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Abstract

Mechanical waves naturally propagate through dynamical systems that are subjected
to initial excitation. These mechanical waves carry enough information about the dy-
namical system including its dynamics and parameters, in addition to the externally
applied forces or torques due to the system’s interaction with the environment. In
other words, mechanical waves carry all the dynamical system’s information in a cou-
pled fashion. This thesis proposes an estimation algorithm that enables estimating
flexible systems’ dynamics, parameters, externally applied forces and disturbances.
The proposed algorithm is implemented on a lumped system with an actuator located
at one of its boundaries, that is used as a single platform for measurements where actu-
ator’s current and velocity are measured and used to estimate the reflected mechanical
waves. Only these two measurements from the actuator are required to accomplish
the motion and vibration control, keeping the dynamical system free from any at-
tached sensors by considering the reflected mechanical waves as a natural feedback
from the system. In this thesis the notion of position estimation is proposed including
both rigid and flexible motion estimation, where the position of each lumped mass
is estimated and experimentally compared with the actual measurements. This in
turn implies the possibility of using these position estimates as a virtual feedback
to the controllers instead of using the actual sensor’s feedback. System’s global be-
havior can be investigated by monitoring lumped system dynamics, to guarantee the
accomplishment of motion control task and the minimization of system’s residual vi-
brations. Since the dynamics of the system can be obtained, the externally applied
forces or torques can be estimated. The experimental results show the validity of
the proposed algorithm and the possibility of using two actuator parameters in order
to estimate the uniform system parameters, rigid system’s position, flexible system’s
lumped mass positions and external disturbances due to system’s interaction with the
environment.
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CHAPTER 1

Introduction

Interest in flexible robots and structures is ever-growing due to the lighter loads

they provide, higher acceleration that can be achieved, low power consumption, low

material and manufacturing costs, better load to weight ratio, and less powerful

actuator requirement compared to rigid robots. On the other hand, there arise some

difficulties related with structural flexibility.

Firstly, dynamics and kinematics analysis of flexible manipulators and robots are

very difficult since exact modeling of vibration modes is nearly impossible and the

kinematics map is also inaccurate. In addition, the controller design is not easy

because of the uncontrollable nature of system dynamic states, that comes from

insufficient number of control inputs. Moreover, non-collocated sensing gives the

system non-minimum phase property which limits the control performance. Fur-

thermore, flexible structures suffer from the ever-lasting vibrations due even slightest

manoeuvres, that add more complexity to the controller that has to take care of extra

secondary tasks such as vibration suppression.

Besides, sensors have to possess sufficient specifications such as fatigue resistance

to withstand the fluctuating stresses imparted by the flexible structure. Furthermore,

extra sensors have to be used if both motion and vibration control are considered

since feedback signal is required from the point of interest to be controlled along

with the measurements of the other points to guarantee that system is controlled

and residual vibrations are suppressed. The number of sensors required for a certain

control process can be reduced by proper observers, but additional measurements
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have to be taken from the system providing that the system is guaranteed to be

observable. In other words, observers help to cut down the number of sensors attached

to the dynamical system. Surprisingly enough that all these sensors can be avoided

and dynamical system can be free from any attached sensors if the mechanical waves

were measured or estimated and analyzed to extract the necessary information for

the control process. Simply, system parameters and position feedback are required

for a motion and vibration control, while force control requires the extraction of the

force information from the mechanical waves.

The questions that arise are whether these mechanical waves include all of this

information, whether they can be estimated or measured from the actuator side, and

finally whether the system’s parameters, dynamics and disturbance can be decoupled

and each piece of information can be extracted out of the reflected mechanical waves.

Firstly, a mathematical expression of the reflected mechanical wave has to be

explored and obtained from the set of equations of motion that describe the system’s

dynamics. Secondly, the nature of the mechanical waves’ propagation have to be

studied and analyzed to know whether they can be detected from the actuator side.

And above all, the capability of decoupling each piece of information out of the

reflected waves requires full understanding of the dynamical system behavior through

the entire system’s frequency range.

Modal analysis, frequency response analysis and input shaping represent the core

of the sensorless estimation algorithm presented in this thesis. Two measurements

are taken from the actuator and used as the input for a chain of observers to estimate

the system’s uniform parameters, rigid body position, flexible lumped positions and

external disturbances. Using all of these estimates, sensorless motion and vibration

controllers can be constructed without taking any measurement from the flexible

system.

2



1.1 Definition and Overview

Mechanical wave is a local oscillation of the material, where only the energy prop-

agates while the oscillating material does not move far from its initial equilibrium

position. This wave is created in a certain media when energy is added by any ar-

bitrary input that forces this wave to propagate between the finite length media’s

boundaries.

These mechanical waves can be considered as a propagating force, torque, dis-

placement, velocity or acceleration waves. They carry some information about the

media through which they propagate. In the next chapters, we will show that waves

reconstruct each other at system’s boundaries at which an actuator exists to launch

the initial input excitation energy.

Historically, the problem of the vibrating string and the associated propagating

waves was investigated by D’Alembert, Euler, Bernoulli and Lagrange, and the one di-

mensional wave equation was solved by D’Alembert. Waves were studied in different

fields and for large variety of applications but rarely used in the field of dynami-

cal system control until 1998, when O’Connar used actuator to launch and absorb

mechanical waves in the system to achieve precise motion control by taking one mea-

surement from the system in the absence of disturbance and any applied external

forces O’Connar [1].

Energy and momentum enter and leave the flexible system at the actuator/system

interface. Motion of the actuator should get the energy and momentum into and then

out of the system in the right way to ensure that the entire system comes to rest at

the target, which is the central idea of the wave based control O’Connar [2].

Wave transfer function was proposed in O’Connar [3] that maps the position of

each system’s lumped mass with it’s neighbor. This transfer function suggests that

motion of each lumped mass is given exactly by the superposition of a rightward

and leftward motion of the lumped mass, or the launch and absorb waves at actua-
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tor/system interface.

The same interpretation can be obtained by solving the one dimensional wave

equation where the solution represents a wave moving to the left added to another

one moving with the same velocity in the opposite direction. This result was used to

construct a motion and vibration control law for lumped flexible robots using single

measurement from the flexible system besides the actuator’s measurements O’Connar

[4].

Mechanical waves were used to analyze and control gantry cranes in O’Connar [5].

Simply, the control strategy depends on moving the trolley short away of the target

and allowing the load to swing to the target. At this point the controller moves

the trolley to the target position. More precisely, the controlled trolley launches

and absorbs waves that travel to and from the load by separating these waves into

outgoing and returning waves, each treated differently by the motion of the trolley

O’Connar [6].

A comparison between wave based control and other schemes for controlling flexi-

ble structures such as linear quadratic regulator, Bang-Bang control and input shap-

ing was presented in Mckeown [7]. The first scheme requires the knowledge of all the

system’s states or their estimates, while the other approaches require the exact and

complete model as they are entirely open loop. On the other hand, the wave based

approach can be extended to n degree-of-freedom using only single measurement from

the first lumped mass. Nonlinear behavior of wave based control was investigated in

O’Connar [8].

Despite of the promising results obtained by the researchers in this field, the suc-

cess and robustness of the control process is not guaranteed unless certain assumptions

are made, such as neglecting the external disturbances due to the interaction with the

environment. Furthermore, a measurement has to be taken from the system despite

the natural feedback provided by the reflected waves on the actuator. Indeed, taking

4



single measurement from the dynamical system and accomplishing the motion and

vibration control task successfully is advantageous, but it also indicates that system’s

natural feedback is not fully utilized.

The aim of this thesis is to accomplish motion, vibration and force control with-

out taking any measurement from the dynamical system. Therefore, the mechanical

waves are treated differently, and defined in a way that enables to extract as much

information as possible out of the reflected mechanical wave if not all the information.

Surprisingly enough that in the last few decades reflected mechanical waves and

many other terms were considered as disturbance, and observers were designed to

estimate such disturbances from the actuator using its parameters Hirotaka [9]. On

one hand, rejecting the disturbance that includes the reflected mechanical wave and

many other terms makes the control system robust by turning the control system

into acceleration control if certain assumptions are made. On the other hand, the

total disturbance contains several terms such as columb friction, variation of self-

inertial torque, torque ripples, externally applied forces and the reflected mechanical

waves or the reflected load that contains enough information about the dynamical

system. Therefore, the reflected mechanical wave has to be extracted out of the total

disturbance.

Disturbance observer was designed in Ohnishi [10]-[11] by measuring the actuator’s

current and velocity, then disturbance was estimated through a low pass filter. The

disturbance observer was supported by some velocity measurement methods to avoid

the direct differentiation of the optical encoder signal Toshiaki [12]. As the reflected

mechanical wave is of our concern, the disturbance observer has to be modified in

order to decouple this reflected wave out of the total disturbance. Murakami [13]-

[14] showed that the reflected torque can be decoupled out of the total estimated

disturbance by performing a parameters identification process. Performance of the

disturbance observer was investigated in Seiichiro [15]-[10]. The frequency range
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at which the observer is properly performing can be determined by the observer’s

sensitivity function Erwin [16].

Not only sensorless motion control is considered in this thesis but also sensorless

vibration control and monitoring. Among the vibration control techniques Point-to-

point motion/vibration control is a suitable control scheme for lumped flexible robots

Miu [17]-[18] where the input waveform is selected such that at the end of the travel,

there will be zero potential and zero kinetic energy stored in the system’s elastic el-

ements Bhat [19]. Control input was filtered using a low-pass filter or a notch filter

in Sugiyama [20], in order to take away any energy at the resonant frequencies of the

system such that system’s flexible modes will not be excited. Similar results were

obtained in Aspinwall [21]- Meckl [22] as the control input was Fourier synthesized

to reduce excitation of the system’s flexible modes. In this thesis the control input

is Fourier synthesized or filtered in order not to excite certain modes of the flexible

system, this allows minimizing the number of coordinates used to describe the sys-

tem’s motion. Therefore, certain system information can be estimated from specific

system’s frequency range.

1.2 Contribution of the Thesis

Strictly speaking, the word ’sensorless’ is not correct, since one must measure or

sense some variables to obtain some information as the basis of estimating the un-

known variables and parameters. The flexible dynamical system is kept free from any

measurement or any attached sensors excluding the actuator. Therefore, the word

’sensorless’ in this context indicates that flexible part of the system is free from mea-

surements. Only two variables are required from the actuator’s side. In other words,

actuator can be used as a single platform for measurement, estimation and control

without taking any measurement from the flexible system.

This thesis investigates the following topics:
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• Sensorless system parameter estimation

System parameters such as stiffness of joints and damping coefficients are of

great importance for the success of the control system design. Therefore, as a

first step toward achieving sensorless wave-based control task, these parameters

have to be estimated from the reflected mechanical wave. Fig.1.1. illustrates

the parameter estimation process, where only actuator parameters are required.

The details are explained in Chapter 3.

• Sensorless position estimation

In this thesis the concept of motion estimation is presented. The motion of

flexible dynamical systems can be rigid or flexible. Both of these motions are

estimated using a chain of observers and an off-line experiment. This in turn

implies that system’s dynamics can be available as soon as these positions are

successfully estimated. Fig.1.2. illustrates the position observer that is designed

in Chapter 3.

• Sensorless motion and vibration control

Estimating the system’s flexible motion makes it possible to feedback these po-

sition estimates to the controller instead of the actual measurements taken by

some attached sensors. The proposed position estimation algorithm presented

in this thesis makes it possible to obtain the position estimates of all system’s

Figure 1.1: Illustration of system parameter estimation
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Figure 1.2: Illustration of system’s position estimation

lumped masses. Therefore, controlling any mass or point of interest in the

system is much easier and advantageous using this method, because of the sim-

plicity of feeding these estimates back to the controller as they are all available.

