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Abstract

Image formation algorithms in a variety of applications éaxplicit or implicit dependence on
a mathematical model of the observation process. Inacesran the observation model may cause
various degradations and artifacts in the reconstructedy@s. The application of interest in this paper
is synthetic aperture radar (SAR) imaging, which partidylauffers from motion-induced model errors.
These types of errors result in phase errors in SAR data wtacise defocusing of the reconstructed
images. Particularly focusing on imaging of fields that adenisparse representation, we propose a
sparsity-driven method for joint SAR imaging and phase regarrection. Phase error correction is
performed during the image formation process. The probkeiset up as an optimization problem in a
nonquadratic regularization-based framework. The meitaves an iterative algorithm each iteration of
which consists of consecutive steps of image formation aadaherror correction. Experimental results
show the effectiveness of the approach for various typeshaée errors, as well as the improvements it

provides over existing techniques for model error compgmsan SAR.

Index Terms
Synthetic aperture radar, phase errors, autofocus, mézatian, sparsity.

I. INTRODUCTION

Synthetic aperture radar (SAR) has recently been and costittube a sensor of great interest in

a variety of remote sensing applications, in particularapse it overcomes certain limitations of other
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sensing modalities. First, SAR is an active sensor using its diwmination. To illuminate a ground
patch of interest, the SAR sensor uses microwave signalshwiriovide SAR with the capability of
imaging day and night as well as in adverse weather conditibue to these features of SAR, SAR
image formation has become an important research topic. Toidegm of SAR image formation is a
typical example of inverse problems in imaging. Solution mfeirse problems in imaging requires the
use of a mathematical model of the observation process. Hoaveich models often involve errors and
uncertainties themselves. As a predominant example in SAdgiimg, motion-induced errors are reasons
for model uncertainties which may cause undesired arsifacthe formed imagery. This type of errors
causes phase errors in the SAR data which result in defocosithge reconstructed images [1]. Because
of the defocusing effect of such errors, the techniquesIdped for removing phase errors are often
called autofocus techniques.

Various studies have been presented on the SAR autofocuseprdB—17]. One of the most well
known techniques, Phase Gradient Autofocus (PGA) [2], estisnphase errors using the data obtained
by isolating many single defocused targets via centetispifand windowing operations. It is based on
the assumption that there is a single target at each rangdioate. Another well-known approach for
autofocus is based on the optimization of a sharpness nwfttice defocused image intensity [3—10].
These techniques aim to find the phase error estimate whiclmiigé or maximizes a sharpness function
of the conventionally reconstructed image. Commonly usetrios are entropy or square of the image
intensity. Techniques such as mapdrift autofocus [11] udmpserture data to estimate the phase errors.
These techniques are suitable mostly for quadratic and wlearlying phase errors. A recently proposed
autofocus technique, multichannel autofocus (MCA) [18]based on a non-iterative algorithm which
finds the focused image in terms of a basis formed from the de&mtimage, relying on a condition on
the image support to obtain a unique solution. In particlN8CA estimates 1D phase error functions by
directly solving a set of linear equations obtained throaghassumption that there are zero-reflectivity
regions in the scene to be imaged. When this is not precisgisfied, presence of a low-return region is
exploited, and the phase error is estimated by minimizirgethergy of the low-return region. When the
desired conditions are satisfied, MCA performs very well. ldegr, in scenarios involving low-quality
data (e.g., due to low SNR) the performance of MCA degradesudber of modifications to MCA
have been proposed, including the incorporation of shagpmeetric optimization into the framework
[12], and the use of a semidefinite relaxation based optimizgirocedure [17] for better phase error

estimation performance.



One common aspect of all autofocus technigues referreddeeals that they perform post-processing,
i.e., they use conventionally reconstructed (i.e., retanted by the polar-format algorithm [18, 19])
defocused images in the process of phase error estimatimnstarting point however is the observa-
tion that more advanced SAR image formation techniques hesently been developed. Of particular
interest in this paper is regularization-based SAR imagsee( e.g., [20-22]), which has been shown
to offer certain improvements over conventional imagingg®arization-based techniques can alleviate
the problems in the case of incomplete data or sparse aperthtoreover, they produce images with
increased resolution, reduced sidelobes, and reduce#lsg®cincorporation of prior information about
the features of interest and imposing various constraiaig.,(sparsity, smoothness) about the scene.
However, existing regularization-based SAR imaging teghes rely on a perfect observation model, and
do not involve any mechanism for addressing any model uaicgies.

Motivated by these observations and considering scendsatirait sparse representation in some
dictionary, we propose a sparsity-driven technique fontj®@AR imaging and phase error correction by
using a nonquadratic regularization-based frameworkhéngroposedyparsity-driven autofocus (SDA)
method, phase errors are considered as model errors whecksiimated and removed during image
formation. The proposed method handles the problem as amiaption problem in which the cost
function is composed of a data fidelity term (which exhibitsepehdence on the model parameters) and
a regularization term, which is thie — norm of the field. For simplicity we consider scenes that are
spatially sparse, however our approach can be applied tcs fielt are sparse in any given dictionary
by using ani; — norm penalty on the associated sparse representation coefficiEim¢ cost function
is iteratively minimized with respect to the field and the gha&sror using coordinate descent. In the
first step of every iteration, the cost function is minimizedhwespect to the field and in the second
step the phase error is estimated given the field estimate. fdseperror estimate is used to update the
model matrix and the algorithm passes to the next iteraflonthe best of our knowledge, this work
is first in the context of providing a solution to the problemmbdel errors in sparsity-driven image
reconstruction.

Sharpness-based autofocus techniques [3—10] share casfagnts of our perspective, but our approach
is fundamentally different. In particular, our approackaalnvolves a certain type of sharpness metric
about the field, but inside of a cost function as a side comdtfeggularization term) to a data fidelity term
which incorporates the system model and the data into thienattion problem for image formation.

