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Abstract

Navigation of information flows in networks is studied. As real-life systems, residue

networks constructed from the coordinates deposited in the protein data bank are tar-

geted. The cost of the navigation between neighbors are measured by residue-residue

interaction potentials. By constructing all paths between initial/target nodes according

to selected criteria, structurally and/or functionally important residues in the network

are implicated. In particular, strong paths that minimize the weights along all possible

pathways are found to differentiate between the functional nodes in protein families

with high overall structural similarity, but low sequence similarity scores. To deter-

mine factors that drive the usage of strong paths in the network, a biased random walk

scheme is deviced where the probability of edge selection is based on a balance between

the knowledge of the location of the destination and the energy of interaction with the

immediate neighbors. Since long range communication between two distantly placed

functional regions in the protein calls for the gradient of information flow, strong paths

emerge by satisfying the competition of local and global knowledge while navigating

along the structure.
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YAPILARINDAKİ OPTİMAL YOLLAR

Murat Mülayim
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Özet

Ağ yapılarındaki bilgi akışları incelendi. Gerçek yaşamdan alınmış, residü ağ yapıları

protein veri bankasında depolanmış kordinatlardan yapılandırıldı. Komşular arasındaki

yönlenme maliyeti residü-residü etkileşim maliyetleri ile hesaplandı. Seçilmiş kritelere

göre yapılandırılan ilk/hedef düğümleri arasında yapılandırılan bütün yollar aracılığı

ile, ağ yapısındaki yapısal ve/veya işlevsel önemli residüler sezdirildi. Bilhassa, yüksek

yapısal benzerliğe ve düşük dizi benzerliğine sahip protein ailelerinde bütün olası yol-

lardaki yükleri minimize eden güçlü yolların farklılaştığı bulundu. Güçlü yolları kullan-

maya sürükleyen faktörleri belirleyebilmek için, kenar seçme olasılığı varış yeri bilgisi ve

ilk komşuların energi ilişiklendirilmesi arasındaki dengeye bağlı olarak olasılıklandırılan

eğimli rastgele yürüyüşler yapılandı. Uzak yerleştirilmiş iki fonksiyonel grubun birbiri

ile olan uzun mesafeli iletişimi bilgi akışının eğimli olmasını gerektirdiğinden, güçlü yol-

lar bölgesel ve global bilgi arasındaki çekişmenin sonucu olarak ortaya çıktı.
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1 Introduction

1.1 Literature Search

Understanding and predicting structure and function relationships in proteins is an

area of intense scientific research. Most proteins perform their function by binding

other molecules (i.e. ions, nucleic acids) or other proteins. They regularly experience

perturbations in their crowded environment, yet they function efficiently, accurately

and rapidly [3]. They also have conformational flexibility which in return signifies the

concerted action of residues within the structure [4]. These attributes of proteins make

them effective information transmitters in the environment of the cell [5]. Research us-

ing different methodologies reveals the shroud surrounding these highly specific organic

molecules. Recent research has made progress in expressing the protein structures with

a network representation; this provides a simplified model of biological systems [6].

Both residue-residue interaction and protein-protein interaction networks are investi-

gated to contribute to our understanding of protein structure/function relationship [7].

Below, we describe the background of these approaches.

Interactions, delay, and feedback are the three key characteristics of complex fluids. Us-

ing these features, entities at different time and length scales communicate with great

accuracy, efficiency, and speed [5]. Proteins being Self-assembling molecules are com-

plex fluids with robust and adaptable architectures that incorporate nanoscopic and

mesoscopic length scales decisive on their emergent properties over different timescales.

Their internal motions which are crucial on their folding, stability, and function, are

exquisite examples of these [8–10].

Proteins are tolerant to mutations with their liquid-like free volume distributions [11];

however, the average packing density in a protein is comparable to that inside crystalline

solids [12]. It has been shown that the interiors of proteins are more like randomly
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packed spheres near their percolation threshold and that larger proteins are packed

more loosely than smaller proteins [13]. At physiological temperatures, the conforma-

tional flexibility is essential for biological activity that requires a concerted action of

residues located at different regions of the protein [3]. This cooperation requires an

infrastructure that permits a plethora of fast communication protocols. Highly transi-

tive local packing arrangements, giving rise to regular packing geometries [14] cannot

provide such short distances between highly separated residues for fast information

sharing. On average, random packing of hard spheres similar to soft condensed matter

is obtained for a set of representative proteins [15]. This architecture is capable of orga-

nizing short average path lengths between any two nodes in a structure, but it cannot

warrant a high clustering similar to regular packing.