On the other hand, using the actual measurement as a feedback necessitates

using multiple sensors or physically changing the sensor’s location according to

the mass of interest. Fig.1.3 illustrates the idea of the sensorless motion con-

trol, where the position estimates are used as feedback instead of the actual

measurement.

Figure 1.3: Illustration of the sensorless motion control

• Sensorless force estimation

Externally applied forces or disturbances on the system have to be considered

8



when the dynamical system has to perform a control task that requires interac-

tion with the environment. And since the system’s dynamics can be estimated,

external forces also can be decoupled out of the reflected mechanical waves.

Fig.1.4. illustrates the estimation process of an externally applied torque on

the last inertial mass. The process starts with two measurements from the

actuator and ends up with estimates of the system parameters, dynamics and

external applied forces.

Figure 1.4: Illustration of the sensorless force estimation

1.3 Organization of the Thesis

This thesis is organized as follows. In Chapter 2, modal analysis and frequency re-

sponse analysis of a flexible lumped system are studied. Reflected mechanical waves

are investigated and shown to contain enough information about the system, moreover

proved to be accessible from the actuator side. In Chapter 3, reflected mechanical

waves are estimated using available actuator measurements. Uniform system param-

eters are estimated, and rigid body motion observer is designed. Then a chain of

observers is designed to estimate the system’s flexible motions. These estimates are

used to accomplish sensorless motion and vibration control for flexible systems. In

addition, external forces or torques due to system’s interactions with the environment

are estimated. Experimental results and the entire sensorless estimation algorithm are

9



included in Chapter 4. Final remarks, conclusions and recommendations for future

work are included in Chapter 5.
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CHAPTER 2

Modal Analysis of Lumped Flexible Systems

In this chapter, a lumped flexible system is modeled, mechanical waves are math-

ematically defined and shown to contain all system information including its param-

eters, dynamics and external disturbances. Then solution of the wave equation is

compared with a transfer function interpretation to show that mechanical waves are

accessible from the actuator side. Frequency response and modal analysis are inves-

tigated and used as the core of the estimation algorithm presented in Chapter 3 since

the input forcing function is shaped, pre-filtered or synthesized according to these

analyses.

2.1 Mechanical Waves in Flexible Systems

2.1.1 Modeling of lumped flexible systems

A lumped mass spring system is quite suitable for the purpose of this thesis as its

parameters including the joint stiffness and the damping coefficients are to be es-

timated, and its dynamics including the positions, velocities, accelerations of each

lumped mass, and finally the external disturbances are to be observed from the actu-

Figure 2.1: Lumped flexible inertial system
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ator side. The matrix equation of motion for an n degree-of-freedom flexible system

that is shown in Fig.2.1 is

[J ][Θ̈] + [B][Θ̇] + [K][Θ] = τ (2.1)

J , B and K are the inertia, damping and stiffness matrices, Θ and τ are the

system’s generalized coordinate and external torque vectors.

Θ = [θ1 θ2 θ3 . . . θn]′

τ = [τ1 τ2 τ3 . . . τn]′

J =




J1 0 0

0
. . . 0

0 0 Jn




, B =




B1 −B1 0

−B1
. . . −Bn−1

0 −Bn−1 Bn−1




, K =




k1 −k1 0

−k1
. . . −kn−1

0 −kn−1 kn−1




Taking Laplace transform of Eq.2.1 and arranging the terms in the linear system

form, assuming that n = 3

A Θ = τ (2.2)

where,

A =




J1s
2 + B1s + k1 −B1s− k1 0

−B1s− k1 J2s
2 + (B1 + B2)s + k1 + k2 −B1s− k1

0 −B1s− k1 J3s
2 + B2s + k2




Solving the determinant of A assuming equal masses, damping coefficients and

spring constants, we obtain the following characteristic equation

m3s6 + 4m2βs5 + (4m2k + 3mβ2)s4 + 6mβks3 + 3mk2s2 = 0 (2.3)

12



Solving for the roots of the characteristic equation Eq.2.3, assuming zero damping

coefficient we get

s1,2 = 0

s3,4 = ±j

√
k

m

s5,6 = ±j

√
3k

m

These are the poles of the system which depend on the mass distribution, stiff-

ness and damping through the system, They all fall on the imaginary axis since the

damping coefficients are all zeros. Moreover, they do not depend on the position of

force application and the positions from which measurements are taken.

Unlike the poles, zeros of the system depend on the SISO system. In other words,

they depend on the position where the force is applied and the measurements are

taken, this in turn implies that we have nine sets of zeros corresponding to nine

different input output configurations. The system’s poles and zeros are shown in

Fig.2.2 and Fig.2.3.

As the position of measurement is moved along the flexible structure, the zeros

immigrate toward or far away from the origin of the complex plane. When a zero

coincides with a pole as shown in Fig.2.3, we lose the observability due to the zero

pole cancellation. In other words, when the sensor is attached at any of the system

nodes, some flexible modes will be unobservable [23].

2.1.2 Mechanical reflected waves

For the lumped inertial system shown in Fig.2.4, Jm and θm are the actuator inertia

and angular position. The following equations of motion can be obtained

Jmθ̈m + B(θ̇m − θ̇1) + k(θm − θ1) = τm (2.4)

J1θ̈1 −B(θ̇m − θ̇1)− k(θm − θ1) + B(θ̇1 − θ̇2) + k(θ1 − θ2) = 0 (2.5)

13
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Figure 2.2: Poles and zeros for nine transfer functions, for B1 = B2 = 0

J2θ̈2 −B(θ̇1 − θ̇2)− k(θ1 − θ2) + B(θ̇2 − θ̇3) + k(θ2 − θ3) = 0 (2.6)

...

Jnθ̈n −B(θ̇n−1 − θ̇n)− k(θn−1 − θn) = 0. (2.7)

Putting it all together and solving for B(θ̇m − θ̇1) + k(θm − θ1) we get

B(θ̇m − θ̇1) + k(θm − θ1) = J1θ̈1 + J2θ̈2 + J3θ̈3 + . . . + Jnθ̈n. (2.8)

Making the following definition

τref , B(θ̇m − θ̇1) + k(θm − θ1) (2.9)

from Eq.2.8 we can rewrite the previous definition as

τref , J1θ̈1 + J2θ̈2 + J3θ̈3 + . . . + Jnθ̈n (2.10)

where τref is the reflected torque from the mechanical system on the actuator. Usually

it is defined as the mechanical load or disturbance on the actuator. Majority of

14
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Figure 2.3: Poles and zeros for nine transfer functions, for B1 = B2 = 0.5

Figure 2.4: Lumped inertial system with uniform parameters

researchers and authors are estimating this term and along with other terms, and

rejecting them by additional control term in order to obtain robust motion control.

In this work, the mechanical load is defined as a reflected mechanical wave from the

system as it carries all the systems dynamics and can be interpreted from Eq.2.10,

or the system’s uniform parameters as it can be interpreted from Eq.2.9. Similarly,

it can be shown for a linear flexible lumped system that the reflected force wave is

fref , B(ẋm − ẋ1) + k(xm − x1) (2.11)

or

fref , m1ẍ1 + m2ẍ2 + m3ẍ3 + . . . + mnẍn (2.12)
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for a system with externally applied torque or force due to the interaction with the

environment. The equations of motion are

Jmθ̈m + B(θ̇m − θ̇1) + k(θm − θ1) = τm

J1θ̈1 −B(θ̇m − θ̇1)− k(θm − θ1) + B(θ̇1 − θ̇2) + k(θ1 − θ2) = τext1 (2.13)

J2θ̈2 −B(θ̇1 − θ̇2)− k(θ1 − θ2) + B(θ̇2 − θ̇3) + k(θ2 − θ3) = τext2 (2.14)

...

Jnθ̈n −B(θ̇n−1 − θ̇n)− k(θn−1 − θn) = τextn (2.15)

where τexti is the external disturbance torque applied on the ith mass. The reflected

torque wave in this case is

τref ,
n∑

i=1

Jiθ̈i −
n∑

i=1

τexti , B(θ̇m − θ̇1) + k(θm − θ1). (2.16)

Surprisingly enough, the reflected force fref or torque τref can be estimated from the

actuator side using its current and velocity that will be explained in Chapter 3. In

this section, it was shown that the reflected torque wave τref carries all the flexible

system’s dynamics, uniform system’s parameters and the externally applied forces or

torques.

2.1.3 Mechanical wave propagation

In the previous section, reflected torque wave τref was shown to carry all the flexible

system’s information back to the actuator side. In this section, we investigate whether

the reflected waves are reflected and reconstructed at the actuator side. Therefore,

the wave equation has to be solved and the solution has to be interpreted. The one

dimensional wave equation is given as follows [24]

∂2u(x, t)

∂t2
+ B

∂u(x, t)

∂t
− c2∂2u(x, t)

∂x2
= H(t, x) (2.17)
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c =

√
G

ρ

where B, c and H(t, x) are the damping coefficient, wave propagation speed and the

input forcing function, respectively. G and ρ are the modulus of rigidity and density

of the media. Neglecting the damping term and rewriting the homogenous and forced

equations

∂2v(x, t)

∂t2
− c2∂2v(x, t)

∂x2
= 0 (2.18)

and

∂2w(x, t)

∂t2
− c2∂2w(x, t)

∂x2
= H(t, x) (2.19)

the total response can be obtained by the superposition of the forced and natural

responses

u(t, x) = v(t, x) + w(t, x). (2.20)

The solutions of the forced and homogenous equations are included in Appendix.A.

u(t, x) =
1

2
[f(x + ct) + f(x− ct)] + R + S (2.21)

R , f(x− ct)] +
1

2c
[

∫ x+ct

x−ct

g(s)ds]

S , 1

2c

∫ t

o

∫ x+c(τ+t)

x−c(τ−t)

H(s, τ)dsdτ

where g(s) and f(x) are the wave’s initial velocity and configuration. f(x − ct)

represents a portion of f(x) moving in one direction, while f(x + ct) represents the

other portion of f(x) that is moving in the opposite direction as shown in Fig.2.5.

Eq.2.21 indicates that the initial configuration of the wave that can be shaped by the

initial forcing function splints into two equal portions moving with the same speed in

opposite directions. Furthermore, the equation indicates that these two portions will

reconstruct each other again at the system’s boundaries. Therefore, we conclude that

regardless of the splinting action that occurs to the wave when it is initiated, it will

recover at two positions of the flexible system. These two positions are the system’s

17
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Figure 2.5: Simulation of the wave equation’s solution (T1 < . . . < T5)

boundaries where an actuator is located. Thus, reflected waves are accessible from

the actuator side.

2.1.4 Transfer function interpretation

The wave equation’s solution obtained in the previous section can be interpreted by

driving the transfer function that maps the motion of each mass with its neighbor.

Fig.2.6 illustrates a uniform mass spring system where the position of each ithmass is

related to the ii+1 by the following relation [3]

Xi+1(s) = G(s)Xi(s). (2.22)

Figure 2.6: Uniform mass spring system

The equation of motion for the ith mass is

mẍi = k(xi−1 − 2xi + xi+1). (2.23)

18



Taking Laplace transform of Eq.2.23, we get the following quadratic equation in G(s)

G2(s)− (ms2 + 2k)G(s) + k = 0. (2.24)

Solving the quadratic equation we get

G1(s) = 1 +
1

2

s2

2ω2
n

−
√

s2

2ω2
n

(1 +
s2

2ω2
n

) (2.25)

G2(s) = 1 +
1

2

s2

2ω2
n

+

√
s2

2ω2
n

(1 +
s2

2ω2
n

). (2.26)

Therefore, the position of each lumped mass can be obtained by the superposition of

two components of the form O’Connar [1]

Xi(s) = αi(s)G1(s) + βi(s)G2(s) (2.27)

where αi(s) and βi(s) are arbitrary, and making the following definitions

ψ(x + υt) , αi(s)G1(s)

ψ(x− υt) , βi(s)G2(s).

