T d̂+4(h · ā) ∈ Σd̂,d̂+4 for some d̂ ∈ N . Then ā ∈ Dd̂(s
′), which together with

ā ∈ D̄d(s) ∪ D̄d(s
′) implies that d̂ = d. Hence, h · ā ∈ Hd+4,d

3 ; a contradiction.
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Case 2: h · ā ∈ H
(i),n+i+5
1,a for some i ∈ {0, . . . , n}. Then ā = s′ and this contradicts

ā ∈ D̄d(s) ∪ D̄d(s
′).

Case 3: h ∈ Hk,d′,τ
2 ∪Hk,d′,τ

5 and, for some i ∈ {0, . . . , n}, k′ > n + i + 5, k̂ ∈ {1, . . . ,M}

and d̂ ∈ N , h · ā ∈ H
(i),k′

1,a ∪ H1,b ∪ H k̂,d̂,0
2 ∪ H k̂,d̂,0

5 . Then, by the latter, h ∈ H1 ∪ H3 ∪ H4

and, by Claims 26, 27, 31, 35, 38, 39, 41 and 42, this contradicts the supposition that

h ∈ Hk,d′,τ
2 ∪Hk,d′,τ

5 .

Case 4: h ∈ Hk,d′,τ
2 ∪Hk,d′,τ

5 and, for some k̂ ∈ {1, . . . ,M}, d̂ ∈ N and τ̂ ∈ {1, . . . , d̂+3},

h · ā ∈ H k̂,d̂,τ̂
2 ∪ H k̂,d̂,τ̂

5 . By the latter, ā ∈ Dd̂(s) ∪ Dd̂(s
′). Since we also have ā ∈ D̄d(s) ∪

D̄d(s
′) it follows that d̂ = d. This, together with h · ā ∈ H k̂,d̂,τ̂

2 ∪ H k̂,d̂,τ̂
5 , imply that h ∈

H k̂−1,d,τ̂−1
2 ∪ H k̂−1,d,τ̂−1

5 which, by Claims 28, 40 and 43, contradicts the supposition that

h ∈ Hk,d′,τ
2 ∪Hk,d′,τ

5 .

Case 5: h ∈ Hk,d′,τ
2 ∪ Hk,d′,τ

5 , h · ā ∈ H3 and T d̂+4(h · ā) 6∈ Σd̂,d̂+4 for all d̂ ∈ N . Then

h ∈ H3 and, by Claims 31 and 41, this contradicts the supposition that h ∈ Hk,d′,τ
2 ∪Hk,d′,τ

5 .

Case 6: h ∈ Hk,d′,τ
2 ∪ Hk,d′,τ

5 and h · ā ∈ H4. Then h ∈ H3 ∪ H4 and, by Claims 31, 35,

41 and 42, this contradicts the supposition that h ∈ Hk,d′,τ
2 ∪Hk,d′,τ

5 .

Case 7: h ∈ Hd′,τ
6 , h · ā 6∈ H

(i),n+i+5
1,a for all i ∈ {0, . . . , n} and T d̂+4(h · ā) 6∈ Σd̂,d̂+4 for all

d̂ ∈ N . Then h 6∈ ∪5
l=1Hl and, by Claim 18, we have h · ā 6∈ ∪5

l=1Hl; a contradiction.

Claim 53 Let h ∈ Hk,d′

3 for some k ∈ {1, . . . ,M} and d′ ∈ N and let ā ∈ D̄d(f(h)) for

some d ∈ N . If d = d′, then π(f |h · ā) =
(
(md; (θ + 1)T − [k + 1− (d + 4)]), π̂(d),1, . . .

)
,

where θ = θ(T k(h)). If d 6= d′, then π(f |h · ā) = f(h · ā) ·π(d)(θ, t) for some θ ∈ {0, . . . , d+4}

and t ∈ {1, . . . , d + 5}.

Proof. If d = d′, then h · ā ∈ Hk+1,d,0
4 if k + 1 − (d + 4) = (θ + 1)T and h · ā ∈ Hk+1,d

3 ,

otherwise. Thus, in this case, the result follows from Claim 47 and Claim 48, respectively.

If d 6= d′, then h · ā ∈ Hk+1,d,0
5 . Thus, by Claim 49, π(f |h · ā · f(h · ā)) = π(d)(θ, t) for

some θ ∈ {0, . . . , d + 4} and t ∈ {1, . . . , d + 5}.

Claim 54 Let h ∈ Hk,d′,r
4 for some k ∈ {1, . . . ,M}, d′ ∈ N and r ∈ {0, . . . , n + d′ + 4},

and let ā ∈ D̄d(f(h)) for some d ∈ N . Then π(f |h · ā) = f(h · ā) · π(d)(θ, t) for some

θ ∈ {0, . . . , d + 4} and t ∈ {1, . . . , d + 5}.

