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Abstract 

Wireless communication has grown, exponentially, with wide range of applications 

offered for the customers. Among these, WLAN (2.4-2.5GHz, 3.6-3.7GHzand 4.915-

5.825GHz GHz), Bluetooth (2.4 GHz), and WiMAX (2.500-2.696 GHz, 3.4-3.8 GHz 

and 5.725-5.850 GHz) communication standard/technologies have found largest use 

local area, indoor – outdoor communication and entertainment system applications. One 

of the recent trends in this area of technology is to utilize compatible standards on a 

single chip solutions, while meeting the requirements of each, to provide customers 

systems with smaller size, lower power consumption and cheaper in cost. 

In this thesis, RF – Analog, and – Digital Integrated Circuit design methodologies and 

techniques are applied to realize a multiband / standart (WLAN and WiMAX) operation 

capable Voltage- Controlled-Oscillator (VCO) and Frequency Synthesizer. Two of the 

major building blocks of wireless communication systems are designed using 0.35 µm, 

AMS-Bipolar (HBT)-CMOS process technology.  A new inductor switching concept is 

implemented for providing the multiband operation capability. Performance parameters 

such as operating frequencies, phase noise, power consumption, and tuning range are 

modeled and simulated using analytical approaches, ADS® and Cadence®  design and 

simulation environments.  Measurement and/or Figure-of-Merit (FOM) values of our 
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circuits have revealed results that are comparable with already published data, using the 

similar technology, in the literature, indicating the strength of the design methodologies 

implemented in this study. 
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Özet 

Kablosuz haberleşme sistemleri tüketicilere sunulan geniş bantlı uygulamalarıyla 

beraber eksponansiyel olarak büyümüştür. Bu dâhili ve harici haberleşme 

standartlarından, WLAN (2,4-2,5GHz, 3,6-3,7GHz ve 4,915-5,825GHz), Bluetooth (2,4 

GHz), ve WiMAX (2,500-2,696 GHz, 3,4-3,8 GHz ve  5,725-5,850 GHz) en geniş 

kullanım alanlarına sahiptirler. Teknolojinin bu alanındaki son eğilimlerden birisi de 

kullanıcıya daha düşük alan ve güç tüketimli ve düşük maliyetli sistemler sunarken,  

birbiriyle uyumlu birden fazla standardı, her birisi için gerekli şartların sağlanması 

koşuluyla, tek bir yongaya sığdıran çözümler bulmaktır.  

Bu tezde çok bantlı/standartlı Gerilim kontrollü osilatör ve Frekans Sentezleyici, RF, 

Analog ve Sayısal tümleşik devre tasarım metotları ve teknikleri kullanılarak 

tasarlanmıştır. Kablosuz haberleşme sistemlerinin bu temel iki bloğunun tasarımında da  

0,35 µm AMS-Bipolar (HBT)-CMOS teknolojileri kullanılmıştır. Bunun yanında çok 

standartlı tasarımın sağlanmasında yeni bir endüktans anahtarlama sistemi önerilmiştir. 
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Çalışma frekansı, faz gürültüsü, güç tüketimi ve ayar menzili gibi performans 

parametrelerinin modellenerek elde edilmesinde analitik yaklaşımın yanında, Cadence®  

ve ADS® gibi tasarım ve benzetim araçları kullanılmıştır. Tasarlanan devrelerin ölçüm 

sonuçları ve liyakat hesabı (FOM), bu çalışmada kullanılan tasarım metotlarının gücünü 

işaret ederek, aynı teknolojiyle tasarlanmış yayınlarla karşılaştırılabilir seviyede 

olduğunu göstermiştir.  
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1. I�TRODUCTIO� 
 

1.1 Motivation 

 

Wireless communication has grown, exponentially, with wide range of applications offered for 

the customers. Among these, WLAN (2.4-2.5GHz, 3.6-3.7GHzand 4.915-5.825GHz GHz), 

Bluetooth (2.4 GHz), and WiMAX (2.500-2.696 GHz, 3.4-3.8 GHz and 5.725-5.850 GHz) 

communication standard/technologies have found largest use local area, indoor – outdoor 

communication and entertainment system applications. One of the recent trends in this area of 

technology is to utilize compatible standards on single chip solutions, while meeting the 

requirements of each, to provide customers systems with smaller size, lower power 

consumption and cheaper in cost. 

The main purpose of this thesis is to implement high resolution, low phase noise, low power 

consumption and spur free frequency synthesizer in small area which meets WLAN and WiMax 

specifications.  

In this design, AMS® 0.35µ BiCMOS technology is selected, because of its high performance 

HBT’s and low cost integration.  

 

1.2 Thesis Organization 

 

The goal of this thesis is designing multiband and multi-standard (WLAN and WiMAX) 

BiCMOS PLL frequency synthesizer with sigma delta modulator. 
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Chapter 2 gives a brief review of fundamentals of PLLs, loop transfer functions, stability 

analysis, and performance parameters.  

Chapter 3 introduces Matlab®   and Simulink® modeling of the architecture. Loop dynamics of 

both coarse and fine loop components are determined and s-domain model of the circuit is 

generated according to determined loop dynamics. Simulink® model of the loop is formed for 

the transient analyzes and corresponding simulation results are discussed.   

Chapter 4 explains circuit design of all sub-blocks of the loop.  Circuit and layout design 

techniques are given. Transistor level circuit design is discussed in detailed with Cadence®  

Virtuoso® Spectre® simulation results. 

Chapter 5 covers top-level construction of the system, as well as the top-level simulation results.  

Chapter 6 discusses measurement results of the system. Post measurement analyzes are also 

taken place in this chapter.  

Chapter 7 is a review of the thesis, future works are also mentioned in this chapter.  
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2. PHASE LOCKED LOOP BASICS 

 

2.1 Basic Topology and Transfer Functions 

 

A phase-locked loop is a feedback system that produces a periodic signal at the same phase of 

an input reference signal. As represented at Figure 2.1, it consists of three basic components;   

phase-detector (PD), loop-filter (LPF) and voltage-controlled oscillator (VCO).  

 

Figure 2.1: Basic phase-locked loop block diagram. Frequency divider can also be added to the system, for frequency 

generation. 

Phase of the input signal x(t), and phase of VCO output signal y(t) are compared by the phase-

detector. Phase-detector generates an output voltage according to the phase difference of two 

inputs. If the phase difference does not change with time, the loop is locked. Output voltage of 
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phase-detector is integrated by a low pass loop-filter. This Loop filter suppresses the high 

frequency signal components and noise. Output of the loop-filter is applied to the VCO as the 

control voltage. The frequency generated by VCO is changed by this voltage in a way that to 

decrease the phase difference. The frequency of the VCO is equal to average frequency of the 

input, when the loop is locked. As seen at Figure 2.1, frequency divider can be added to the 

loop. In this condition output of VCO will be divided before compared by phase detector. When 

phase of divided VCO output signal is equal to phase of input, output frequency of the loop will 

be equal to multiplication of input frequency and division value. Thus, PLL’s are used as 

frequency synthesizers.  

In time domain, response of PLL is nonlinear and hard to formulate. On the other hand, general 

approach of feedback control systems is using s domain transform. Thus, in this chapter PLL is 

analyzed in s domain to understand system behavior and tradeoffs. 

 According to the linear model, which is shown at Figure 2.2, the open loop transfer function of 

the system is  

( )
( ) VCO PDK K F s

G s
s

=
         

(2.1) 

And close loop transfer function is: 

( )( )

1 ( ) ( )
o VCO PD

i VCO PD

K K F sG s

G s K K F s s

θ
θ

= =
+ +        (2.2) 

In charge pump based PLL’s, current of the charge pump, ICP, flows during the phase error. For 

whole 2π phase, KPD constant is linerized as ICP/2π.  

Ideally, VCO generates an output frequency at ∆ω offset from its free running frequency (ωFR), 

while ∆ω is proportional to the control voltage with a KVCO constant. If we consider frequency 

is derivative of phase, VCO is linearized as KVCO/s as represented at Figure 2.2.  

 

Figure 2.2: Simplified linear model of PLL 
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2.2  Performance Parameters of PLL 
   

In this section, main parameters of PLL, which are important for performance measures, are 

shortly explained. These parameters are also important for analyses and design of the system. In 

most of these analyses, PD is taken as analogue multiplier, because of its linearity. 

 

2.2.1  Loop bandwidth and Damping Factor 

 

In order to benefit from control systems literature, where second order systems are analyzed in 
detail, loop filter is assumed as first order RC low pass filter and PLL becomes second order. 
Thus, denominator of closed loop transfer function can be modified to the well-known form 
used in control theory, 2 22 n ns sω ζ ω+ + , where ζ  is the damping factor and nω is the natural 

frequency  of the system which is also referred as loop bandwidth [1], [3], [4].   

2

2 2

2
( )

2

ζω ω

ω ζ ω

+
=

+ +
n n

n n

s
H s

s s              
(2.3) 

1*2
ω ω

π
= = VCO CP

n LF

K I
K

�C
             

(2.4) 

1
1
2 2

ωω
ζ = = nLF RC

K              
(2.5) 

According to the above equations, (2.3), (2.4) and (2.5), required three loop parametersζ , K  

and nω , which are related to each other, must be met.  Transient settling behavior of the system 

is determined by damping factor as seen from Figure 2.3. Loop bandwidth and damping factor 
are important parameters in analyze of PLL as it can be seen from following sections.  

 

Figure 2.3: Under-damped response of PLL to a frequency step (a) ζ  = 0.25, (b) ζ  = 0.707[2] 
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2.2.2  Lock Time and Pull in Time 

 

The amount of time needed to accomplish lock without cycle-slipping (cycle-slipping occurs if 

no edges are detected at one input of pfd during both up and down edges detected at the other 

input) is the definition of Lock time [4].  

To analyze lock time in time domain, closed loop poles can be derived from  (2.3) that,  

2 2 2
1,2 ( 1) ( 1)ζω ζ ω ω ζ ζ= − ± − = − ± −n n ns

                   
(2.6) 

Poles are real for the condition ζ  > 1 and inverse Laplace of this function will have exponential 

components ( 1s te , 2s t
e ) while the system is over-damped. For the condition, ζ < 1, the poles 

are complex and if we apply an input frequency step, . ( )in u tω ω= ∆  the response will be 

 

( ) ( )

( )

2 2

2

2

2

( ) 1 cos 1 sin 1 . ( )
1

1
1 sin 1 . ( )

1

ζω

ζω

ζ
ω ω ζ ω ζ ω

ζ

ω ζ θ ω
ζ

−

−

    = − − + − ∆ 
 −  

 
 = − − + ∆
 − 

tn
out n n

tn
n

t e t t u t

e t u t             

(2.7) 

Where OUTω
 
 is the change at output frequency and ( )1 2sin 1θ ζ−= − . Eq. (2.7) shows us 

that sinusoidal component decays with a time constant ( ) 1

nζω
−

, which is also shown at Figure 

2.3(a). The response of the system will not change for a phase step input. In addition, this 

exponential decay at Eq. (2.7) is important to define settling speed (or settling time), indicating 

that nζω must be maximized. Eq’s (2.4) and (2.5) yield, [3] 

1

2
ζω ω=n LF

               
(2.8) 

Thus, settling speed is inversely proportional with 3dB bandwidth of loop filter.  

In practice formula of lock time can be taken as [5],  

2π
ω

=L
n

T

               
(2.9) 



7 

 

After a frequency step input is given, in an amount of time, which is called pull in time, aimed 

output frequency is achieved initially. Formula of pull in time is [4], 

2

ω ω

π ω

∆ −
= L

P

n

T
�            (2.10)

 

Tradeoff between settling speed and ripple on VCO control line has become obvious after these 

derivations. If a small LFω  is selected to increase the attenuation of high frequency components 

at phase detector output, settling time will increase.  

Choice of ζ, which affects stability, causes other tradeoffs. First of all, reduction of LFω , 

degrades stability.  Secondly reduction of phase error with increase of K also makes the system 

less stable. To conclude, tradeoffs between stability, settling speed, the ripple on the control 

voltage (or high frequency components on the control voltage) and the phase error are the 

challenges of the design of second or higher order PLLs.  

 

2.2.3  Tracking Range (Lock Range) 
 

PLL can track reference frequency in an amount of range. This range is defined as lock range of 

a PLL system.  Limits of the range are determined by non-linear components of the system such 

as VCO and PD. 

For a slow input frequency variation,  |ωin-ωout|<<ωLF, the magnitude of control voltage of VCO 

increases due to the increase of static phase error as represented at Figure 2.4. If routine change 

of the parameters, which are plotted in Figure 2.4, is obtained, tracking of PLL occurs. 

 

Figure 2.4: Variation of ideal parameters during tracking [2] 
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For a large frequency variation PD (for analogue multiplier type) behaves as non linear and 

average phase difference behaves as Figure 2.5(b). In addition, as seen at Figure 2.5, gain of 

VCO is non-linear. In some cases, the VCO gain is negative. Lock range is between the points 

where the slops of VCO and PD are positive.    

 

 

Figure 2.5: Plot of Gain values of a) VCO and b) PD in practice [2] 

For analogue multiplier type PD (mixer) tracking range can be calculated as, [3], 

sin
2tr PD CP VCOK K
π

ω −
 ∆ =  
         

(2.11) 

Every change at input frequency makes PLL to fail at locking. For stabilizing, a number of 

cycles, which is proportional to the magnitude of change, are needed. If the size of change is 

small, lock time is small, and transient view is tracking. Both of the two circumstances are 

congruent in the case of acquire lock: locked loop which detects a large input frequency change, 

and unlocked loop which has to lock to a frequency which is ∆ω away from operating 

frequency, [3]. Acquisition of lock concept which has mentioned above is explained in the next 

section.  

  

2.2.4 Acquisition Range and Acquisition of Lock 
 

PLL is initially oscillating at ωFR, then PLL is adjusted to oscillate at ωFR  + ∆ω. In the mean 

time the loop try to lock new oscillation frequency, this behave of the loop is defined as 

acquisition of lock. Highest angular frequency step (∆ω), gives acquisition range.  

Phase detector is assumed as analogue multiplier type, loop filter is initially at 0, ∆ω cannot be 

attenuated by LPF, and KvcoAm / ∆ω << 1. For these assumptions variation frequency at control 

voltage is equal to ∆ω. In the first cycle of loop, output of VCO can be derived as [3]: 
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( )( )

( )

( ) cos cos

cos sin( )

cos sin( ) sin( )

out FR VCO m

VCO
FR m

VCO
FR m FR m

V t A t K A t dt

K
A t A t

K
A t A t A t

ω ω

ω ω
ω

ω ω ω
ω

= + ∆

 = + ∆ ∆ 

= − ∆
∆

∫

       

(2.12) 

As a result of (2,12), VCO output consists of three main frequencies: ωFR  +  ∆ω, ωFR  -  ∆ω and, 

ωFR. In next cycle, multiplication of this output with the input signal at ωFR  +  ∆ω at PD 

produces three components. One of these components is at DC which adjusts VCO in the 

direction of locking. Acquisition of lock is achieved in couple of cycles. Suppression of other 

components and power of DC component determines acquisition range. Loop gain decreases 

with respect to ∆ω, which limits acquisition range [3].   

For the phase frequency detector used in this design, acquisition range of the system can be 

found as [7]; 

2
14 2ω πζω π ω∆ = =acq n nRC

        
( 2.13) 

To sum up, acquisition range is proportional with loop bandwidth. Thus, acquisition range is 

short for the applications which need small loop bandwidth. In addition, maximum operation 

frequency step at input or VCO is determined by acquisition range.  

   

2.2.5 Settling Time and Total Acquisition Time  
 

The amount of time needed to settle in the acquisition range is the definition of settling time. 

For the assumption that lock range is 0.5 % of frequency range, settling time can be calculated 

with, [4] 

5.29

ζω
=S

n

T

            
( 2.14)

 

The amount of time for acquisition of lock defines total acquisition time which can be 

calculated as [4],  

= +acq S LT T T

             
(2.15) 



10 

 

2.2.6 Jitter 

 

According to ITU-T G.810 standard [6], definition of jitter is “the short-term variations of the 

significant instants of a timing signal from their ideal positions in time (where "short-term" 

implies that these variations are of frequency greater than or equal to 10 Hz).” In other words, 

jitter is time domain response of phase noise. 

 

Two noise sources can be modeled as [1], 

0( ) (1 ( ))sin(2 ( ))π θ= + + +v t A a t f t t harmonics
         (2.16) 

Amplitude modulation noise is represented as a(t) and phase modulation noise is represented as 

θ(t). For remaining analyses, amplitude modulation noise is avoided because it does not create 

jitter.  

To find timing jitter, Eq.(2.16) can be re arranged as [1], 

[ ]0 0
0

( )
( ) sin 2 sin 2 ( ( ))

2

t
v t A f t A f t T t

f

θ
π π

π

  
= + = + ∆  

           

(2.17) 

And timing jitter, ∆T, is, [1], 

0

( )
( )

2

t
T t

f

θ
π

∆ =

             

(2.18) 

 

Figure 2.6: Phase modulated signal and Jitter [1] 
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2.2.6.1 Specific Jitter definitions  
 

If the standard deviation of the timing jitter is taken, RMS timing jitter is defined as 

rms TT σ∆∆ =
             

(2.19) 

Cycle-to-Cycle Jitter: Period difference of sequential cycles is Cycle-to-Cycle jitter, [14]. 