Hence our approach imposes the sharpness-like constraingdhe process of image formation, rather



than as post-processing. This enables our technique tactéoreartifacts in the scene due to model errors
effectively, in an early stage of the image formation prec&sirthermore, unlike existing sharpness-based
autofocus techniques, our model error correction appréacoupled with an advanced sparsity-driven
image formation technique which has the capability of poiagy high resolution images with enhanced
features, and as a result our approach is not limited by thetaints of conventional SAR imaging. In
fact, our approach benefits from a dual use of sparsity, bathmfadel error correction (autofocusing)
and for improved imaging. Finally, our framework is not liettto sharpness metrics on the scene, but
can in principle be used for model error correction in scahas admit a sparse representation in any
given dictionary.

We present results on synthetic scenes as well as on twocpdhtasets. Qualitative as well as
guantitative analysis of the experimental results shoves dffectiveness of the proposed method and
the improvements it provides over existing methods in teah®oth scene reconstruction as well as
phase error estimation.

The rest of this paper is organized as follows. In Section #,dbservation model for a SAR imaging
system is described. In Section I, a general view of the plesors and their effect on the SAR data
are provided. In Section IV, the proposed method is desciibeetail and in Section V the experimental
results are presented. We conclude the paper in Section Vipemwdde some technical details in the

Appendix.

II. SAR OBSERVATION MODEL

In SAR systems, one of the most widely used signals in trarssomss the chirp signal:
s(t) = Re {e[j(w°t+o‘t2)]} 1)

Here,wy is the center frequency ardd is the so-called chirp-rate. For spotlight-mode SAR, whickthe
modality of interest in this paper, the received signalt) at them — th aperture position (cross-range
position) involves the convolution of the transmitted ph@ignal with the projectiom,,(u) of the field

at that aperture position.

gm(t) = Re { / pm(U)ej[“"’(t_T(’_T("))Jra(t_T“_T(“))Q]du} 0
Pm(u) = // d(u—xcos —ysinb) F(x,y)dxdy (3)
:E2+y2SL2



Here, L is the radius of the circular patch to be imagéd, y) denotes the underlying field and,is

the observation angle at the — th aperture position. If we let the distance from the SAR plaitfdo

the center of the field béy, theny + 7(u) is the delay for the returned signal from the scatterer at
the range positionly + u, wherery is the demodulation time. The data used for imaging are obdain
after a pre-processing step. From the projection-slicertmed23], the SAR data,,(¢) obtained after
this pre-process, can be identified as a band-pass filtereieFtnansform of the projections of the field
[24],

Tm(t) = / pm(u)e_jU"du 4
ul<L
where
U = (o + 200~ ) (5)

Substituting (3) into (4), we obtain the relationship betwélee observed data,,(t) and the underlying
field F(x,y).

Tm(t) = // F(x,y)e_jU($C°SG+ysmg)dxdy (6)

2?4y’ <L?

All of the returned signals from all observation angles ¢ibuie a patch from the two dimensional spatial
Fourier transform of the corresponding field. These data dkedcphase histories and lie on a polar grid
in the 2D frequency domain as shown in Figure 1. Let the 2D disgrhase history data be denoted by
a K x M matrix R. Columnm of R, denoted by thes x 1 vectori,,, is obtained by sampling,,, ()
(the returned signal at cross-range positio)y in fast-timet (range direction) af positions. In terms

of this notation, the discrete observation model can be dtated as follows [20]:

r1 4
ro Cs
= fI><1 (7)
(B Cu
TMKx1 CA{Kxj

Here, the vector of observed samples is obtained just by concatenating thenos of the 2D phase

history dataR, under each othe€,, andC are discretized approximations to the continuous observat
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Fig. 1. Graphical representation of an annulus segment containivgnksamples of the phase history data in the 2D frequency
domain.

kernel at the cross-range positiamn and for all cross-range positions, respectivelyis a vector repre-
senting the sampled and column-stacked version of the reftgdmage F'(x,y). Note thatK and M

are the total numbers of range and cross-range positiosigecavely.

IIl. PHASE ERRORS

During the pre-processing of the SAR data (mentioned in Sedljpthe demodulation timey needs

to be known. When this time is known imperfectly, the SAR ddiéamed after pre-processing contain
phase errors. The inexact knowledge of the demodulationditoars when the distance between the SAR
sensor and the scene center cannot be determined perfeetlfodSAR platform position uncertainties
or when the signal has delay due to some atmospheric effictse uncertainties on, e.g., the position
of the platform are constant over a signal received at onetwpeposition but are different at each
aperture position, phase errors caused by such uncesgiwiry only along the cross-range direction
in the frequency domain. The implication of such an error ia tmage domain is the convolution of
(each range line of) the image with a 1D blurring kernel in ¢hess-range direction. Hence, such phase
errors cause defocusing of the image in the cross-rangetidine An example of SAR platform position

uncertainties arises from errors in measuring the airaralfbcity. A constant error on aircraft velocity
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induces a quadratic phase error function in the data [1]alllsuhase errors arising due to SAR platform
position uncertainties are slowly-varying (e.g., quadraiolynomial) phase errors, whereas phase errors
induced by propagation effects are much more irregular.,(eaqpdom ) phase errors [1]. While most
phase errors encountered are 1D cross-range varying dasctit is possible to encounter both range
and cross-range varying 2D phase errors as well. For insténdow frequency UWB SAR systems,
severe propagation effects may appear through the ionmesgheluding Faraday rotation, dispersion, and
scintillation [25] which cause 2D phase errors, defocudiregreconstructed image in both range and cross-
range directions. Moreover, waveform errors such as frecptter from pulse to pulse, transmission line
reflections and waveguide dispersion effects may cause ukeiacboth range and cross-range direction
[18]. 2D phase errors can in principle be handled in two safiegories as separable and non-separable
errors, but it is not common to encounter 2D separable phaisesen practice.

For these three types of phase error functions, let us iigastthe relationship between the phase-

corrupted and error-free phase history data in terms of Hsemvation model.