Finally, we obtain

Xi(s) = ψ(x− υt) + ψ(x + υt). (2.28)

The physical interpretation of Eq.2.28 is that the ψ(x − υt) component of Xi(s)

corresponds to motion propagating in the direction of increasing i, the motion whose

source is to the left, and which manifests itself over time in successive masses to

the right with a phase lag and finite magnitude ratio. On the other hand, the second

component ψ(x+υt) is noncausal in the direction of increasing i. It must correspond,

therefore, to a component of the motion of mass i + 1 that is not caused by the

rightward propagating component of the motion of mass i, but is rather associated

with motion whose source is to the right.

Therefore, we conclude that at each ith mass there will appear a component of

motion propagating rightward and another one propagating leftward O’Connar [4].
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That is similar to the interpretation of Eq.2.21. In other words, waves along flexible

systems are moving in opposite directions, they splint and they reconstruct each

other again linearly at the system’s boundaries where actuator is located. Therefore,

mechanical waves are accessible from the actuator side.

2.2 Frequency Response Analysis

It is assumed that the flexible lumped system has a single input, with three degrees

of freedom. Therefore, the number of distinct transfer functions drops to three, and

can be obtained from Eq.2.2 as follows

θ1(s)

f1(s)
=

J2s4 + 3Jks2 + k2

J3s6 + 4J2ks4 + 3Jk2s2

θ2(s)

f1(s)
=

Jks2 + k2

J3s6 + 4J2ks4 + 3Jk2s2
(2.29)

θ3(s)

f1(s)
=

k2

J3s6 + 4J2ks4 + 3Jk2s2
.

Dividing Eq.2.29 by J3 we get

θ1(s)

f1(s)
=

s4 + 3ω2
ns

2 + ω4
n

Js2(s4 + 4ω2
ns2 + 3ω4

n)

θ2(s)

f1(s)
=

ω2
ns2 + ω4

n

Js2(s4 + 4ω2
ns2 + 3ω4

n)
(2.30)

θ3(s)

f1(s)
=

ω4
n

Js2(s4 + 4ω2
ns2 + 3ω4

n)

where ωn is the natural frequency of the flexible system

ω2
n =

k

J
. (2.31)

By substituting s with jω and analyzing the low and high frequency behavior

s =⇒ jω.

Low frequency behavior

θ1(jω)

f1(jω)
|ω<<ωn =

−1

3Jω2
(2.32)
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At low frequencies, the rigid body motion of θ1 is falling off at a rate of −1
ω2 , and with

a gain of 1
3J

.

θ2(jω)

f1(jω)
|ω<<ωn =

−1

3Jω2
(2.33)

θ3(jω)

f1(jω)
|ω<<ωn =

−1

3Jω2
(2.34)

High frequency behavior

θ1(jω)

f1(jω)
|ω>>ωn =

−1

Jω2
(2.35)

At high frequencies, the rigid body motion of θ1 is falling at a rate of −1
ω2 , and with a

gain of 1
J
.

θ2(jω)

f1(jω)
|ω>>ωn =

k

J2ω4
(2.36)

θ3(jω)

f1(jω)
|ω>>ωn =

−k2

J3ω6
(2.37)

From Eq 2.33, Eq 2.34 and Eq 2.35, we conclude that at low frequency range we have

a rigid body motion behavior, and at this frequency range the equations of motion

can be written as follows

3J
d2θ(t)

dt2
= τ(t). (2.38)

This result will be the first step in the algorithm proposed in this thesis in order to

estimate the parameters and the positions in a sensorless manner. Fig.2.7 summarizes

the frequency response of the 3 DOF flexible system.

2.3 Modal Analysis

2.3.1 Modal matrix derivation

In this section, modal analysis of a 3 DOF flexible lumped inertial system is inves-

tigated in order to understand the relative motion between the lumped masses at

certain frequencies. Modal analysis is equivalent to the eigenvalue/eigenvector prob-

lem where eigenvalues represent the flexible system’s natural frequencies, while the
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Figure 2.7: Flexible system’s frequency responses

eigenvectors represent the modal vectors that describe the relative motion between

system’s degrees of freedom. The homogenous part of Eq.2.2 is

A Θ = 0. (2.39)

Solving the eigenvector problem assuming that damping coefficients are zero

AΘ = λΘ

(A− λI)Θ = 0 . (2.40)

From the solution of the characteristic Eq.2.3 we get the eigenvalues λ1, λ2 and λ3.

Solving Eq.2.40 for λ1 = 0
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


k −k 0

−k 2k −k

0 −k k







θ1

θ2

θ3




=




0

0

0




we obtain the following eigenvector or modal vector

Θ1 =




1

1

1




. (2.41)

This implies that, at 0 Hz flexible system is rigidly oscillating and the motion ra-

tio between the masses is unity. Therefore, at this frequency a rigid body motion

oscillation can be obtained and the flexible system is behaving rigidly.

For λ2 = j
√

k
m 



−k −k 0

−k k −k

0 −k 0







θ1

θ2

θ3




=




0

0

0




we obtain the following modal vector

Θ2 =




1

0

−1




. (2.42)

This implies that at
√

k
m

Hz, second mass is not moving with respect to the first

mass, while first and third masses have the same amplitude and are out of phase.

For λ3 = j
√

3k
m 



−2k −k 0

−k −k −k

0 −k −2k







x1

x2

x3




=




0

0

0



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the modal vector is

Θ3 =




1

−2

1




. (2.43)

This implies that at
√

3k
m

Hz, the first and third masses have the same amplitude and

are in phase, while the second mass’s amplitude is twice the first mass’s amplitude

and are out of phase. Concatenating the previous modal vectors together we obtain

M = [Θ1|Θ2|Θ3]

M =




1 1 1

1 0 −2

1 −1 1




(2.44)

where M1 is the modal matrix of the 3 DOF flexible system, that summarizes the

relative motion between the lumped masses at certain frequencies.

2.3.2 Experimental interpretation of the modal matrix

In order to interpret the physical meaning of the previous modal matrix, the follow-

ing experiment was performed on a three degree-of-freedom inertial flexible system.

Experimental parameters are shown in Table.2.1.

The frequency of the forcing function was tuned between 0.1 rad/sec and 30

rad/sec. Fig.2.8 shows the oscillation of the three lumped masses for an arbitrary

forcing function with a 1 rad/sec frequency. The masses have the same amplitude

and are in phase, that is equivalent to the unit eigenvector in the modal matrix.

Figure.2.9 indicates that the middle mass’s amplitude is very low, while the other

masses have the same amplitude and are out of phase, that is equivalent to the

second modal vector where the second element of the second modal vector is zero and

1The modal matrix’s elements are not necessarily integers, the obtained modal matrix is computed

under the assumption of equal masses, spring constants and damping coefficients.
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Table 2.1: Modal matrix experimental parameters

Parameter Value Parameter Value

J1 5152.99 gcm2 J3 6192.707 gcm2

J2 5152.99 gcm2 finput [0.1-30]rad/sec
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Figure 2.8: First eigenvector interpretation-finput=1 rad/sec

the first and third are unity with opposite signs. Figure.2.10 shows that the middle

mass is oscillating with twice the amplitude of the first and third masses and is out

of phase, while both of them are in phase with the same amplitude, that is equivalent

to the third eigenvector of the modal matrix. From the previous experiment we can

conclude that the eigenvalues of the flexible lumped system are

λ2 w 12rad/sec (2.45)

λ3 w 22rad/sec .

The frequency range of the rigid body oscillations falls below 5 rad/sec. In other

words, all the masses of the system will be oscillating with the same amplitude and

will be in phase if the frequency of the forcing function is kept below 5 rad/sec.

Therefore, if the flexible system is required to be moving rigidly, the frequency of the

forcing function has to be kept below 5 rad/sec for this particular system. Otherwise,

any of the system’s flexible modes will be excited and masses will be moving with
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Figure 2.9: Second eigenvector interpretation-finput=11 rad/sec
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Figure 2.10: Third eigenvector interpretation-finput=22 rad/sec
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CHAPTER 3

Sensorless Motion Control

The word ’sensorless’ means that the flexible system is free from any attached

sensors or measurement. It does not mean that we are not using any measurement,

since one must sense or measure some variables to obtain some information as the

basis of estimating the unknown variables. Only two variables are required to be

measured from the actuator side, actuator’s current and velocity. In this chapter

an estimation algorithm is proposed based on these two measurements to estimate

system parameters, observe the system’s flexible motion and external disturbances or

torques.

3.1 Reflected Torque Wave Estimation

Linear systems have the following state space representation, if the disturbance on

the system is assumed to be added to the input side

ẋ = Ax + bu + ed

y = cx
(3.1)

where x is a state vector, A is a system matrix, b is the distribution vector of the

input, e is a distribution vector of the disturbance, and c is the observation column

vector. Considering the parameter variation

A = Ao +4A

b = bo +4b
(3.2)

where 4A and 4b are the variation between the system’s actual parameters A, b
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and the system’s nominal parameters Ao, bo. The new state space equations are

ẋ = (Ao +4A)x + (bo +4b)u + ed (3.3)

= Aox + bou + (4Ax +4bu + ed)

where the third term of the right hand side of Eq.3.3 represent the disturbance input

due to both parameter variation and the external forces on the system

d̃ , 4Ax +4bu + ed . (3.4)

Applying the previous equations on an actuator attached to inertial load as shown in

Fig.3.1

(a) Actuator with inertial load

(b) Block diagram of the actuator and inertial load

Figure 3.1: Disturbance and reflected torque on the actuator side

L
dim
dt

+ Rim = ktim − kb
dθm

dt
(3.5)

Jm
d2θm

dt2
= ktim −B(θ̇m − θ̇a)− k(θm − θa) . (3.6)

Considering the parameter’s variation, where Jm and kt are the actuator inertia and

torque constant, Jmo and kto are the nominal ones, while 4Jm and 4kt are the

28



variations between the actual and nominal parameters

Jm = Jmo +4Jm (3.7)

kt = kto +4kt .

Eq.3.6 becomes

(Jmo +4Jm)
d2θm

dt2
= (kt +4kto)im −B(θ̇m − θ̇a)− k(θm − θa) . (3.8)

For systems with coulomb friction fcm

(Jmo +4Jm)
d2θm

dt2
= (kt +4kto)im −B(θ̇m − θ̇a)− k(θm − θa)− fcm . (3.9)

Re-arranging the terms

Jmo
d2θm

dt2
= ktoim −B(θ̇m − θ̇a)− k(θm − θa)− fcm +4ktoim −4Jm

d2θm

dt2
. (3.10)

Defining the total disturbance d on the actuator as

d , −fcm −B(θ̇m − θ̇a)− k(θm − θa) +4ktoim −4Jm
d2θm

dt2
(3.11)

rewriting Eq.3.11

Jmo
d2θm

dt2
= ktoim + d . (3.12)

Eq.3.12 indicates that the disturbance on the actuator can be determined using the

actuator’s parameters and nominal values of the motor inertia and torque constants

as follows

d = Jmo
d2θm

dt2
− ktoim .