Period Jitter: Period jitter is comparison of the length of each period with average period, T0, of 

an ideal signal. For each measured period, Tn, difference, Tn-T0, is period jitter.  

Long-Term Jitter: The rising or falling edge variation after “n” cycles defines long term jitter 

(Figure 2.7). Number of cycles, n, is selected according to application or frequency, [15].  

For a free-running oscillator, long-term jitter increases proportional to the measurement time. 

All the following transitions are affected by any wavering in earlier transitions, and effect stays 

infinitely. This is also called jitter accumulation. 

 If we assume Gaussian distribution is valid for long term jitter, the peak to peak jitter is defined 

between (-3 σ, 3σ). Thus, the peak-to-peak jitter is [15]: 

pp ∆T∆T = 6σ
             

(2.20) 

That is defined in terms of seconds. 

 

Figure 2.7: a) Cycle to cycle jitter (T2-T1) and Period jitter (T1-T0) b) Peak to peak jitter in long term [1] 
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Eye Diagram 

In eye diagram, which is best view for jitter, edge placements of generated signals are plotted 

cumulatively. Due to jitter, edges of signal are located at different coordinates for sequential 

periods of signal. Figure 2.8 (a) represents basics of eye diagram. To analyze a signal with 

period T, the time axis is divided into pieces of length T/2. Each piece is folded up on the 

following one. Folding is started, t=0, with a zero crossing of the signal, then for an ideal 

sinusoidal signal, the gap at the center of the diagram looks like  an eye, thus, it is called an eye 

diagram. If zero crossing (edge) jitter increases, the apparent eye begins to close Figure 2.8 (b). 

Figure 2.8 (c) shows peak to peak calculation.  

 

Figure 2.8: (a) Eye-diagram operation, (b) Eye-diagram of a jittered sine wave,   (c) Eye-diagram for peak-to-peak 
jitter calculation. [1] 

 
 

2.2.7 Phase �oise 
 

Main purpose of frequency synthesizers, in ideal, is to generate a Dirac delta function in an 

aimed frequency as shown at Figure 2.9 (a). In practice, output spectrum of frequency 

synthesizer consists of two types of phase terms as shown at Figure 2.9(b).  First type is random 

phase fluctuations caused by internal noise sources, such as flicker noise, shot noise, thermal 

noise etc., and external noise sources, such as power supply fluctuations. Second type is spurs, 

caused by internal imperfections of frequency synthesizers such as quantization noise, current 

mismatches etc [16].  

As can be seen from Figure 2.9, phase noise distribution is symmetric around the oscillation 

frequency [17], therefore, phase noise single-sideband is defined as the ratio between noise 

power in a 1 Hz bandwidth with an offset, ∆ω, and the signal power which is specified in 

dBc/Hz as [17],  
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2 2 2
0

2
0

(1/ 2)( / 2)
( ) 10log 10log 10log

4 2(1/ 2)

θ θ θ
ω

     
   ∆ = = =  
         

p p rms
SSB

V
P�

V
  

( 2.21) 

Where 2θ rms
is the rms phase noise power density in units of [rad2/Hz]. 

 

Figure 2.9: output of oscillators in frequency domain a)ideal b)practical 

Alternatively double sideband noise can be written as, [17] 

20 0

0

( ) ( )
( ) 10log 10 log

( )

ω ω ω ω
ω θ

ω
 + ∆ + − ∆  ∆ = =    

�oise �oise
DSB rms

carrier

P P
P�

P
     

(2.22) 

The rms phase noise can be obtained in the linear domain as, [17] 

( ) /10 ( ) /10180 180 2
( ) 10 10 deg/ω ωθ ω

π π
∆ ∆  ∆ = =  

P� P�DSB DSB
rms Hz

     
(2.23) 

It is also important to mention rms integrated phase noise over a certain bandwidth. The limits 

of integration are usually offsets which correspond to the lower and upper frequencies of the 

bandwidth of the information being transmitted, [17]. 

2 2

1
( )

ω

ω
θ ω ω

∆

∆
= ∫rms rmsIntP� d

       
( 2.24) 

In addition, it should be noted that dividing or multiplying a signal in the time domain also 

divides or multiplies the phase noise. Similarly, if a signal is prescaled to a frequency by a 

factor of N, the phase noise power is increased by a factor of N2 as [17]: 

2 2 2
0( ) ( ),θ ω ω θ ω ω+ ∆ = + ∆rms rms LO� �  

2
2

2

( )
( )
ω θ ω ω

θ ω
+ ∆

+ ∆ =LO rms LO
rms

� �          
( 2.25) 
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2.2.7.1 �oise Analysis of the loop 
 

Each component of the loop adds phase noise to the system and noise is shaped by the transfer 

functions of the components. Total phase noise of complete PLL is the combination phase 

noises generated by all blocks. Figure 2.10 shows linear model of PLL with noise sources.  

 

Figure 2.10: Linear model of PLL with noise sources[16] 

θVCO is the phase noise of the VCO in rad/  which can be described as [19, 20] 

2
2 0( ) 1

(2 ) 2

ω ω
θ ω

ω ω
    

∆ = +    ∆ ∆    

C
VCO

S

GkT

Q P
       

(2.26) 

Where, flicker noise corner frequency is represented as ωc , G is proportionality constant to 

model transistor noise and nonlinearity and power of fundamental frequency (ω0) is PS.   

θref represents the phase noise of crystal resonator that can be used as reference frequency is 

another important parameter, which can be found from Leeson’s formula [21]: 

2
2 16 1 0( ) 10 1 1

2

ω ω
θ ω

ω ω
− ±

     ∆ = + +   ∆ ∆     

C
ref

LQ

        

(2.27) 

Loaded quality factor of Crystal is represented as QL which is in the order of 104 to 106. The 

noise converges to thermal noise floor at offset frequency around ωc. 

Frequency divider noise is represented as θdiv. Rather than phase noise, spurious noise is 

generated by frequency dividers. Empirical phase noise formula of frequency dividers is 

provided by Kroupa, where ωdo is output frequency of divider, [22,23]: 
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14 1 27 1 2 22 1
2 16 110 10 10

( ) 10
2 2

ω ω
θ ω

π ω π

− ± − ± − ±
− ±+

∆ ≈ + +
∆

do do
div

         
(2.28) 

Phase noise of phase frequency detector is represented as θPFD which is estimated empirically by 

[23]: 

14 1
2 16 12 10

( ) 10
π

θ ω
ω

− ±
− ±∆ ≈ +

∆PFD

          
(2.29) 

 in,cp is the noise of the CP current which can be characterized as an output noise current and is 

usually given in pA/√Hz. The results depend on the design in question so no simple general 

analytical formula will be given here.  

In this design second order loop filter is selected, the reasons of this selection is explained at 

chapter 3. The loop filter with its associated noise source is shown at Figure 2.11.  

 

Figure 2.11: loop filter with thermal noise added [16] 

Noise voltage provided by the resistor, generates a noise current which is given by 

_
1 2 1 2 2

1 1
( ) /( ) 1/( )

= ≈
+ + +

n n
n cnt

v s v s
i

R s C C C C R R s C R
        

(2.30) 

No DC component occurs as can be seen from 

 

(2.31), and noise will be flat after cut off 

frequency [17]. Charge pump noise can be added to this noise.  

Final output noise can be derived as 

2 2 2 2 2 2 2 2 2
, ,

2( ) 2 1
( ) ( ) ( ) ( )

( ) ( )
1 1

ππ
θ θ θ θ θ

   
= + + + + +     + +

VCO
out ref div pfd n cp vco n c

CP

KG s
i v

G s G sI s

� �
                 

(2.31) 

Noise shaping effect can be observed by the noise transfer function [16].  Phase noise of VCO 

and its control voltage noise are multiplied by 
( )

1/(1 )+
G s

�
, which is a high pass filter. These 
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noises are attenuated inside the loop bandwidth while they are effective above the loop 

bandwidth. On the other hand noises of other components are multiplied by 

( ) /(1 ( ( ) / ))+G s G s � which behaves as low pass filter. Thus, PFD, CP, frequency divider and 

reference signal are primary noise sources at low frequencies. In addition, noises from these 

components are proportional with division ratio of frequency divider (N). Noise shape behavior 

of PLL is decided by loop bandwidth. For minimum integral noise at PLL output, optimum loop 

bandwidth must be selected.  

From fundamental frequency to 100Hz-1KHz offset frequencies (first region), reference 

oscillator noise is dominant. From this corner to the loop bandwidth corner of PLL (second 

region), phase frequency detector charge pump and frequency divider noises are dominant. 

Above the loop bandwidth (third region), VCO noise is dominant. The performance of PLL can 

be observed at second region, [16].  

Noise floor of PLL can be defined as, [16] 

, 0 20 log( ) 10 log( )= − −pll nf refL L � f
      

( 2.32) 

Phase noise inside loop bandwidth is represented as L0 in terms of dBc. Total noise caused by 

loop components are represented at Lpll,nf. Noise due to reference frequency is 10 log(fref). 

Because of frequency multiplication, phase noise is increased as 20 log(N). Performance of a 

given PLL can be observed by noise floor in consideration of N and reference frequency, [17].  
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3. MODELI�G A�D SIMULATI�G FREQUE�CY SY�THESIZER AT 

MATLAB® 

 

Before start of physical circuit design, understanding the influence of circuit defects to complete 

operating characteristics is must. Modeling whole system is also needed for an adjustable and 

durable circuit. In consideration of design specifications, a combined simulation environment 

that allows the modeling of all important circuit deteriorations is essential.  To expedite 

observing either tradeoffs between performance and complexity of system or tradeoffs between 

circuit blocks, overall simulations are needed. Use of  wide-range modeling tools such as; 

Matlab®  Simulink® 1) reduces the design time, in pursuance of acquiring essential design and 

model parameters, 2) examining signal flow and 3) ascertainment of system characteristics.  

Important circuit parameters such as damping factor, settling time, phase margin, -3dB 

bandwidth etc. have been examined and optimized by usage of MATLAB®. Modeling of the 

circuit and the system by this program has continued at the higher steps of the physical circuit 

design. 

To model the Frequency Synthesizer, Simulink®  from The Mathworks and techniques at [34] 

have been used. “Simulink® is an environment for multidomain simulation and Model-Based 

Design for dynamic and embedded systems. It provides an interactive graphical environment 

and a customizable set of block libraries that let you design, simulate, implement, and test a 

variety of time-varying systems” [24].  The challenges for simulating analogue non-ideal effects 

with Matlab® and Simulink®, and solutions are described at this chapter.  
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3.1 Selection of Order and Type of Loop filter  
 

Before performing simulations at Matlab®  , type, order and transfer function of loop filter must 

be selected.  

Fluctuations at control voltage of VCO are needed to be suppressed by loop filter which is also 

used to integrate the charge pump current. PLL is at least second order without a loop filter, 

because the input capacitance of VCO and output capacitance of charge pump produces a pole. 

For a first order low pass filter which can be implemented as Figure 3.1, loop filter transfer 

function, ( )F s , will be : 

1
( )

1
ω

=
+

LF

F s
s

                                 (3.1) 

Where, 
1 1

ω
τ

= =LF
RC

.  Thus, equation (2.1) can be reordered as 

2

/
( )

/

K
G s

s s

τ
τ

=
+                  

(3.2) 

and, equation (2.2) can be reordered as:  

2

( )

1 ( ) ( )

θ ω ω
θ ω ω ω ω

= = =
+ + + + +

o VCO PD LF VCO PD LF

i VCO PD LF LF LF VCO PD LF

K K K KG s

G s K K s s s s K K                   
(3.3) 

 

Figure 3.1: First order Low pass filter 

In order to analyze the open loop transfer function, the root-locus of equation
 
(3.3) is plotted at 

Figure 3.2. At start, K=0, poles of transfer function are located at s=0 and s= -1/τ. As the 

increase of loop gain, K, the poles come closer and meet at halfway and become a complex 

conjugate pair, then these poles move to infinity along a vertical line at s=-1/2τ. The gain is 

inversely proportional to damping. In addition, the system is unconditionally stable, [1]. 
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Figure 3.2: Root-locus plot of a PLL with a first order low pass filter, the system is unconditionally stable [1] 

For a better suppression of high frequency components at the phase detector output, without 

having essential effect on the loop bandwidth and damping factor, another is added as Figure 

3.3. Then, this loop filter will have a transfer function as: 

2
2

1 3 1 2 1 2

1 1 1
( )

( 1) ( )

τ
τ τ

+ +
= =

+ + +
s sC R

F s
s s s C C R s C C           

(3.4) 

 

Figure 3.3: Second order low pass filter, this filter has been used at design of the system  

One of the poles of the loop filter is located at ω=0 and another one is at ω=-1/τ3, and zero of 

the filter is at ω=-1/τ2.  As mentioned above, not to change second order characteristics, the 

pole at ω=-1/τ3 should be placed far from the crossover frequency. After using this filter, open-

loop transfer function becomes: 

2
2

1 3

( 1)
( )

( 1)

K s
G s

s s

τ
τ τ

+
=

+          
( 3.5) 

Figure 3.4 represents the root-locus plot.  Two of the open loop poles are located at zero and 

open-loop pole is at ω=1/τ3 while the system is having a zero at ω=1/τ2. As shown in the figure, 

according to the increase of the gain to infinity, the third pole converges to the zero and the 

other poles become complex conjugate chasing a curve while making the system 

unconditionally stable [1]. 
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Figure 3.4: Root locus of the third order PLL, with second order low pass filter represented at Figure 3.3. The system 

is unconditionally stable, [1] 

Using higher order loop filters will have better performance on attenuating fluctuations at 

control voltage of VCO, which cause phase noise and jitter. Because of the need for high C1 

capacitance at control voltage of VCO, which will be explained at chapter 5, loop filter must be 

second order. Additionally, in practice VCO gain is highly non-linear (which is explained at 

chapter 4) and brings additional poles to system which degrades stability. Behavior of VCO also 

changes at different bands. Moreover, to operate at different bands, division ratio of loop must 

be changed. Furthermore, after insertion of additional blocks which controls division ratio such 

as accumulators or sigma delta modulators, stability will also be degraded. Because of 

unconditionally stabile behavior of the system (at least in linear approach), second order loop 

filter is selected.  

 

3.2 Determining loop Parameters 
 

In order to make loop stable, loop parameters such as loop bandwidth and damping factor have 

to be determined. These parameters must supply all performance parameters for all bands. At 

this stage, both Simulink®  models and .m files are used. After iterations Table 3-1 has been 

generated. These parameters have been used for following MATLAB® models and calculations.  

Table 3-1: Loop parameters and values 

Parameter Value Unit Expression 
KVCO Band1 0.8 GHz/V Gain of The VCO for band 1 (5G) 
KVCO Band1 0.36 GHz/V Gain of The VCO for band 2 (3.6G) 
KVCO Band3 0.3 GHz/V Gain of The VCO for band 3 (2.4G) 
C1 384 pF Loop filter Capacitor 
C2 48 pF Loop filter capacitor 
R 7.5K Ohm Loop filter resistor 
Icp1 104 µA Charge pump current for band1  
Icp2 270 µA Charge Pump current for band2 and 3 
N 64-124 N/A Final Ratio of the divider Circuit 
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After applying the values for band 1 to the transfer functions at  (3.4) and (3.5) final closed loop 

is represented at Figure 3.5. 

 

Figure 3.5: Closed loop block diagram for the values at Table 3-1. 

With these values, final open and close loop transfer function of the loop will be: 

12 18

2 3 6 2
1 2 1 2

( ) ( 1 1) 3.234 10 1.123 10
( )

( ( )) 3.125 10

+ +
= = =

+ + +

i i

i

VCO PD PD VCOK K F s K K sC R s
G s

�s �s s C C R s C C s s       
(3.6) 
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+
= =
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+
=

+ + +

i i

i i i

         
(3.7) 

Generally, for stabile systems desired phase margin is 650. Because of selected VCO topology, 

C2 capacitance must be selected maximum (which is explained at chapter 5). C1/C2 ratio is one 

of the most important criteria which determines phase margin. For 620 open loop phase margin 

C1 must be 16 times larger than C2.  53.10 phase margin is enough for stability, thus, to save 

area, C1/C2 is taken around 8.   

 

Figure 3.6: Open loop Bode plot of the system. Phase margin of the loop is 530 



22 

 

3dB bandwidth (loop bandwidth) of the closed loop, which is shown at Figure 3.7, defines 

lower limit of synthesizer step size [25]. This parameter must be small enough. As it is shown at 

eq. (2.14), loop bandwidth must also be large enough to decrease settling time. Figure 3.7 shows 

that, loop bandwidth of the system is 267 kHz which is selected in consideration of the tradeoffs 

mentioned above, and, acquisition range and acquisition time are also concerned. If loop 

parameters are applied to the eq. (2.14), 

2

5.29
10.227 s

1
*2 2

µ

π

= =S
VCO CP

T
K I RC

�C

       (3.8) 

Figure 3.8 shows step response of the loop. Step response is used for observation of the settling 

and settling time is around 10µs.  

