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We address the multi-item, capacitated lot-sizing problem (CLSP) encountered in environments where demand is
dynamic and to be met on time. Items compete for a limited capacity resource, which requires a setup for each lot of
items to be produced causing unproductive time but no direct costs. The problem belongs to a class of problems that are
difficult to solve. Even the feasibility problem becomes combinatorial when setup times are considered. This difficulty in
reaching optimality and the practical relevance of CLSP make it important to design and analyse heuristics to find good
solutions that can be implemented in practice. We consider certain mixed integer programming formulations of the
problem and develop heuristics including a curtailed branch and bound, for rounding the setup variables in the LP
solution of the tighter formulations. We report our computational results for a class of instances taken from literature.
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Introduction

We consider a multi-item, dynamic, capacitated lot-sizing

problem, which appears in several manufacturing environ-

ments both as a standalone problem and a subproblem in

broader decision-making situations (see Karimi et al, 2003

for a recent review of lot-sizing problems). The problem is

considered over T time periods where a single resource’s

capacity is to be allocated to N items according to their

demands in each period. Each item requires a certain

processing time on the resource, which is considered to be

critical in the completion of production, possibly associated

with a bottleneck operation. A lot to be produced for each

item in a period requires a setup that generates some

downtime for the resource. No direct costs due to setups are

assumed. The setup times and also the processing times

determine the capacity needs of items. When the available

capacity is not sufficient to meet the demand of an item in a

period, it has to be supplied from inventory carried from

earlier periods at the expense of a unit inventory holding cost

per period. Backlogging is not allowed. We also assume that

production costs are stationary over time and can thus be

ignored. The objective is to find a feasible schedule with

minimum total inventory holding cost. The problem belongs

to a class of problems that are difficult to solve. It can be

shown that even the feasibility problem is NP-complete

(Maes et al, 1991). Due to this nature, it deserves separate

attention within the class of CLSPs. Its properties that differ

from the other problems in this class need investigation.

The problem can typically be formulated as follows:

P

Minimize z ¼
XN
i¼1

XT
t¼1

hiIit
ðP:1Þ

subject to Ii;t�1 þ xit � Iit ¼ dit each i and t ðP:2Þ

XN
i¼1

ðaixit þ siyitÞpCt each t ðP:3Þ

xitpmityit each i and t ðP:4Þ

Ii0 ¼ 0 each i ðP:5Þ

xitX0; IitX0 each i and t ðP:6Þ

yit ¼ 0 or 1 each i and t ðP:7Þ

The variables xit and Iit denote the amount of item i

produced in period t and the inventory level of item i at the

end of period t, respectively. yit is a binary variable

indicating whether a setup time for item i in period t is

incurred or not. The parameters, hi, dit, ai, si and Ct are

the cost of carrying one unit of item i in inventory from a

period to the next, the demand for item i in period t, the

processing time of item i, the setup time for item i, and the
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available capacity in time units in period t, respectively. mit¼
min{

P
k¼ t
T dik, (Ct�si)/ai} is an upper bound on production

quantity and we assume that sipCt for each i and t.

In problem P, (P.1) minimizes the total inventory carrying

costs. Equation (P.2) represents the inventory balance

equations for each item and each period and together with

the non-negativity of the inventory variables it ensures that

demand is satisfied on time. Time capacity limitations on the

total processing and setup times in each period are imposed

by (P.3). Equation (P.4) makes sure that a setup is incurred

for each production run and by (P.5) it is assumed that there

exist no initial inventories on hand. Equations (P.6) and

(P.7) guarantee the non-negativity of the production and the

integrality of the setup variables, respectively.

Although the multi-item capacitated lot-sizing problem

has generated considerable interest in the literature, incor-

poration of the setup times has not been considered much.

Bahl and Zionts (1987), Karayel (1984), Trigeiro et al (1989),

Diaby et al (1992), and Süral (1996) have addressed the

problem with setup times. However, the problem P is

different from those given in Bahl and Zionts (1987),

Trigeiro et al (1989), Diaby et al (1992), such that Trigeiro

et al (1989) include setup cost and the other two papers

consider the overtime option. Karayel (1984) and Süral

(1996) consider the same problem as P: Karayel (1984)

develops a heuristic based on removing infeasibilities from a

lot for lot schedule while, Süral (1996) proposes a

Lagrangean relaxation and a period by period heuristic

combined in a branch and bound algorithm. Alternative

mixed integer programming formulations of the lot-sizing

problem with setup times are studied by Stadtler (1996) for

the multi-level environment with setup costs and overtime

options.

Maes et al (1991) and Alfieri et al (2002) analyse the

performance of LP-based rounding heuristics for the multi-

level and the single-level lot-sizing problems without setup

times, respectively. Despite encouraging results, there is no

study in the literature, which extends this general approach

to the problems with setup times. As a matter of fact, the

NP-complete feasibility problem limits the use of similar

methods for the problem when the setup times are not

negligible. However, for the cases where the capacity is not a

hard constraint and overtime or subcontracting is possible, it

is worth exploring the performance of LP-based rounding

heuristics for the problem. The approach described in this

paper extends the LP-based rounding heuristics to the

problem with setup times and no setup costs.

The purpose of this paper is two-fold. First is to analyse

and compare the performances of different mixed integer

programming (MIP) formulations of the problem and their

linear relaxations. Exploring the possibilities for developing

a quick and easy solution method based on the linear

relaxation of a tight formulation is the second purpose. To

our knowledge, this is the first attempt to compare the

performance of three alternative tight formulations in

solving CLSP using a general purpose MIP solver and

heuristic methods.