Proof. We have that h · ā ∈ Hk+1,0,d
5 . Thus, by Claim 49, π(f |h · ā · f(h · ā)) = π(d)(θ, t) for

some θ ∈ {0, . . . , d + 4} and t ∈ {1, . . . , d + 5}.
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Claim 55 Let h ∈ Hk
7 for some k ∈ {0, . . . , n + 4} and ā ∈ D̄d(f(h)) for some d ∈ N . If

k 6∈ {2, . . . , n+3} and T d+3(h) ∈ Σd,d+3, then π(f |h · ā) =
(
(md; (θ + 1)T ), π̂(d),1, . . .

)
, where

θ = θ(T d+3(h) · s′) + 1. Otherwise, π(f |h · ā) = f(h · ā) ·π(d)(θ, t) for some θ ∈ {0, . . . , d+ 4}

and t ∈ {1, . . . , d + 5}.

Proof. If k 6∈ {2, . . . , n + 3} and T d+3(h) ∈ Σd,d+3, then f(h) = s′, ā ∈ D̄d(s
′) and

T d+4(h · ā) ∈ Σd,d+4. Hence, h · ā ∈ Hd+4,d
3 and the conclusion follows from Claim 48.

For the remainder of the proof, therefore assume that the following holds:

If k 6∈ {2, . . . , n + 3}, then T d+3(h) 6∈ Σd,d+3. (23)

Then we will show that h · ā ∈ Hd,0
6 which, by Claim 49, establishes the conclusion of the

claim. We prove the former in two steps.

Step 1: h · ā ∈ Σ̃d,0. Since h ∈ Hk
7 , f(h) ∈ {s, s′}. Therefore, ā ∈ D̄d(s) ∪ D̄d(s

′).

Step 2: h · ā 6∈ ∪5
l=1Hl. Suppose otherwise. Then, by Claim 18, ā 6∈ D(s). Hence,

by h ∈ Hk
7 , (i) ā ∈ D̄d(s

′) and (ii) k 6∈ {2, . . . , n + 3}. Furthermore, Claim 18 implies

that either h · ā ∈ H
(i),n+i+5
1,a for some i ∈ {0, . . . , n} or T d′+4(h · ā) ∈ Σd′,d′+4 for some

d′ ∈ N . If h · ā ∈ H
(i),n+i+5
1,a for some i ∈ {0, . . . , n}, then ā = s′, a contradiction to (i). If

T d′+4(h · ā) ∈ Σd′,d′+4 for some d′ ∈ N , then ā ∈ Dd′(s
′), which, by (i), implies that d = d′.

Thus, T d+3(h) ∈ Σd,d+3. But this, together with (ii), contradict our supposition in (23).

A.2.5 Incentive conditions

To complete the proof of the theorem, we next establish the following for all h ∈ H:

Vd(π(f |h)) ≥ (1− δ)ud(ā) + δVd(π(f |h · ā)) for all d ∈ N and ā ∈ D̄d(f(h)). (24)

Case 1: h ∈ H1 ∪ H4. In this case, by Claims 45, 46 and 47, π(f |h) = (π̂(i),k, . . .) for

some i ∈ {0, . . . , n} and k ≤ M . Also, by Claims 51 and 54, π(f |h · ā) = f(h · ā) · π(d)(θ, t)

for some θ ∈ {0, . . . , d+4} and t ∈ {1, . . . , d+5}. Therefore, the left-hand side of (24) must

be greater or equal to −B(1 − δK−k+1) + δK−k+1Vd(π̂
(i)) ≥ −B(1 − δK) + δKVd(π̂

(i)) and

the right-hand side of (24) is less than or equal to (1 − δd+7−t)B + δd+7−t+(θ+1)T Vd(π̂
(d)) ≤

(1− δd+6)B + δd+6+T Vd(π̂
(d)). Thus, by (18), (24) must hold.

Case 2: h ∈ Hk,d′

3 for some k ∈ {1, . . . ,M} and d′ ∈ N . Claim 48 implies that π(f |h) =

((md′ ; (θ +1)T − [k− (d′ +4)], π̂(d′),1, . . .), where θ = θ(T k(h)). Claim 53 implies that π(f |h ·
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ā) =
(
(md; (θ + 1)T − [k + 1− (d + 4)], π̂(d),1, . . .

)
if d = d′ and π(f |h · ā) = f(h · ā) ·π(d)(θ, t)

for some θ ∈ {0, . . . , d + 4} and t ∈ {1, . . . , d + 5} if d 6= d′. Clearly, the deviation is not

profitable if d = d′. When d 6= d′, the left-hand side of (24) must be greater or equal to

(1− δ(θ+1)T−k+d′+4)ud(m
d′)+ δ(θ+1)T−k+d′+4Vd(π̂

(d′)) ≥ −(1− δ(n+5)T )B + δ(n+5)T Vd(π̂
(d′)) and

the right-hand side of (24) is less than or equal to (1 − δd+6)B + δd+6+T Vd(π̂
(d)). Thus, by

(17), (24) must hold.