 

Figure 3.7: Bode plot of the closed loop transfer function. Loop bandwidth is 267kHz 

 

Figure 3.8: Step response of Closed loop transfer function., 
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The stability behavior of the loop can also be analyzed by the root locus plots of open and 

closed loop transfer functions. These figures can be found at Appendix B1. From these figures it 

is obvious that no pole leaves left hand plane, thus, open and closed loop stabilities are obtained, 

[26].  

 

3.3 SĐMULĐ�K®  MODELS of PLL BLOCKS 

 

3.3.1 Phase Detectors 
 

Xor gates, SR flip-flops, analog multipliers and switching phase detectors can be used for 

detection of phase. The one used is phase frequency detector, which is represented at Figure 3.9.  

 

Figure 3.9: Gate level representation of Phase Frequency Detector [1] 

Figure 3.10 represents progress of the phase-frequency detector. To analyze this block, initial 

condition is set such that, input frequencies are evenly matched and VCO output follows 

reference input with a phase error θe. For arriving of each rising edge of the reference, the U 

output will have logic high value.  Subsequent arrive of rising edge of the VCO output, either U 

or D outputs are set to logic high for a short while, thus, a pulse at reset input of the flip flops 

which is connected to the output of AND gate is generated. This reset pulse pulls U and D down 

to logic low. AND gate is assumed as ideal, which does not have a gate delay. If output of VCO 

is behind of the reference input, the phase difference is signified by the mean value of the U. On 

the contrary, if output of VCO is followed by the reference input, phase difference is signified 

by D output, while mean value of the U is practically zero. In ideal U and D cannot be active at 

the same time.  

First Simulink® model is represented at Figure 3.11. For instance, reference frequency is 1MHz 

and the feedback is 0.5 MHz, the up and down signals generated by PFD can be seen at Figure 

3.12. As a second example, reference frequency = 0.5MHz, feedback = 1MHz, the output can be 
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seen at Figure 3.13. It is obvious that, the expected waveforms are achieved except non zero 

outputs at Figure 3.12 (b) and Figure 3.13(a), which is caused by non zero delay of AND gates.  

 

Figure 3.10: Progress of Phase and frequency detector [1] 

 

Figure 3.11: Phase frequency detector block 
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Figure 3.12: Simulink®  result of PFD. The output signals for high frequency reference  low frequency feedback 
signal: a) is up signal b)is down signal. Time of up signal is larger to reduce frequency difference between two inputs 

of Phase frequency detector. 

 

Figure 3.13: Simulink®  results of PFD. The output signals for high frequency reference low frequency feedback 
signal: a) is up signal b)is down signal. Contrast of the situation at Figure 3.12 

 

3.3.2. Charge Pump 
 

Charge pump is a circuit that supplies + I1 current when up signal comes and supplies –I2 

current when down signal comes. This circuit is explained at chapter 4. Simplified charge pump 

circuit is represented at Figure 3.14 (a) and simple Simulink® model is shown at Figure 3.14 (b). 

 

Figure 3.14: a) Simplified charge pump circuit  b) Charge pump model for Simulink®   
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3.3.3 Loop Filter 
 

Loop filter is represented as a transfer function at Simulink® which can be seen at Figure 3.15. 

 

Figure 3.15: Loop filter model for Simulink®   

3.3.4 VCO 
 

VCO is modeled by a single block at Simulink® where free running frequency, VCO gain and 

initial phase are defined.  

 

3.3.5 Frequency Dividers 
 

Two types of dividers have been used in this thesis; single mode frequency divider and multi 

mode frequency divider. Although both synchronous and asynchronous counters can be used as 

single mode frequency divider, asynchronous frequency dividers have been used because of 

their low power consumption and low area.  

An asynchronous divide-by-two circuit is shown at Figure 3.16. Logic high is assumed as initial 

value of Q. After arriving of rising edge of clock signal, Q will be set to high which will be 

inverted after subsequent rising edge of clock. Thus, Q and Q’ generate a square signal which 

has half frequency of clock signal.  

 

Figure 3.16: Divide-by-two circuit 

In fractional N PLL systems, at least two different division ratios are needed to make fractional 

division. For this purpose dual modulus dividers are being used. 2/3 dual modulus divider is 

represented at Figure 3.17.  According to the Figure 3.17, if control value is set to zero, first 

flip-flop (FF1) is eliminated and second flip-flop (FF2) acts like asynchronous divide-by-two 

circuit. For the contrary, if control signal is high, assuming that initial value of Q output of FF2, 
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which is also D value of FF1, is as set logic high. After arriving rising edge of CLK, Q’ value 

will be set to 0, D input of FF2 will be set to 0, Q output of FF2 remains high because signal 

comes to D two gates delay later than the rising edge. After arriving of subsequent rising edge 

of CLK, Q value of FF2 will be set to low, and D input will be set to high, while Q’ of FF1 

remains zero. After arriving of next rising edge of CLK, Q value of the FF2 will be set to high 

while Q’ of FF1 is set to high which will make D value high. After arriving of subsequent rising 

edge of CLK, Q of FF2 remains high while making a series of low–high–high–low–high–high, 

which has a period three times of CLK. Thus, frequency is divided by 3. Output of dual 

modulus divider is shown at Figure 3.18. According to this figure after 30s the control signal 

changes 1 to zero; the change at division ratio can be seen from Figure 3.18 (a), while clock 

frequency is represented at Figure 3.18 (b).  

 

Figure 3.17: Dual modulus Divider 

For either, multiband PLLs or PLLs which have second or higher order Ʃ∆ modulators, 

frequency dividers which have more than two division ratios are needed. These frequency 

dividers are also called as multi-modulus frequency dividers.  A two bit divider which has 

divider value range starts from 4 to 7 is represented at Figure 3.19. According to this figure, 

• If C0 and C1 are zero, dual-modulus dividers will act like cascade asynchronous divide-

by-two circuits where frequency is divided by four.   

• Assuming C0 is high and C1 is low, if Q output of dual modulus2 is high, dual 

modulus1 divides frequency by three, else dual modulus1 divides frequency by two. 

Output of circuit will have three periods high and two periods low, thus input frequency 

is divided by five.  



28 

 

• Assuming C0 is low and C1 is high, dual modulus1 always divides frequency by two, 

while dual modulus2 divides frequency by three, thus frequency is divided by six.  

• Assuming C0 and C1 are one, if Q output of dual modulus2 is one, dual modulus1 

divides frequency by three( with 66% duty cycle, with a sequence 1-1-0) , else dual 

modulus1 divides frequency two while dual modulus always divides frequency by 

three. If the inverse output of the frequency divider is zero which will be zero for two 

times, dual modulus divider1 divides frequency by two. Else dual modulus divides 

frequency by three so seven cycles pass for all division period, while the frequency is 

divided by seven. Outputs of divider and clocks of dual modulus dividers are 

represented at Figure 3.20. 

Four bits multi-modulus frequency divider is used at Designed PLL, which is shown at Figure 

3.21. The division mentality is the same as two bits 4-7 multi-modulus frequency divider which 

has been explained above.  

 

 

 

Figure 3.18: Output of dual modulus divider. a) Divided output, b) Clock signal, c)control signal, when the control 
signal is high, period of output signal is one and half square length. In contrast situation, period is one square length 
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Figure 3.19: Two bits Multi modulus divider (4-7 multimodulus) 

 

Figure 3.20: a) inverse output of  4-7 multimodulus divider, b) output of 4-7 multimodulus divider c)clock of second 
dual modulus divider d)clock of 4-7 multimodulus divider 

 

Figure 3.21: Four bit programmable frequency divider 
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3.3.6 Frequency Division Control Circuits Sigma Delta Modulators 
 

Sigma delta modulators are being used to generate the control bits which determine the division 

ratio of dual modulus dividers, in frequency synthesis. To understand the effect of modulator, a 

system without a sigma delta modulator is examined.  The division ratio, N+(1/64) can be 

obtained by dividing N+1 for 1 clock cycles and N for 63 clock cycles. For this division, 

spurious noise spectral characteristic is represented at Figure 3.22. Two peaks at Figure 3.22 are 

caused by the error which occurs when the frequency is divided by both N and N+1. This error 

is also known as quantization error.  

 

Figure 3.22: Noise spectral characteristic of a system without sigma-delta modulator as seen the peaks are sharp 

On the other hand, if a sigma-delta modulator with 3 loops is used which will be examined later 

and for 128 cycles which we expect to see 2 cycles for N+1 divisor value, the division ratios 

will be like at Figure 3.23, total of the division ratios is represented at Figure 3.24. Final 

spurious noise spectral characteristic of the system after reshaping of the noise is represented at 

Figure 3.25.   

 

Figure 3.23: Instantaneous divisor ratio for sigma-delta modulator (Mash 1-1-1). Frequency division varies between 
+3 and -3. Frequency division is randomized and with this quantization noise is shifted to higher frequencies 
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From Figure 3.24, it can be seen that the total change at division ratio is 2 which can also be get 

by an accumulator. The main idea is using more than two division ratios to randomize the 

quantization which make the peaks at noise spectrum smaller and shift the quantization error to 

high frequencies by the loop filter of PLL. 

 

Figure 3.24: Total change in division ratio for second order sigma delta modulator. Frequency division changes but in 
long range period like 120 clock cycles, total division is the same as the system with first order SDM. 

 

Figure 3.25: Spurious noise spectral characteristic of a system with sigma-delta modulator. As increase of change at 
division value, spurs in a wider frequency range frequencies are generated, but the magnitude of spurs are decreased, 

thus spurs are randomized.  

 

3.3.6.1 First, Second and Higher Order Sigma-Delta Modulators 
 

In first order Ʃ∆-modulator, the input number is added to the number at register for every clock. 

If the adder and register have k bits (for example 5 bits), the accumulator gives a carry output 

for K times in 2k cycle (for the example above K=1, so the accumulator gives carry for one 

times in thirty two cycles), the circuit model is shown at Figure 3.26, the Simulink® model is 

shown at Figure 3.27 with z domain representation.  
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Figure 3.26: first order sigma-delta modulator 

According to the z domain model at Figure 3.27, [28],  

1 1( ) ( ) (1 ) ( )− −= + −Y z z X z z E z        ( 3.9) 

It is obvious that quantization error (E(z)) is suppressed at low frequencies with 1(1 )z−−  and 

shifted to high frequencies that can be filtered by the Loop filter of PLL.  The noise spectral 

density, N1(f), [28] 

1 2
1( ) ( )(1 ) ( ) |1 | 2 2 sin( )π π− −= − = − =j fT

rms� f E z z E f e e T fT
   ( 3.10) 

Noise power in the signal and Noise magnitudes are, [28] 
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This means each doubling the oversampling ratio the quantization noise decreases by 9dB, [28]. 

In Figure 3.28, the second order Σ∆modulator is shown. For this model transfer function is 

generated as [28], 

1 1 2( ) ( ) (1 ) ( )Y z z X z z E z− −= + −          ( 3.13) 

 

Figure 3.27: a) Simulink®  model of first order sigma-delta modulator b) z domain representation 

AccumulatorK

carry

D
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Where, 1 2(1 )−− z component makes transfer function sharper high pass filter than first order 

SDM. Noise spectral density and noise powers are, [28] 

 1 2 2 2 2
2( ) ( )(1 ) ( ) |1 | 4 2 sin ( )j fT

rms� f E z z E f e e T fTπ π− −= − = − =
  ( 3.14) 

2
5/2 5/ 2

0 (2 ) ( )
5 5rms rms

n e fT e OSR
π π −= =

      
( 3.15) 

For this topology if we double oversampling ratio, noise is lowered by 15dB, [28].  

 

Figure 3.28: second order sigma-delta modulator 

For n’th order Ʃ∆ modulators, which is at represented at Figure 3.29, the output at z domain, 

noise spectral density and noise magnitude are, [28] 

1 1( ) ( ) (1 ) ( )nY z z X z z E z− −= + −        ( 3.16) 

1 2( ) ( )(1 ) ( ) |1 | 2 | 2sin( ) |n j fT n n

n rms� f E z z E f e e T fTπ π− −= − = − =
  ( 3.17) 

( 1/2) 1*( 1/ 2)
0 (2 ) ( )

2 1 2 1rms rms

n n
n nn e fT e OSR

n n

π π+ − += =
+ +     ( 3.18) 

If noise spectral densities and noise magnitudes of first second and third order sigma delta 

modulators are compared, it can be said that  higher order Ʃ∆ modulators are more successful at 

shifting quantization noise to high frequencies and decreasing phase noise, [28]. 

 

 

Figure 3.29: high order sigma delta modulator 
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3.3.6.2  Ʃ∆ Modulator Topologies  

3.3.6.2.1 Mash 1-1-1 Modulator 
 

One of the most popular Ʃ∆ modulator topology is Mash 1-1-1. In this topology three first order 

modulators are cascade connected as can be seen from Figure 3.30. “.F(z)” is the control of Ʃ∆ 

modulator, which comes as input of n bit adder which gives out an n+1 bit output. According to 

the Figure 3.30, the most significant bit of the output can be counted as an carry out (C1 ), rest 

of the bits are counted as quantization error and these are two outputs of quantizer. Quantization 

error of first block is input of the register which produces the second input of the first adder that 

we discussed above. Second block takes the quantization error as its input. This block 

accumulates quantization error of first block while generating second carry out (C2). 

Quantization error of second block is accumulated and third carry out (C3) is generated at last 

block. While C3 is saved, the difference between present C3 and old value of C3 is added to C2, 

which can be assigned as CSub-total. While CSub-total is saved, the difference between present CSub-

total and previous CSub-total is added to C1, which will be the output of Ʃ∆ modulator. To 

summarize z domain transfer function is, [28] 

1 3
1 3( ) . ( ) (1 ) ( )qC z F z z E z−= + −

          
(3.19) 

1 bit quantization error power is 1/∆2 for quantization step size ∆=1. Frequency noise is, [28]  
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Where rf is sampling frequency which corresponds reference frequency of PLL, for third order 

Mash Ʃ∆ modulator.  The phase noise can be found in some arrangements as, [28] 
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Where, f is offset frequency and rf is sampling frequency.  

On the other hand for third order Mash Ʃ∆ modulator, the loop bandwidth is upper limited as, 
[28] 
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Where rf is sampling frequency of Ʃ∆ modulator, An is in-band phase noise.  In practice 

maximal loop bandwidth for a single-loop, multibit Ʃ∆ modulator should be smaller than 25% 

of the value calculated above [28].  
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For instance, if the in-band phase noise An is -100dBc/Hz, the above equation estimates the 

maximal loop bandwidth as 1.3217 MHz for a third order Ʃ∆ modulator with rf = 50MHz. In 

practice maximal loop bandwidth of rf <330 kHz should be chosen.  As stated before, loop 

bandwidth is set to 267 kHz for this design. 

 

Figure 3.30: Mash 1-1-1 Simulink®  Model 

However, the Mash 1-1-1 modulator has three bit ∆N output (which varies from -4 to +3). If we 

use fixed dividers and programmable dividers, the divisor ratio will have big variations. For 

instance: if the PLL system which has 50MHz reference clock, and programmable divider with 

a fixed divider which divides frequency by 4, proposes to 5GHz, the difference between 

division values from -4 to +3 corresponds to frequency range from -800MHz to 600MHz. This 

trend of PLL causes large frequency step at feedback input of phase detector which is much 

higher than acquisition range. Thus, stabilization cannot be achieved. 

 

3.3.6.2.2 Mash 1-1 Modulator:  

 

In this topology two first order modulators are cascade connected as can be seen at Figure 3.31 . 

This type of modulator has a quantization error shape as, [28] 

1 1 2( ) ( ) (1 ) ( )− −= + −Y z z X z z E z        ( 3.23) 
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Both quantization error and noise behaviors are worse than Mash 1-1-1 structure. However, it is 

easier to implement in Simulink® and does not degrade stability as Mash 1-1-1 because the 

output of Mash1-1 varies from -1 to +2. The outputs of Mash1-1 are at Figure 3.32 and Figure 

3.33.  

 

Figure 3.31: Mash 1-1 Simulink®  model 

 

Figure 3.32: Instantaneous divisor ratio for sigma-delta modulator(Mash 1-1) 

 

Figure 3.33: Total change in division ratio 

 



37 

 

 

3.3.7 Accumulator & Dual Modulus Divider 
 

Before start of complete system simulations, simulations of small combinations are done. In 

Figure 3.34 the combination of dualmodulus divider and accumulator is represented.  The 

output of combination in time domain is represented in Figure 3.35, in frequency domain is 

represented in Figure 3.36. The divider and accumulator are built in 8bits for this topology. 

From this combination, the divide value, N, is expected to be, [28]: 

8
256

constant
� = +           ( 3.24) 

 It is possible to calculate average divisor value at MATLAB, by using command lines at 

Appendix A2:  

Output of this code is : Fout =  8.4447e+006 Hz.  

 

Figure 3.34: combination of dualmodulus divider and accumulator 

 

Figure 3.35: Output of combination in time domain, division value changes from 8 to 9 consecutively  
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The constant value at Figure 3.34 is 128, so the expected divisor value is 8.5. This error comes 

because the simulation time is not common power of divider values. In general PLL settling 

period it is impossible to have enough time to divide perfect 8’s and perfect 9’s.  