A. 2D Non-separable Phase Errors

In the presence of 2D non-separable phase errors, all sgyopies of theK x M phase history data
are perturbed with different and potentially independdrage errors. Lebsp_ . be a 2D non-separable
phase error function. The relationship between the phasemted and error-free phase histories are as

follows:
Re(k, m) = }2(]4;7 m)ej‘I’szns(k,m) (8)

Here, R. denotes the phase-corrupted phase history data. To exjhissselationship in terms of the

observation model, first we define the vectern _ s
T

®2D-ns = | p20-ns(1), P2D—ns(2), ..., P2D—ns(S) 9)

which is created by concatenating the columns of the phase matrix &, ., under each other. Here,
S is the total number of data samples and equal to the protilkt. Using the corresponding vector

forms, the relationship in (8) becomes
re = Dap—nsr (10)
where Dyp_ 5 is @ diagonal matrix:

D2D—7’L8 = dZag ej¢2D—ns(1)’ ej(bZD—ns(Q)’ s ej¢2D7ﬂrs (S) (11)



In terms of observation model matrices, the relationshifil®d) is as follows
C (¢20-ns) f = Dap—nsCf (12)

where, C' is the initially assumed model matrix by the imaging systemd &' (¢2p_,s) is the model
matrix that takes the phase errors into account. The eqafit®) and (12) can be expressed in the

following form as well.
re(s) = % Cr(s) (13)
Cs ($2p—ns) [ = €920 GICf for s=1,2,....,8

Here,r(s) denotess — th element of the vector and C; denotess — th row of the model matrixC.

B. 2D Separable Phase Errors

A 2D separable phase error function is composed of rangengagnd cross-range varying 1D phase

error functions as follows:

Pop—s(k,m) = &£(k) +y(m) (14)

Here,&, representing the range varying phase error, i§ a1 vector andy, representing the cross-range
varying phase error, is &/ x 1 vector. TheS x 1 vector for 2D separable phase errgks,_, is obtained

by concatenating the columns @, _, as follows:
T
E01) + (1), oy EK) +7(1), £ +(2), s §1) +9(M) oy €(K) +7(M) 15
¢2p—s(1) ¢2p-s(K) ¢pap—s(K+1) ¢2p—s(M—-1)K+1) d2p—5(S)

A 2D separable phase error function affects the observatiodel matrix in the following manner:

¢2D75 -

re = Dap_sr (16)
C (¢2D—s) f = D2D—scf
Here, Dyp_ is a diagonal matrix:

DQD—S = dZag ej¢2D*S(1)’ ej¢2D*S(2)’ ey ej¢2D*S(S) (17)



C. 1D Phase Errors

We mentioned before that most encountered phase errorsiacéons of cross-range only. In other
words, for a particular cross-range position the phase &rsame at all range positions. L&tp be the

1D cross-range varying phase errgfp is a vector of length\/:
T

é1p = | ¢1p(1), d1p(2), ..., d1p(M) (18)

In the case of 1D phase errors, the relationship betweenrtbefece and the phase-corrupted data can

be expressed as:
re = Dipr (29)

C(¢ip)f = DipCf

Here,Dip is a5 x S diagonal matrix defined as:

Dip = diag ej¢lD(1)’ ej(z’lD(l)’ . efe1n(1) ej<¢711:>(2)7 - 6jctnD(?)7 ej<1711:>(3)7 . 6jclnD(M)7 . eI P10 (M) (20)
K K K
These relationships can also be stated as follows:
e, = etz (21)

Com(1p) f = 20MC f for m=1,2,....;.M

Here,r,, and C,, are the error-free phase history data and the assumed madek for the m — th
cross-range position. Note that, in a 1D cross-range phaiee @ase, there ar@/ unknowns, in a 2D
separable phase error case therelre- K unknowns, and in a 2D non-separable phase error case there
are S = M K unknowns. Hence, correcting for 2D non-separable phaseseis a much more difficult

problem than the others.

IV. PROPOSEDMETHOD

In conventional imaging, the image is formed by interpoigtthe SAR data from the polar grid to a
rectangular grid and then taking its 2D inverse Fourierdfamm. Images formed by conventional imaging
usually suffer from speckle and sidelobe artifacts. Furtttee the resolution of the images is limited
by the SAR system bandwidth. On the other hand, we know thaiaggation-based image formation
technigues can deal with these problems and they have beeasfully applied to SAR imaging. These
techniques formulate image formation as an optimizatiavbi@m. The cost function is composed of a

least-squares data fidelity term, as well as a side constainégularization term which incorporates
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information about the structure of the scene (sparsity,athmess etc.) into the optimization problem.
Incorporation of prior information about the scene prosideature enhanced images with increased
resolution, reduced sidelobes, and reduced speckle. loahiext of SAR imaging of man-made objects,
the underlying scene, dominated by strong metallic saateis usually sparse, i.e., there are few nonzero
pixels. To impose sparsity, often nonquadratic side caitg8 are incorporated into the cost function.
There are a variety of nonquadratic terms to use as the sidgraon. The general family df, — norms

is one of them. Althougtiy — norm is in principle, theright choice to obtain sparse solutions, using
lop — norm results in a combinatorial optimization problem. Therefagenerally, instead ofy — norm,

Iy —norm of the field is used to obtain sparse solutions. Uding norm of the field results in a convex
optimization problem which is easier to solve. Moreovecerdly it has been shown that under certain
conditions,ly — norm andl; — norm Yield identical solutions [26]. This observation has spdrkauch
recent interest both in theory and in applications of spagpeesentations, coverage of which is beyond
the scope of this paper.

Sparsity-driven radar imaging has already found use in a eambcontexts [27-39]. In SAR applica-
tions, there is widespread use of sparsity-based imagiadalthe advantages such as super-resolution and
artifact suppression it provides. Such techniques assuatetite observation model is known exactly.
In the presence of phase errors and an additive measureroiet induced by the SAR system, the

observation model becomes

g=C(9)f +v (22)

wherev stands for measurement noise, which is assumed to be whitestda noise (the most com-
monly used statistical model for radar measurement noiB8e44]), andg is the noisy phase-corrupted
observation data. Here) refers to one of the three types of phase errors introduc&eation lll.