Case 3: h ∈ Hk,d,τ
2 ∪Hk,d,τ

5 ∪Hd,τ
6 for some k ∈ {1, . . . ,M} and τ ∈ {0, . . . , d+3}. Claim

49 implies that π(f |h) = f(h) ·π(d)(θ, t) and π(f |h · ā) = π(d)(θ′, t′) for some t, t′ ∈ {1, . . . , d+

5} and θ, θ′ ∈ {0, . . . , d + 4} such that θ < θ′. Therefore, the left-hand side of (24) must be

greater or equal to−(1−δd+6−t)B+δd+6−t+(θ+1)T Vd(π̂
(d)) ≥ −(1−δd+5)B+δd+5+(θ+1)T Vd(π̂

(d))

and the right-hand side of (24) is less than or equal to (1−δd+6−t′)B+δd+6−t′+(θ′+1)T Vd(π̂
(d)) ≤

(1− δd+5)B + δd+5+(θ′+1)T Vd(π̂
(d)). Thus, by (19) and θ < θ′, (24) must hold.

Case 4: h ∈ Hk,d′,τ
2 ∪Hk,d′,τ

5 ∪Hd′,τ
6 for some k ∈ {1, . . . ,M}, d′ ∈ N and τ ∈ {0, . . . , d′+

3} such that d′ 6= d. Claim 49 implies that π(f |h) = f(h)·π(d′)(θ′, t′) for some t′ ∈ {1, . . . , d′+

5} and θ′ ∈ {0, . . . , d′ + 4}. Also, Claim 52 implies that π(f |h · ā) = π(d)(θ, t) for some

t ∈ {1, . . . , d + 5} and θ ∈ {0, . . . , d + 4}. Therefore, the left-hand side of (24) must be

greater or equal to −(1−δd′+6−t′+(θ′+1)T )B +δd′+6−t′+(θ′+1)T Vd(π̂
(d′)) ≥ −(1−δ(n+5)(T+1))B +

δ(n+5)(T+1)Vd(π̂
(d′)) and the right-hand side of (24) is less than or equal to (1 − δd+5)B +

δd+5+(θ+1)T Vd(π̂
(d)) ≤ (1− δn+6)B + δn+6+T Vd(π̂

(d)). Thus, by (17), (24) must hold.

Case 5: h ∈ Hk
7 for some k 6∈ {2, . . . , n + 3} and T d+3(h) ∈ Σd,d+3. Claims 50 and 55

imply that π(f |h) =
(
s′, (md; (θ + 1)T ), π̂(d),1, . . .

)
and π(f |h·ā) =

(
(md; (θ + 2)T ), π̂(d),1, . . .

)
for some θ ∈ {0, . . . , d + 3}. Therefore, the left-hand side of (24) must be greater or equal

to −(1 − δ)B + δ(θ+1)T Vd(π̂
(d)) and the right-hand side of (24) is less than or equal to

(1− δ)B + δ(θ+2)T Vd(π̂
(d)). Thus, by (19), (24) must hold.

Case 6: h ∈ Hk
7 for some k 6∈ {2, . . . , n + 3} and T d′+3(h) ∈ Σd′,d′+3 for some d′ 6=

d. Claims 50 and 55 imply that π(f |h) =
(
s′, (md′ ; (θ′ + 1)T ), π̂(d′),1, . . .

)
for some θ′ ∈

{0, . . . , d′+4} and π(f |h·ā) = f(h·ā)·π(d)(θ, t) for some θ ∈ {0, . . . , d+4} and t ∈ {1, . . . , d+

5}. Therefore, the left-hand side of (24) must be greater or equal to −(1 − δ1+(θ′+1)T )B +

δ1+(θ′+1)T Vd(π̂
(d′)) ≥ −(1−δ(n+5)(T+1))B +δ(n+5)(T+1)Vd(π̂

(d′)) and the right-hand side of (24)

is less than or equal to (1 − δd+6)B + δd+6+(θ+1)T Vd(π̂
(d)) ≤ (1 − δn+6)B + δn+6+T Vd(π̂

(d)).
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Thus, by (17), (24) must hold.

Case 7: h ∈ Hk
7 and either k ∈ {2, . . . , n+3} or T d′+3(h) 6∈ Σd′,d′+3 for all d′ ∈ N . Claim

50 implies that π(f |h) = (π̂(i),k, . . .) for some i ∈ {0, . . . , n} and k ≤ M . Also, by Claim 55,

π(f |h · ā) = f(h · ā) · π(d)(θ, t) for some θ ∈ {0, . . . , d + 4} and t ∈ {1, . . . , d + 5}. Therefore,

by an identical argument as in Case 1, (24) must hold.
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