By estimating d through a low pass filter

d̂ =
gdist

s + gdist

[Jmoθ̈m − iakto] (3.13)

where gdist is a constant observer gain. the error between the actual disturbance and

the estimated one is

d̃ = d̂− d . (3.14)
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Introducing Eq.3.12 and Eq.3.13. into Eq.3.14

d̃ = [Jmoθ̈m − iakto]
gdist

s + gdist

− Jmθ̈m + iakt . (3.15)

Multiplying Eq.3.15 by (s + gdist) yields

sd̃ + gdistd̃ = g(jmo − jm)θ̈m − sJmθ̈m + g(kt − kto)ia + siakt (3.16)

= gdist4Jθ̈m − sJmθ̈m + gktia + siakt .

By defining the right hand side as

ξ , gdist4Jθ̈m − sJmθ̈m + gktia + siakt

and rewriting Eq.3.16 in the standard first order differential equation form

d

dt
d̃ + gdistd̃ = ξ . (3.17)

Eq.3.17 describes the estimation error dynamics, solving the previous differential

equation for d̃ we get

d̃(t) = e−gdistt

∫ t

o

egdistt ξ dτ + ce−gdistt . (3.18)

Therefore, we conclude that as t =⇒ ∞ the estimation error d̃ =⇒ 0 thus d̂ =⇒ d.

The convergence ratio may be increased by changing the low pass filter gain gdist.

In other words, the disturbance is estimated through the first order low pass filter

shown in Fig.3.2.a. Since the numerical differentiation of the speed signal may result

in high level of noise in the calculated acceleration signal, The direct differentiation is

avoided by using the disturbance observer configuration shown in Fig.3.2.b. Toshiaki

[12]

t 7−→ ∞ =⇒ d̃ 7−→ 0

d̃ 7−→ 0 =⇒ d̂ 7−→ d

Rewriting Eq.3.11 and using the estimate of the disturbance instead of the actual
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(a) Direct differentiation configuration (b) Indirect differentiation configuration

Figure 3.2: Disturbance observer structure

one

d =⇒ d̂

d̂ = −fcm −B(θ̇m − θ̇a)− k(θm − θa) +4ktoim −4Jm
d2θm

dt2
. (3.19)

Recalling Eq.2.16 that describes the reflected torque wave

τref =
n∑

i=1

Jiθ̈i −
n∑

i=1

τexti = B(θ̇m − θ̇1) + k(θm − θ1) . (3.20)

It turns out that, the estimated disturbance d includes the reflected torque wave τref ,

the varied self-inertia torque 4Jm
d2θm

dt2
, torque ripple from the actuator 4ktoim and

the coulomb friction torque fcm. Eq.3.19 can be written as follows

d̂ = −fcm − τref +4ktoim −4Jm
d2θm

dt2
. (3.21)

The reflected torque wave τref has to be decoupled out of the total disturbance d.

Therefore, both the torque ripple of the actuator 4ktoim and the varied self-inertia

torque 4Jm
d2θm

dt2
have to be determined or estimated and the disturbance observer

shown in Fig.3.2 has to be modified so that the reflected torque can be decoupled

from other terms of Eq.3.19.
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3.1.1 Parameters’s variation disturbance estimation

In order to decouple the reflected torque τref out of the estimated disturbance d̂, the

parameters’s variation disturbance have to be estimated or determined first. Assum-

ing that the actuator is free from any attached inertial loads, the actuator’s mechanical

dynamics is described as

Jm
d2θm

dt2
= ktim − dpar (3.22)

where dpar is the disturbance due to the parameteres’s variations and the viscous

friction torque, that is given as

dpar = −Bθ̇m +4ktim −4Jm
d2θm

dt2
. (3.23)

Other terms of Eq.3.19 are dropped, as the actuator is running free from any attached

load. Since dpar can be estimated using the actuator’s current and velocity, Eq.3.23

becomes

d̂par = −Bθ̇m +4ktoim −4Jmθ̈m (3.24)

where d̂par is the estimated parameters’s disturbance data point vector, while θ̇m, θ̈m

and im are data point vectors of actuator’s velocity, acceleration and current. Putting

Eq.3.24 in matrix form as follows

[
4kt −B −4Jm

]

1×3




im

θ̇m

θ̈m




3×r

=

[
d̂par

]

r×1

(3.25)

where r is the number of data points, defining

H ,




im

θ̇m

θ̈m




.

Rewriting Eq.3.25 [
4kt −B −4Jm

]
H =

[
d̂par

]
.
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Eq.3.25 describes an over-determined system, where the number of equations are

greater than the number of unknowns. Thus, solution of such systems have to mini-

mize some cost functions such as the norm square of errors. Therefore, the estimates

of the parameters’s variation disturbance can be computed as follows

[
4̂kt −B̂ −4̂Jm

]
=

[
HT H

]−1

HT

[
d̂par

]
(3.26)

or [
4̂kt −B̂ −4̂Jm

]
= H†

[
d̂par

]
(3.27)

where H† is the pseudo-inverse of H. 4̂kt and 4̂Jm are the estimated actuator’s

torque ripple and varied self-inertia torque, respectively.

3.1.2 Reflected torque wave decoupling

As the parameters’s variation disturbance are estimated by Eq.3.27, they can be used

in order to decouple the reflected torque wave τref from the total disturbance d by

adding the estimates of the parameters’s variation estimates to both sides of Eq.3.21

and neglecting the coulomb friction torque

−4̂kt im + 4̂Jm θ̈m + d̂ = −τref +4ktim −4Jmθ̈m − 4̂kt im + 4̂Jm θ̈m (3.28)

4̂kt im + 4̂Jm θ̈m + d̂ = −τref + (4kt − 4̂kt)im + (4̂Jm −4Jm)θ̈m .

And since

4̂Jm ' 4Jm

4̂kt ' 4kt

the estimate of the reflected torque is

τ̂ref = 4̂kt im − 4̂Jm θ̈m − d̂ . (3.29)

The block diagram implementation of Eq.3.29 is shown in Fig.3.3, where the direct
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(a) Direct differentiation configuration (b) Indirect differentiation configuration

Figure 3.3: Reflected torque observer structure

differentiation is not avoided in the configuration shown in Fig.3.3.a. The other

configuration shown in Fig.3.3.b also requires the differentiation of the velocity signal.

Therefore, the reflected torque wave observer shown in Fig.3.3 will result in high level

of noise amplification in the estimated reflected torque wave τ̂ref . In order estimate

the reflected torque wave with minimum level of noise amplification the structure of

the observer has to be modified as follows

τ̂ref =
gref

s + gref

[im4̂kt − d̂ + gref4̂Jmθ̇m]− gref4̂Jmθ̇m (3.30)

where gref is the observer’s constant gain or the corner frequency of the low pass

filter, d̂ is the estimated total disturbance. The reflected torque wave is estimated

through a first order low pass filter as shown in Fig.3.4. without differentiating the

velocity signal to keep the noise amplification level as low as possible.

The modified observer shown in Fig.3.4 can be used to provide:

1. Total disturbance estimate d̂
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Figure 3.4: Modified reflected torque observer

2. Reflected torque estimate τ̂ref .

An off-line experiment is required to detect the parameter’s variation disturbance

using Eq.3.27 along with the actuator’s current and velocity. The reflected torque by

its turn is used to obtain1:

1. system’s rigid motion estimate

2. system uniform parameters

3. system’s flexible motions estimates

4. externally applied torques or disturbances estimates.

Indeed, the modification added to the conventional disturbance observer requires

performing an off-line experiment, but the obtained outcomes make it possible to use

1The following items will be explained in the current chapter’s following sections

35



the new observer in variety of applications. In other words, the modified observer can

be used to accomplish robust motion control by rejecting the disturbance d, that can

be achieved by adding a compensation current to the reference current as shown In

Fig.3.5.

Figure 3.5: Modified observer-disturbance rejection

In addition to the disturbance rejection ability, the modified observer can be used

to estimate the reflected torque wave, that is used along with the actuator parameters

as the inputs of the sensorless estimation algorithm as it is illustrated in Fig.3.6

3.2 Rigid Body Motion Estimation

Modal and frequency response analysis of flexible lumped systems show that at low

frequency range the flexible system is behaving as a rigid body. The ratios between all
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Figure 3.6: Modified observer-sensorless estimation

the masses’ positions are unity as it was shown by the modal matrix M in Chapter.2

M =




1 1 1

1 0 −2

1 −1 1




where the first vector represent the ratios of the masses’ positions at a particular

frequency. On the other hand, the second and third vectors of M represent flexible

motion of the system at other particular frequencies. Recalling Eq.2.10 that describes

the reflected torque of an n DOF flexible system

τref = B(θ̇m − θ̇1) + k(θm − θ1) = J1θ̈1 + J2θ̈2 + J3θ̈3 + . . . + Jnθ̈n . (3.31)

Where θ1, θ2 . . . θn are the coordinates of the flexible system. For the second eigen-

vector of the modal matrix M , the angular position θ2 is zero and so do the velocity

and the acceleration, while the angular position θ1 is equal to θ3 with opposite sign.

The motion of the flexible system at the system’s natural frequencies can be
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summarized as follows

Θ2 =




1

1

1




f1 Hz

=⇒ θ1 = θ2 = θ3

Θ2 =




1

0

−1




f2 Hz

=⇒ θ2 = 0 , θ1 = −θ3 (3.32)

Θ3 =




1

0

−1




f3 Hz

=⇒ θ2 = −2θ1, θ1 = θ3 .

It turns out that, if the forcing function has zero energy at the system’s resonant

frequencies, flexible system will be oscillating rigidly and consequently single degree

of freedom will be enough to describe the motion of the flexible system. In other

words, if any of the system’s flexible modes are excited, n coordinates have to be

determined in order to describe the motion of the system. On the other hand, single

coordinate is enough to describe the rigid motion of the flexible system that is no

longer flexible. Therefore, if any of the system’s flexible modes is not excited along

with the assumption that all the lumped inertial masses have equal initial position

and velocity

θ1(to) = θ2(to) = θ3(to) = . . . = θn(to)

θ̇1(to) = θ̇2(to) = θ̇3(to) = . . . = θ̇n(to)

we conclude that

θ1(t) = θ2(t) = θ3(t) = . . . = θn(t) (3.33)

that is only valid in a narrow region of the system’s frequency range, providing that

the previous initial conditions are similar.
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3.2.1 Filtering and/or fourier synthesis the control input

One way to keep the control input free from any energy at the system’s resonance

frequencies, is to pre-filer the control input with a low-pass filter. The low-pass filter

will guarantee that the control input will not excite any of the system’s flexible modes.

The low-pass filter’s corner frequency has to be chosen according to the modal analysis

of the system. For example, the corner frequency of the low-pass filter for a system

with the parameters given in Table.2.1 is about 3 rad/sec. Another way to excite the

system’s rigid mode, is Fourier synthesis of the control input such that the sinusoidal

signals that construct the input have zero energy at the system’s resonant frequencies.