In the first section, we review three alternative tight

formulations of the problem. The next section provides an

experimental analysis of formulations on a set of test

problems taken from the literature. By using CPLEX, we

first test the LP relaxations of the three MIPs with (a) primal

simplex, (b) dual simplex, and (c) the barrier algorithm to

determine the best LP solution method, as in Alfieri et al

(2002), and then we solve the MIP formulations to

optimality using the best method. In the third section, we

describe several LP-based heuristics including a curtailed

branch and bound procedure with rounding only in the very

first step of the enumeration. We report all computational

results on the performances of the heuristic approaches in

the fourth section. The last section concludes our study.

MIP formulations

The model P presented in the first section is a standard

formulation with O(NT) continuous and binary variables,

and constraints. Although all solution methods (Diaby et al,

1992; Karayel, 1984; Süral, 1996; Trigeiro et al, 1989) that

we mention have been developed based on this formulation,

it is well known that it is a weak formulation of the CLSP

where, the strength of a formulation is measured by the

objective value of its LP relaxation. Here, we consider two

alternative formulations from the literature (Alfieri et al,

2002; Eppen and Martin, 1987; Stadtler, 1996; Süral, 1996):

the transportation problem formulation, TP, with O(NT2)

continuous and O(NT) binary variables, and O(NT2)

constraints and the shortest path formulation, SP, with

O(NT2) continuous and O(NT) binary variables, and O(NT)

constraints. We, also, consider a third formulation, which we

call the improved standard formulation, IS, obtained by an a

priori addition of some valid inequalities developed by

Barany et al (1984) for the uncapacitated lot-sizing problem.

Transportation problem formulation (TP)

Define zitr as the quantity produced in period t to satisfy the

demand of item i in period r, where rXt. Other variables are

same as before. The current formulation makes use of the

advantage that stems from the strongest formulation of the

single item uncapacitated lot-sizing problem.

TP

Minimize z ¼
XN
i¼1

XT
r¼1

Xr�1
t¼1

ðr� tÞhizitr ðTP:1Þ

subject to
Xr
t¼1

zitr ¼ dir each i and r ¼ 1; . . . ;T ðTP:2Þ



XN
i¼1

XT
r¼t

ai zitr þ siyit

 !
pCt each t ðTP:3Þ

zitrpdiryit each i and t; r ¼ t; . . . ;T ðTP:4Þ

XT
r¼t

zitrpmityit each i and t ðTP:5Þ

zitrX0 each i and t; r ¼ t; . . . ;T ðTP:6Þ

yit ¼ 0 or 1 each i and t ðTP:7Þ

In this formulation, (TP.1) minimizes the total inventory

carrying cost, (TP.2) assures that total production for item i

in periods 1 through r is equal to the demand in period r,

(TP.3) maintains that total production and setup times in

period t do not exceed the available (time) capacity Ct, and

(TP.4) incurs a setup for each production run. Equation

(TP.5), which provides an aggregate bound on total

production in a period, is actually redundant in TP but

provides a valid inequality in its LP relaxation. Equations

(TP.6) and (TP.7) impose non-negativity on the production

variables and integrality on the setup variables, respectively.

Shortest path problem formulation (SP)

Define uitk as the fraction of total demand for periods t

through k of item i that is produced in period t. This

formulation extends the reformulation of the single item

uncapacitated lot-sizing problem as a shortest path problem,

developed by Eppen and Martin (1987), to the capacitated

case.

SP

Minimize z ¼
XN
i¼1

XT
t¼1

XT
k¼t

Hitkuitk
ðSP:1Þ

subject to

XN
i¼1

XT
k¼t

aiDitkuitk þ siyit

 !
pCt for each t

ðSP:2Þ

�
Xt�1
k¼1

uik;t�1 þ
XT
k¼t

uitk ¼ 0

for each i and t ¼ 2; . . . ;T

ðSP:3Þ

XT
t¼1

ui1t ¼ 1 for each i ðSP:4Þ

XT
k¼t

uitkpyit

for t ¼ 1 and i{di140 and each i and t{ta1

ðSP:5Þ

XT
k¼t

Ditkuitkpmityit for each i and t ðSP:6Þ

uitkX0 for each i and t; and k ¼ t; . . . ;T ðSP:7Þ

yit ¼ 0 or 1 for each i and t ðSP:8Þ

where

Ditk ¼
Xk
j¼t

dij andHitk ¼
Xk
j¼tþ 1

hiDijk

In this formulation (SP.1) minimizes the total inventory

carrying cost, (SP.2) restricts the (time) capacity usage in

each period, (SP.3) and (SP.4) define the path equations for

each item, and (SP.5) incurs a setup for each production run.

Note that for t¼ 1 only the items with nonzero demands are

considered to make sure that no unnecessary setups are

incurred. Equation (SP.6), which provides an aggregate

bound on total production in a period, is actually redundant

in SP except for items with nonzero demands in t¼ 1. For

these items, it also guarantees that the required setup time is

incurred if production is necessary to meet the demand of

some future period. We however impose it for all i and t,

since, it acts as a valid inequality in the LP relaxation of SP.

Equations (SP.7) and (SP.8) impose non-negativity on the

production variables and integrality on the setup variables,

respectively.

In our computational studies the LP relaxations of the

above two formulations always resulted with the same

solution value. This is a result that may be worth further

exploration.

The last alternative MIP formulation of the problem is as

follows.

Improved standard formulation with Barany et al (1984)
cuts (IS)

IS

Minimize z ¼
XN
i¼1

XT
t¼1

hiIit
ðIS:1Þ

subject to Ii;t�1 þ xit � Iit ¼ dit each i and t ðIS:2Þ

Xt�1
k¼1

xik þ dityitX
Xt
k¼1

dik each i and t ¼ 2; . . . ;T

ðIS:3Þ

XN
i¼1

ðaixit þ siyitÞpCt each t ðIS:4Þ

xitpmityit each i and t ðIS:5Þ



xitX0; IitX0 each i and t ðIS:6Þ

yit ¼ 0 or 1 each i and t ðIS:7Þ

The above model is the same as the weak formulation P,

except that a set of inequalities (IS.3), developed in Barany

et al (1984) is added to tighten the formulation to some

extent.