Based on these observations we propose a nonquadratiarieggtibn-based method for joint imaging
and phase error correction. While existing sparsity-ari8&AR imaging methods assume that data contain
no phase errors, our approach jointly estimates and corapeEnsuch errors in the data, while performing
sparsity-driven image formation. In particular, we pose fbint imaging and phase error estimation

problem as the problem of minimizing the following cost ftioo:

J(f.8) =g — C(@®)fl3+ NIl (23)

Here, X is the regularization parameter, which specifies the strengthe contribution of the regular-

ization term into the solution. The given cost function is mmized jointly with respect tof and ¢
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using coordinate descent technique. The algorithm is aatiter algorithm, which cycles through steps
of image formation and phase error estimation and compensdivery iteration involves two steps. In
the first step, the cost function is minimized with respecthe field and in the second step the phase
error is estimated given the field estimate. Before the algoripasses to the next iteration, the model
matrix is updated using the estimated phase error. This flomtiined in Algorithm 1.

In Algorithm 1, n denotes the iteration numbei™ and¢(™ are the image and phase error estimates
at iterationn, respectively. Note that the knowns in this algorithm are iioisy phase-corrupted daja
and the initially assumed model matriX. The unknowns are the fielfl and the phase errar together

with the associated model matriX(¢) that takes the phase errors into account. It is worth noterg h

Algorithm 1 Algorithm for the Proposed SDA Method
Initialize n =0 f© = g andC(¢©) = C

L. 70 = axgming J(f, 6)

2.9t = argming J(f" 1), ¢)

3. UpdateC(¢(™*+1) using $(**t1) andC.

4. Letn =n+ 1 and return to 1.
~ a 2 N 2
Stop whean<”+1) — f(”)H2 / Hf(”)H2 is less than a pre-determined threshold.

In this paper, the value of the threshold is chosen®s’.

that the use of the nonquadratic regularization-basedéwark contributes to the accurate estimation
of the phase errors as well. Although nonquadratic regrdéion by itself cannot completely handle the
kinds of phase errors considered in this work, it exhibitsieaobustness to small perturbations on the
observation model matrix [42]. In the context of our applgabe nonquadratic regularization term in the
cost function provides a small amount of focusing of theneated field in each iteration. This focusing
then enables better estimation of the phase error. This m results in a more accurate observation
model matrix, which provides better data fidelity and leada tetter field estimate in the next iteration.

Next, we provide the details of the algorithm for the thresssks of phase errors described in Section
Il
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A. Algorithm for 1D Phase Errors

In the algorithm for 1D phase errors, in the first step of evéyation the cost functiod (f, ¢1p) is

minimized with respect tgf. This is the image formation step and same for all types of @leasors.
r 7(n . 7(n 2
FortD = argmin J(f,9yp) = argmin g — CGIR) S, + M7l (24)

To avoid problems due to nondifferentiability of the— norm at the origin, a smooth approximation is

used [20]:
I

£l = S (11 + )2 (25)

=1
where 3 is a nonnegative small constant. In each iteration, the fislinate is obtained as

; 7 (n 7(n F(n -1 7(n
Fr = (CT @) + AW (F™))  Céip) g (26)
where W (f(") is a diagonal matrix:

1 1
: fi(”)’z P (’f}”)‘z Y

The matrix inversion in (26) is not carried out explicitly, tiather numerically through the conjugate

W (f™) = diag (27)

gradient algorithm. Note that, this algorithm has been uged variety of settings for sparsity-driven
radar imaging, and has been shown to be a descent algoritBjn [4

The second step involves phase error estimation, in whicHferelt procedure is implemented for
each type of phase errors. For 1D cross-range varying phess,egiven the field estimate, the following

cost function is minimized for every cross-range positidd][

7(n . r(n . _ 1 m)) A r(n 2
¢§D+1)(m) = arg min J(f( +1)7¢1D(m)) = arg mln) Hgm _ e(]¢1D( ))Cmf( +1)H2 (28)

1p(m) $1p(m

form=1,2 ... M

whereé%ﬂ)(m) denotes the phase error estimate for the cross-rangequositin the iteration(n + 1).
In (28), the K x 1 vectorg,, is the noisy SAR data at the — th cross-range position. After evaluating
the norm expression in (28) (see appendix for details), waiob

S () — arg min (gfigm 9/ £ 52 cos [¢1D(m) + arctan (ﬁ)] i f<n+1>H@g@mf<n+1>> (29)
¢1p (M) R
where
%:Re{f(”+1)HC’g§m} S=1Im {f(”+1)HC',Z§m} (30)
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We know that negative cosine has its minimum at zero and éntegultiples of 2z, so if we set the
argument of the cosine to zero, we can find the phase errorastiim closed form as given in (31) for

the corresponding aperture position.
AgnDH)(m) = —arctan (_5)?) (31)
Using the phase error estimate, the model matrix is updadadli@ws:
C‘m(gzg%ﬂ)(m)) = e(j‘%(lrfl;l)(m))ém for m=1,..... M (32)

We incrementr and turn back to the optimization problem in (24).
Moreover, note that, phase updates are performed afterstaphof the f-iteration in (26), as a result of
which, the overall computational load of our approach is sighificantly more than that of just image

formation.

B. Algorithm for 2D Separable Phase Errors

In case of 2D separable phase errors, the field estimate igvetitaia minimizing the following cost

function:

Fn+1) _ inJ 7(n) _ . _C 7(n) 2 A 33
/ argm;n (f,b2p_) argmfm g (¢2D—s)f2+ £l (33)

Given the field estimate, first, the phase error in the crosgeralirection,y, is estimated using the 1D
phase error estimation procedure described in Section A8, then this estimate is used to update the

model matrix as follows:

. . . 2
ﬁy(m)(n+1) — arg min J(f("H), ~v(m)) = arg 3(15; Hgm _ e(J’Y(m))Cmf(nJrl)H2 (34)

y(m)

for m=1,2,... M

Con(B(m) Dy = GG for m=1,2,..., M (35)

Then, to estimate the phase error in the range direction,|#meeats of the data vectgrand the rows of
the model matrixC'(5("+1)) are ordered in such a way that the elements and rows corrisgpto the
same range position lie under each other. Let these modifiedvgator and modified model matrix be