Threfore, the control input can be constructed as follows

u(t) = Ao +
N∑

k=1

(
1

2
Ake

jφkej2πfkt +
1

2
Ake

−jφke−j2πfkt) |fk 6=fres (3.34)

where fk is the frequency of the sinusoidal signals that build the control input, fres are

the system’s resonance frequencies, Ak and Ao are the sinusoidal signals’s amplitudes

and Dc offset, respectively. In order to guarantee that the control input u(t) will

not excite any of the system’s flexible modes, fk should not coincide with fres. The

control input condition of Eq.3.34 along with the equal initial position and velocity

assumption make it possible to rewrite Eq.3.31 as follows

τref = θ̈(J1 + J2 + J3 + . . . + Jn) (3.35)

where θ is the angular position of the entire flexible system that is no longer flexible

as Eq.3.34 is satisfied. Replacing the actual reflected torque by the estimated one,

results in an estimate of the rigid body position θ̂

τref −→ τ̂ref =⇒ θ −→ θ̂

that can be computed by the following equation

θ̂(t) =
1∑n

i=1 Ji

∫ t

o

∫ t

o

τ̂refdτdτ + c1t + c2 (3.36)

39



where c1 and c2 are the integration constants. Similarly, the position estimate for a

linear flexible system is

x̂(t) =
1∑n

i=1 mi

∫ t

o

∫ t

o

f̂refdτdτ + c1t + c2 . (3.37)

Fig.3.7 shows the block diagram representation of the rigid body motion estimation.

Figure 3.7: Rigid motion estimation

Firstly, the control input is filtered using a low-pass filter to guarantee the rigid mode

excitation, then the reflected disturbance is estimated using the actuator’s current

and velocity. An off-line experiment is needed to estimate the parameter’s variation

disturbance used in the estimation of the reflected torque wave that allows estimating

the rigid body motion of the flexible system without taking any measurement from

the flexible system’s side. Estimation of the rigid body motion is a step toward the

estimation of system’s flexible motion.
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3.3 Parameters Estimation

Since the reflected torque wave is given by Eq.3.31 as follows

τref = B(θ̇m − θ̇) + k(θm − θ) .

Replacing the actual reflected torque τref with it’s estimate τ̂ref , and the system’s

rigid position θ with it’s estimate θ̂

τ̂ref = B(θ̇m − ̂̇θ) + k(θm − θ̂) (3.38)

and defining the velocity and position differences as

ξ , (θm − θ̂)

η , (θ̇m − ̂̇θ)

where ξ represents velocity difference data points vector, while η is the position dif-

ference data points vector. Similarly, τ̂ ref is the estimated reflected torque data point

vector. Rewriting Eq.3.38 in the following matrix form

[
ξ η

]

n×2




k

B




2×1

=

[
τ̂ ref

]

n×1

. (3.39)

Eq.3.39 represents an over-determined system and the solution of the unknown system

parameters vector has to minimize the norm square of errors. Therefore, the uniform

stiffness and uniform damping coefficients can be found as follows

G ,
[

ξ η

]

and the solution for the optimum system parameters is



k̂

B̂


 =

[
GTG

]−1

GT

[
τ̂ ref

]
(3.40)




k̂

B̂


 = G†

[
τ̂ ref

]
. (3.41)
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Where G† is the pseudo inverse of G, k̂ and B̂ are the estimates of the system’s

uniform stiffness and damping coefficient. Fig.3.8 shows the parameters estimation

process, that is based on the actuator’s parameters measurements. The previous

procedures can be considered as another off-line experiment that has to be performed

in order to determine the estimates of system parameters.

Figure 3.8: Parameters estimation

3.4 Flexible Motion Estimation

In the previous sections, rigid body motion is estimated using Eq.3.36 assuming that

Eq.3.34 is satisfied and the initial velocities and positions were equal. But the rigid

body motion does not represent the global behavior of the lumped masses at different
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frequencies. It just represents the system’s behavior at narrow region of the system’s

frequency range. Therefore, in this section the previous results such as the estimated

reflected torque and the estimated parameters are used in order to determine the

flexible motion of each lumped mass of the system regardless to the forcing function’s

frequency.

3.4.1 Recursive flexible motion estimation

Recalling Eq.3.38

τ̂ref = B(θ̇m − ̂̇θ) + k(θm − θ̂)

and replacing the actual parameters with the estimated ones

B =⇒ B̂

k =⇒ k̂

we get

τ̂ref = B̂(θ̇m − ̂̇θ) + k̂(θm − θ̂) . (3.42)

Re-arranging the terms

B̂θ̇1 + k̂θ1 = B̂θ̇o + k̂θo − τ̂ref (3.43)

and defining the right hand side as

α , B̂ θ̇o + k̂ θo − τ̂ref .

Solving the first order differential equation Eq.3.43 for θ̂1(t) that2 represents the

position estimate of the first lumped inertial mass, we get

θ̂1(t) = e−
B̂

k̂
t

∫ t

o

βe
B̂

k̂
τdτ + e−

B̂

k̂
tc1 (3.44)

2θ1(t) is based on the estimated reflected torque τ̂ref , estimated stiffness k̂ and estimated damping

coefficient B̂. Therefore, its denoted as θ̂1(t)
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where

β , α

B̂
.

The estimate of the second lumped position can be determined by solving the following

differential equation for θ̂2(t)

B̂ θ̇2 + k̂ θ2 = J1
̂̈θ1 − B̂(θ̇o − ̂̇θ1)− k̂(θo − θ1) + B̂ ̂̇θ1 + k̂ θ̂1 . (3.45)

Defining

γ , J1
̂̈θ1 − B̂(θ̇o − ̂̇θ1)− k̂(θo − θ1) + B̂ ̂̇θ1 + k̂ θ̂1

we get the following solution

θ̂2(t) = e−
k̂

B̂
t

∫ t

o

ζe
k̂

B̂
τdτ + e−

B̂

k̂
tc2 (3.46)

where

ζ , γ

B̂
.

The estimate of the third lumped mass position is

θ̂3(t) = e−
k̂

B̂
t

∫ t

o

ε e
k̂

B̂
τdτ + e−

B̂

k̂
tc3 (3.47)

where

ε , δ

B̂

δ , J2
̂̈θ2 − B̂(̂̇θ1 − ̂̇θ2)− k̂(θ̂1 − θ̂2) + B̂ ̂̇θ2 + k̂ θ̂2 .

The estimate of the forth lumped mass position is

θ̂4(t) = e−
k̂

B̂
t

∫ t

o

ϕ e
k̂

B̂
τdτ + e−

B̂

k̂
tc4 (3.48)

where

ϕ , φ

B̂

φ , J3
̂̈θ3 − B̂(̂̇θ2 − ̂̇θ3)− k̂(θ̂2 − θ̂3) + B̂ ̂̇θ3 + k̂ θ̂3 .
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Figure 3.9: Flexible motion estimation

From the above equation we conclude that the estimates of the flexible lumped po-

sitions are determined in a recursive way and the entire process depends on a chain

of estimators. Starting with the reflected torque estimation to the rigid body motion

estimation, then estimating the system parameters and ending up with a recursive

flexible motion estimation process.

In general, the estimate of the flexible lumped masses position is given by the

following formula

θ̂i(t) = e−
k̂

B̂
t

∫ t

o

Ω e
k̂

B̂
τdτ + e−

B̂

k̂
tci (3.49)
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where

Ω , Ψ

B̂

Ψ , g(Ji−1, θ̂i−1,
̂̇θi−1,

̂̈θi−1, k̂, B̂) .

Appendix.B includes the mathematical proof of the flexible lumped masses’ positions

estimation. The block diagram representation of the flexible motion estimation is

shown in Fig.3.9. The position of each lumped mass has to be determined by a re-

cursive manner. Two off-line experiments have to be performed before estimating the

system’s flexible motion. The first off-line experiment is to determine the actuator’s

self varied-inertia torque and the actuators torque ripple in order to decouple the

estimated reflected torque out of the estimated disturbance, while the second off-line

experiment is the uniform parameters estimation experiment that is used to estimate

system uniform stiffness and damping coefficient.

3.5 External Disturbance Estimation

As the flexible system’s dynamics and parameters are estimated, externally applied

forces or torques can be determined using Eq.2.16. Using the available estimates

instead of the actual variables and parameters we get

τ̂ref =
n∑

i=1

Ji
̂̈θi −

n∑
i=1

τexti = B̂(θ̇m − ̂̇θ1) + k̂(θm − θ̂1) (3.50)

therefore the estimate of the externally applied torque is

τ̂ext =
n∑

i=1

Ji
̂̈θi − τ̂ref . (3.51)

Eq.3.51 indicates that the estimation of the external disturbances or torques due to

the interaction with the environment requires the estimate of the reflected torque

wave τ̂ref along with all lumped masses’ accelerations estimates.

The force estimation process is shown in Fig.3.10 where an external applied distur-

bance torque τext is added due to the plant’s interaction with the environment. In this
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Figure 3.10: External applied torque estimation

case all the lumped positions have to be estimated using the recursive flexible motion

estimation equations, and differentiated twice to obtain the masses’ accelerations.

Then the external applied torque is estimated using Eq.3.51.

Figure.3.10 shows a very interesting feature of the proposed algorithm where there

are three types of disturbances added on the system:

1. The external disturbance on the plant τext.

2. The reflected load or torque wave on the actuator τref .
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3. The parameters’s variation disturbance (∆ktim −∆Jmθ̈m).

Each of these disturbances can be decoupled and used according to the required

application. In other words, if robustness has to be achieved the total disturbance

has to be estimated and rejected. If the external disturbance due to the interaction

with the environment has to be determined, the previous chain of estimators have

to be used keeping in mind that the required off-line experiments do not require

any additional sensors or equipment. Only the actuator’s velocity and current are

measured and the necessary calculations are then performed.

3.6 Sensorless Motion Control

The availability of the lumped masses’ positions estimates makes it possible to feed-

back these position estimates to the controller instead of the actual measurement.

Since all the estimates are available and accessible, it is easier to control the position

of any lumped mass of the system without attaching additional sensors or changing

there locations as shown in Fig.3.11.

If the estimates are used as feedback instead of the actual measurements the error

signal will be

ê(t) = θref (t)− θ̂i(t) (3.52)

If the first mass is required to be positioned to a certain reference θref , the following

sensorless control law can be used

u(t) = kp(θref − θ̂1) + kd(θ̇ref − ̂̇θ1) (3.53)

and if the disturbance has a significant impact on the results, the sensorless control

law is

u(t) = kp(θref − θ̂1) + kd(θ̇ref − ̂̇θ1) + idist (3.54)
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Figure 3.11: Sensorless motion control

where idist is a compensation input. Controlling the second mass requires feeding its

position estimate back to the controller and the control law is

u(t) = kp(θref − θ̂2) + kd(θ̇ref − ̂̇θ2) (3.55)

or

u(t) = kp(θref − θ̂2) + kd(θ̇ref − ̂̇θ2) + idist . (3.56)

The control law for estimation based PID controller is

u(t) = kp(θref − θ̂i) + kd(θ̇ref − ̂̇θi) + ki

∫ t

0

(θref − θ̂i)dt (3.57)

where kp, ki and kd are the proportional, derivative and integral gains respectively. i is

the index of the ith mass required to be controlled. The block diagram representation

of Eq.3.57 is shown in Fig.3.12. The compensation input idist that has to be added
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Figure 3.12: Estimation based PID controller

to the control input in order to reject the disturbances can be determined as follows

idist =
1

kto

d̂ . (3.58)

the overall control law becomes

u(t) = kp(θref − θ̂i) + kd(θ̇ref − ̂̇θi) + ki

∫ t

0

(θref − θ̂i)dt + idist . (3.59)

The block diagram representation of Eq.3.59 is shown in Fig.3.13 that shows an

interesting feature of the modified disturbance observer or the other torque observer

added to the conventional disturbance observer where the outputs of each observer

are treated differently. Firstly, the output of the disturbance observer is the total

disturbance on the actuator side and can be used to accomplish robust motion control,

while the output of the torque observer is the reflected torque wave, that is used as
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Figure 3.13: Estimation based PID controller with disturbance rejection

an input for further estimation processes such as parameters estimation and motion

estimation. In other words, modifying the structure of the disturbance observer makes

it possible not only to achieve robust motion control but also to analyze the reflected

torque wave from the actuator platform.