Computational analysis of MIP formulations and their

LP relaxations

In our experimental analysis, all computations are carried

out on test problems taken from Trigeiro et al (1989). The

test problem set in this section includes 20 problems in total,

with sizes N¼ 12,24 and T¼ 15,30. Setup times are item

dependent. All problems assume per unit (time) capacity

utilization for all items, that is, ai¼ 1 for all i¼ 1,y,N (see

Trigeiro et al (1989) for more details of the test instances).

Since there are no setup costs in our case, a drawback of

Trigeiro et al’s (1989) test instances regarding the large ratio

of setup costs to setup times is eliminated. We coded all our

procedures in C within the MS Visual Cþþ 6.0 environ-

ment in connection with the CPLEX 7.0 Callable Library,

on an IBM PC with Intel Pentium III processor.

In the first part of our experiments, we made a brief

comparison of CPU times needed by the three core LP

algorithms in CPLEX namely, the primal, dual, and barrier

algorithms, to solve the LP relaxations of MIP formulations,

and compared the solution quality of these LP relaxations

with respect to their objective function values. Results are

given in Table 1.

Entries in Table 1 associated with each problem size are

the average values of five problem instances. For each

problem instance, the formulations TP and SP gave the

same linear objective function value that is higher than

that of both P and IS. DP(%)¼ 100(LB�L(P))/LB and

DIS(%)¼ 100(LB�L(1S))/LB show the relative deviations

of the lower bounds obtained by P and IS, where L(P) and

L(IS) respectively denote the objective function values of

their continuous solutions (LP relaxations) and LB refers to

the best lower bound given by the objective function value of

the continuous solutions of SP (or TP). Although the LP

relaxations of P and IS are solved faster than the other two

formulations by all the LP algorithms, the large deviations

of their (continuous) solutions from those of SP and TP

(98% for P and 14% for IS) make them less attractive.

Alfieri et al (2002) report the relative deviation of the LP

relaxation of P as about 60% on average for the lot-sizing

problem with setup costs but no setup times, which may

indicate the structural difference between the two problems.

Between the two LP relaxations of SP and TP, SP is solved

faster than TP on average in our experiments. This

particular result was also observed by Alfieri et al (2002) in

their experiments. It seems that the LP relaxation of SP

formulation is slightly better than that of TP from a

computational viewpoint. Among three LP algorithms, the

dual algorithm is faster for all the formulations. Based on

this, we did all our further experiments using the dual

algorithm only.

In the second part of our experiments, we performed a

comparison of the elapsed times needed to obtain an optimal

solution to the MIP formulations controlling the features of

the CPLEX MIP solver. To do so, we first ran all the test

problems by tuning off the default features of CPLEX (ie,

rounding-up heuristic, adding cutting planes) and then

repeated the experiment this time with the default features

on. In these experiments, we did not consider P any further

due to the weakness of its LP solutions. The results given in

Table 2 are for the solutions obtained by CPLEX with

features off and a time limit of three hours.

In Table 2, D(%) is the relative integrality gap computed

as 100(U( � )�LB)/LB, where U( � ) denotes the integer

solution value of the formulation ( � ) and LB is the best

lower bound as defined before. SP and TP are superior to IS

in terms of finding both the highest number of best integer

Table 1 Deviation of the linear solutions of P and IS relative to that of SP (or TP) and CPU times by three core algorithms

CPU (s)

P IS TP SP IS

N�T DP (%) DIS (%) B P D B P D B P D

12� 15 97.15 9.76 0.59 0.31 0.21 0.42 0.24 0.11 0.12 0.06 0.07
12� 30 99.34 17.97 3.90 2.68 1.57 1.55 2.07 0.75 0.48 0.27 0.21
24� 15 96.72 13.38 1.33 0.94 0.71 0.88 0.76 0.46 0.31 0.21 0.14
24� 30 99.68 13.29 8.63 7.02 3.55 5.06 6.01 1.93 1.26 0.92 0.54

Average 98.22 13.60 3.61 2.74 1.51 1.98 2.27 0.81 0.54 0.36 0.24

B, barrier; P, primal; D, dual algorithms.
DP (%): 100(LB�L(P))/LB where LB is the linear solution value of SP (or TP).
DIS (%): 100(LB�L(IS))/LB where LB is the linear solution value of SP (or TP).



solutions and the integer solutions with smaller D(%) values

on average. The best integer solutions are found 15 and 14

times by SP and TP, respectively, while IS found only 7. On

average, the relative errors are about 23% for SP and TP,

and 26% for IS. Furthermore, SP and TP are less expensive

compared to IS from a computational viewpoint.

In experiments using the default features of CPLEX, we

increased the time limit by 1 hour. This made the results

more comparable with the results given in Table 2 due to the

extra time needed for the CPLEX features like the rounding-

up heuristics and cutting plane generation. The results

tabulated in Table 3 indicate that there is no significant

difference among the three formulations in terms of the

relative gap and the solution time. The average relative gap

is almost the same (about 20%) for all formulations, but the

best integer solutions are found 14 times by SP and IS and 10

times by TP. Default features with an extra hour have

improved the average relative gap by 3% for SP and TP and

by 6% for IS. These results all suggest that SP and TP

perform better than IS for solving the lot-sizing problem

with setup times using a general purpose MIP solver.

Apparently, IS competes (and provides slightly better results

in our case) with SP and TP within a general purpose MIP

solver which adds cutting planes to tighten the solution

space.