 

Figure 3.36: Output of combination in frequency domain a 72MHz clock is divided by 8 and 9 consecutively 

 

3.3.8 System level simulation of PLL at Matlab 
 

Simulink®  block diagram is represented at Figure 3.37. At this figure, two divide-by-two 

circuits are used as divide-by-four circuit and 4 bit (16 to 31) programmable divider is attached 

to this block. Division ratio of the programmable divider is controlled by Ʃ∆ modulator (SDM), 

while using a data conversion system to convert integer output data of the SDM to binary input 

data of the programmable divider. Single tone frequency estimator block of Simulink® is used to 

examine the output of the system at frequency domain. 

 

Figure 3.37: Simulink®  model of Ʃ∆-Fractional N PLL 
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Final division ratio can be calculated as: 

1
( 2 16) *4

256
 = + + 
 

C
� C

           
(3.25) 

where constant C1 determines fractional division ratio, C2 corresponds division control input 

four bits frequency divider. 

From (3.26) output frequency can be calculated as: 

1
( 2 16) *4 *

256

  = + +  
  

out reference

C
F C F

         
(3.26) 

If C1 is set to zero, the system acts like integer N PLL. Reference clock frequency is set to 50 

MHz, and if we set C2 to 8, output frequency of PLL is expected to be 4.8GHz. Output of PLL 

at frequency domain is represented at Figure 3.38. According to this figure, the settling time of 

the system is 10µs, as expected from the step response of the system shown at Figure 3.8 and 

hand calculations. This figure is important because of showing stability of the system and 

settling behavior. If we zoom to output frequency after settling achieved is also can be seen 

from this figure, we can see that final frequency error magnitude is 1 kHz, which is sufficiently 

small. 

For another instance if C1 is set to 115, the system acts like fractional N PLL and the output 

frequency of PLL is expected to be 5.0898GHz. If first order sigma delta modulator is used, 

which is made up of a single accumulator, the output of the system is represented at Figure 3.39. 

In this figure, output frequency is settled to 5.09GHz with a frequency error which has around 

14 MHz magnitudes. On the other hand, 50MHz magnitude peaks are located. Settling time is 

around 10µS.  

For the same conditions if second order Ʃ∆ modulator is used, the output of the system is 

represented at Figure 3.40. According to Figure 3.40, output frequency of the system is settled 

to around 5.09GHz with a frequency error which has 25MHz magnitude. This value is 1.8 times 

of the system with first order sigma delta modulator. On the other hand settling time did not 

change.  

If third order sigma delta modulator is used, the output of the system is represented at Figure 

3.41. According to Figure 3.41 output frequency of the system is settled around 5.1GHz with a 

frequency error which has an error magnitude more than 100MHz. Thus, settling is not achieved 

properly. To conclude despite decrease of quantization error and randomization of division 

ratios, the total phase error (frequency error) is increased.  
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Figure 3.38: Output of System at frequency domain for integer N mode. Frequency error magnitude is less than 1KHz 

after 10µs.  

 

Figure 3.39: Output of the system with first order sigma delta modulator. Settling time is around 10µs, Frequency 
error magnitude is 14MHz.  
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Figure 3.40: Output of the system with Second order sigma delta modulator. Settling time is around 10µs, Frequency 
error magnitude is 14MHz 

 

Figure 3.41: Output of the system with Third order order sigma delta modulator. Error magnitude is around 100MHz, 
settling is not achieved 

Finally, if it was possible to design programmable divider which can work at 6GHz, frequency 

variations of output of the first order system after settling time would be at Figure 3.42. 

According to this figure, magnitude of these variations reduced to 0.8MHz. Operating frequency 

of programmable divider has highest significance because of its effect over frequency 

variations, accuracy and spectral purity.  
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Figure 3.42: Fully programmable Frequency divider output for first order sigma delta modulator 
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4. DESIG� OF LOOP COMPO�E�TS 

 

4.1 Charge Pump Circuit 
 

Ideal operating principle of the circuit is explained at section 3.3.2 via the simplified circuit 

which is given at Figure 3.14. The current sources at this figure is can be designed by MOS 

current mirrors. Using cascode technique at design increases output resistance which will be 

important to have stabile current despite varying control voltage of VCO. MOSFETs can also be 

used for the “U” and “D” switches which can be added to gates or sources or drains of current 

mirrors.  

The switch at source side would make VDS voltage varying which changes VGS of the current 

mirror. Varying VGS voltage makes current unstable. Thus, this option is not useful.  

On the other hand, the switches at gate side, which can be seen at, Figure 4.1, increases the 

settling time of current charge pump dramatically because of the delay which comes from the 

product of Ron resistance of the switch and CGS capacitance. The output of gate switched charge 

pump is shown at Figure 4.2. This figure shows that, settling time of up circuit is more than 5ns 

to generate 6µA charge pump current. Because of its large settling time, despite small output 

current, this topology is not also useful. 

The most popular circuits are drain switched circuits that have the least settling time and stabile 

output current. Basic drain switched charge pump circuit can be seen at Figure 4.3. According 

to this topology, when one of the switches is at cut off region, the drain of the transistor of 

current mirror at this switch’s side goes VDD or GND. After the switch is turned on, the drain 

voltage must rise or fall to the control voltage of VCO. That increases settling time and charge 

injection of charge pump. To solve this problem, a buffer can be added as Figure 4.4.  
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Figure 4.1: Gate switch based charge pump circuit 

 

Figure 4.2: Output of gate switched charge pump, Up current needs more than 5ns to settle to 6 µA Charge pump 

current  

 

Figure 4.3:Basic Drain swiched charge pump topology [1] 
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Figure 4.4: Basic current mirror circuit with buffer.[1] 

First improvement is increasing output resistances. To have high output resistances, the current 

mirrors can be cascoded.  To have high output swing, the bias circuits at [29] and [30] are used.   

Secondly, to have fastest settling behavior with low glitches, the switch transistors must be at 

the smallest size. After comparing the performance of three switches, (NMOS switch, PMOS 

switch and transmission gate) the best performance is PMOS switches for up currents and 

NMOS switches for down currents.  The simulation result window is at appendix B2. 

Thirdly, the reference current is highly dependent on power supply and temperature, which is 

shown at Figure 4.5 and Figure 4.6. To solve this problem, band gap reference circuit, which 

can be found at [31], is used for reference currents and these are copied as up and down 

currents. The band gap reference circuit is shown at Figure 4.7. 

 

Figure 4.5: Output current vs power supply (without band gap reference circuit), Output current is dependent from 
power supply.  
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Figure 4.6: Output current vs temperature(without band gap reference circuit), Output current is inversely 
proportional to temperature 

To obtain a faster charge pump, the capacitance at dummy node OutB (Figure 4.4) can be 

increased. Cp at this figure provides the charge that is needed to decrease the charge injection 

caused by parasitic capacitances at OutB node. The glitch on the output node of buffer is 

reduced by increasing this capacitance.  If we add the effect of this capacitance, charge pump 

gain is derived as [32]; 

0| (1 )
e

parasitics

t

e P

CdQ
Ip

dt C
≈ = −

        
( 4.1) 

Output current with respect to temperature is at Figure 4.8, output current with respect to power 

supply is at Figure 4.9. Without band gap reference circuit, the change of supply voltage from 

3Vto 3.6V results change in output current from 4.8uA to 8uA as can be seen from Figure 4.5.  

According to Table 3-1, two different charge-pump values are needed. These values are 

achieved by switching two resistors at band gap reference circuit. On the other hand, because of 

the increase of current from 6uA to 104uA and 270uA, the width of the transistors which are 

used for switching are increased, thus, glitches at output current are also increased as it can be 

seen from Figure 4.15. After these changes, final version of band gap reference circuit is shown 

at Figure 4.10.  

As shown at Figure 4.12 high output swing CMOS cascode current mirrors are used to decrease 

voltage headroom at output. Control voltage of VCO is connected to charge pump output, thus, 

this voltage is limited by output swing of the charge pump. According to Figure 4.12 and Figure 

4.13, output swing of the charge pump is between 0.3V to 3V. This swing is achieved by using 

techniques described at [29] and [30]. The effect of band gap reference circuit can be seen from 

Figure 4.8 and Figure 4.9. Output current changes less than 0.25% with respect to change of 

power supply from 3V to 3.6V with charge pump circuit (without charge pump circuit this ratio 
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was more than 67%). In addition, output current change with respect to the change at 

temperature is much more linear, and proportional to temperature.  

 

Figure 4.7: Band Gap reference Circuit 

The schematic of the operation amplifier, which can be seen at Figure 4.11, is shown at Figure 

4.14. At Design of this OPAMP (basically it is a miller OTA which is being used as OPAMP), 

rather than having high gain, low phase margin and low output resistance with high output 

swing is aimed. Although using buffer stages, such as common collector and common source 

topologies, at output of OPAMP can reduce output resistance, they are not used because of their 

limitation at output swing while relatively low supply voltage (3.3V) is being used. To decrease 

output resistance of this circuit, the current at output stage is selected sufficiently high and 

lengths of transistors are chosen at minimum to decrease ro of transistors.  At layout of input 

transistors, which is shown at Figure 4.16, common centroid technique is used to compensate 



48 

 

the effects of random defects at fabrication and achieve symmetry. Final area of the layout of 

OPAMP which is shown at is 36x44µm2. Finally transient currents of the charge pump (for Icp1) 

are shown at Figure 4.15. According to this figure, “up” and “down” currents match with an 

error less than 0.1 %. The transient currents for ICP2 are at appendix B2. 

 

Figure 4.8: Output current of Final circuit vs temperature 

 

Figure 4.9: Output Current of Final circuit vs Power supply 

The glitches at Figure 4.15 have both positive and negative values, to see the effect of these 

currents over control voltage of VCO, integration can be used. On the other hand, integration of 

the charge-pump currents, for the case that PLL is locked, is also important because it can cause 

long term jitter. These currents and integration is shown at Figure 4.18. According to this figure, 

this integration has values in the order of 10-21, thus, current mismatch for this charge pump is 

sufficiently small. 
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Q1
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Q6

Q7

Q8MN1
MN2 MN3

MP1 = 60µm/1.5µm, MP2 = 60µm/1.5µm,  MP3 = 21µm/0.35µm, MP4 = 21µm/1.5µm, 
MP5 = 60µm/1.5µm, MP6 = 60µm/1.5µm, MP7 = 60µm/1.5µm,  MP8 = 60µm/1.5µm, 
MN1 = 18µm/1.5µm, MN2 = 18µm/1.5µm, MN3 = 18µm/1.5µm
R1 = 49k Ω, R2 = 700 Ω, R3 = 5kΩ, R4 = 931.25 Ω, R5 = 406.25 Ω, 

Q1 = 0.8, Q2 = 0.8, Q3 = 0.8, Q4 = 1, Q5 = 0.8, Q6 = 3.2, Q7 = 1.6, Q8 = 0.8, 

 

Figure 4.10: Final Band gap reference Circuit and PTAT current source 

MP68=MP69=MP70=MP71=60µm/1.5µm, MP66=MP65=120µm/1.5µm, 
MP72=MP73=60µm/1.5µm,  MP67=80µm/0.35µm,  MP76=MP74=80µm/0.35µm
MN67=MN68=10µm/1.5µm, MN63=MN64=MN72=MN73=36µm/1.5µm, 
MN65=30µm/0.35, MN71=MN66=15µm/0.35µm  

Figure 4.11: Final Charge Pump Circuit, this circuit is connected with Figure 4.10, via bias and bias2 nodes 
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Figure 4.12: Charge pump up current vs output voltage. Output Current reduces form 104.7µA to 98.3 at 3V output 
Voltage 

 

Figure 4.13: Charge pump down current vs output voltage 

 

Figure 4.14: Schematic of Opamp, which is used at Charge pump 
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Figure 4.15: Transient charge pump currents: Up current is shown at south of the figure, Down current is shown at 
center of the figure and if the PLL locks, the noise current is shown at north of the figure. 

 

Figure 4.16: layout of the opamp used at chargepump 
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Figure 4.17: Layout of input transistors of Opamp 

 

Figure 4.18: Charge pump currents for the case both up and down signals are applied and The definite integrals of 
these currents for the simulation range 

 

Current Mismatch at Charge Pumps 

 

Usually there is a minor difference (around 0.1%) between I1 and I2 of the circuit at Figure 2.2, 

which causes fluctuations at output voltage although two input frequencies of PFD are same. A 

finite phase error occurs at lock condition because PLL reacts to compensate this charge 

difference. Thus, spurs at output frequency spectrum (at fout ±  fref) are generated as represented 

at Figure 4.19. ± fref comes,  because the fluctuations at control voltage are at reference 

frequency.  
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Figure 4.19: Spurs Caused by current mismatch 

To calculate the phase error, the ratio of currents can be taken as  

2

1

I
K

I
=

              
( 4.2) 

(Assuming I2>I1). If the phase detector represented at Figure 3.9 is used, during the Te period 

total charge at loop filter increases proportional to I1 and decreases proportional I2-I1, during 

reset delay. For the lock condition total charge difference must be zero as represented at Figure 

4.20. Thus, Te (in seconds) can be calculated as [1]: 

( 1)e RT K t= −
             

 ( 4.3) 

Where tR is the reset path delay. If symmetrical AND gate is used to have equal path delay, the 

amount of voltage ripple is given as [1]: 

1 ( 1)∆ = −C r
p

I
V K t

C
                    (4.4) 

Control voltage variation and phase error caused by this variation are directly related with K. 

This phase error can be reduced by using an advanced phase detector topology which is 

explained at 4.2.  

 

Figure 4.20: Current-mismatch problem in a charge-pump [1] 
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4.2 Design of Phase Frequency Detector  
 

To compensate the problems of current mismatch, the circuit at Figure 3.11 is improved as 

represented at Figure 4.21. According to this figure, Up (or Down) of Figure 3.11 and Down (or 

Up ) of Figure 3.11 are the inputs of the AND gate which generates  Up (or Down) of the circuit 

which is represented at Figure 4.21. With this improvement, time interval of both up and down 

signals are generated, is reduced to the AND gate delay time. In this design, AND gate is 

designed symmetrically. 

Figure 4.21: Modified phase-frequency detector 

For this circuit, Te, [1]: 

( 1)

( 1)

−
=

+e i

K
T t

K
               (4.5) 

The delay at reset path is assigned as ti. Fluctuation amplitude of control voltage is, [1]:  

1 ( 1)

( 1)

−
∆ =

+C i
p

I K
V t

C K    
            (4.6) 

In comparison with (4.4) magnitude of the spurs which is represented at Figure 4.19 and phase-

error are divided by, [1]: 

( 1)α = + r

i

t
K

t
                           (4.7) 

Despite a huge current mismatch, none of UP and DOWN signals takes logic one value and 

phase error is zero. Finally not to produce a dead zone for Te ≤ ti case and gate delay must be as 

small as an inverter delay. Improved phase frequency detector circuit is shown at Figure 4.22. 
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CORELIB library’s flip flops are used at these schematics.  To achieve equal path delay, 

transmission gates are used parallel with inverters.  

These phase frequency detectors are compared via transient simulations. Figure 4.23 shows 

output currents of PFD +charge pump block for the condition that reference frequency is higher 

than feedback frequency. 

 

Figure 4.22: Improved Phase frequency detector Schematic 

From this figure it can be seen that, first PFD has a 278 µA amplitude glitch at 1.47ns, when 

both up and down signals are applied to charge pump. For the improved version, no glitch 

occurs for this situation. In addition Figure 4.24 supports this idea which represents the contrast 

of condition above.   

 

Figure 4.23: Comparison of two Phase frequency detectors for the condition that reference clock leads feedback clock 
which causes up signals. 
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Figure 4.24: Comparison of two Phase frequency detectors for down signals. 

Finally, for the lock condition, glitches are generated by charge-pump for each change of state 

of clock signal which is represented at Figure 4.25. This figure also includes integration of these 

currents, which shows us decrease of current mismatch in the order of 104. 

 

Figure 4.25: Comparison of two Phase frequency detectors for locked condition. 

At integration of charge pump and PFD, XOR components from CORELIB are used to achieve 

equal path delay as represented at Figure 4.26. Layout of phase frequency detector is shown at 

appendix (AP 29). Finally the layout of integrated PFD and charge-pump is shown at appendix 

(AP 30) which has 150x212µm2 area.) 



57 

 

 

 

Figure 4.26: Charge Pump and PFD integration 

 

4.3  Frequency Dividers 
 

 4.3.1 Programmable Multimodulus Frequency divider 
 

Design of programmable multimodulus frequency divider (PMFD) is straight forward because 

of its relatively low operating frequency. The main operating principle is described at chapter 2. 

At design of this block the techniques at [35] have been used.  

Figure 4.27 shows schematic of three bits programmable counter which consists of logic 

components which are taken from CORELIB library to save area and design time, and dual 

modulus prescalers (DMP). DMP which is shown at Figure 4.27, has two division ratios, two 

and three. If control bit is logic 1, frequency divider divides frequency by 3, else division ratio 

is 2. From the schematic which can be seen from Figure 4.27, DMP is made up of logic 

components from CORELIB library of foundry and True Single Phase Clock (TSPC) based flip 

flops. If the division ratio is three, DMP has worst case because the signal has to pass from two 

gates and two flip flops. This case determines highest operating frequency of DMP and PMFD.  