3.7 The Entire Sensorless Estimation Algorithm Summary

3.7.1 Off-line experiment 1

Off-line experiment-1 is performed in order to determine the actuator’s parameters

variation disturbances 4Jm and 4kt. Figure.3.14 shows an illustration of the exper-

iment.

51



The experimental procedures are:

1. Keeping the actuator free from any attached loads.

2. Measuring the actuators current and velocity from the unloaded actuator.

3. Estimating the disturbance using Eq.3.24.

4. Determine the actuator parameters variation disturbance using Eq.3.27.

Figure 3.14: Off-line experiment 1

3.7.2 Off-line experiment 2

Off-line experiment-2 is performed in order to determine the system uniform param-

eters such as stiffness and the damping coefficient. Figure.3.15 shows an illustration

of the experiment.

The experimental procedures are:

1. Connecting the flexible system to the actuator.
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2. Filtering and/or Fourier synthesize the initial forcing function using equation.3.34

or the results obtained from the Modal analysis experiment.

3. Measuring the actuator’s current and velocity.

4. Estimating the disturbance using Eq.3.13.

5. Estimating the reflected torque using Eq.3.30 along with the parameters ob-

tained from off-line experiment 1

6. Estimating the system’s rigid motion using. Eq.3.36

7. Determine the uniform system parameters using. Eq.3.41

Figure 3.15: Off-line experiment 2
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3.7.3 Sensorless control algorithm

The previous two off-line experiments are performed in order to estimate the motion

of the flexible system and the externally applied disturbances due to its interaction

with the environment. Figure.3.16 illustrates the sensorless motion and force control

process that can be accomplished if the following procedures are followed:

Figure 3.16: Sensorless motion/force control

1. Determining the varied self-inertia load’s estimate and the torque ripple’s esti-

mate by performing off-line experiment 1.

2. Estimating the total disturbance d̂ using the actuator’s current and velocity

using Eq.3.13

3. Decoupling the reflected torque wave out of the total disturbance using Eq.3.30.
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4. Constructing the flexible lumped masses motion’s observers using the recursive

Eq.3.49 along with the results obtained from off-line experiment 2.

5. Estimating the external torques or disturbances on the plant using Eq.3.51.

6. Feeding the position’s estimates back to the controller to accomplish the sen-

sorless motion and vibration control task.

7. Force control is also possible as the estimate of the external applied force or

torque is available.
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CHAPTER 4

Experimental Results

In order to investigate the validity of the proposed sensorless estimation algorithm,

experiments are performed on a flexible system with three degrees of freedom as shown

in Fig.4.1. The experimental setup consists of a direct drive DC motor connected

to a lumped inertial system with three masses. The masses are connected to each

other with similar springs. Each inertial mass is connected to an encoder in order to

compare the estimated position with the actual measured one. Encoders are used to

verify the performance of the positions’s observers. The system is kept free from any

measurements. Strictly speaking, the plant is kept free from any measurements but

the actuator not as its current and velocity have to be measured for the subsequent

analysis and estimations.

The following experiments are performed on the flexible system shown in Fig.4.1:

• Disturbance estimation-reflected torque estimation

• Rigid body motion estimation

• Uniform system’s parameters estimation

• Flexible motion estimation

• Sensorless motion control

• Sensorless external torque estimation
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Figure 4.1: Lumped inertial system

4.1 Disturbance Estimation

In order to extract the reflected torque out of the disturbance d, we have to esti-

mate this disturbance first as it is used as an input for the second torque observer.

Therefore, disturbance is estimated from the actuator’s side using its current and

velocity. Table.4.1 shows the experimental parameters of the disturbance estimation

experiment.

Table 4.1: Experimental parameters-disturbance estimation

Disturbance estimation experiment

Parameter Value Parameter Value

kto 40.6 mNm/A Jmo 209 gcm2

Ja 6192.707 gcm2 gdist 100 rad/sec

The obtained results are shown in Fig.4.2. The estimated disturbance is compared

with the actual one in the simulation result shown in Fig.4.2.a, which indicates that
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Figure 4.2: Reflected wave measurement

the estimated disturbance converges to the actual disturbance according to error’s

dynamics Eq.3.18. Figure.4.2.b shows the actual estimated disturbance when an

inertial load is attached to the actuator. This disturbance is composed of the reflected

load, the varied self-inertia torque and actuator’s torque ripple. The last two terms

can be eliminated in order to decouple the reflected torque τ̂ref from the disturbance

d̂ by performing off-line experiment-1 that enables the determination of actuator’s

parameter variation disturbance, then the reflected torque wave can be decoupled

out of the total disturbance.
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4.2 Rigid Body Motion Estimation

In order to estimate the uniform system’s parameters, rigid motion has to be estimated

first and then used in the parameters estimation equation Eq.3.39. The idea behind

restricting the flexible system to rigidly move is the ability of describing the motion of

the entire system with a single coordinate rather than n coordinates that is equal to

the system’s degrees-of-freedom. The rigid motion estimate is given by the following

expression as it was proven in Chapter.3

θ̂(t) =
1∑n

i=1 Ji

∫ t

o

∫ t

o

τ̂refdτdτ + c1t + c2 (4.1)

x̂(t) =
1∑n

i=1 mi

∫ t

o

∫ t

o

f̂refdτdτ + c1t + c2 . (4.2)

The last equations are valid in a narrow particular region of the system’s frequency

range. They are not valid at the system’s resonance frequencies nor around them.

Therefore, the control input has to be filtered to insure that the system’s flexible

modes will not be excited, or Fourier synthesized in order to insure that the control

input is free from any energy at the system’s resonance frequencies. Simply the control

input has to satisfy Eq.3.34.

4.2.1 Experiment-1

The first rigid motion estimation experiment is performed on a 2 degrees of freedom

inertial and linear system. The experimental parameters are summarized in Table.4.2.

Experiment-1 was performed on the system’s low frequency range, below 5 rad/sec.

The reason behind performing this experiment in this frequency range is to avoid ex-

citing system’s flexible modes, that will add more complicity to the computations.

Eq.4.1 requires the reflected torque estimate1. Therefore, the reflected torque is esti-

mated and used in Eq.4.1.

1The reflected torque was assumed to be equal to the total disturbance by the assuming that the

reflected torque wave is much greater than the parameter’s variation disturbance
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Table 4.2: Experimental parameters-rigid motion estimation

Position estimation experiment

Parameters Inertial masses Exp Linear masses Exp

J1,m1 6192.707 gcm2 2641.8 g

J2,m2 200.17 gcm2 2641.8 g

gdist 100 rad/sec 100 rad/sec

Sampling time 1msec 1msec
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Figure 4.3: Experimental verification of position estimation
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Figure 4.4: Experimental verification of position estimation

Fig.4.3 shows the estimated and actual position of the last mass of the inertial

lumped system, while Fig.4.4 shows the last mass position’s estimate and the actual

encoder measurement for a lumped linear mass spring system. For both systems an

arbitrary trajectory input is given to the system to examine the performance of the

rigid motion observer by comparing the actual system’s position with the estimated

one.

The obtained results indicates that these equations can be used to provide an

estimate for the rigid motion of the flexible system. Indeed, the double integration

of the reflected torque wave signal will certainly amplify any initial error. Therefore,

rigid motion estimation experiment1 has to be performed for a short period of time.

1Since the mutidegree-of-freedom flexible modes are not excited by filtering the forcing function,

only one encoder can be used to compare the actual system’s rigid position with the estimated one.
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The purpose is not to determine the rigid motion, its just a step in the parameters

estimation process. Hence, the double integrators of Eq.4.1 and 4.2 will not represent

any problems in this context.

4.2.2 Experiment-2

Table 4.3: Rigid body motion estimation-Experimental parameters

Parameter Value Parameter Value

J1 5152.99 gcm2 J3 6192.707 gcm2

J2 5152.99 gcm2 f1 1 rad/sec

f2 2 rad/sec f3 3 rad/sec

f4 4 rad/sec f5 5 rad/sec

gdist 100 rad/sec glpf 100 rad/sec

The second experiment was performed on a 3 degrees-of-freedom inertial system.

The frequency of the arbitrary forcing function is varied in order to determine the

frequency range at which the rigid motion estimation equations are valid. Table.4.3

summarizes the parameters of this experiment. The frequency of the forcing function

was increased gradually between 0.5 rad/sec to 5 rad/sec. Fig.4.5 and 4.6 show the

response2 of the three lumped inertial masses and the estimate of the rigid motion at

certain frequencies. It turns out that, at 3 rad/sec the estimated signal is no longer

following the positions of the masses, and the masses them self are no longer behaving

rigidly. Therefore, this particular flexible system is behaving rigidly below 3 rad/sec

and the parameters estimation experiment has to be performed below this frequency.

2Since the forcing function’s frequency is gradually increasing, system will no longer behave

rigidly. Therefore, an encoder is attached to each mass to monitor their responses
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Figure 4.5: Rigid body motion estimation
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Figure 4.6: Rigid body motion estimation
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4.3 System’s Uniform Parameters Estimation

The system’s uniform parameters are estimated by the following equation




k̂

B̂


 = G†

[
τ̂ ref

]
(4.3)

where matrix G is obtained by concatenating two vectors, the first one is the difference

between the actuator position data points and the rigid motion’s estimation data

points, the second vector is the derivative of the first one. The left hand side vector

of Eq.4.3 is the solution that minimizes the norm square of errors. Table.4.4 shows

the experimental parameters used in this experiment.

Table 4.4: Parameters estimation experiment

Parameter Value Parameter Value

kt 40.6 mNm/A J2 5152.99 gcm2

Jm 209 gcm2 τ(time const) 4.43 msec

kb 235 rpm/v gdist 100 rad/sec

J1 5152.99 gcm2 Velocity LPF 100 rad/sec

The estimated stiffness and damping coefficients obtained using Eq.4.3 are in-

cluded in Table.4.5 and 4.6. The average values for l experiments are computed as

follows

k̂avg =

∑l
i=1 ki

l
=

∑20
i=1 ki

20
=

30.9306

20
= 1.54653 kN/m (4.4)

B̂avg =

∑l
i=1 Bi

l
=

∑20
i=1 Bi

20
=

1.6866

20
= 0.08433 Nsec/m . (4.5)

The value of the spring constant is known before hand by the following computation

K =
Gd

8c3n
(4.6)
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Table 4.5: Experimental parameters

Experiment K̂(kN/m) B̂ (Nsec/m) Experiment K̂ (kN/m) B̂(Nsec/m)

1st Exp 1.5796 0.0888 6th Exp 1.5277 0.0892

2nd Exp 1.5336 0.0878 7th Exp 1.4913 0.0893

3rd Exp 1.6459 0.0887 8th Exp 1.5774 0.0892

4rd Exp 1.5116 0.0889 9th Exp 1.4531 0.0896

5rd Exp 1.5625 0.0893 10th Exp 1.6049 0.0891

where, G is the modulus of rigidity, d is the coil diameter, c is the spring index and

n is the effective number of terns, Therefore, the system’s uniform spring constant is

K =
70× 109 × 2

8× (8
2
)3 × 21

= 1.627 kN/m .

Comparing the theoretical stiffness with the estimated one, we find that the difference

is less than 5 percent. Despite of the small difference between the estimated and actual

parameter, this difference will affect the subsequent computations and estimations.

In other words, the recursive flexible motion equations depends on these estimated

parameters. Therefore, a steady state error between the estimated positions and

actual positions is expected.