Imod @Nd Cy,0q, respectively. (i.e., the phase history matrix is row-sgacrather than column-stacked.)
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Using these new variables, the phase error estiéte the range direction is found repeating the same

procedure as in cross-range direction, this time for evange position. This can be expressed as follows:
C (k) (1) — ; Fint+1) ¢(p)) = alla _ oi&(k) F(n+1) 36
§(k) argin J (S, £(k)) = arg rgblg)ngmodk e odi. | H (36)

for k=1,2,..... K

Conody (E(B) D) = GRG0 for k=1,2,.., K (37)

Here,gmodq, andC,,q, represent the parts gf,..q andC,,,q corresponding to a particular range position
k, respectively. To return to the original form, the rows oé thnatrix Cmod(é("“)) are rearranged so
that the rows corresponding to the same cross-range posigionder each other. This rearranged matrix

is denoted byC'( ;’g_lg) which is used in the next iteration to find the next field estimate

C. Algorithm for 2D Non-separable Phase Errors

In a more general case in which we consider 2D non-separaldlseperrors, the image formation step
of the algorithm is essentially identical to its countetgarprevious cases. To obtain the field estimate,

the following cost function is minimized with respect fo

~(n 2
FOD = axgmin J(f, 657 ,,) = axgmin g — (&35 _,) f]|, + Al (38)

Using the same point of view as in the previous two casesgipliase error estimation step, the following

cost function is minimized [45].

. ~ 2
g(s) — eUPrn D fri| ™ (39)

for s=1,2,.....5

¢2nD+1ns( ) =arg min J(f(”+1),¢gp_ns(s)) =arg min

2D —ns\S ¢2D—ns(5

Here ¢(2’BL le(s) denotes the phase error estimate for¢heth data sample in iteratiofn +1). This step
is solved in closed form in a similar way to that in (28). In tpaular, the solution of the optimization

problem in (39) is as follows:

qbggrlns( ) = —arctan (_5)5) (40)
where
R = Re {f<"+1>”cfg(s)} S =Im {f(”“)HC;‘fg(s)} (41)

Using the phase error estimate, the model matrix is upddtedigh:

Cs( Aé"DJF_l%S(S)) (J¢(2%+12Ls( ))Cs for s=1,...., S (42)
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If the phase error type (i.e., 1D, 2D separable, or 2D nomsdpg) is known, then it is natural to
use the corresponding version of the proposed algorithnbbdst phase error estimation performance. If
the phase error type is not knovenpriori, then the version of our algorithm for the 2D nonseparable
case can be used, since this is the most general scenarianfaf these three types of phase errors,
our algorithm does not require any knowledge about how theseterror function varies (randomly,
guadratically, polynomially, etc.) along the range (in 2Bses) or cross-range (in 1D and 2D cases)
directions. We demonstrate the effectiveness of our agproa data corrupted by various phase error

functions.

V. EXPERIMENTAL RESULTS

We have applied the proposed SDA method in a number of scenand present our results in the
following two subsections. In Section V.A we present our hsson various types of data and demonstrate
the improvements in visual image quality as compared to timmpensated case. In Section V.B we

provide a quantitative comparison of our approach withtaxgsstate-of-the-art autofocus techniques.

A. Qualitative Results and Comparison to the Uncompensated Case

To present qualitative results for the proposed method inpaoison to the uncompansated case, several
experiments have been performed on various synthetic samevell as on two public SAR data sets
provided by the U.S. Air Force Research Laboratory (AFRL): theySiiata, part of the MSTAR dataset
[46]; and the Backhoe data [47].

To generate synthetic SAR data for3a x 32 scene we have used a SAR system model with the

parameters given in Table I. The resulting phase history litan a polar grid. As observation noise,

TABLE |
SAR SYSTEM PARAMETERS USED IN THE SYNTHETIC SCENE EXPERIMENT WHOSE RESUS ARE SHOWN INFIGURES 2

AND 3.
carrier frequency(wo) | 27 x 10'° rad/s

chirp rate(2a) 21 x 10*? rad/s?

pulse duration(T},) 4 x 10" *sec.

angular rangd Af) 2.3°

complex white Gaussian noise is added to the data so that SBRIB. We have performed experiments

for four different types of phase errors. The original sytithenage is shown in Figure 2(a). For the data
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Fig. 2. (a) The original scene. (b) Conventional imaging from the dataowt phase errors. (c) Sparsity-driven imaging from

the data without phase errors.

without phase errors, conventional and sparsity-drivaomstructions are given in Figure 2(b) and (c),
respectively. In this paper, in all of the experiments, tbéapformat algorithm is used for conventional
imaging. Results by conventional imaging and by the progasethod for different types of phase errors
are shown in Figure 3. Conventionally reconstructed imagésrsfrom degradation due to phase errors.
The results show the effectiveness of the proposed methodeds in Figure 3, it is not possible to
visually distinguish the images formed by the proposed oktfihom the original scene.

To demonstrate the performance of SDA in the presence of kpeake present some results on a
128 x 128 synthetic scene, in Figure 4. The scene consists of six p&mtdrgets and a spatially extended
target with the shape of a square frame. To create speckidoma phase is added to the reflectivities
of the underlying scene. The corresponding SAR data are diedulay taking a32 x 32 band-limited
segment from the 2D Fourier transform of the scene. Then a @8saiange varying random phase error,
uniformly distributed in[—=, 7] has been added to the data. Speckle is clearly visible in threeational
image reconstructed from the data without phase errors iar&ig(a). The images reconstructed by
conventional imaging and sparsity-driven imaging whendata are corrupted by phase errors are shown
in Figures 4(b) and (c), respectively. The result in Figure 4leinonstrates that SDA can effectively
perform imaging and phase error compensation in the preseinspeckle.