TSPC technique uses only one clock signal without inversion to prevent clock skew problem. 

Operation at high frequencies can be achieved with this technique. Schematic of flip flop circuit 

is shown at Figure 4.28a, which consists nine transistors, in three stages. When the clock is low, 
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output of third state does not change. First stage acts like inverter while second stage is 

precharged. During the transition time that the value of the clock changes from low to high, 

seconds stage acts like inverter while writing the data at output of first stage to the output of 

second stage and third stage does not change its output value.  When the clock is high, output of 

first and second stage does not change and saves the previous value while third stage acts like 

inverter and changes the data at output node. Thus, data is written to output of first stage when 

the clock is low. During low to high transition time, data is written to the output of second stage. 

Finally data is written to the output of third stage when clock is high. Every stage inverts data 

when writing, so output of third stage is Q. 

Total capacitance seen from clk is around 20fF and from D is around 7fF. Figure 4.27 shows 

that, maximum load for dual modulus prescaler, which is driven by QB output of second flip-

flop, is total input capacitance of three NANDs from library (one NAND23 and two NAND24), 

and last inverter of flip flop which corresponds 72fF input capacitance. To drive this load, at 

least three inverters are needed for digital buffer which is shown at Figure 4.28b.  

 

Figure 4.27: Multimodulus  frequency divider made up of Dual modulus Frequency Dividers. 
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Because a fixed frequency divider which divides frequency by four is used before frequency 

divider, and maximum 6GHz is aimed for the design of PLL, DMP should operate at least 

1.5GHz. From Figure 4.29 it can be seen that dual modulus divider can operate till 2GHz. 

Mask layouts of these circuits can be found at appendix B3. 

 

Figure 4.28:a) Schematic of True single phase clock based flip flop b) digital buffer 

 

Figure 4.29: a) output of dual modulus divider for divide by 2 mode b) output of output of dual modulus divider for 
divide by 3 mode c) reference clock 

After some modifications to the circuit at Figure 4.28, smaller and faster version, which is 

shown at Figure 4.30, is also designed for higher frequency operations.   With this flip flop 

frequency division for both two and three are achieved at 3.7GH as shown at Figure 4.31.  

For operation of this architecture, full swing (0 to 3.3V) rectangular clock signals are needed. 

However as we will see at chapter 3.5, amplitude of voltage controlled oscillator is about 1V. 

On the other hand, inverters which are used as amplifier to generate full swing rectangular 

signal does not have enough gain with an inverter load. For test of inverters, test bench at Figure 
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4.32 is designed. In this test bench a 3GHz sinus is applied to the inverters to generate needed 

signal at OUT node. 

 

Figure 4.30: Schematic view of modified flip-flop 

 

Figure 4.31:a) Output of dual modulus divider for divide by 2 mode b) output of output of dual modulus divider for 
divide by 3 mode c) reference clock 
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Figure 4.32: Test bench to search design limit of inverters 

As seen from Figure 4.33, output of the circuit at Figure 4.32 is not enough to drive 

programmable divider, although six large inverter stages are placed between input and output. 

Thus, at a fixed frequency divider, which divides frequency by four, that is explained at next 

section, is needed before programmable divider.  

 

Figure 4.33: input and output of inverter stage. Output is not a square wave which is needed for programmable 
divider. 

 

4.3.2 Divide-by-four Circuit 
 

As inverter analyses show, static and dynamic design techniques are not useful for high 

frequency operation as high as 6GHz, for this technology. Thus, fixed frequency divider is 

designed via current mode logic techniques.  
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Figure 4.34 shows the schematic of the circuit. For this circuit, 0.5V amplitude sinusoidal signal 

is enough for CLK input. MP2 and MP3 are used as loads. When the clock is low, current flows 

at right hand side of the figure where cross coupled transistors are located. If Q (or QB) is low, 

which is connected to VB of Q3 (or Q4), current of Q3 (or Q4) is also low which causes a low 

voltage drop over loads to set QB (Or Q) high and current of Q4 (or Q3) is also high which sets 

Q (or QB) low.  Thus data is latched for this condition. On the other condition, when the clock 

is high the current flows from left hand side of the circuit. If D is high, current of Q1 is also 

high which sets QB low, and DB would be low thus Q is high. For this condition data is 

sampled and written.  

In design, W of MN15 is selected three times of MN9 for effective sampling. In addition, this 

geometry is important for current consumption while low current is needed for data storage. Q6 

and Q5 transistors are diode connected which are coupled with sampling block, to have a 

constant gain for a wide operation. These diodes are also extends effective sampling time. 

Another effect of usage of these diodes is decrease of temperature dependence. Finally, output 

of VCO is coupled by DC coupling capacitors and 1.2kΩ resistances are used for DC biasing of 

the CLK input of the circuit. The main reason is the varying DC voltage of VCO due to 

oscillation band, operation frequency controlled by VC and temperature. (An optimum design 

without coupling capacitors, which can compensate this variation, is done. However, final 

circuit without coupling capacitors is too sensitive for little geometry changes, thus, cannot be 

sent for fabrication.) 

Reasonable amplitude at output is needed because this latch will possibly drive another latch. 

Thus, input voltage specifications are also valid for output. The amplitude of the signal is 

limited by loads, VBE voltage of diodes and overdrive voltage of MN9 and MN15. 

This circuit is an improved version of the circuit which is proposed at [36].  First improvement 

is usage of HBT’s instead of MOS’s because of their high gm values same current levels. The 

other transistors remain MOS because technology does not provide a good substitute for 

PMOS’s. In addition, MN 15 and MN 9 provide higher output swing rather than HBTs. Second 

improvement is usage of diode connected PMOS’s as load rather than biased PMOS’s which are 

at triode region. This improvement provides a better temperature independency of the circuit. 

Schematic of fixed frequency divider, which is made up of these latches, is shown at Figure 

4.35. As seen from this figure, two latches form a master slave flip flop and two flip flops are 

connected as sequential counter which counts four. One of the Outputs of this circuit is buffered 

by six inverters to generate waveform needed by programmable divider. The other output is 

inverted and used as divided output of the final circuit.  
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As seen from Figure 4.36, input of frequency divider has 166ps period and period of output of 

frequency divider (before buffer) is 664ps, thus, frequency division is achieved.  Figure 4.37 

shows temperature variance and Band variance of Divider output. From this figure it is obvious 

that, DC level of the output increases with the increase of temperature. Total change is around 

104mV at final circuit, and before modifications and optimizations this value was around 

400mV which is closer to output amplitude that would make much more complicated to decide 

inverter thresholds (which also varies with temperature and supply voltage noise).  

 

Figure 4.34: Schematic of the Current mode latch 

As seen from Figure 4.35, output of frequency divider is buffered before programmable divider 

and the operation of inverter as amplifier is shown at Figure 4.38. As seen from Figure 4.38, 

first inverter increases amplitude of the wave from 586.2mV to 2.66V. Operation of buffer can 

be seen from Figure 4.39, that each inverter makes waveform sharper and full swing rectangular 

input signal need of Dynamic frequency divider is compensated.  

The Mask layout of these blocks can be found at appendix B3.  
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Figure 4.35: Fixed Frequency Divider Circuit (Divide-by-four-circuit). 

 

 

Figure 4.36: Output of fixed frequency divider has a period (664ps) which is four times of the input period (166ps). 
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Figure 4.37: Output of frequency divider changes according to the frequency bands of the VCO and temperature. 
Four graphics shows all possibilities for two switches and three waves at each graphics shows temperature changes at 
0 0C, 40 0C and 80 0C. According to the increase of temperature, DC value at output increases. The magnitude of the 

increase is 104.2mV. In addition DC value of the output is different for each frequency bands. 

 

Figure 4.38: Operation of Inverter as amplifier. The gain is 4.5 for 1.5GHz signal. 
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Figure 4.39: Operation of Buffer of Frequency divider. For each inverter stage, wave form becames sharper and 
amplitude increases 

 

4.4  Sigma Delta Modulator (SDM) 

 

In design of Sigma delta modulator block, full custom digital IC design techniques are used. In 

this block, standard cell library of foundry (CORELIB) has been used to save area and design 

time. Schematic of the block is represented at Figure 4.40, which is straight forward digital 

implementation of Figure 3.30. At output stage, a selection between output of first accumulator 

of third order SDM, which corresponds a first order SDM, and output of third order SDM is 

done via multiplexers. With this improvement the order of SDM has become selectable (or 

programmable).  



67 

 

 

 

Figure 4.40: Sigma delta modulator a) block diagram of sigma delta modulator, b) inside of the accumulator (* is 
used to mention 1 bit adder)  

 

In order to simulate this block an individual test bench is needed as seen at Figure 4.41. 

Randomization of SDM can be seen from instantaneous values. If we integrate output of sigma 

delta modulator, output must be identical to accumulators integrated output. Thus, two 

accumulators are connected to the output of these two blocks, and the results are compared. 

Finally, schematic simulation of accumulator is compared with Matlab® model. Output of SDM 

is shown at Figure 4.42. As seen at Figure 4.42, instant division ratio of SDM varies but total 

division ratio change catches accumulator output. Thus, randomization is achieved. As seen at 

Figure 4.42, schematic simulation of accumulator is identical with its Matlab® model.  
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Figure 4.41: Test bench of Sigma Delta modulator, output of sigma delta modulator and an accumulator is integrated. 
If the sigma delta modulator works properly, integration of two blocks are identical in long term.  

 

Figure 4.42: Total division value change of Sigma delta modulator and Accumulator. 
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Figure 4.43: Integrated (accumulated) Output of accumulator at Matlab 

 

4.5 VCO 
 

There are lots of options for VCO topology such as, Multivibrator oscillators [54], Ring 

oscillators [55], and LC resonator based oscillators [56]. In comparison with other two 

topologies LC oscillators provide highest spectral purity and lowest phase noise, which are 

significant for meeting requirements of communication standards. In LC oscillators, a feedback 

is needed to achieve Barkhausen’s criteria and provide permanence of oscillation. Feedback part 

can be provided by either a single amplifier with a tapped passive (L in Hartley oscillators, C in 

Collpitts oscillators) or two amplifiers (-Gm oscillators). The differential negative Gm topology 

is chosen because differential output is crucial for fixed frequency divider, as explained at 

chapter 4.3.2. 

A Non-complementary topology is selected rather than complementary cross coupled topology, 

as seen from Figure 4.44, to increase tuning range. In addition, noise sources are decreased 

because lower mobility and less hot carrier effect of PMOS transistors reduce 1/f noise rather 

than NMOS transistors. Moreover, power supply noise is reduced because of PMOS transistor 

based current sources [57].   

Figure 4.44 shows schematic version of VCO of PLL which is modified from [ 36]. The design 

is explained in detail at [37] and [38].   

Two different geometries for MOS switches of inductances (VL2 and VL3 switches) are 

proposed as modification in this section.  First idea (LARGE switch) is to decrease small signal 

output resistance (ro) of MOS’s, such that, current flows from switches rather than inductance 
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when switch is on. This can be achieved with ultra large W and minimum L values for MOS 

[41-43]. Second and novel idea (SQUARE switch) is to use large square (w=L) NMOS as 

geometry. With use of such geometries, the parasitic capacitance seen from drain of MOS to 

ground is too large when the switch is on, and too small when the switch is off.  Parasitic 

capacitances and small signal resistance of the NMOS are shown at Figure 4.45. Some of these 

capacitances are not physically related, such as CDS and CGB, which are generated by Spectre® 

and used at simulations. 

 

Figure 4.44: Schematic of VCO circuit. 

 

Figure 4.45: Parasitic passives of Transistor 
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VL2 and VL3 switch transistors are operating at triode region, thus, there is a small signal 

resistance, r=1/gds, occurs when the switches are on. VDS value for these transistors is very 

small so velocity saturation does not occur and square low is valid. According to these 

assumptions 

 
1 1 1

( )
DS

DDS
n OX GS t

DS

r
di Wg

C V V
Ldv

µ
= = =

−

         

( 4.8) 

Vbias is set 1.9V, for “LARGE switch” W=2500µ, and L=0.35µ and for this technology (AMS® 

035 BiCMOS) effective mobility is 370*108 µm2/Vs and COX=4.86fF/ µm2 (and VT is 

calculated as 929mV). With these values 

8 15

1 1
1.653

2500
( ) 370*10 *4.86*10 * (3.3 1.9 0.930)

0.35

DS

n OX GS t

r
W

C V V
L

µ −
= = = Ω

− − −

   

( 4.9) 

From Appendix C2, rDS is calculated via Spectre
® as 1/428.3m=2.3348Ω           

Magnitude of impedance of inductance for 5G is  

DS| ( ) | | | 2* *5 *1.040 32.6726>>rω ω π= = =Z j j L j G n
      

( 4.10) 

Thus, signal chooses to flow over NMOS.  

Small signal model of LC tank of the circuit is represented at Figure 4.46. For this tank, CSwitch 

is total capacitance seen from drain of VL2switch (or VL3switch of Figure 4.44).  CFixed is total 

capacitance added by switches, CVar is the capacitance of varactor which is controlled by Vtune 

and CParasitics is total parasitic capacitance of: Spiral; CGD of M3 and M4; CGS+CDB+CDS of M3 

and M4; capacitance seen from bases of Q1 and Q2. r=1/gds. Gate of VL2switch and 

VL3switch are DC biased, thus,  

switch DS SB GSC C C C= + +
          

( 4.11) 

If SQUARE switch is used (W=130µ, L=130 µ) and the switch is on, total capacitance and 

magnitude of total inductance can be calculated from the values at appendix C2 as: 

31.97 7.12 43.38 82.47pFswitchC pF pF pF= + + =  

1 1 1
| ( ) | | | | | 0.3860

2 * * 5 * 82.47
Z

j C j C j G pω ω π
= = =
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Which is much more smaller than magnitude of impedance of inductance, thus, signal choses 

this path. However small signal resistance, r=1/78.12µΩ=12.8KΩ, comes parallel which must 

be neglected. 

In addition, off  capacitance of the switches must be added to CParasitics. Off capacintaces of the 

switches can be calculated from appendix C3 and C4 as: 

27 27
_ arg

_

702.8 * 10 288.5 *10 390 390

49.36 813.8 21.07 21.97

Off L eSwitch

Off SquareSwitch

C fF fF

C yF aF fF fF

− −= + + =

= + + =
    

( 4.12)

 

 On the other hand oscillation frequency of the circuit can be roughly calculated as : 

Var

1

2 * ( )
osc

Total Fixed Parasitics

f
L C C Cπ

=
+ +

     

( 4.13) 

Where LTotal is total inductance value for Z1, which is: L1, if switch is on; L1+L2 if the switch is 

off.  As seen from (4.12) and (4.13), In terms of frequency reduction, which is caused by off 

capacitance values of the switches, performance of SQUARE switch is much better than 

LARGE switch.  On the other hand, width of the LARGE switch is at the limit in the light of 

“off capacitance”. 

 

Figure 4.46: LC tank of the circuit. 
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Furthermore Quality factor of L1 is [40]: 

1
L

S

L
Q

R

ω
=

          

( 4.14) 

Where, RS is serial parasitic resistance of inductance Quality factor of this inductance for this 

technology is 11.8 at 5GHz [38] so Rs (serial parasitic resistance) of inductance is 2.7689 Ω.  

Quality factor of the tank can be calculated as [40]: 

1 1 1

TANK L CQ Q Q
= +

         

( 4.15) 

For this application, QL<<QC, thus, QTANK≈QL.  

For LARGE switch topology, small signal output resistance of the switch, which is calculated as 

2.3348Ω at Cadence®, will be serial to RS, if the switch is on.  If we add this resistance to RS, 

final quality factor will be 

1 1.040 * 5 * 2 *
6.4017

(2.7689 +2.3348)
L

S

L n G
Q

R

ω π
= = =  

Parallel parasitic resistance for an inductance, which must be cancelled with gm of “-Gm” 

circuit, can be roughly calculated as,  

2 2
2 21

6.4017 * 5.1037=209.1586P L S
S

L
R Q R

R

ω
≈ = =

    

( 4.16) 

At negative Gm stage, in order to guarantee oscillation, each transistor must have 

transconductance, gm = k/RP , where k is ~ 2-4 [39]. Thus, gm of –Gm circuit must be at least 

4
19.1

209.1586P

k
Gm mS

R
= = =  

For SQUARE switch topology, this calculation is more complicated. Z1 impendence of Figure 

4.46 is shown at Figure 4.47. 
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Figure 4.47: Detailed Z1 impedence of Figure 4.46 including parasitic resistance of inductances. 