Another way to examine whether the estimated parameters are close to the ac-

tual ones, is to reconstruct the reflected torque wave using the estimated parameters

k̂ and B̂. Figure.4.7 shows the difference between the actual reflected torque wave

and the reconstructed torque wave using the estimated uniform parameters. The

reconstructed torque wave seems to have too much noise because of the direct differ-

entiation that is used to reconstruct the wave. However, the reconstructed wave will

not be used in any subsequent processes.
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Table 4.6: Experimental parameters

Experiment K̂(kN/m) B̂ (Nsec/m) Experiment K̂ (kN/m) B̂(Nsec/m)

1st Exp 1.4285 0.0895 6th Exp 1.6445 0.0886

2nd Exp 1.6540 0.0888 7th Exp 1.5051 0.0888

3rd Exp 1.4520 0.0883 8th Exp 1.6070 0.0882

4rd Exp 1.6321 0.0881 9th Exp 1.4972 0.0884

5rd Exp 1.4663 0.0884 10th Exp 1.5563 0.0880
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Figure 4.7: Estimated torque and reconstructed torque using estimated parameters

4.4 Flexible Motion Estimation

The recursive equations derived in Chapter.3 can be used in order to estimate the

position of each lumped mass individually, regardless to the frequency of the forcing

function, and regardless to the frequency content of the control input. Therefore, the

recursive equations that estimate system’s flexible motion provides us with a global

behavior of the flexible system through its entire frequency range. Figure.4.8 shows

the flexible behavior of a 3 degrees-of-freedom system when the control input excites
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its flexible modes. In order to estimate each individual mass’s position we use the

following recursive equations

θ̂i(t) = e−
k̂

B̂
t

∫ t

o

Ω e
k̂

B̂
τdτ + e−

B̂

k̂
tci (4.7)

Ω , Ψ

B̂

Ψ , g(Ji−1, θ̂i−1,
̂̇θi−1,

̂̈θi−1, k̂, B̂) .

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

time (sec)

P
os

iti
on

 (
ra

di
an

s)

 

 
1st mass
2nd mass
3rd mass

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

time (sec)

P
os

iti
on

 (
ra

di
an

s)

 

 
1st mass
2nd mass
3rd mass

Figure 4.8: Flexible oscillation of a 3DOF dynamical dystem
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Figure 4.9: Flexible body motion estimation experimental results
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Figure 4.10: Flexible body motion estimation experimental results

The implementation of the recursive flexible motion equations requires performing

all the previous experiments, since the parameters estimates k̂ and B̂ are required

along with the estimated reflected torque wave τ̂ref .

Figure.4.9 shows the difference between the actual lumped masses’ positions and

the estimated positions for the flexible oscillations in Fig.4.8-a while the estimated

positions of the flexible oscillations in Fig.4.8-b are shown in Fig.4.10. It turns out

that the estimated positions are too close to the actual measurement taken by the en-

coders. Therefore, estimating the flexible motion for each lumped mass of the flexible

system makes it possible to use these estimates instead of the actual measurements

to construct a sensorless feedback control system.

4.5 External torque estimation

Estimation of the external disturbances on the flexible system requires the determi-

nation of the system’s dynamics along with the estimate of the reflected torque wave,
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using Eq.3.51. In this experiment, externally applied torque is applied by attaching

another actuator to any of system’s the lumped inertial masses. The actual external

applied torque was measured using the actuator current and its torque constant as

follows

τext = iextkext (4.8)
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Figure 4.11: External torque estimation-τext |f=2rad/sec

where τext is the externally applied torque as an external disturbance and required

to be estimated, iext and kext are the second actuator’s current and torque constant.

Therefore, the externally applied torque is known beforehand and its estimate can be

computed by the following estimation based equation

τ̂ext =
n∑

i=1

Ji
̂̈θi − τ̂ref (4.9)

which indicates that externally applied torques can be estimated if we obtain the

system dynamics estimates and the reflected torque wave. That in turn requires es-
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Figure 4.12: External torque estimation-τext |f=4rad/sec

timating the system’s flexible motion and estimating system parameters. In other

words, in order to estimate the externally applied disturbances we have to go through

the entire proposed algorithm along with performing all the related off-line experi-

ments.

Figure.4.11 shows the difference between the actual and estimated externally ap-

plied torque. For a sinusoidal torque disturbance with frequency 2 rad/sec. Fig.4.12

shows the same result when the frequency of the sinusoidal disturbance is increased

to 4 rad/sec.

4.6 Sensorless Motion control

4.6.1 Set-Point tracking experiment

In order to control the position of any lumped mass of the flexible system, mea-

surements have to be taken from the point to be controlled. Consequently, position
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sensors have to be attached to the points of interest. In our case, we have an estimate

for each lumped mass position, that enables us to control any mass of the flexible

system without attaching multiple sensors or changing their positions. All what we

have to do is to feed the proper estimate back to the controller.

In the following experiment a 3 degrees-of-freedom system is used. Some of the

position estimates can be used as a feedback when its required to control certain point

of interest, while the other estimates can be used for monitoring some other features

such as the residual vibrations in the flexible system.

Sensorless control of the 1st mass
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Figure 4.13: Sensorless motion control experimental results (1st lumped mass estimate

fed Back to the controller)

Figure.4.13 shows the sensorless control results of the first mass of the lumped

system, where the estimate of the first mass position is fed back to the controller and

the following control law is used
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u(t) = kp(θref − θ̂1) + kd(θ̇ref − ̂̇θ1) . (4.10)

The estimation based PD control law seems to be satisfactory and different tran-

sient responses can be obtained by changing the controller gains. But the main

problem is the steady state error that exists in the final response, which limits the

accuracy of the controller. this steady state error depends on the accuracy of the

estimators and observers that are used in the controller.

Sensorless control of the 2nd mass

Controlling the second mass requires feeding its position estimate back to the con-

troller, the following PD control law is used

u(t) = kp(θref − θ̂2) + kd(θ̇ref − ̂̇θ2) . (4.11)

Fig.4.14 shows the global behavior of the lumped flexible system, where the second

mass is controlled and positioned to a reference position. Other estimates can be used

to ensure that system is free from residual vibrations. In other words, at the end

controlled mass’s travel, system has to be free from any kinetic and potential energies

within its energy storage elements.

Sensorless control of the 3rd mass

Similarly, the third mass is controlled by the following control law.

u(t) = kp(θref − θ̂3) + kd(θ̇ref − ̂̇θ3) . (4.12)

Indeed, feeding the last mass position or its estimate to the controller turns the

system into non-collocated control system that is hard to be controlled compared

with the collocated control systems at which there exist no energy storage elements

between the sensor and the actuator.
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Figure 4.14: Sensorless motion control experimental results (2nd lumped mass esti-

mate fed back to the controller)

Figure.4.15.c shows the response of the controlled last mass while Fig.4.15.a and

Fig.4.15.b show the behavior of the first and second masses respectively. The oscil-

latory behavior of the last mass is due to the non-collocated nature of the system.

In other words, shifting the virtual sensor to the last mass or feeding the last mass

position estimate to the controller results in a transfer function with no zeros. Which

in turn implies that shifting the virtual sensor along the flexible system results in

zeros immigration along or near the imaginary axis. Moreover, as the virtual sensor

is shifted away from the actuator, zeros move toward infinity in the complex plane.

Therefore, ending up with a non-collocated transfer function with no zeros. Since

system’s zeros are frequencies at which system has zero outputs for non-zero inputs,

zeros are considered to stabilize the system. Eventually, the oscillatory behavior of

the controlled last mass shown in Fig.4.15.c is due to the existence of energy storage

elements between the actuator and the sensor without having frequencies (zeros) at

which this energy can be attenuated.
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Figure 4.15: Sensorless motion control experimental results (3rd lumped mass estimate

fed back to the controller)

4.6.2 Sensorless trajectory tracking

Instead of just using a reference input, a timing varying trajectory3 can be used as

the reference that is required to be tracked. Figure.4.16 shows the results of the

trajectory tracking experiments, where a square and sawtooth signals are used as

a reference trajectory. In this experiment the last mass was following the reference

trajectory using an estimation based PD controller. Indeed, the trajectory tracking

requires a feed forward term to be added to the control signal. But the results shown

in Fig.4.16 are obtained with just the estimation PD control law Eq.4.12.

The feed forward control terms requires the determination or the knowledge of the

system dynamics and parameters. Therefore, this sensorless estimation algorithm

makes it possible to achieve the feed forward control problem and the trajectory

3In order to follow a time varying trajectory, an additional feed forward control input has to

be added to the control input. The feed forward control input can be computed as the system’s

dynamics estimates are available
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Figure 4.16: Trajectory tracking experiment-third mass

tracking control in a sensorless manner without attaching any sensors to the flexible

system.
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CHAPTER 5

Conclusions

In this thesis, a sensorless motion control is presented and experimentally eval-

uated on a multi degrees-of-freedom flexible system. The obtained results show the

possibility of using the actuator as a single platform for measurement, estimation and

control keeping the flexible system free from any attached sensors. Considering the

reflected mechanical waves from the system to the actuator as a natural feedback

that contains enough information about system’s dynamics, parameters and external

disturbances.

The reflected waves are investigated in order to prove that they contain these

information. In addition, the wave’s propagation behavior is also investigated in order

to prove the possibility of measuring or estimating such waves from the actuator side

to keep the plant free from measurement.

Disturbance observer’s structure is modified in order to decouple the reflected

mechanical waves out of the total disturbance on the actuator. Then, the sensor-

less estimation algorithm is introduced based on measuring current and velocity from

the actuator side and estimate of the reflected mechanical wave from the plant side.

The proposed algorithm makes it possible to observe the rigid motion of the flexi-

ble system, to estimate system’s uniform parameters, observe each individual mass’s

flexible motion and to estimate any external disturbances added to the plant due to

any interaction with the environment. Therefore, sensorless motion control of flexible

dynamical system can be accomplished using two measurements from the actuator.

Moreover, each lumped mass of the flexible system can be controlled and the rest of
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the system can be monitored in a sensorless manner. Hence, motion control of flexible

system can be accomplished along with reducing the residual vibrations that can be

monitored without measurements.

Indeed, extracting all of these information out of few measurements from the

actuator is not possible unless two off-line experiments are performed. Firstly, the

varied self-inertia torque and actuator’s torque ripple are estimated experimentally

and then used to modify the structure of the conventional disturbance observer. The

new disturbance observer’s configuration introduced in this thesis makes it possible

to decouple the disturbances terms. Secondly, the system uniform parameters are

estimated with another off-line experiment. The estimated system parameters are

compared to the actual theoretical ones that are known beforehand and the differ-

ence between the estimated and theoretical values is less than 5 percent that can

be acceptable for certain applications such as vibration control and motion control

problems that do not require very accurate positioning.

The proposed algorithm is also based on the different behavior of the flexible sys-

tem through the entire system’s frequency range. Which makes it possible to estimate

the uniform system parameters and to use them in the general recursive equations that

describe the system’s flexible motion through the entire system’s frequency range.

Sensorless motion control experiments show that it is easier to use the estimate of

the lumped masses positions than using multiple sensors or changing their locations

to control certain point of interest if the actual measurements are used. Accuracy of

the motion control process depends on the accuracy of the flexible motion observers,

parameters estimators and the off-line experiments. Therefore, steady state error

exists in the final response. This steady state error can be minimized by performing

some operational enhancement and more accurate off-line experiments.

In this thesis flexibility is not considered as problem to be avoided, wave reflections

are not considered as disturbance that have to be rejected. Instead, disturbance and
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flexibility are considered as the core of a sensorless estimation process that deals with

the disturbance as a coupled signals that are rich with enough information about the

dynamical system and with the flexibility as a tool to decouple each single piece of

information out of this disturbance. Eventually, we can conclude that:

• Mechanical waves can be considered as a natural feedback from flexible system.