We should note that our computations proved the

optimality of only seven best solutions out of 20 and that

the relative deviation of the optimum from the lower bound

(ie, the integrality gap) has been found as 14% on average.

Stadtler (1996) has found the integrality gap as 7% on

average for small-size problem instances in the multi-level

setting and noted that higher gaps occur when there are tight

capacity constraints. For the remaining 13 problems, the

relative deviation of the best solution from the linear

solution value is 23% on average for all formulations.

One can, therefore, argue that there is about 9% error in the

best-known solutions found by CPLEX for those 13

problems, and that the time limitation can be extended to

obtain better solutions. As a matter of fact, in our

preliminary experiments we tried spending more time than

3 or 4 h to solve the test problems optimally. However, even

the larger solution times (eg, allowing more than 16h of

running time) did not help to solve these medium-sized

problems optimally. This justifies the need for good

heuristics to solve the lot-sizing problem with setup times

in reasonable computation times.

Table 2 Deviation of the integer solution relative to the linear solution for the three formulations and CPU times by CPLEX
with all features off*

SP TP IS

N�T Best D (%) Node CPU (min) Best D (%) Node CPU (min) Best D (%) Node CPU (min)

12� 15 5 17.91 58 661 5.98 5 17.91 90 165 17.47 5 17.91 750802 39.07
12� 30 4 29.28 454 607 181.18 1 29.79 248 098 181.61 — 37.21 1 532316 180.14
24� 15 4 5.57 528 998 147.39 5 5.32 323 948 153.32 — 6.69 1 606673 180.14
24� 30 2 38.85 256 913 181.07 3 40.38 175 948 180.87 2 42.58 794599 180.32

Average 22.90 324 795 128.91 23.35 209 540 133.32 26.09 1 201566 144.92

Best: the number of times that the best solution has been found.
D (%): 100(U( � )�LB)/LB.
Node: the number of nodes explored.
*Time limit is 3 h IBM PC with Intel Pentium III.

Table 3 Deviation of the integer solution relative to the linear solution for SP and TP and CPU times by CPLEX
with all features on*

SP TP IS

N�T Best D (%) Node CPU (min) Best D (%) Node CPU (min) Best D (%) Node CPU (min)

12� 15 5 17.91 30 341 4.16 5 17.91 37 595 9.38 5 17.91 69 238 7.82
12� 30 2 24.32 336 669 241.15 1 24.97 171 778 241.92 2 24.21 444 086 240.08
24� 15 5 5.20 516 985 181.01 3 5.23 310 591 203.11 5 5.20 677 483 184.45
24� 30 2 32.91 178 103 240.93 1 33.46 111 432 241.33 2 32.24 316 510 240.12

Average 20.08 265 525 166.81 20.39 157 849 173.93 19.89 376 829 168.12

Best: the number of times that the best solution has been found.
D (%): 100(U( � )�LB)/LB.
Node: the number of nodes explored.
*Time limit is 4 h on IBM PC with Intel Pentium III.



LP-based rounding heuristics and a curtailed branch
and bound

LP-based rounding heuristics basically entail a simple

enumeration process in which fractional solution values

are rounded to integers in a sequence of iterative steps. Our

experiments have revealed that a large portion of setup

variables take on integer values in the first LP relaxation of

MIP formulation. On average 79 (7)%, 77 (9)%, and 75

(6)% of integer variables of the test instances take the value

of 1 (0) for SP, TP and IS, respectively, and this figure

increases a little as the size of the problem instances

increases. Hence, the LP-based rounding heuristic rules

would be guiding us to round up about 14–20% of the setup

variables.

Different strategies are applied for selecting the variables

with fractional solution values in each step. This idea is

pursued by Maes et al (1991) for the multi-level lot-sizing

problems and Alfieri et al (2002) for the single-level lot-sizing

problems without setup times. In this study, we extended the

idea to the lot-sizing problems with setup times.

We mainly employ two policies: the first one is for

deciding on the frequency with which we solve an LP (ie, to

make an iteration), and the second one is for selecting which

fractional setup variable(s) to round up to one in an

iteration. We consider two different iteration frequencies.

One-by-one: Fix only one fractional setup variable at a

time by picking the one with the highest fractional value.

Fixing refers to rounding up to one.

Group-by-group: Define a round up threshold value k and

fix only the set of fractional setup variables with values

Xk at a time.

In all cases, we do not round down unless it is necessary. If

we cannot find a variable to round up even when the

solution is fractional, we round down to find a feasible

solution. In an iteration, we consider the following three

selection rules to define priorities for the set of eligible

fractional setup variables to be rounded up.

No rules: It means that the above iteration frequency

policies dominate the way we proceed. The variable with

the largest fractional value will have the first priority to be

rounded up. This rule is a general rule and applicable for

any MIP. The following rules however make use of the

problem structure to search for a better feasible solution.

Item based: Items are sorted in the order of nonincreasing

inventory holding costs. We start with the first item i in

the list and apply the above iteration policies for item i,

and proceed with the next item in the list, and so on. Ties

are broken with respect to the time periods (item produced

in a later period is given priority) and item indices (smaller

first).

Time based: We start with t¼T and apply the above

iteration policies for time T to round up the fractional

setup variables to one, and proceed with t¼ t�1, until

t¼ 1. Ties are broken with respect to the holding costs

(item with a higher cost is given priority) and item indices

(smaller first). Süral (1996) proposes a heuristic based on

time decomposition of the same problem where single-

period subproblems are successively solved starting with

the last period T to minimize the cost of inventory carried

from the previous period. The time-based rule resembles

this approach in terms of the decomposition principle and

the priority given to the late periods in the rounding

process.