In figure 4.47, RSQ is high enough to be neglected (it has been simulated at Cadence® as 
12.8KΩ) If we calculate Y for this figure: 

1
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1 1 1 1
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( 4.17) 

If we replace s with jω, 

2

3 2 2 2

2

2 2 2 2

( ) 1 1 1 1

( ) 1 1 ( ) (2 1 1 ) ( )( 1 2 1) 2

1 1 1 1

( )( 1 2 1 1 1 ) 2 (2 1 1 )

S

S S S

S

S S S

j C L j C R
Y

j C L j L C R j C R L R

j C R C L

j C R L C L R L C R

ω ω

ω ω ω

ω ω

ω ω ω

 + +
=  

 + + + + 

 + −
=  

+ − + −  

 

( 4.18) 

If we make replacements as, 

2 2 2

2

2

( 1 2 1 1 1 )

2 (2 1 1 )

1

1 1 1

S

S S

S

A C R L C L

B R L C R

C C R

D C L

ω

ω

ω

= + −

= −

=

= −

 

( 4.19) 

After these rearrangements final admittance can be simplified as; 
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( )
C CB CB

j A B D D
j C D CA A AY
j A B j A B A j A B

ωω
ω ω ω

+ + − − +
= = = + + + + 
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Y

A BA
j

CB CB
D D

A A

ω
= +

+
− −

          ( 4.20) 

This admittance can be re-modeled as Figure 4.49.  

A

C

A

CB
D

A
−

B

CB
D

A
−

 

Figure 4.48: Simplified and re-arranged model of Figure 4.48 

Parallel and serial inductances can be merged as Figure 4.50. For resonate frequency, which is 

around 5GHz and calculated via 4.13, 4.16 is valid. Thus figure 4.49 can be simplified as Figure 

4.50.  

1

1 2

1 1
P

P P

R
R R

−
 

≈ + 
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A
L

CB
D

A

=
−

 

Figure 4.49: After arrangements and simplifications final model of Z1 

If we calculate these values for 5GHz (m file for calculations can be found at appendix):  

ω

−

=

 
≈ + = Ω 

 

1

2 2
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S
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Thus, inductance value does not change significantly and lower core current is needed for 

smaller Gm. In schematic simulations, the circuit with LARGE switch needs 2.708mA to 

oscillate, and the circuit with SQUARE switch needs 1.539mA to oscillate, while at [37], 

2.4mA is needed.  

Oscillation amplitude is also related with Quality factor and core current (tail current) as 

0

1

2
TANK CORE LV I LQω=

           
( 4.21) 

It is obvious that, the circuit with SQUARE switch oscillates with higher amplitude than the 

circuit with LARGE switch, for the same core current. 

To conclude, in terms of, quality factor of tank, oscillation amplitude, core current, 

transconductance of –Gm circuit and off capacitance, SQUARE switch has better performance 

than LARGE switch. In addition, for applications at higher frequencies, Performance of square 

methodology increases.  On the other hand it has lower switching speed with respect to LARGE 

switch. Figure 4.47, shows switching behavior of SQUARE switch in time domain. There is a 

buffer between inputs of two switches. At 100ns, the gate voltage of switch1 changes from zero 

to vdd (3.3). Gate voltage of switch2 has 5.5ns delay. At 110ns, oscillation frequency changes 

from 3.892GHz to 4.86GHz because two inductances are active for one side, and one 

inductance is active for the other side. At 117ns two inductance switches are on state and 

oscillation period is 174.26ps. 

Modifications are not limited with switch of the inductance, width of some metal connections at 

layout and contact numbers of components are also increased because they would not carry the 

current flow over them. In addition, a guard ring is also added to surroundings of core of the 

VCO to add a Faraday cage effect. With these modifications at layout, a switched capacitance 

(467.5fF) is also removed from the circuit analyzed at [38], because at post layout simulations, 

expected bands can be covered with two switched capacitances. Furthermore, according to [41] 

and [43] W/L ratio of the switch of C2 is increased from 50/10 to 100/5, because for larger 

capacitance switch must also be larger [41]. Moreover, in capacitance switch layouts, one 

fingered transistors are selected for transistors. As number of finger increases, contact 

resistances and metal resistances at drain and source increases which are series with capacitance 

as represented at Figure 4.44, which could degrade quality factor of capacitance. With this 

modification, gate resistance and gate capacitance increase but that will degrade band switching 

speed of VCO (which would increase settling time of PLL) which can be neglected if it is 

compared to settling time of PLL.  
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Figure 4.50:a) Switching behavior of circuit with SQUARE switch b) Zoom to selected area 

Aimed Frequency bands are listed at Table 4-1. After post layout simulations achieved 

frequency bands with switches are at Table 4-2 for SQUARE switch and Table 4-3 for LARGE 

switch. These tables show us all aimed frequency bands except two WLAN bands 5.5-5.7 and 

5.74-5.825GHz are achieved with one switch or two switches combinations. For example, 2.4-

2.5 GHz WLAN band can be covered, if C2 switch is on, C1 is off and Inductor switch is off. If 

we compare these tables, increase at total capacitance, due to off capacitance of switch, shifted 

operating frequency and decreased quality factor of Capacitance. Reduction at quality factor of 

inductance affected phase noise dramatically and much more core current is needed. Oscillator 

can also be used for two bands mentioned above, which could not be achieved because of large 

parasitic capacitances come from layout, in a low IF based transceiver architectures (For other 

bands, applications can be found for oscillator both low IF and zero IF transceiver 

architectures). 
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Table 4-1: Aimed Frequency bands 

Communication type Operating Frequencies (GHz) 

Wimax Canada 2.3-2.37 2.5-2.6 2.59-2.69 3.47-3.65 5.72-5.85 

Brazil 2.5-2.69 3.4-3.6 5.72-5.85 

Egypt 3.4-3.6 5.72-5.85 

Finland 3.41-3.5 3.5-3.59 

Singapore 2.3-2.35 2.51-2.7 5.72-5.85 

WLA� 802.11b/g/draft-n/y 2.41-2.49 3.65-3.69 

5 GHz (802.11a/h/j/draft-n 

United States 5.18-5.32 5.5-5.825 

Europe 5.18-5.7 

Japan 4.92-4.98 4.91-5.06 5.18-5.32 5.5-5.7 

Singapore 5.18-5.22 5.74-5.83 

China 5.74-5.83 

Israel 5.17-5.32 

Korea 5.17-5.32 5.5-5.64 5.74-5.83 

Turkey 5.17-5.32 5.74-5.83 

 

One sample of the simulation result is located at Figure 4.49. In this figure frequency vs tuning 

voltage, phase noise vs tuning voltage and df/dV plot which shows linearity of the VCO are also 

located. As seen from Figure 4.49(c), gain of VCO cannot be represented with a constant K 

value. The output frequency with respect to the control voltage (and its derivative) is directly 

related to the capacitance change of library varactor witch is represented at Figure 4.51. It is 

obvious that Figure 4.49(c) is identical with Figure 4.51. This non-linearity of VCO, which 

comes from technology, brings additional poles to loop which degrades stability. On the other 

hand, Figure 4.50 is another sample of the simulation at Figure 4.49, for the condition that all 

the switches are on position. Additionally, for this condition, range of frequency is smaller than 

the condition at Figure 4.49. Because, (not the amount) but the percentage of the capacitance 

change is decreased with insertion of additional capacitance.  Thence, VCO gain is also 

decreased. Thus, it can be said that VCO gain is different for all frequency bands. For this 

reason, second order loop filter is used at PLL.  

It is expected that phase noise must increase with the decrease of frequency. Figure 4.50 and 

Figure 4.49 show us that, phase noise is also non linear and quality factor of varactor, which is 

represented at Figure 4.52, is most important reason of this non lineariyu. Simulation Results for 

all bands can be found at appendix D.  

Definition of Figure of merit is [49] 



79 

 

{ } 020log( ) 10log( )
1

DC
offset

offset

f P
FOM L f

f mW
= − +

     

( 4.22) 

Phase noise at offset frequency (foffset) from carrier frequency (f0) is denoted by L {foffset}.  VCO 

power consumption is denoted by PDC, in mW. In 4.412 GHz, FOM is calculated for SQUARE 

switch as,  

4412 5.28
117.4 20log( ) 10log( ) 182.664 /

1 1

M mW
FOM dBc Hz

M mW
= − − + = −

 

At this calculation, power consumption of the core of the VCO is considered. Second and third 

harmonic powers at output are also important which is shown at Figure 4.53. From this figure it 

can be seen that Second harmonic and third harmonics are suppressed 20dBm and 30dBm.  

Power dissipation is another important parameter for this circuit. The most power hungry of the 

circuit is Common emitter buffer which needs 9mA to operate. Minimum Core current 

requirement depends on operating band and operating frequency which changes from 1.7mA to 

10.6 mA. Thus minimum power consumption is 35mW and maximum is 69.3mW.  

Table 4-3, shows performance of designed with SQUARE switch VCO comparison with other 

published papers. This design has reasonable power consumption, average phase noise and good 

Figure of merit with respect to other designs. Because of operating technology, power 

consumption is below average. Phase noise performance is above average. This design is 

remarkable because it can operate eight different frequency bands. 
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Table 4-2:Post layout Simulations For SQUARE switch 

 Band1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

VswitchC2  (V) 0 3.3 0 3.3 0 3.3 0 3.3 

VswitchC1  (V) 0 0 3.3 3.3 0 0 3.3 3.3 

Vswitch_ind   (V) 3.3 3.3 3.3 3.3 0 0 0 0 

Vtune (V) 0-3.3 0-3.3 0-3.3 0-3.3 0-3.3 0- 3.3 0-3.3 0-3.3 

Tuning Range 

(GHz) 

(PostLayout) 

5.321-

4.492 

3.379-

3.727 

3.7-4.2 3.352-

3.101 

3.564-

2.958 

2.29-

2.54 

2.515-

2.843 

2.107-

2.298 

Phase �oise 

(dBc/Hz) 

 at 1MHz offset 

(-117.4, 

-112.4) 

(-120, 

-116) 

(-116.9, 

-109.6) 

(-123.8, 

-122.5) 

(-111.2,  

-114.2) 

(-120.1, 

-117.9) 

(-120.7,  

-119) 

(-122,  

-120) 

Ivcore (mA) 

(RC extraction) 

3.182 6.347 

 

4.269 10.6 2.15 4.269 3.182 

 

6.65 

Ivcore (mA) 

(C extraction) 

1.706 4.269 3.182 5.876 1.706 3.182 2.151 

 

4.866 

 

 

Table 4-3:Post layout Simulations For LARGE switch 

 Band1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

VswitchC2  (V) 0 3.3 0 3.3 0 3.3 0 3.3 

VswitchC1  (V) 0 0 3.3 3.3 0 0 3.3 3.3 

Vswitch_ind   (V) 3.3 3.3 3.3 3.3 0 0 0 0 

Vtune (V) 0-3.3 0-3.3 0-2.1 0-1.75 0-3.3 0- 2 0-2.1 0-1.8 

Tuning Range 

GHz 

(Post Layout) 

5.2-

4.32 

3.4-

3.77 

4.2-3.9 3.3-

3.41 

2.6-

2.91 

2.17-2.35 2.43-

2.58 

2.09-

2.16 

Phase �oise 

(dBc/Hz) 

 at 1MHz offset 

(-115, 

-113.5) 

(-120, 

-118) 

(-120, 

-109.6) 

(-123.8, 

-122.5) 

(-121,  

-123.5) 

(-125, 

-125.5) 

(-122,  

-123) 

(-126.5, 

-126) 

Ivcore (mA) 2.7mA  8.9mA 12.2mA  11mA 8.8mA 12mA 
 

Table 4-4: Performance of published VCO papers in the literature 

 

 

Ref. 

 

Technology 

(µm)/ 

Results 

 

Oscillating 

frequency 

(GHz) 

 

Phase 

�oise 

(dBc/Hz) 

 

Power 

(mW) 

foffset(MH

z)/f0(GHz

) 

 

FOM 

     

Area 

(mm
2
) 

 
[49] 

0.13 SOI 

Measurement 

Results 

3.065-5.612 -114.6 1V*2mA 1/3.065 -185.8 0.299 

 -120.8 1V*2mA 1/5.612 -186.6 - 

 
[46] 

0.35 SiGe 

BiCMOS 

Measurement 

Results 

2.67-4.27 

 

-111 

 

4V*5.8

mA 

 

1/4.37 

 

 0.657 

 
[48] 

0.18 CMOS 

Measurement 

2.15-2.75 -121.45 3.88V* 

1.8mA 

1/2.4 -180.2 - 
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Results 4.75-4.99 -118.49 3.1V* 

1.8mA 

1/4.8 -184.6 - 

 
 [47] 

0.35 BiCMOS 

Measurement  

3.3-5.3 -113 2.5V* 

14,6mA 

0.6/4.4 -174.7 1.512 

 
 [51] 

0.25 CMOS 

Measurement 

Results 

3.28-4.11 -117 2.5V* 

3mA 

1/4 -180.2 1 

 
 [52] 

0.18 CMOS 

Measurement 

Results 

2.78-3.78 -126.5 1.8V* 

5.7mA 

1/2.83 -185.4 0.806 

 -122.7 1.8V* 

4.9mA 

1/3.77 -184.8 - 

[37] 0.35 SiGe 

BiCMOS 

Post-Layout 

Simulation 

Results 

(C extraction) 

2.27-2.51 -122.5 3.3V* 

6.33mA 

1/2.51 -177.31 1.477 

2.48-2.78 -121.2 3.3V* 

5.51mA 

1/2.78 -178.38 - 

3.22-3.53 -121 3.3V* 

4.38mA 

1/3.53 -180.45 - 

3.48-3.91 -119.55 3.3V* 

3.25mA 

1/3.91 -181.16 - 

4.528-5.7 -110.35 3.3V* 

2,4mA 

1/5.7 -176.48 - 

This 

work 

Square  

Switch  

0.35 SiGe 

BiCMOS 

Post-Layout 

Simulation 

Results 

RC extraction 

2.107-2.298 -122.2 3.3* 

6.65mW 

1/2.292 -175.99  

 

1.477 

 
2.29-2.54 -120 3.3* 

4.27mW 

1/2.54 -176.6 

2.515-2.843 -120.7 3.3* 

3.18mW 

1/2.515 -178.5 

2.958-3.564 -114.2 3.3* 

2.15mW 

1/3.564 -176.73 

3.352-3.101 -123.7 3.3* 

10.6mW 

1/3.352 -178.77 

3.379-3.727 -120 3.3* 

6.35mW 

1/3.727 -178.2 

3.7-4.2 -116.4 3.3* 

4.27mW 

1/4.2 -177.37 

5.321-4.492 -117.4  

 

3.3* 

3.18mW 

1/4.492 182.95 

This 

work 

Square  

Switch  

0.35 SiGe 

BiCMOS 

Post-Layout 

Simulation 

Results 

C extraction 

2.107-2.298 -122.2 3.3* 

4.87mW 

1/2.292 -177.34 1.477 

 

2.29-2.54 -120 3.3* 

3.18mW 

1/2.54 -177.89 

2.515-2.843 -120.7 3.3* 

2.15mW 

1/2.515 -180.20 

2.958-3.564 -114.2 3.3* 

1.7mW 

1/3.564 -177. 75 

3.352-3.101 -123.7 3.3* 

5.88mW 

1/3.352 -181.32 

3.379-3.727 -120 3.3* 

4.27mW 

1/3.727 -179.93 

3.7-4.2 -116.4 3.3* 

3.18mW 

1/4.2 -178.65 

5.321-4.492 -117.4  

 

3.3* 

1.7mW 

1/4.492 -182.95 
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Figure 4.51: a) Phase Noise vs Vtune, b) Frequency vs Vtune c)dFrequency/dVtune for 5GHz Band 
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Figure 4.52:  Frequency vs Vtune Behavior (left) Phase noise vs Vtune (middle) Linearity vs Vtune Behavior for 
SQUARE switch based circuit when all switches are on position. 
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Figure 4.53: capacitance value of library varactor [37] 

 

Figure 4.54: Quality factor of library varactor [37] 
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Figure 4.55: First Harmonic Second Harmonic Third Harmonic Graphics of VCO that operates 5GHz Band 
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5. I�TEGRATIO� OF THE BLOCKS AT SYSTEM LEVEL 
 

In this chapter the problems encountered at system level design are discussed. System level and 

simulation results are given in detail. 

First of all, as stated at Chapter 4.3.5, inductor switch reduces quality factor of inductance and 

makes design more complex, thus, before sending circuit to fabricate, inductor switches of VCO 

has been removed. Thus, proposed operating bands of PLL is reduced to four bands of Table 

4-2.  

Secondly, if a small C2 is selected in low pass filter, such as 500fF, a signal which is at double 

of the operating frequency of VCO can be seen at control voltage of varactor as seen at Figure 

5.1. This signal has 121mV amplitude, which corresponds to 121MHz frequency error for a 

1GHz/V, VCO gain. Thus, maximum available capacitance should be used as C2.  

 

Figure 5.1: Noise at 11GHz at control voltage which is connected to varactor, for 5GHz band of VCO, if 500fF C2 

capacitance is used at loop filter.  



87 

 

If C2 capacitance of loop filter is set to 48pF, noise voltage amplitude reduces to 2.298mV as 

seen at Figure 5.2. Attenuation increases with higher capacitances. However, there is an upper 

limit to choose this capacitance. As stated at chapter 2, if C1/C2 is 8, phase margin is 530 and if 

C1/C2 is 16, phase margin is 620. Thus, at least 8*C2 capacitance is needed to placed to form 

zero of the loop filter. To save area C1=48pF, C2= 384pF loop filter capacitances are selected at 

loop filter, while phase margin is set to 530.  