• Disturbance on the actuator side carries information about system parameters,

dynamics and externally applied torques/forces due to system interaction with

the environment.

• Disturbance observer can be modified to provide two outputs used to achieve

both robust and sensorless motion control.

• Flexibility of the system can be used as a tool to decouple the required infor-

mation from the reflected mechanical wave.

• Actuator can be used as a single platform to perform the necessary estimations

required to control flexible systems.

• Motion, vibration and force control can be accomplished without attaching any

sensor to the flexible system.

5.1 Future Work

Distributed flexible systems such as flexible robot arms, beams and manipulators re-

quire special sensors with certain specifications to accomplish feedback control. Stain

gages have to be flexible enough to withstand the fatigue stresses imposed due to the

everlasting fluctuations of these systems. Moreover, the inaccurate kinematic map-

ping between the point at which measurements are taken and point to be controlled

causes steady state error in the final response. On the other hand, visual feedback
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requires certain environmental setup with proper illumination to ensure reliable re-

sults. In other words, due to the flexibility and the distributed nature of these systems

attaching a sensor or obtaining a reliable feedback seems to be hard.

Therefore, considering reflected mechanical waves as a natural feedback from these

distributed system makes it possible to keep them free from any attached sensors and

the sensorless estimation algorithm can be implemented on these distributed systems.

Indeed, the previous analysis are performed on lumped flexible system and so do the

experiments but distributed systems can also be approximated by finite number of

masses along with a low pass filter can to attenuate the residual mode spill-over

effects. Therefore, as a future work the proposed algorithm can be implemented on

distributed flexible systems such as flexible robot arms, beams and manipulators.
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APPENDIX A

Solution of The Wave Equation

The one dimensional wave equation is described by the following partial differential

equation

∂2u(x, t)

∂t2
− c2∂2u(x, t)

∂x2
= H(t, x) . (A.1)

Solution of this equation is decomposed of both natural and forced response, by the

super-position principle we can separate the non-homogenous wave equation into two

problems

∂2v(x, t)

∂t2
− c2∂2v(x, t)

∂x2
= 0 (A.2)

and

∂2w(x, t)

∂t2
− c2∂2w(x, t)

∂x2
= H(t, x) (A.3)

by solving the homogenous one dimensional wave equation eq.A.2 , which is nothing

but two transport equations and could be represented as follow

(
∂

∂t
− c

∂

∂x
)(

∂

∂t
+ c

∂

∂x
)v = 0 . (A.4)

The first term of the right hand side represent a wave moving to the left, while the

second term represent a wave moving in the opposite direction. And the transport

equations have the following characteristic equations

x + ct = const (A.5)

x− ct = const

that recommends the following change in variables
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ζ = x + ct (A.6)

η = x + ct

using the chain rule the partial derivatives could be expressed as follows

∂v

∂x
=

∂v

∂ζ

∂ζ

∂x
+

∂v

∂η

∂η

∂x
=

∂v

∂ζ
+

∂v

∂η
(A.7)

= vζ + vη

∂v

∂t
=

∂v

∂ζ

∂ζ

∂t
+

∂v

∂η

∂η

∂t
= c

∂v

∂ζ
− c

∂v

∂η
(A.8)

= c vζ − c vη

∂2v

∂x2
=

∂

∂x
(
∂v

∂x
) = v2

ζ + v2
η + 2vζvη (A.9)

∂2v

∂t2
=

∂

∂t
(
∂v

∂t
) = c2v2

ζ + c2v2
η − 2c2vζvη . (A.10)

Since

∂2v(x, t)

∂t2
− c2∂2v(x, t)

∂x2
= 0 . (A.11)

plugging the partial derivatives and canceling the similar terms out we get

−4c2vζvη = 0 . (A.12)

That in turn implies

∂

∂η
(
∂v

∂ζ
) = 0 . (A.13)

This indicates that ∂v
∂η

is independent of η

∴ ∂v

∂η
= Γ(ζ)

taking the integral of both sides we get

v =

∫
Γ(ζ) + G(η)
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∴ v = F (ζ) + G(η) .

Changing the variables back, we get the solution of the homogenous part, where F

is some arbitrary function, while G is some other arbitrary function that could be

determined by using the initial and boundary conditions

v(t, x) = F (x + ct) + G(x− ct) (A.14)

where F (x + ct) is a wave moving to the left, while G(x− ct) is another wave moving

to the right. Both waves cancel out and add up when the interact in a linear manner.

Using the initial position we get

v(x, 0) = f(x) ⇒ F (x) + G(x) = f(x) (A.15)

and the initial velocity

vt(x, 0) = g(x) ⇒ c
dF (x)

dt
− c

dG(x)

dt
= g(x) (A.16)

integrating Eq.A.16 from 0 to x

c (F (x)−G(x)) =

∫ x

o

g(s)ds + c1 (A.17)

F (x)−G(x) =
1

c

∫ x

o

g(s)ds + c2 .

From Eq.A.15

F (x) + G(x) = f(x) .

Solving the previous two equations with each other we get

F (x) =
1

2
f(x) +

1

2c

∫ x

o

g(s)ds + c3 (A.18)

G(x) =
1

2
f(x)− 1

2c

∫ x

o

g(s)ds− c3 (A.19)

recalling eq.A.14

v(t, x) = F (x + ct) + G(x− ct)
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v(t, x) =
1

2
[f(x + ct) + f(x− ct)] +

1

2c
[

∫ x+ct

o

g(s)ds−
∫ x−ct

o

g(s)ds] .

The solution of the homogenous part of the wave equation is

v(t, x) =
1

2
[f(x + ct) + f(x− ct)] +

1

2c
[

∫ x+ct

x−ct

g(s)ds] . (A.20)

For the forced response we have to solve the non-homogenous wave equation

∂2w(x, t)

∂t2
− c2∂2w(x, t)

∂x2
= H(t, x)

changing the variables into

ζ = x + ct

η = x + ct

computing the partial derivatives just as the homogenous part we get

∂2w(x, t)

∂t2
− c2∂2w(x, t)

∂x2
= −4c2 ∂

∂ζ
(
∂w

∂η
) (A.21)

∴ −4c2 ∂

∂ζ
(
∂w

∂η
) = H(t, x)

∴ ∂

∂ζ
(
∂w

∂η
) = − 1

4c2
H(t, x) .

By double integrating the previous equation we get the forced response of the one

dimensional wave equation

w(t, x) =
1

2c

∫ t

o

∫ x+c(τ+t)

x−c(τ−t)

H(s, τ)dsdτ . (A.22)

Since the total response is given by the super-position principle as follow

u(t, x) = v(t, x) + w(t, x)

we conclude that the total solution of the wave equation is

u(t, x) =
1

2
[f(x + ct) + f(x− ct)] + R + S (A.23)
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R , f(x− ct)] +
1

2c
[

∫ x+ct

x−ct

g(s)ds]

S , 1

2c

∫ t

o

∫ x+c(τ+t)

x−c(τ−t)

H(s, τ)dsdτ

where c is the wave propagation speed, g(s) is the initial velocity, H(s, τ) is the input

forcing function and f(x) is the initial wave configuration or initial position.
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APPENDIX B

Flexible Motion Estimation

Since the reflected torque wave is defined by the following equation

τ̂ref = k̂(θm − θ1) + B̂(θ̇m − θ̇1) (B.1)

re-arranging the terms we obtain

B̂θ̇1 + k̂θ1 = B̂θ̇m + k̂θm − τ̂ref . (B.2)

Defining

α , B̂θ̇m + k̂θm − τ̂ref

rewriting Eq.B.2

B̂θ̇1 + k̂θ1 = α

β , α

B̂

the standard form is

θ̇1 +
k̂

B̂
θ1 = β .

Since the differential equation is based on estimated parameters and variables, the

solution also will be an estimate and the equation can be rewritten as follows

̂̇θ1 +
k̂

B̂
θ1 = β

multiplying the previous differential equation by the integrating factor e
B̂

k̂
t

e
B̂

k̂
t̂̇θ1 + e

k̂

B̂
t k̂

B̂
θ1 = e

B̂

k̂
tβ

d

dt
[e

B̂

k̂
tθ̂1] = e

B̂

k̂
tβ
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integrating both sides

e
B̂

k̂
tθ̂1 =

∫ t

o

βe
B̂

k̂
τdτ + c .

The estimated position of the first lumped inertial mass is

θ̂1(t) = e−
B̂

k̂
t

∫ t

o

βe
B̂

k̂
τdτ + e−

B̂

k̂
tc1 . (B.3)

For the estimate of the second inertial mass, we recall the first equation of motion,

and replacing the real parameters and variables by the estimated ones we obtain

J1
̂̈θ1 − B̂(θ̇o − ̂̇θ1)− k̂(θo − θ̂1) + B̂(̂̇θ1 − ̂̇θ2) + k̂(θ̂1 − θ2) = 0 (B.4)

defining

γ , J1
̂̈θ1 − B̂(θ̇o − ̂̇θ1)− k̂(θo − θ1) + B̂ ̂̇θ1 + k̂ θ̂1

rewriting eq.B.4

B̂ ̂̇θ2 + k̂ θ2 = γ

ζ , γ

B̂
.

The standard for of the 1st order differential equation is

̂̇θ2 +
k̂

B̂
θ2 = ζ (B.5)

multiplying by the integrating factor e
B̂

k̂
t

e
B̂

k̂
t̂̇θ2 + e

B̂

k̂
t k̂

B̂
θ2 = e

B̂

k̂
tζ

d

dt
[e

B̂

k̂
t θ̂2] = e

B̂

k̂
tζ .

Integrating both sides

e
B̂

k̂
tθ̂1 =

∫ t

o

ζe
B̂

k̂
τdτ + c2 .

The obtain estimate of the second inertial mass position

θ̂2(t) = e−
B̂

k̂
t

∫ t

o

ζe
B̂

k̂
τdτ + e−

B̂

k̂
tc2 . (B.6)
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Repeating the previous procedure on the second equation of motion we get the esti-

mate of the third mass position

θ̂3(t) = e−
k̂

B̂
t

∫ t

o

ε e
k̂

B̂
τdτ + e−

B̂

k̂
tc3 (B.7)

ε , δ

B̂

δ , J2
̂̈θ2 − B̂(̂̇θ1 − ̂̇θ2)− k̂(θ̂1 − θ̂2) + B̂ ̂̇θ2 + k̂ θ̂2 .

For the forth lumped mass

θ̂4(t) = e−
k̂

B̂
t

∫ t

o

ϕ e
k̂

B̂
τdτ + e−

B̂

k̂
tc4 (B.8)

ϕ , φ

B̂

φ , J3
̂̈θ3 − B̂(̂̇θ2 − ̂̇θ3)− k̂(θ̂2 − θ̂3) + B̂ ̂̇θ3 + k̂ θ̂3 .

The general flexible motion estimation equations are

θ̂i(t) = e−
k̂

B̂
t

∫ t

o

Ω e
k̂

B̂
τdτ + e−

B̂

k̂
tci (B.9)

where

Ω , Ψ

B̂

Ψ , g(Ji−1, θ̂i−1,
̂̇θi−1,

̂̈θi−1, k̂, B̂)

where B̂ is the estimate of the damping coefficient, k̂ is the estimate of the joint

stiffness, θ̂i−1,
̂̇θi−1 and ̂̈θi−1 are the position, velocity and acceleration estimates of

the i− 1th mass and ci is the integration constant.
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