Main steps of a LP-based heuristic

1. Solve the LP relaxation.

2. Set yit to 1 if yit¼ 1 in the LP solution.

3. Scan fractional yit’s (40.02), and determine a (a group

of) candidate variable(s) according to the iteration

frequency rule.

� Among the candidate variables, pick yit’s according the

selection rule, and set those yit’s to 1, and go to Step 1.

� Else go to Step 4

4. Set yit¼ 0 for all yit with 0pyitp0.02.

5. If the solution is feasible halt the algorithm. Otherwise,

initiate an iterative enumeration to resolve the infeasi-

bility.

Curtailed branch and bound

The heuristic approaches explained above fix the fractional

variables in the relaxed solution by applying some simple

rules. This may lead to infeasible solutions to the problem.

To overcome this, we implemented a partial branch and

bound which implicitly enumerates all solutions before being

trapped in an infeasible one. It works in the following way.

In the root node, we solve the LP relaxation and fix all

variables with positive integer solution values. Then we

continue with a standard branch and bound procedure. This

approach, called the curtailed branch and bound, is

implemented in both Maes et al (1991) and Alfieri et al

(2002) for the lot-sizing problem with negligible setup times.

When even the curtailed branch and bound fails to find a

feasible solution, one has to make changes in the integer

values initially fixed based on the LP solution. This,

however, requires starting from scratch with a completely

new strategy. Fortunately, in our experimental analysis this

type of infeasibility had occurred only once indicating a

good performance for our approach.

As a matter of fact, the curtailed branch and bound is the

best strategy in the selection of variables with fractional

values for rounding in an LP-based heuristic, because it

implicitly enumerates all the solutions after the initial fixing

at the first step of the heuristics. Therefore, in need of a good

heuristic approach, it may be worthwhile to optimize the

rounding rules even at the expense of some additional

computational time.



Computational analysis

LP-based heuristics

We developed 12 variations of the LP-based rounding

heuristics. Heuristic H1 applies no selection rules while

heuristics H2 and H3 adopt the item-based and the time-

based selection rules, respectively. Each heuristic was

implemented three times each with a different threshold

value (k¼ 0.75, 0.85, 0.95) under the group-by-group policy

and once under the one-by-one policy, denoted by k¼N.

We halted the algorithm even if a feasible solution cannot be

identified. All heuristics were tested in the same computing

environment described before. We enlarged our test bed

including 15 more problems with N¼ 6 and T¼ 15, 30. We

were able to verify optimality in 14 of these 15 additional

problems. We experimented with the LP relaxation of all

three MIP formulations and solved the LP subproblems by

the dual algorithm. Results are given in Tables 4–6.

In Tables 4–6, we report the average percent deviation of

the heuristic solution values from the lower bounds (or the

optimal solutions if known), the average CPU time (in

seconds), and the average number of iterations (ie, the

number of times an LP subproblem was solved). H3’s

performance is robust. The solutions H3 provides with

different threshold values have the same solution quality and

are the best among all heuristic variations and with all

underlying MIP formulations. H1 and H2 have produced

similar results, but 8 to 16% worse than H3 on average. This

indicates the significance of incorporating structural proper-

ties of the problem into the rounding process.

Although H3 runs faster than H1, the fastest is H2. H3

found feasible solutions to the 28 problems out of the 35 test

Table 4 Relative deviation of the heuristic solution values for SP and CPU times

H1 H2 H3

k N�T DH (%) CPU (s) Iteration DH (%) CPU (s) Iteration DH (%) CPU (s) Iteration

0.75 6� 15 21.93 0.65 13.7 21.93 0.10 31.4 21.44 0.11 21.4
6� 30 70.68 2.87 17.0 68.61 0.53 19.4 47.21 0.70 37.8
12� 15 14.25 1.23 12.0 14.09 0.26 28.4 14.43 0.32 23.4
Average* 35.62 1.58 14.24 34.88 0.30 26.41 27.69 0.38 27.53
12� 30 64.94 9.30 23.0 62.61 2.75 52.0 52.23 3.59 45.0
24� 15 12.66 3.12 12.8 13.94 1.01 29.6 12.86 1.27 23.6
24� 30 76.43 18.34 20.2 74.35 7.21 42.8 55.61 10.12 42.6
Average 51.35 10.25 18.65 50.30 3.66 41.47 40.23 4.99 37.07

0.85 6� 15 21.93 0.72 15.3 21.93 0.10 33.1 21.44 0.11 21.4
6� 30 68.61 3.51 20.8 68.61 0.56 22.6 47.21 0.75 37.8
12� 15 14.25 1.29 13.2 14.25 0.29 31.2 14.43 0.32 23.6
Average* 34.93 1.84 16.43 34.93 0.32 28.98 27.69 0.40 27.59
12� 30 63.83 10.23 28.0 64.03 2.55 60.0 52.23 4.60 45.2
24� 15 12.14 3.43 14.0 13.87 1.17 32.8 12.86 1.27 24.2
24� 30 76.30 20.02 22.8 76.30 7.40 49.6 55.61 10.28 42.6
Average 50.76 11.23 21.60 51.40 3.71 47.47 40.23 5.38 37.33

0.95 6� 15 21.93 0.78 16.7 21.93 0.10 34.0 21.44 0.11 21.4
6� 30 68.61 3.82 23.4 68.61 0.57 24.4 47.21 0.78 37.8
12� 15 14.25 1.59 15.8 14.25 0.27 32.0 14.43 0.32 23.8
Average* 34.93 2.06 18.64 34.93 0.31 30.13 27.69 0.40 27.66
12� 30 63.83 10.23 28.0 64.03 2.72 66.4 52.23 4.60 45.2
24� 15 13.78 3.89 17.0 13.78 1.18 34.8 12.86 1.27 24.4
24� 30 76.30 21.57 25.8 76.30 7.85 52.8 55.61 10.07 43.0
Average 51.31 11.90 23.60 51.37 3.92 51.33 40.23 5.31 37.53