 

Figure 5.2:Noise at 11GHz at control voltage which is connected to varactor, for 5GHz band of VCO, if 48pF C2 

capacitance is used at loop filter. 

Furthermore, as stated at Chapter 4.3.2, fixed frequency divider needs a 0.5V amplitude signal 

as input, thus core current of VCO is increased to compensate this need.  

Schematic of integrated Block diagram is at Figure 5.3, at this schematic, for simplicity, pads of 

the circuit and digital buffers to drive parasitic capacitances of layout are not shown. 

To make measurement possible with oscilloscopes, output frequency of the VCO is divided by 

16 and assigned as another output of circuit.  

Settling behavior of PLL for integer N mode at band 1 is shown at Figure 5.4. This figure shows 

that, settling time is around 10µs. The result matches with Matlab® simulations and hand 

calculations. However in schematic simulations, an initial voltage is set to control voltage of 

VCO thus no Pull in time is needed.  The difference comes from nonlinear behavior of VCO is 

hided with this simulation method.  On the other hand, after settling is achieved, 2mV peak to 

peak noise which comes from VCO itself can be seen at control voltage. In addition, 1 mV noise 

peaks, which come from charge pump current mismatches, can be observed. The period of these 

peaks is 20ns, which is equal to the reference clock period. 
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These voltage fluctuations and phase noise VCO causes jitter, which can be calculated with eye 

diagram after transient analyze. Figure 5.5 shows the eye diagram which has been obtained by 

plot of sequential periods of output voltage for 1µs duration after settling achieved.  This 

simulation shows us, minimum peak to peak jitter that can be obtained from this PLL is 44.56fs.  

Figure 5.6 shows the settling behavior of the PLL for first order sigma delta modulator mode at 

band 1. According to this figure, voltage fluctuations at control voltage of VCO have increased 

from 3mV to 5mV.  Settling time is similar to integer N mode and, small fluctuations settles 

after 10µs. As expected, at fractional N mode, total noise has been increased. Figure 5.7 shows 

the eye diagram of this system. Peak to peak jitter is calculated as 6.67ps.  

Simulation results for all bands can be found at appendix. Summary has been given at Table 

5-1.  

Table 5-1: System level Simulation results for PLL 

Mode Peak to peak Jitter Fluctuation Amplitude 
Integer N 44.45fs 3mV 
First order sigma Delta Modulator 6.67ps 5mV 
First order sigma Delta Modulator 7.318ps 8mV 
First order sigma Delta Modulator 22.24ps 21.8mV 
First order sigma Delta Modulator 13.835ps 7mV 
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Figure 5.3: Integrated Block diagram of the system. 
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Figure 5.4: Settling behavior of PLL for integer N type at Band 1, 

 

 

Figure 5.5: Eye diagram of PLL for integer N mode at Band 1, peak to peak jitter is around 44.56fs 
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5mV

Settling ≈ 10μs

 

Figure 5.6: Settling behavior of PLL for First order sigma delta modulator mode, at Band 1, voltage fluctuation is 
around 5mV, All fluctuations settle in 10 µs 

 

 

Figure 5.7: Eye diagram of PLL for first order sigma delta modulator mode. Peak to peak Jitter is 6.67113ps 
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6. MEASUREME�T RESULTS & POST MEASUREME�T A�ALYZES  
 

Boards at Figure 6.1 have been designed with Eagle 4.15 program, to measure VCO’s and 

PLL’s. Measurement station is shown at Figure 6.2, Figure 6.3 and Figure 6.4. , 

 

Figure 6.1: Boards for measurement 

 

Figure 6.2: Board is connected to power supplies via 40 pins IDE cable. All of the pins are used during measurements 
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Measurements are started with VCO. In three of eight bands, band 5 (2,747-3,184GHz) band 6 

(2.48-2.78GHz) and band7 (2,747-3,184GHz), oscillation is achieved for SQUARE switch 

method. In one of eight bands, band 1 (5,36GHz), VCO with LARGE switch oscillates. One 

sample of measurement from each band can be found at Figure 6.5 to Figure 6.8.  

 

Figure 6.3: measurement station 

 

Figure 6.4: Fabricated chip 

From the summary of measurements which is located at Table 6-1, it can be seen that, core 

current requirement is more than expected from simulation results. The reason of this handicap 

is mutual coupling, which is explained in detail at post measurement analyzes part of this 

chapter.   

In order to compensate core current requirement, supply voltage of oscillator can be increased to 

4V. This increase will not break PMOS of –Gm circuit and oscillation can be obtained. If we 
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return to Figure 4.45, Drains of PMOSs are connected to 1.9V and Sources are connected to 

drain of current mirror. Source voltage of PMOSs can be maximum VDD-Vov. Thus, VCE 

voltages of PMOSs will not exceed break down limits. However, output buffer is broken and 

oscillation amplitude is reduced. It can be seen that, measured oscillation amplitude is very 

small.  This problem is caused by break down of output buffers (At band5 supply voltage is 

3.3V, but the output of chip is already broken down when Figure 6.5 is taken). After break 

down of output buffer, signal has found a pathway made up of capacitances to output.  

Due to the increase of core current, junction capacitances of MOS transistors are also increased, 

which has shifted operating frequency down.  In addition, because of mutual coupling, the 

inductance values are also increased and operating frequency is shifted down.  Due to large core 

current, measured phase noise is better than post layout simulations. 

 

Figure 6.5: Measurement Results of Phase Noise For band 5 (SQUARE switch) 

 

Figure 6.6: Measurement Results of Phase Noise For band 7 (SQUARE switch) 
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Figure 6.7: Measurement Results of Phase Noise For band 6 (SQUARE switch) 

 

Figure 6.8: Measurement Results of Phase Noise For band 6 (SQUARE switch) 

Table 6-1: Measurement Results for VCO 

 Band 

6(SQUARE 

switch) 

Band 

7(SQUARE 

switch) 

Bant5(SQUARE 

switch) 

Bant1(LARGE 

switch) 

VswitchC2  (V) 3.3 0 0 0 

VswitchC1  (V) 0 3.3 0 0 

V switch_ind (V) 0 0 0 3.3 

Vtune (V) 0- 3.3 0-3.3 0-3.3 0 

Frequency range 

(GHz) 

(2.48-2.78) (2,6255-
2,98983) 

(2,747-3,184) 5,36 

Phase noise Range 

(dBc/Hz) 

(-115.1, 
 -125.4) 

(-115.0, 
 -123.87 

(-113.28,  
– 124.57) 

-116,78 

Vdd  (V) 4 3.5 3.5 3.3 

ICore (mA) 19 12 6 4 
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SQUARE switch is only working at off state and LARGE switch is only working at on stage. 

The reason of this problem has not been clarified yet, and the designer is still working on this 

problem. 

Measurement results of SQUARE switch are plotted at Matlab®. For SQUARE switch topology, 

and conditions for band 5, frequency versus Vtune, Phase noise vs Vtune and Phase noise vs 

Frequency plots are located at Figure 6.9, Figure 6.10 and Figure 6.11. As seen from Figure 6.9, 

frequency change behavior of the circuit is identical with capacitance change behavior of 

varactor with respect to control voltage change. At middle frequencies, phase noise increases 

because quality factor of varactor decreases at these voltages. For other bands, similar curves 

are located at appendix.  

 

 

 Figure 6.9: Frequency Vs Vtune graphic  for Band5 of SQUARE switch based VCO  

 

Figure 6.10: Phase Noise vs Vtune graphic for band 5 of SQUARE switch based VCO 
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Figure 6.11: Phase Noise vs Frequency graphic for band 5 of SQUARE switch based VCO 

 

Output of PLL can be seen at Figure 6.12. VCO of PLL is producing output at sufficient power 

level in only band 1, thus, PLL is working at this band only. During  this measurement, 

accumulator value is set to zero and division value of programmable divider is set to 25, thus 

PLL is operating at integer N mode. As seen from this figure, output of power VCO is 3.864 

dBm which is sufficient for frequency dividers. On the other hand, there are some spurs located 

at 50MHz offset frequencies from output. Because of operating at Integer N mode, the only 

noise source is charge pump current mismatch which increases phase noise of VCO, (as 

explained at chapter 4.1). 

Output frequency of VCO is divided by 16 and set as another output of PLL. Divided output of 

PLL is shown at Figure 6.13. These figures are sufficient to see that all components of PLL are 

working, (at least one band) and loop is stable. 

From these figures, it can be seen that, noise levels are very high. During measurements of PLL, 

reference frequencies are taken from a signal generator which has a phase noise which is 

represented at Figure 6.14.  As seen from the equation (2.26), noise at reference input of PLL is 

multiplied by the frequency division value and seen at output. Thus, noise level of the circuit is 

determined by reference input. In measurements a better reference input can be determined by 

crystal oscillators.  
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Figure 6.12: Measured Output of PLL, operating at integer N mode, Programmable divider division value is 25. 
Spurs are located 50MHz offset frequencies which is equal to reference frequency. These spurs are caused by charge 
pump current mismatch.    

 

 

Figure 6.13: Divided output of PLL (divided by 16) which is operating at 4.332 GHz (left) and 5.095 GHz (right) 
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Figure 6.14: Phase noise of reference frequency of PLL 

Figure 6.15 shows us full operating range of PLL, which is from 4.261GHz to 5.098GHz. 

Programmable divider and accumulator operation can be seen from this figure.  

PLL and VCO are not working in all proposed bands and frequencies. Thus, electrical analyzes 

done by Cadence® are insufficient and electromagnetic analyzes are needed to be done. These 

analyzes are explained at chapter 6.1.  
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Figure 6.15: Output range of PLL is from 4.26GHz to 5.1GHz. At this figure frequency divider (and accumulator) is 
programmed to show full range at 100MHz steps.  
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6.1 Post Measurement Analyzes  
 

Analysis of the system is continued, because the measurement results do not match with post 

layout measurements. Most important reason of the mismatch is mutual coupling between the 

inductances of VCO. If the mutual coupling in the layout results in quality factor decrement or 

inductance changes, oscillation frequency of the tank is affected. If the quality factor decreases, 

more -Gm will be needed to compensate the losses of the LC tank. Also change in the 

inductance value will result oscillation frequency shift. The reasons of all these effects can be 

understood with inductor coupling analysis tools like ADS® Momentum.  

In order to analyze inductors, firstly inductor layouts are taken from Cadence® Virtuoso® to 

ADS® layout. For this step, Cadence® layout is converted to a GDS format and this file is 

opened in the ADS® layout with suitable Substrate file and Layer after this step, inductor 

layouts are simulated with ADS® Momentum® tool.  

There are several inductance and quality factor formulas used for inductor analysis in the 

literature. Because these parameters are tried to be calculated from S-parameters of the 

structures, each approach results in different characteristics of inductors. For the single (one arm 

of the inductor is RF-grounded) inductor simulations, Ls (see in Figure 6.16) formula for 

inductance, and Qs formula for the quality factor is used. In addition, because the inductors are 

investigated for VCO design, differential inductance and quality factor also will be used.  

 

Figure 6.16: Formulas used in simulation results 

For these simulations, there are several different substrate files from IHP® technology and 

AMS® technology. The AMS® substrate file is created according to their substrate thicknesses 

and conductivity of the metals from the process documents. However, the simulation results and 

AMS® measurements of the inductors are not very well matched. Therefore, IHP® substrate and 

TopMetal-1 is used for simulations because this substrate file is also used in IHP® Foundry 

itself. Therefore the inductance values are nearly same as AMS® measurements but the quality 

factors are not similar. However, the percentage of change at quality factors, gives us the 

information about inductors of AMS®. All the simulation results are done in IHP® substrate with 
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a real via values. These simulations will be helpful for understanding how mutual coupling 

between inductors can make VCO design depended on Electromagnetic simulations. 

First of all, single inductor, which can be seen at Figure 6.17, is analyzed to see behavior of 

inductor without coupling.  

 

Figure 6.17: 1nH AMS® library inductor 

The results of the simulation, which is represented at Figure 6.18, show that this inductance has 

11.2 quality factor in 4.1GHz and nearly maximum 15 quality factor at 8GHz frequency. The 

inductance value is approximately is 1.015nH 

 

Figure 6.18: Inductance and quality factor simulation result for single inductor 

Two branches of the whole inductor structure, as can be seen in Figure 6.19, are not 

symmetrical because of inductance switches of VCO. This difference can result these branches 

to have different quality factors. Therefore, first left branch is simulated. The results of the 

simulation show that the left branch has a quality factor of 7.6 at 4.1GHz which is nearly 

maximum quality factor and the inductance of 2.04nH. This analysis shows that mutual 

coupling between these two branches decreases quality factor of the whole structure from 14 to 

7.6. The inductance value is nearly same. 

The inductance group, which is shown at Figure 6.21, is simulated and results are shown at 

Figure 6.22. As it can be seen in Figure 6.20 and Figure 6.22, there are differences between 
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quality factors of two branches. One has a quality factor of 7.6 and the right one has a quality 

factor of 8.7 at 4.1GHz. Also right branch has higher maximum quality factor than left one. The 

inductance values of these branches as nearly same. 

 

Figure 6.19 : Four 1nH inductor group (right), and left half of this group (left) 

 

Figure 6.20: Inductance and quality factor simulation result two inductor group at Figure 6.19(left) 

As stated at chapter 5, VCO, which is used at PLL, has two inductors. Inductor switch is 

removed from PLL. Final inductor is shown at Figure 6.23. Simulation results for this group 

which is represented at Figure 6.24, shows us Quality factor of inductance is 10. 213, while total 

inductance value is increased from 2.030nH (2 times of the value at Figure 6.18) to 2.179nH. 

Thus, inductance of the tank changes 7.5%, and maximum frequency at Table 4-2, 5.321GHz, 

will be shifted to 5.132 GHz.  



104 

 

 

Figure 6.21: Two inductor groups at right hand side of four inductors at VCO layout. 

 

Figure 6.22: Inductance and quality factor simulation result two inductor group at Figure 6.21Figure 6.19 

 

Figure 6.23: Two inductor groups which are used at VCO of PLL. 
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Figure 6.24: Inductance and quality factor simulation result two inductor group at Figure 6.21Figure 6.19 

The whole structure which is shown at Figure 6.19 is analyzed for inductance and quality 

factors. As seen from Figure 6.25, the quality factor of inductance is 8.232, and total inductance 

of four inductors is 4.285nH, which is 5.4% different from expected. 

 

Figure 6.25: Inductance and quality factor of the whole structure 

These electromagnetic analyzes shows us that, the quality factor of inductance is decreased 

from 11.227 to  8.232. Thus, parallel parasitic resistance of inductance is decreased as,  

2 2
2 2 2

_ _ _

1
(0.733 ) 0.537P L after mutual coupling S L S L S
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L
R Q R Q R Q R
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ω
≈ = = =  

To compensate this loss, gm of –GM circuit must increase 1.86 times. For transistors at the 

same size, core current must be 3.5 times of post layout results. VCO requires 3.5 times of the 

core currents which are summarized at Table 4-1 and Table 4-2. Because of insufficient core 

current and inductor switching problem which is not clarified yet, VCO is operating at three 

bands rather than eight bands.  
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7. CO�CLUSIO� and FUTURE WORK  

 

7.1  Conclusion 

 

In this thesis, a 4.3-5.1GHz frequency synthesizer and Multiband VCO which operates at 2.48-

3.2GHz and 3.9-5GHz are implemented in 0.35µ BiCMOS technology.  During the thesis, RF 

integrated circuit design, Digital IC design, analog IC design and mixed signal IC design 

techniques are applied.  

Operating frequencies and specifications such as phase noise, current consumption, and tuning 

range are obtained from published papers, IEEE standard documentations and Wimax forum 

documents.  

Three different and complex modeling and simulation tools are used at this thesis. Analyzes 

have started from Matlab® level. System level simulations at Matlab®, match with hand 

calculations and post layout simulations at Cadence®. First designs of loop components are done 

at Simulink® and trade offs for of each block is covered in this faster design environment. Every 

block at loop is searched in detail and design is optimized at Cadence®, at transistor level. 

Layout of each block is designed with full custom methods, and optimized in considerations 

such as area, parasitic resistance and capacitance. Post layout simulations are done including 

both RC extraction and C extraction files. The finalized circuit is sent to fabrication, after 

measurements post measurement analyzes are done at ADS®.  

Multiband and multi standard operation of frequency synthesizer is achieved by switched 

inductor and capacitors at VCO stage. A new idea for inductor switching is introduced and 

performance is compared by conventional inductor switch. With this idea, performance of 

circuit at [38] is improved in terms of phase noise, core current and FOM. More frequency 
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bands are covered despite reduces at capacitor switches. Layout problems of the circuit at [34] 

which could kill oscillation have been solved. Oscillation is measured for both of the VCO’s, 

however, they are not covering all of the proposed bands and consuming much more current 

than expected from post layout analyzes. Post measurement analysis at ADS® shows us that, 

mutual coupling between the inductances at VCO decreases quality factors dramatically which 

increases core current. In some bands needed core current is not obtained and oscillation is 

killed for these bands.  

In addition, for multiband operation, a fully programmable 4 bits multimodulus frequency 

divider circuit (division ratio can be programmed in the range between 16 and 31) which 

operates at 2GHz is designed.  The operating frequency is prescaled by a current mode logic 

based frequency divider which operates at 6GHz. This prescaler has a stabile DC level which is 

less dependent from temperature at output. Compatibility between these different frequency 

dividers is also obtained by additional blocks.  