In Figure 5 we present the images reconstructed from the Sty @ithout phase errors. The Slicy
target is a precisely designed and machined engineeribgarget containing multiple simple geometric
radar reflector static shapes. Figure 5(a) shows the imagestuoted conventionally and Figure 5(b)
shows the result of sparsity-driven imaging. As seen in therdig, sparsity-driven imaging provides high
resolution images with enhanced features (in this padicakample, this means locations of dominant

point scatterers). Figure 6(a) and (b) show the results oBlibg data for a 1D quadratic and a 1D random
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Fig. 3. Left- Phase error. Middle- Images reconstructed by conwgaltimaging. Right- Images reconstructed by the proposed
SDA method. (a) Results for quadratic phase error. (b) Results f8ttanrder polynomial phase error. (¢c) Results for a phase

error uniformly distributed iM—m/2,7/2] .

phase error which is uniformly distributed [rm, 7]. The images in the middle column correspond to
direct application of the sparsity-driven imaging techugicof [20] without model error compensation.
The significant degradation in the reconstructions show thaitsgty-driven imaging without model error
compensation cannot handle phase errors. From the imagssnped in the right column we can see
clearly that the images formed by the proposed SDA methoditrdmed exhibit the advantages of sparsity-
driven imaging (see Figure 5(b)) and in the meantime the pkasgs are removed as well. In Figure
6(c) and (d), the results for 2D separable and non-separabttom phase errors are displayed. 2D phase
errors cause a dramatic degradation on the reconstructegesn However, the proposed SDA method
successfully corrects the 2D phase errors as well, and pesdimages that exhibit accurate localization
of the true scatterers and significant artifact suppression.

Another dataset on which we present results is the BackhasetaWe present 2D image reconstruction
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(a) (b) () (d)

Fig. 4. Experimental results on a speckled scene. (a) Conventiongkinegonstructed from noisy data without phase error.
(b) Conventional image reconstructed from noisy data with phase €rjdmage reconstructed by sparsity-driven imaging from

noisy data with phase error. (d) Image reconstructed by the pro@BAdmethod.

(a) (b)

Fig. 5. (a) Conventional imaging from the data without phase errorSfiarsity-driven imaging from the data without phase

error.

experiments based on the AFRL ‘Backhoe Data Dome, Versignvithich consists of simulated wideband
(7-13 GHz), full polarization, complex backscatter datanir a backhoe vehicle in free space. The
backscatter data are available over a full uppersteradian viewing hemisphere. In our experiments,
we use VV polarization data, centered at 10 GHz, and with amwhal span ofl10°. The data we
use in our experiments have a bandwidth of 1 GHz. To deal withwide-angle observation in the
Backhoe dataset, we incorporate the subaperture-basedosdm imaging approach of [48] into our
framework. The composite image is formed by combining theapalture images so that each pixel
value of the composite image is determined by selecting thgimum value for that pixel across the

subaperture images. For this experiment, phase error &sgtimand correction are performed for every
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Fig. 6. Left- Images reconstructed by conventional imaging. Middleages reconstructed by sparsity-driven imaging. Right-
Images reconstructed by the proposed SDA method. (a) Results fbr guadratic phase error. (b) Results for a 1D phase
error uniformly distributed inf—m, . (c) Results for a 2D separable phase error composed of two 1 mess uniformly

distributed in[—37/4, 3w /4]. (d) Results for a 2D non-separable phase error uniformly distribntée , 7] .

19



subaperture image. In Figure 7 we show the conventionally spaisity-driven reconstructed images
for the data without phase error. The results on Backhoe datdD and 2D separable random phase
errors are presented in Figure 8. In the left and middle cotunfnFigure 8, the artifacts due to phase
errors are clearly seen in the images reconstructed by ntowal imaging and sparsity-driven imaging,

respectively. However, both 1D and 2D phase errors are cosaped effectively by the proposed method.

(a) (b)

Fig. 7. (a) Conventional imaging from the data without phase errorSfiarsity-driven imaging from the data without phase

error.

From the given examples so far we see that the proposed SDA dhetineects the phase errors effectively
and provides images with high resolution and reduced didsiahanks to the nonquadratic regularization-
based framework.

We mentioned that regularization-based imaging givesfyaig results in cases of incomplete data
as well. We explore this aspect in the presence of phasesgoasforming an experiment on Slicy data
with frequency band omissions. In this experiment, datanfrandomly selected contiguous frequency
bands corresponding t60% of frequencies have been set to zero, i.e., @, of the spectral data
within the radar’s bandwidth are available. A detailed axpltion of this spectral masking procedure
can be found in [48]. Then, a 1D quadratic phase error funatias applied to the data. The results of
this experiment are presented in Figure 9 and Figure 10. Asfseenthe reconstructions, the proposed
method produces feature enhanced images and removes pharseeffectively even when the data are
partially available.

Finally, we demonstrate how the nonquadratic regularipaficctional in our framework supports

phase error compensation, through a simple experiment ichwie compare the results of our approach
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(b)

Fig. 8. Left- Images reconstructed by conventional imaging. Middleages reconstructed by sparsity-driven imaging. Right-
Images reconstructed by the proposed SDA method. (a) Results Brphdse error uniformly distributed -7 /2, 7/2]. (b)
Results for a 2D separable phase error composed of two 1D phase eniformly distributed if—3x/4, 37 /4] .

() (b)

Fig. 9. Experiments on the Slicy data witld% frequency band omissions : (a) Conventional imaging from the data wtitho

phase error. (b) Sparsity-driven imaging from the data without pbase.
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Fig. 10. Experiments on the Slicy data with% frequency band omissions and 1D quadratic phase error: (a) Guowal

imaging. (b) Sparsity-driven imaging (c) Proposed SDA method.

(@) (b) (c) (d)

Fig. 11. Results of the experiment for testing the effect of the nonatiacegularization term in the proposed SDA method
on phase error compensation. (a) The original scene. (b) Conmahtimaging from the data with phase error. (c) Image
reconstructed in the case of replacing the- norm in our approach with ad, — norm without changing the phase error
estimation piece. (d) Image reconstructed by the proposed SDA method.

with a quadratic regularization scheme. In this experimem have applied a 1D cross-range varying
random phase error, uniformly distributed[iar, 7] to the data from a synthetic scene simulated just by
taking its 2D Fourier transform. To construct a quadratgutarization-based scheme, we have replaced
thel; —norm in our approach with af, —norm without changing the phase error estimation piece. We
present the results of this experiment in Figure 11. As saan fmages, with the quadratic regularization
approach, it is not possible to correct phase errors, whdateaimage reconstructed by our nonquadratic

regularization-based SDA algorithm is perfectly focused.