N 6� 15 21.93 0.79 17.0 21.93 0.10 34.3 21.44 0.11 21.4
6� 30 68.61 4.28 26.4 68.61 0.60 25.8 47.21 0.70 37.8
12� 15 14.25 1.60 16.4 14.25 0.27 32.4 14.43 0.33 23.8
Average* 34.93 2.22 19.93 34.93 0.33 30.83 27.69 0.38 27.66
12� 30 55.95 9.84 26.8 64.03 3.20 67.2 52.23 3.60 45.8
24� 15 13.78 4.00 18.2 13.78 1.06 34.8 12.86 1.27 24.8
24� 30 76.30 23.29 27.2 76.30 8.23 53.2 55.61 10.04 43.2
Average 48.68 12.37 24.07 51.37 4.16 51.73 40.23 4.97 37.93

DH (%): 100(H( � )�LB)/LB where H( � ) denotes the solution value by the heuristic. The average results marked with ‘*’ are computed using the
optimal solution for LB, except for only one instance of 6� 30 a lower bound is used.
Iteration: the number of times that the LP relaxation problem has been solved.



problems for all variations and with all formulations.

Despite the fact that the heuristics performed well in finding

feasible solutions very quickly, they did not perform so well

in finding near-optimal solutions. On average, the solutions

found by H3 employing SP and TP (IS) were 27% (39%)

worse than the optimal solution. This considerable difference

in the deviations between SP (or TP) and IS highlights the

importance of using tight formulations for developing quick

and easy solution methods based on LP relaxations.

Alfieri et al (2002) have reported that the solutions found

by an LP-based heuristic like H1 with k¼N, 0.95 were

almost optimal for the lot-sizing problems with setup costs

but no setup times in their experiments. This again indicates

the increased difficulty of the CLSP when setup times are

considered.

Curtailed branch and bound

We performed our last experiment with the curtailed

branch and bound heuristic to see the effect of opti-

mizing the rounding process after the first LP solution.

Since the other heuristics run quickly, we employed

the curtailed branch and bound heuristic with time

limits of 5, 15, and 30min. Results, obtained by

using the default features of CPLEX, are given in

Table 7.

Table 7 shows the average percent deviation of the integer

solution value from the lower bound (or the optimal solution

if known), the average CPU time, the average number of

nodes explored in the tree for the SP, TP, and IS

formulations. Results are superior to those of the other

Table 5 Relative deviation of the heuristic solution values for TP and CPU times

H1 H2 H3

k N�T DH (%) CPU (s) Iteration DH (%) CPU (s) Iteration DH (%) CPU (s) Iteration

0.75 6� 15 21.20 0.62 13.6 21.20 0.15 31.5 20.83 0.18 21.4
6� 30 68.68 3.12 17.2 66.66 0.86 38.8 46.09 1.30 37.8
12� 15 13.63 1.20 12.0 12.95 0.39 28.4 13.90 0.49 23.6
Average* 34.51 1.64 14.28 33.60 0.47 32.90 26.94 0.66 27.59
12� 30 61.82 10.60 23.8 63.12 4.12 53.6 51.79 6.23 45.4
24� 15 12.63 3.35 14.3 13.91 1.38 30.4 12.83 1.86 23.6
24� 30 76.00 17.93 20.2 73.96 8.87 42.8 55.37 10.80 42.8
Average 50.15 10.63 19.42 50.33 4.79 42.27 40.00 6.30 37.27

0.85 6� 15 21.20 0.70 15.1 21.20 0.15 33.5 20.83 0.18 21.4
6� 30 66.66 3.76 21.0 66.66 1.05 51.2 46.09 1.29 37.8
12� 15 13.82 1.40 13.4 13.82 0.43 32.8 13.90 0.49 23.8
Average* 33.90 1.95 16.51 33.90 0.55 39.17 26.94 0.65 27.66
12� 30 64.34 11.58 28.4 64.54 4.81 67.6 51.79 6.19 45.6
24� 15 12.10 3.55 14.8 13.75 1.58 36.0 12.83 1.81 24.2
24� 30 75.91 20.08 22.6 71.49 9.74 52.0 55.37 11.38 42.8
Average 50.78 11.74 21.92 49.93 5.38 51.87 40.00 6.46 37.53

0.95 6� 15 21.20 0.77 16.4 21.20 0.16 33.5 20.83 0.17 21.4
6� 30 66.66 4.02 23.6 66.66 0.98 52.0 46.09 1.26 37.8
12� 15 13.82 1.50 15.8 13.82 0.42 32.8 13.90 0.48 24.0
Average* 33.90 2.10 18.59 33.90 0.52 39.43 26.94 0.64 27.73
12� 30 55.58 10.21 23.8 64.54 4.73 69.6 51.79 5.72 46.0
24� 15 13.75 4.09 17.2 13.84 1.66 36.8 12.83 1.81 24.4
24� 30 71.49 22.09 25.2 71.49 9.67 54.0 55.37 11.54 43.2
Average 46.94 12.13 22.07 49.96 5.35 53.47 40.00 6.36 37.87

N 6� 15 21.20 0.73 16.8 21.20 0.16 33.5 20.83 0.21 21.4
6� 30 66.66 4.06 25.6 66.66 0.98 51.2 46.09 1.34 37.8
12� 15 13.82 1.59 16.4 13.82 0.42 32.8 13.90 0.51 24.0
Average* 33.90 2.13 19.58 33.90 0.52 39.17 26.94 0.68 27.73
12� 30 55.58 10.40 26.2 64.54 5.12 70.0 51.79 5.96 46.2
24� 15 12.09 4.28 18.8 13.84 1.55 36.8 12.83 1.85 24.8
24� 30 71.49 22.19 26.8 71.49 9.45 54.0 55.37 11.32 43.4
Average 46.39 12.29 23.92 49.96 5.37 53.60 40.00 6.38 38.13

DH (%): 100(H( � )�LB)/LB where H( � ) denotes the solution value by the heuristic. The average results marked with ‘*’ are computed using the
optimal solution for LB, except for only one instance of 6� 30 a lower bound is used.
Iteration: the number of times that the LP relaxation problem has been solved.