Proteins regularly experience perturbations in their environment-e.g., in the cell where

other small and large molecules are densely and heterogeneously distributed-or in the

test tube with only water around, displaying ceaseless fluctuations around their folded

structure. Since proteins function efficiently, accurately, and rapidly in the crowded

environment of the cell, they are expected to be effective information transmitters by

design. Whether the protein is functional or not depends on the size and location of

these fluctuations, making use of the concerted action of residues positioned at different

regions of the protein [5]. It is, therefore, of utmost interest to investigate how proteins

respond to changes in the environment under physiological or extreme conditions.

The response of any structure to perturbations depends on its general architecture. For

proteins, local, regular packing geometries [14] cannot provide short distances between

highly separated residues for fast information transmission. In fact, it has been shown

that random packing of hard spheres similar to soft condensed matter is observed in a

set of representative proteins [15]. Consistent with the concurrent requirement of order

and randomness in the protein structure, it has been shown that proteins are organized
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within the small-world network (SWN) topology. A network is referred to as ‘small-

world’if the average shortest path between any two vertices scales logarithmically with

the total number of vertices, provided that a high local clustering is observed [5]. The

former property of short paths is responsible for the name ‘small world’. Neither regular

configurations nor random orientations seem to exhibit these two intrinsic properties.

However, such properties are common in many real-world complex networks [16], and

there are examples from a diverse pool of applications such as the world wide web [17],

the internet [18], math coauthorship [19], power grid [20], and residue networks [4]. In

recent years, proteins have been treated as networks of interacting amino acid pairs to

determine their network structure and to identify the adaptive mechanisms in response

to perturbations [4,21]. In fact, similar network treatments of proteins predict collective

domain motions, hot spots, and conserved sites [22]. For these networks, we employ

the term ‘residue networks’ [4] to distinguish them from ‘protein networks’. The latter

are used to describe systems of interacting proteins [23].

With their ordered secondary structural units made up of α -helices and β -sheets on

the one hand, and their seemingly unstructured loops on the other, it was predicted

that proteins may have the SWN organization [4]. Later, a statistical analysis showed

that proteins may in fact be treated within the small-world network topology, balancing

efficiency and robustness. The local and global properties of these networks with their

spatial location in the three-dimensional structure of the protein were determined [4].

The same local organization of core residues appears irrespective of the protein size.

Moreover, a remarkable correlation was found to exist between residue fluctuations

and shortest path lengths. Recent developments of elastic network models for study-

ing large amplitude motions in proteins have been successful in predicting functional

mechanisms [21,24]. In particular, the cohesive domain-like behavior of proteins is well

understood by these models. In the residue networks treatment, a similar network con-

struction based on the average structure is used with a different perspective. Instead

3



of a statistical mechanical approach whereby the system energy is described by the ad-

ditive local interactions of harmonic springs, a graph theoretical viewpoint is taken by

considering pathways of interconnections. Thus, the two approaches, both originating

from packing characteristics, lead to different information.

In the past few years, the network treatment of residues in proteins has been further

adopted to study their various features such as conserved long-range interactions [25],

functional residues [26], protein-protein association, and detection of structural ele-

ments [27,28] . In all these treatments, which have been successful in describing many

important properties of proteins and provide insight as to how they function, the identi-

ties of individual amino acids are omitted in the calculations. In other words, specificity

is taken into account in an indirect manner by assuming that the locations of the dif-

ferent amino acid types along the contour of the polymeric chain have been operational

in determining the particular average three-dimensional structure. In this viewpoint,

the interactions between different pairs, triplets, etc. of amino acids are assumed to

be smeared out, and the observed behavior once the protein is folded is driven by the

overall structure. In fact, it has been noted that the residue non-specific interactions

(i.e., those depending on the relative placement of residue pairs, irrespective of their

identity) contribute more to the overall stability of proteins by a factor of about five,

compared to distinct residue-residue interactions [27]. The question remains, however,

as to the extent to which such a coarsened description of the folded protein may be used

to determine other crucial properties, especially those pertaining to dynamics. Recently,

the paths between residue pairs have been elaborated upon, which are termed ‘infor-

mation pathways,’to understand how they relate to dynamic phenomena in proteins [5].

In particular, it is of interest to understand allosteric interactions mediated through the

changes in the dynamic fluctuations around the average structure, both in the presence

and absence of conformational changes, the latter having recently been shown to exist
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in proteins through a series of NMR experiments [29]. To this end, weights have been

attributed to the links between residue pairs using knowledge-based potentials [1, 30]

and the relationship between dynamic phenomena occurring in proteins and the opti-

mal path lengths obtained from these weighted networks have been discussed. It has

been shown that it is possible to extract minimal subgraphs from the fully connected

networks of residues, where a few designed interactions overlaying the backbone are

sufficient to display communication path lengths similar to that of the full residue net-

work [5]. A demonstration of the application of these ideas using a non-redundant data

set of interacting proteins have been made and residue pairs on the interface of the re-

ceptor/ligand that frequently appear along information pathways have been extracted

in the same study.