22



B. Quantitative Results in Comparison to Sate-of-the-art Autofocus Methods

In the second part of the experimental study, we presentitsefar comparison of the proposed
technique with existing autofocus techniques. In Figure ¥2siwow comparative results for 84 x 64
synthetic scene. The SAR data are simulated by taking a barikdi segment on a rectangular grid from
the 2D discrete Fourier transform (DFT) of the scene. Then cexnphite Gaussian noise is added to
the data so that the input SNR is 10.85dB. Then a 1D cross-raargag random phase error, uniformly
distributed in[—7, 7] is added to the data. The performance of the proposed te@hisgcompared to
the performance of PGA [2] and entropy minimization techeg|{i3, 5-7]. For entropy minimization
we have used the procedure given in [5]. For this particutpeament, the results suggest that all three
methods do a good job in estimating the phase error. Howevierrins of image quality, while PGA and
entropy minimization are limited by conventional imagirige proposed SDA method demonstrates the
advantage of joint sparsity-driven imaging and phase emorection, and produces a scene that appears
to provide a very accurate representation of the originehsc For the same synthetic scene we have
also performed experiments with different input SNRs. Fahe@NR value we have applied 20 different
random 1D phase errors, all of them uniformly distributed-r, 7]. For each experiment we compute
3 different metrics. These are the MSE between the originag@rand the image resulting from the
application of the autofocus technique considered, tambtickground ratio, and metrics for the phase

error estimation error. These metrics are computed as fellow
MSE = 2l 43
=z ln=1l; (43)

Here, f and f denote the original and the reconstructed images, respBcti is the total number of
pixels.
Target-to-background ratio is used to determine the anatioh of the target pixels with respect to

the background:

maZier f’L
T5 Z«jEB ’f;‘

Here, T and B denote the pixel indices for the target and the backgrougims, respectivelyl is the
number of background pixels.
To compare the phase error estimation performance of theopesl method to other techniques, we

first compute the estimation error for phase errors:

¢e:¢_¢ (45)
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Fig. 12. (a) The original scene. (b) Conventional imaging from no#ta avithout phase error. (c) Conventional imaging from

noisy data with phase error. (d) Result of PGA. (e) Result of entropynmzation. (f) Result of the proposed SDA method.

Here ¢, is effectively the phase error that remains in the probleter aiorrection of the data or the model
using the estimated phase error. To evaluate various tgebsibased on their phase error estimation
performance, it makes sense to first remove the components that either have no effect on the
reconstructed image, or that can be easily dealt with, aed fherform the evaluation based on the
remaining error. We first note that a constant (as a functiothefaperture position) phase shift has no
effect on the reconstructed image [1]. Second, a linear pblagsiedoes not cause blurring, but rather a
spatial shift in the reconstructed image. Such a phase earmibe compensated by appropriate spatial
operations on the scene [4], which we perform prior to quatite evaluation. To disregard the effect of
any constant phase shift in our evaluation, and also notiagthe amount of variation of the phase error
across the aperture is closely related to the degree of diatipa of the formed imagery, we propose

using evaluation metrics based on the total variation (TV)ofand on thels — norm of the gradient
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of ¢e:

1
TVpp = M—_1 ||v¢eH1 (46)

MSEpg = IVells

1
M-—-1
Here, V¢, is the (M — 1) x 1 vector, obtained by taking first-order differences betweeocsssive
elements ofp.. M is the total number of cross-range positions.

Now we get back to the quantitative evaluation of the reqoctibn of the scene in Figure 12(a)
for various SNRs. We present the comparison results for ttiese metrics in Figure 13. SinéBVpp
and M SEpg values are similar for these particular experiments, fa shke of space we show the
results forM SEpg only. From the plots presented, it is clearly seen that theqesed method performs
better than the other techniques, especially for low SNReslWe also note in Figure 13(a) that the
proposed SDA method yields much better performance in tefrttedVSE between the original and the
reconstructed images even at high SNRs. This is due to theHacSDA benefits from the advantages
of sparsity-driven imaging (unlike the other techniqueggroconventional imaging (see Figure 12) in
addition to successfully correcting the phase errors (it other techniques) at high SNRs.

All of the three algorithms were implemented using non+ojted MATLAB code on an Intel Celeron
2.13GHz CPU. In the experiment of Figure 12, the computatimesirequired by PGA, entropy minimiza-
tion, and the proposed SDA method are 0.6240s, 1.1076s, 4RtI6%, respectively. For the experiments of
Figure 13, the average computation times for PGA, entropymigation, and SDA are 0.3095s, 0.4719s,
and 3.4961s, respectively. The computational load of SDAl&ively more than the other methods, but
this can be justified through the benefits provided by the dpadsiven imaging framework underlying
SDA, as demonstrated in our experiments.

In Figure 14, we display some comparative results on the Baekiata as well. For this experiment
the applied 1D phase error is a random error with a uniforrtriigion in [, 7]. In this example, for
guantitative comparison, we use the MSE for the phase err@&. M8 FEpg values are shown in Table
.

The results show that the proposed method performs phaseestimation more accurately than PGA
and entropy minimization techniques. Furthermore, the gged method also exhibits superiority over
existing autofocus techniques in terms of the quality ofrenstructed scene. In particular, the proposed
method results in a finer and more detailed visualizationutinonoise and sidelobe suppression as well

as resolution improvements. The reconstructed images aatitative comparison show the effectiveness
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Fig. 13. Quantitative evaluation of the reconstruction of the scene in Fif2(a for various SNRs. Each point on the curves
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corresponds to an average over 20 experiments with different mdfbphase errors uniformly distributed ir, 7]. (&) MSE

versus SNR. (b) Target-to-background ratio versus SNR. (c) MBpliase error estimations versus SNR.

of the proposed approach.