LP-based heuristics for all formulations and comparable

with the results given in Table 2 for SP and TP. While a

standard branch and bound implementation with 3h time

limit provided an integrality gap of about 30% for N¼ 12

and T¼ 30, 5% for N¼ 24 and T¼ 15, and 40% for N¼ 24

and T¼ 30 on average for TP, the curtailed branch and

bound resulted in average gaps of about 32% for N¼ 12 and

T¼ 30, 8% for N¼ 24 and T¼ 15, and 38% for N¼ 24

and T¼ 30 in 15min with the TP formulation. The curtailed

branch and bound solutions deviate by only 8 and 7% from

the optimal solutions for SP and TP, respectively. However,

increasing time limit further did not improve the solution

quality. The result that SP and TP outperform IS support

our argument on the importance of using tighter formula-

tions in devising efficient solution methods to solve the

problem.

Tighter problem instances

Considering that feasibility is a difficult issue for the

lot-sizing problem with setup times, the results we obtained

indicate a very good performance of the LP-based heuristics.

Since finding a feasible solution is NP-complete, this

might raise questions regarding the tightness of the test

problems in terms of resource capacities. To understand how

tight the test problem instances are we expanded our test

bed by modifying the test problems with N¼ 12, 24

and T¼ 15,30. In the first new set of 20 problems, we

decreased the available resource capacity in each period

by 10%. We also created two other new sets of 20 problems

by increasing the original setup time for each item by 10

and 5 units separately, keeping the original resource

capacities intact. This made a total of 60 new test problems.

Table 6 Relative deviation of the heuristic solution values for IS and CPU times

H1 H2 H3

k N�T DH (%) CPU (s) Iteration DH (%) CPU (s) Iteration DH (%) CPU (s) Iteration

0.75 6� 15 26.23 0.33 18.0 28.25 0.06 41.1 24.75 0.06 24.1
6� 30 93.38 1.03 20.4 108.84 0.23 57.0 74.12 0.23 40.0
12� 15 23.25 0.81 23.8 28.23 0.15 46.4 18.49 0.15 31.2
Average* 47.62 0.72 20.73 55.11 0.15 48.18 39.12 0.14 31.78
12� 30 111.45 2.62 30.3 96.70 0.77 71.0 91.42 0.99 53.6
24� 15 22.64 1.84 29.8 21.53 0.56 71.5 18.09 0.59 47.0
24� 30 125.08 6.28 38.6 125.10 2.55 79.6 86.14 2.96 62.0
Average 86.39 3.58 32.87 81.11 1.29 74.03 65.22 1.51 54.20

0.85 6� 15 26.23 0.33 18.9 28.25 0.06 41.1 24.75 0.06 24.1
6� 30 93.38 0.84 23.4 108.84 0.23 57.0 74.12 0.37 40.0
12� 15 23.25 0.73 24.4 28.23 0.14 46.4 18.49 0.20 31.2
Average* 47.62 0.63 22.23 55.11 0.14 48.18 39.12 0.21 31.78
12� 30 111.17 2.45 33.0 96.70 0.81 71.0 91.42 0.93 53.6
24� 15 21.65 2.08 35.3 21.53 0.72 71.5 18.09 0.62 47.0
24� 30 125.18 5.85 34.2 125.10 2.57 79.6 86.14 3.13 62.0
Average 86.00 3.46 34.15 81.11 1.37 74.03 65.22 1.56 54.20

0.95 6� 15 24.61 0.35 19.8 28.25 0.07 41.1 24.75 0.05 24.1
6� 30 93.38 0.94 26.8 108.84 0.24 57.0 74.12 0.22 40.0
12� 15 23.25 0.80 25.2 28.23 0.16 46.4 18.49 0.15 31.2
Average* 47.08 0.69 23.92 55.11 0.16 48.18 39.12 0.14 31.78
12� 30 111.17 2.71 36.0 96.70 0.80 71.0 91.42 0.89 53.6
24� 15 21.65 2.06 35.0 21.53 0.53 71.5 18.09 0.58 47.0
24� 30 125.19 6.28 36.8 125.10 2.66 79.6 86.14 2.71 62.0
Average 86.00 3.68 35.93 81.11 1.33 74.03 65.22 1.39 54.20

N 6� 15 26.23 0.33 18.0 28.25 0.06 41.1 24.75 0.06 24.1
6� 30 93.38 1.03 20.4 108.84 0.22 57.0 74.12 0.22 40.0
12� 15 23.25 0.81 23.8 28.23 0.15 46.4 18.49 0.15 31.2
Average* 47.62 0.72 20.73 55.11 0.14 48.18 39.12 0.14 31.78
12� 30 111.45 2.62 30.3 96.70 0.77 71.0 91.42 0.88 53.6
24� 15 22.64 1.84 29.8 21.53 0.53 71.5 18.09 0.58 47.0
24� 30 125.08 6.28 38.6 125.10 2.39 79.6 86.14 2.73 62.0
Average 86.39 3.58 32.87 81.11 1.23 74.03 65.22 1.40 54.20

DH (%): 100(H( � )�LB)/LB where H( � ) denotes the solution value by the heuristic. The average results marked with ‘*’ are computed using the
optimal solution for LB, except for only one instance of 6� 30 a lower bound is used.
Iteration: the number of times that the LP relaxation problem has been solved.