Cascode technique is implemented to charge pump to decrease current variations at output 

current due to the output voltage. This technique was limited the output swing of circuit, which 

corresponds tuning range of VCO. To overcome this challenge a biasing technique is applied to 

this block which provides an output swing between 0.3V and 3V which is a sufficient range. 

Other blocks, such as VCO and fixed frequency divider are consuming high current which can 

increase the temperature of the circuit. In addition, output states of these blocks are changing at 

high speed that can produce power supply noise. Output current of this charge pump block was 

highly dependent to temperature and power supply noise. To decrease dependency of this block 

to these parameters, band gap reference circuit is used at biasing. Finally a high output swing 

CMOS cascode charge pump with band gap reference circuit is designed to produce output 

current independent from power supply noise, temperature and output voltage.   

In order to obtain fractional frequency division, first order and third order sigma delta 

modulators are implemented. Mash 1-1-1 topology is implemented as third order sigma delta 

modulator, to decrease quantization noise at output. However stability could not be achieved by 

this block. The reason is high frequency variation at output frequency due to three bits output of 

this block. Fractional division is achieved by first order sigma delta modulator, and system is 

stable for this mode.  

System level simulations resulted that PLL has a good jitter with reasonable power consumption 

despite the technology limitations, and the chip is sent to fabrication.   
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Measurement results show us that proposed frequency synthesizer is working with all blocks at 

least for one frequency band. For other proposed frequency bands, mutual coupling has 

decreased quality factor and killed the oscillation at VCO stage.  

Thesis is finalized with ideas about improvements that can be done to enhance performance of 

the system.  

 

7.2  Future Work 
 

From fabrication up to the time this thesis is written, some ideas are developed.  In this chapter 

these ideas are introduced.  

First of all, rather than common collector buffers at VCO design, common emitter amplifiers 

should be selected to save current and produce better power level at output stage. At this 

amplifier stage an inductance can also be used to provide a better matching and power level at 

output. 

Secondly, as a conclusion of post measurement analyzes, the layout of the circuit must be re-

designed with mutual coupling considerations. The inductances should be selected as 

differential, or a differential inductance with four ports can be designed with inductance design 

tools. In addition, layout of core of VCO can be redesigned with a better symmetry and smaller 

parasitic capacitances at oscillation nodes. PMOSs which form –Gm circuit, can be merged in a 

single transistor at center and common collector buffer transistors (or common emitter 

amplifiers) should be at corners. Core circuit and capacitance switches should be far enough 

from inductances of voltage controlled oscillator.  

Thirdly, order of Sigma Delta modulator of the circuit can be designed as programmable as 

shown at Figure 7.1. The modification can be done such easy that, only two AND gates are 

added to the feedback path and multiplexers at output stage can be removed. If both enable 

values are one, the system will be MASH 1-1-1. Else if the logic level at enable2 is zero and 

enable1 is one, the system acts like MASH 1-1 structure. Else, just accumulator works, and the 

system acts like accumulator. The area would be smaller and order of SDM can be elective.   
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Figure 7.1: Advanced sigma delta modulator with programmable order. 

Moreover, division value of fixed divider can be decreased from four to three, which provides a 

better phase noise.  

Furthermore, as stated at chapter four, Voltage controlled oscillator is highly non linear. 

Linearity can be increased by usage of techniques at [52]. With the increase of linearity of 

VCO, loop behavior will be much more linear, and converges to the Matlab® results.  

As Final improvement, capacitances at loop filter can be designed from gate capacitances of 

MOS transistors. Drain source and bulk of NMOS can be connected and gate capacitance as 

shown at Figure 7.2. The NMOS capacitance is nonlinear until it crosses the threshold voltage 

and enters the inversion region. After the gate voltage exceeds the threshold voltage, the device 

capacitance is constant. With this improvement, larger capacitances can be used at loop filter for 

the same area. To have same loop bandwidth, charge pump current should be increased, which 

can be easily done with increase of width of output transistors of charge pump. With larger 

capacitances, as stated at chapter 5, a better phase noise behavior and smaller jitter can be 

obtained.  

 

Figure 7.2: Loop-filter implementation with NMOS devices. 
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Appendix 
 

A1 
 

% 2'nde order Loop filter transfer function generator for passive components and calculation of natural 
frequency damping factor and settling time 
clc 
k = 1e3; 
p = 1e-12; 
R = 7.5*k; 
C1= 384*p; 
C2= 48*p; 
s = tf('s'); 
wn = (1/2)sqrt(((104e-6)/(2*pi))*(0.9e9)/(96*C1)) 
LF2 = (1+R*C1*s)/(s*s*R*C1*C2+s*(C1+C2)) 
ksi = (sqrt(((104e-6)/(2*pi))*0.9e9*R*R*C1/96)) 
settling=4/(wn*ksi) 
ltiview('bode', LF) 
 

A2 
[t,x,y]=sim('divideracumulator'); 

pointnumber= numel(y); 

yy =0; 

for (ii = 1:pointnumber) 

yy = y(ii)+yy; 

end 

 yy= yy/pointnumber 

A3 
n = 1*10^-9 
p=1*10^-12 
G=1*10^9 

  
L1 = 1.040*n 
w=2*pi*5*G 
C1=82.47*p 
Rs=2.7689 

  
A=(C1*Rs^2+2*L1-w^2*C1*L1^2) 
B=2*Rs-(w^2)*(2*L1*C1*Rs) 
C=C1*Rs 

  
D=1-(w^2)*C1*L1 
R2=(A/C) 
L=A/(D-(C*B/A)) 
R1=B/(D-(C*B/A)) 
RP1=((L*w)^2)/R1 

  



115 

 

GP1=1/RP1 
GP2=C/A 
Gfinal=GP1+GP2 
Rfinal=1/Gfinal 

 

B1. 

 

AP 1: Open loop Root locus plot of the system for 5GHz Band (band1). 

 

AP 2: Closed loop Root locus plot of the desired PLL system for 5GHz Band (band1). 
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AP 3: Bode diagram for Band 2, Phase margin is 52.20 

 

AP 4: Magnitude of the closed loop transfer function for band2. 3dB bandwidth is 300kHz. 
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AP 5: Bode diagram for Band 3, Phase margin is 52.90 

 

AP 6: Magnitude of the closed loop transfer function for band3. 3dB bandwidth is 233kHz. 
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AP 7: transient mode analyze for Charge pump current ICP2 
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AP 8: Phase �oise vs Vtune, Frequency vs Vtune, Linearity (df/dV) vs Vtune for C1 on C2 and ind Switches 
are off for SQUARE switch 
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AP 9: Phase �oise vs Vtune, Frequency vs Vtune, Linearity (df/dV) vs Vtune for C2 on C1 and ind Switches 
are off for SQUARE switch 
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AP 10: Phase �oise vs Vtune, Frequency vs Vtune, Linearity (df/dV) vs Vtune for C2 and C1 are on ind Switch 
is off for SQUARE switch 
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AP 11: Phase �oise vs Vtune, Frequency vs Vtune, Linearity (df/dV) vs Vtune for all Switches are off for 
SQUARE switch technique 
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AP 12: Phase �oise vs Vtune, Frequency vs Vtune, Linearity (df/dV) vs Vtune for ind switch and C1 switches 
are on C2 is off for SQUARE switch technique 
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AP 13: Phase �oise vs Vtune, Frequency vs Vtune, Linearity (df/dV) vs Vtune for ind switch and C2 switches 
are on C1 is off for SQUARE switch technique 
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AP 14: Phase �oise vs Vtune, Frequency vs Vtune, Linearity (df/dV) vs Vtune for all switches are off for 
LARGE switch technique 
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AP 15: Phase �oise vs Vtune, Frequency vs Vtune, Linearity (df/dV) vs Vtune for all switches are on for 
LARGE switch technique 
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AP 16: Phase �oise vs Vtune, Frequency vs Vtune, Linearity (df/dV) vs Vtune for C1 switch is on ind and C2 
swiches are off for LARGE switch technique 
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AP 17: Phase �oise vs Vtune, Frequency vs Vtune, Linearity (df/dV) vs Vtune for C1 switch and ind switches 
are on C1 swich is off for LARGE switch technique 
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AP 18: Phase �oise vs Vtune, Frequency vs Vtune, Linearity (df/dV) vs Vtune for C1 switch and C2 switches 
are on ind swich is off for LARGE switch technique 
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AP 19: Phase �oise vs Vtune, Frequency vs Vtune, Linearity (df/dV) vs Vtune for C1 switch and C2 switches 
are on ind swich is off for LARGE switch technique 
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AP 20: Phase �oise vs Vtune, Frequency vs Vtune, Linearity (df/dV) vs Vtune for C1 switch and C2 switches 
are on ind swich is off for LARGE switch technique 
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AP 21: Phase �oise vs Vtune, Frequency vs Vtune, Linearity (df/dV) vs Vtune for C1 switch and C2 switches 
are of ind swich is on for LARGE switch technique 
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AP 22: Eye diagram for first order sigma delta modulator mode at band 3 

 

AP 23: settling behavior for PLL for first order sigma delta modulator mode at band2  

 

 

AP 24: Eye diagram for first order sigma delta modulator mode at band 3 
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AP 25: settling behavior for PLL for first order sigma delta modulator mode at band3 

 

AP 26: Eye diagram for first order sigma delta modulator mode at band 4 

 

AP 27: settling behavior for PLL for first order sigma delta modulator mode at band4 
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AP 28: Output frequency change of VCO with SQUARE switch with respect to Tune voltage at band 7 

 

AP 29: Phase �oise change of VCO with SQUARE switch with respect to Tune voltage at band 7 

 

AP 30: Phase �oise change of VCO with SQUARE switch with respect to Frequency at band 7 
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AP 31: Output frequency change of VCO with SQUARE switch with respect to Tune voltage at band 7 

 

AP 32: Phase �oise change of VCO with SQUARE switch with respect to Tune voltage at band 7 

 

AP 33: Phase �oise change of VCO with SQUARE switch with respect to Frequency at band 6 
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AP 34: Layout of Charge Pump 

 

AP 35:  layout of Phase frequency detector 
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AP 36: Layout of Integrated Phase Frequency Detector inside the circuit.  

 
AP 37: Layout of fixed Frequency divider 

 

AP 38: Layout of Large TSPC flip flop 
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AP 39: Layout of small TSPC flip flop 

 

AP 40: Layout of Programmable frequency divider 
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AP 41: Layout of Accumulator 

 

 

AP 42: Layout of Sigma Delta modulator 
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AP 43: Mask layout of VCO of PLL 

 

AP 44: Layout of LARGE switch based VCO 
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AP 45: Layout of LARGE switch 

 

AP 46:Layout of SQUARE 
switch

 

AP 47: Layout of LARGE switch based VCO 
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AP 48: Layout of PLL 
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C  DC operating points of Mos switches calculated at Spectre 
Cadence®  

C1. SQUARE switch 
is On 

C2 LARGE switch 
is On 

C3 LARGE switch 
is Off 

C4. SQUARE 
switch is Off 

betaeff 179.9u   betaeff 1.001   betaeff 1.066   betaeff 191.5u   
cbb 11.91p   cbb 499.8f   cbb 960f   cbb 21.43p   
cbd -15.74p   cbd -98.83f   cbd 36.47a   cbd -10.04y   
cbdbi -15.65p   cbdbi 1.501p   cbdbi 1.6p   cbdbi 83.47f   
cbg -91.74f   cbg -2.701f   cbg -960.1f   cbg -21.43p   
cbs 3.915p   cbs -398.3f   cbs -288.5e-27   cbs 813.8a   
cbsbi 3.998p   cbsbi 1.201p   cbsbi 1.599p   cbsbi 84.3f   
cdb -7.09p   cdb -238.6f   cdb -668.7e-30   cdb -8.98e-27   
cdd 77.47p   cdd 3.528p   cdd 390.1f   cdd 20.25f   
cddbi 77.37p   cddbi 1.628p   cddbi -1.51p   cddbi -78.79f   
cdg -38.42p   cdg -2.28p   cdg -390.1f   cdg -20.25f   
cds -31.97p   cds -1.01p   cds -702.8e-27   cds -49.36y   
cgb 2.298p   cgb -22.66f   cgb -960f   cgb -21.43p   
cgbovl 14.29f   cgbovl 31.9a   cgbovl 31.9a   cgbovl 14.29f   
cgd -35.92p   cgd -2.388p   cgd -390.1f   cgd -20.25f   
cgdovl 32.58f   cgdovl 627.3f   cgdovl 390.1f   cgdovl 20.25f   
cgg 77.01p   cgg 4.562p   cgg 1.74p   cgg 21.48p   
cgs -43.38p   cgs -2.151p   cgs -390f   cgs -21.07f   
cgsovl 32.58f   cgsovl 627.3f   cgsovl 390f   cgsovl 20.26f   
cjd 83.35f   cjd 1.6p   cjd 1.6p   cjd 83.47f   
cjs 83.41f   cjs 1.6p   cjs 1.599p   cjs 83.49f   
csb -7.122p   csb -238.5f   csb -543e-30   csb -10.41e-27   
csd -25.81p   csd -1.042p   csd -2.108y   csd -16.46y   
csg -38.5p   csg -2.279p   csg -390f   csg -20.26f   
css 71.44p   css 3.56p   css 390f   css 20.26f   
gbd 125z   gbd 276.1a   gbd 56.74e-36   gbd 4.997e-39   
gbs 47.96e-48   gbs 1.194e-45   gbs 1.162e-45   gbs 65.36e-48   
gds 78.12u   gds 428.3m   gds 7.463z   gds 1.289y   
gm 993.2n   gm 956.2u   gm 0   gm 0   
gmbs 208.2n   gmbs 154.9u   gmbs 431.8e-27   gmbs 89.64e-30   
gmoverid 2.13   gmoverid 1.951   gmoverid 0   gmoverid 0   
i1 466.4n   i1 -490u   i1 2.585f   i1 135.4a   
i3 -466.4n   i3 490u   i3 2.585f   i3 135.4a   
i4 -270.8a   i4 -5.17f   i4 -5.17f   i4 -270.8a   
ibd -135.4a   ibd -2.585f   ibd -2.585f   ibd -135.4a   
ibs -135.4a   ibs -2.585f   ibs -2.585f   ibs -135.4a   
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ibulk -270.8a   ibulk -5.17f   ibulk -5.17f   ibulk -270.8a   
id 466.4n   id -490u   id 2.585f   id 135.4a   
ids 466.4n   ids 490u   ids 14.16y   ids 2.453e-27   
igb 0   igb 0   igb 0   igb 0   
igcd 0   igcd 0   igcd 0   igcd 0   
igcs 0   igcs 0   igcs 0   igcs 0   
igd 0   igd 0   igd 0   igd 0   
igs 0   igs 0   igs 0   igs 0   
is -466.4n   is 490u   is 2.585f   is 135.4a   
isub 368.7y   isub 157.6z   isub 52.45e-39   isub 4.623e-42   
pwr 2.761n   pwr 566.3n   pwr 9.827f   pwr 514.7a   
qb -64.92p   qb -2.75p   qb -1.047p   qb -25.82p   
qbd -188.6f   qbd -3.593p   qbd -3.593p   qbd -187.6f   
qbi -64.87p   qbi -2.75p   qbi -1.047p   qbi -25.82p   
qbs -188.1f   qbs -3.595p   qbs -3.596p   qbs -187.5f   
qd -17.23p   qd -1.656p   qd 837.2f   qd 43.51f   
qdi -17.21p   qdi -1.236p   qdi 267.2f   qdi 13.88f   
qg 100p   qg 6.057p   qg -628.4f   qg 25.73p   
qgi 99.91p   qgi 5.218p   qgi 512f   qgi 25.79p   
qinv 122.7u   qinv 438.9m   qinv 20.65f   qinv 5.797a   
qsi -17.83p   qsi -1.232p   qsi 267.4f   qsi 13.88f   
qsrco -17.85p   qsrco -1.651p   qsrco 837.9f   qsrco 43.47f   
region 1   region 1   region 0   region 0   
reversed 0   reversed 1   reversed 1   reversed 0   
ron 12.69K   ron 2.359   ron 130.5E   ron 753.4Z   
type 0   type 0   type 0   type 0   
vbs -1.908   vbs -1.9   vbs -1.9   vbs -1.9   
vdb 1.914   vdb 1.901   vdb 1.902   vdb 1.902   
vds 5.92m   vds 1.156m   vds 1.848m   vds 1.848m   
vdsat 366.1m   vdsat 368.3m   vdsat 40.53m   vdsat 35.95m   
vfbeff -837.6m   vfbeff -766m   vfbeff -781.3m   vfbeff -852.7m   
vgb 3.3   vgb 3.3   vgb 393.9p   vgb 393.9p   
vgd 1.386   vgd 1.399   vgd -1.902   vgd -1.902   
vgs 1.392   vgs 1.4   vgs -1.9   vgs -1.9   
vgsteff 459m   vgsteff 470m   vgsteff 10z   vgsteff 10z   
vth 932.9m   vth 929.9m   vth 929.9m   vth 931.4m   
 