Finally, we compare our method with the recently proposediofhadnnel autofocus (MCA) technique
[12]. We have generated @& x 64 synthetic scene that satisfies the requirements of MCA, gl
a condition on the rank of the image, as well as the presence lofv-return region in the scene.
The SAR data used in these experiments are corrupted by a 1B-renoge varying random phase
error, uniformly distributed inN—m, 7]. We show the results of the experiments performed for variou
input SNR levels in Figure 15. We observe that both MCA and SDAoper successful phase error
compensation at the relatively high SNR of 27 dB (see Figure)1&4d (d)). However when SNR is
reduced to 10 dB, MCA is not able to correct the phase erroshasvn in Figure 15(f). On the other
hand, SDA compensates phase errors, and suppresses nodattarceffectively even for this relatively
low SNR case, as shown in Figure 15(g). Figure 15(h) containstaopMSEs for phase error estimation
achieved by MCA and SDA on this scene for various SNR levels. plusdemonstrates the robustness
of SDA to noise. Average computation times required by MCA #mal proposed SDA method for the
experiments displayed in Figure 15 are 0.1629s and 2.51&dgsectively (using non-optimized MATLAB
code on an Intel Celeron 2.13GHz CPU). The results of theseriexpats show that although MCA is
a fast algorithm, working very well in scenarios involvinggh-quality data, its performance degrades

significantly as SNR decreases.
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Fig. 14. Experiments on the Backhoe data for a 1D random phasevéthoa uniform distribution in—, 7]. (a) Conventional
imaging from data without phase error. (b) Sparsity-driven imagioghfdata without phase error. (c) Conventional imaging

with phase error. (d) Result of PGA. (e) Result of entropy minimizat{nResult of the proposed SDA method.

TABLE I

MSE ACHIEVED BY VARIOUS METHODS IN ESTIMATING THE PHASE ERROR FB THE BACKHOE EXPERIMENT INFIGURE 14,
PGA Entropy Minimization | Proposed SDA Method

MSEpg | 3.3267 | 2.1715 2.1382

VI. CONCLUSION

We have proposed and demonstrated a sparsity-driven tpehrfior joint SAR imaging and phase
error correction. The method corrects the phase errors glilie image formation process while it
produces high resolution focused SAR images, thanks to #&ssip enforcing nature resulting from the
use of a nonquadratic regularization-based framework.|&\thie proposed SDA method requires more
computation compared to existing autofocus techniquestalits sparsity-driven image formation part,
its overall computational load is not significantly more thhat of sparsity-driven imaging without phase

error compensation since image formation and phase ertionag®n are performed simultaneously in

27



20 25 30
Input SNR in dB.

(e) (® (9) (h)

Fig. 15. (a) The original scene. (b) Conventional imaging from notsgsp-corrupted data for input SNR 2fdB. (c) Result
of MCA for input SNR of 27dB. (d) Result of the proposed SDA method for input SNR2BEB. (e) Conventional imaging
from noisy phase-corrupted data for input SNR16€B. (f) Result of MCA for input SNR ofi0dB. (g) Result of the proposed
SDA method for input SNR o10dB. (h) MSEs for phase error estimation versus SNR.

the proposed method. The method can handle 1D as well as 2[2 ghass. Experimental results on
various scenarios demonstrate the effectiveness of theppeal approach as well as the improvements it
provides over existing methods for phase error correction.

In this work we considered SAR, but our approach is applicablether areas, where similar types
of model errors are encountered, as well. Since the proposéidoch has a sparsity-driven structure, it is
applicable only to radar imaging scenarios in which the dgtley scene admits a sparse representation
in a particular domain. Other potential extensions may lefthmulation of the problem for scenarios
involving sparse representations of the field in various igpalictionaries or incorporation of prior
information or some constraints on phase error. For futupekwmodel errors in multistatic scenarios

and target motion induced phase errors would be of inteiesiedl.
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APPENDIX

In this appendix, we describe how we get from Eqgn. (28) to Eg8). (Zhe cost function in (28) for

phase error estimation is as follows:

2(n . £(n : — j m))~  fln 2
&p ) (m) = arg min J(fTY, 61p(m)) = arg ¢mm)Hgm—e<ﬂ¢w< Cpm ft0)|

$10(m) 1ip(m

for m=1,2,... M

Here, M denotes the total number of cross-range positiorteenMve evaluate the norm expression we

get

s

Hgm _eUgnm) & (n+1)H2 = (G — GO0 G FOHDVH (5 (G6io(m) G flnt1))y
2

) N A _ . H A _ . H . .
= glg,, — gHelUoo(m) G fn+l) _ flnt D)™ GH (ewm(m))) G+ frrD" oA (eumD(m))) oo (m) G Fnt)
e(—id1p(m))

= 1 G — gl cos(é1p (m)) + j sin(G10(m))]Con f T — FOFV" Gl cos($1p(m)) — jsin(é1p(m))gm + FO0" CHE,, fO D

= g8 G, — 2Re{cos(p1p(m)) fV" CHG} + 2Re{jsin(¢1p(m)) f TV Cl g, } + frHV" CHE,, fntD)
= 51 G, — 2cos(¢rp(m)) Re{ f™+V" C g} — 2sin(¢1 p(m)) Im{fV" Ol gy + fot0" ¢l G, oD

Let  Re{f0tD"CHg Y — R and Im{fV"CHg, =S
Since we can writgin(¢;p(m)) ascos(¢1p(m) — 5) the equation becomes

il
2
The cosines in the previous equation can be added with phasiitiom rule to a single cosine. The

. . 2 R B~ A
6 — 52 G f V| = 55, — 2R cos(10(m)) + Scos(@rp(m) — D)+ FTH" GHC, fir+)

phasors for the term® cos(¢1p(m)) and I cos(¢1p(m) — 5) can be seen below.
P = Rel® =R P=Se 5 = -3
If we add the phasors
P+ P=R+(—jI) =R~ 59

we can find the magnitude and the phase of the new cosine as

_
magnitude = V#? + 32 phase = arctan(%)

Finally, we can write

. _ . 2 S PR
Hgm — gftro(m) Cmf(nH)H2 = G gm — 2VR? + 2 cos[p1p(m) + arctan(%)] + [T On Gy, f Y
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