We used only the LP relaxation of SP to solve the new

problems.

When we reduced the original capacity in each period by

10%, even the LP relaxations of seven of the 20 problems

became infeasible. For another two problems, CPLEX could

not find a feasible integer solution in 1h. For the remaining

11 feasible instances, the curtailed branch and bound

heuristic produced an average gap of about 8% in 30min

for eight instances whereas H3 provided a solution for only

three instances.

When we increased the original setup time for each item

by 10 units, CPLEX confirmed the infeasibility of two out of

20 instances. The curtailed branch and bound heuristic

found a feasible solution, in 5min, to 14 out of 18 instances

with an average gap of about 9%. In the case of 5 units

increase in setup times, one problem became infeasible and

the curtailed branch and bound heuristic found a feasible

solution to 19 instances with about 12% average gap.

Considering that the average gaps are the deviations of the

integer solution values from the lower bounds, the

performance of H3 was also good for these new problem

instances. H3 provided a feasible solution, in less than 3 s, to

12 instances with about 15% average gap for the problems

with 10 units increase in setup times, and to 15 instances with

about 18% average gap for those with 5 units increase.

These results we obtained for the tighter problem

instances indicate that original problems are not loose in

terms of the resource capacity.

Conclusion and further research

The multi-item capacitated lot-sizing problem with setup

times that we address in this research is known to be very

challenging from a computational viewpoint. Inclusion of

setup times makes even the feasibility problem NP-complete.

The alternative formulations we considered led to consider-

ably different solution values when their linear relaxations

were solved. This is not observed when setup times are not

included or when capacity can be relaxed by overtime

decisions. This suggests that it is even more important, in

this case, to start with the right formulation in any attempt

to develop an efficient solution procedure for the problem or

to find a reliable solution using a commercial MIP solver.

Our computational results suggest that, in an LP-based

Table 7 Relative deviation of the curtailed branch and bound solution values by SP, TP and IS and CPU times, using CPLEX
with all features on

Time limit¼ 5min Time limit¼ 15min Time limit¼ 30min

MIP N�T D (%) Node CPU (min) D (%) Node CPU (min) D (%) Node CPU (min)

SP 6� 15 7.71 393.4 0.06 w w

6� 30 11.48 4829.6 2.14
12� 15 4.86 1765.6 0.55
Average* 8.02 2329.5 0.92
12� 30 34.45 2433.6 5.02 31.85 9144.6 15.01 31.66 20 248.6 30.01
24� 15 7.59 4662.0 3.46 7.57 10 785.4 7.52 7.52 19 602.4 12.45
24� 30 39.43 537.2 4.39 39.41 2342.6 12.37 38.04 5340.2 24.37
Average 27.16 2544.3 4.29 26.28 7424.2 11.63 25.74 15 063.7 22.28

TP 6� 15 5.87 288.6 0.07 w

6� 30 11.58 1190.0 1.36 10.74 5321.6 4.70 w

12� 15 4.76 1707.6 1.39 w

Average* 7.40 1062.1 0.94 7.12 2439.3 2.06
12� 30 34.48 1286.4 5.03 31.83 4133.2 15.03 31.26 9695.4 30.03
24� 15 7.57 2992.8 4.40 7.54 6800.2 9.37 7.52 9843.2 15.83
24� 30 39.03 388.8 4.21 38.20 1192.2 12.25 38.10 3601.6 24.21
Average 27.03 1556.0 4.55 25.86 4041.87 12.22 25.63 7713.4 23.36

IS 6� 15 7.03 155.2 0.01 w w

6� 30 24.68 4218.4 0.77
12� 15 6.33 1150.4 0.02
Average* 12.68 1841.3 0.33
12� 30 52.83 8496.4 5.00 51.58 23 418.6 12.46 51.05 39 986.6 21.50
24� 15 12.33 8515.8 3.73 12.33 12 602.4 5.84 12.33 18 604.6 8.83
24� 30 61.32 1502.0 3.62 59.43 3806.4 9.62 59.37 7749.2 18.62
Average 42.16 6171.4 4.12 41.11 13 275.8 9.31 40.91 22 113.5 16.32

D (%): 100(U( � )�LB)/LB. The average results marked with ‘*’ are computed using the optimal solution for LB, except for only one instance of 6� 30
a lower bound is used.
Node: the number of nodes explored.
wThe algorithm has terminated before the 5-min limit.



approach, the use of the SP and TP formulations within a

general purpose MIP solver employing the dual algorithm

would be relatively efficient. Besides, as an alternative to SP

and TP, the use of the IS formulation can be advised within

a general purpose MIP solver that generates cutting planes,

again with the dual algorithm.

Among the LP-based heuristics that we developed, H3,

which makes use of the problem structure and prioritizes

selection with respect to larger time indices turned out to be

the best and the most robust. In general, our heuristics were

successful in finding a feasible integer solution to the

problem in negligible computation times for the test

problems we solved, however, the optimality gap turned

out to be rather large. One important observation was that

in the first LP solution about 75–79% of variables take on

positive integer values. After that all heuristic efforts are for

fixing the remaining 20–25%. The curtailed branch and

bound algorithm was considered to fix them in an optimal

way. This approach improved the quality of the LP-based

heuristic solutions significantly by 13–26%, with very

reasonable computation times. In general, the underlying

formulations SP and TP performed better than IS for our

LP-based heuristic approaches. Based on these results, we

propose that LP-based heuristics should be considered in

practical settings and further explored. Furthermore, as our

analysis suggests more research should be done for

investigating different MIP formulations, since they lead to

significantly different results when their relaxations are

considered or when they are solved by different MIP solvers,

especially in this case.
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