Most theoretical and computational biophysical methods available today will give in-

formation on equilibrium states. The non-equilibrium dynamical information is usu-

ally inferred from the study of different equilibrium states and interpolation [4]. The

idea of following pathways on networks is an attractive one for studying not-far-from-

equilibrium phenomena such as the attainment of new equilibrium states upon binding.

However, one first needs to validate the limitations of coarse graining. In particular,

the extent to which quantum mechanical effects can be neglected or incorporated into

the models must be assessed; e.g., in CO binding to myoglobin [31] the relaxation

pathway in the protein is of utmost interest [32]. Consequently, this unifying network

perspective lets us explore protein dynamics such that, apart from distinguishing struc-

turally important residues in folding, binding, and stability, it will be possible to locate

the routes through which a perturbation is communicated in a protein, and estimate

the time scales on which a response is generated. As such, it will complement newly

developing experimental techniques such as femtosecond spectroscopy. The spatiotem-

poral nature of the hypothesized process calls for deeper investigation on particular

proteins. The global rules deduced for proteins are also expected to have applications
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in bioinformatics problems such as identifying interaction surfaces in protein docking

and distinguishing misfolded states.

By taking a network perspective of analyzing proteins, it was shown that residue speci-

ficity plays an important role in protein functioning. Inhomogeneity is introduced into

the residue networks by assigning each edge a weight that is determined by amino acid

pair potentials. Two methodologies are utilized to calculate the optimal path lengths

(APLs) between pairs in these weighted networks: to minimize i), the maximum weight

in the strong APL, and ii), the total weight in the weak APL. A statistical analysis on

nearly 600 non-homologous proteins has led to define key quantities for discriminating

the underlying structure that make the protein robust in the environment where it is

functional. In particular, a quantity has been uniquely defined for finding a critical

threshold value to determine the key interactions in the protein, if it is to survive ex-

treme events and to continue carrying out its function. Those results also support the

finding that optimized protein sequences can tolerate relatively large random errors in

pair potentials obtained using a variety of methodologies [33].

It was proposed that in events involving small perturbations, the total energy to tra-

verse that path will be important and information will flow through the optimal paths

with weak disorder, similar to that in the homogeneous network. On the other hand,

when large perturbations are involved, such events require surpassing the largest en-

ergy barriers along the paths. In this approach, the same pair potentials are used as

thermodynamic measures in the former case and as kinetic measures in the latter. If a

pair of residues has high contact energy, it may be assumed that the energy that must

be used to separate them will be commensurate with its value to a first approximation.

Due to other effects such as the size and the shape of the residues, slight modifications

may be included. The strong paths, therefore, were predicted to set a limit on the

protein whereby the robust structure resists large amounts of external perturbations
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and preserves its protein-like communication pathways. Furthermore, using this ap-

proach, we have been able to define key contacts that form bridges between interacting

proteins. Note that nearly half the surface area of the total protein, and therefore an

overwhelming number of residue pairs, is involved in protein-protein interactions.

1.2 Aim

In this study, we systematically construct paths between pairs in residue networks to

understand how they relate to dynamic phenomena in proteins furthering previous

studies carried out in our group [4,5]. We carefully select data sets that have the char-

acteristics of high structural alignment, but low sequence alignment to emphasize the

impact of residue interaction to information transfer between highly separated residues.

We also search factors that drive the usage of strong paths in the network. A biased

random walk scheme is deviced, where the probability of edge selection is based on a

balance between the knowledge of the location of the destination and the energy of

interaction with the immediate neighbors.

The thesis is organized as follows: In Chapter 2 we briefly describe how residue net-

works are constructed from their Protein Data Bank coordinates [34]. Therein, we also

define various path length measures used in this work and describe how these paths

are calculated. In Chapter 3, we present results from the TIM Barrel superfamily of

proteins and Calcium Binding family of protein pairs. These are selected to represent

communication paths in single chains and interacting pairs of chains, respectively. In

Chapter 4 we use biased random walk algorithms on weighted networks using different

weight assignments to local neighbors as well as a global knowledge of the destination

node. We discuss the conditions under which the system can be maneuvered from

weak-like to strong-like paths. In Chapter 5, concluding remarks are presented on the

7



usage of SAPL versus WAPL in information communication in residue networks. Im-

plications for protein function are discussed and future work is suggested.

2 Background on Residue Networks

Proteins in this study are treated as networks by taking every residue in the protein

structure as a single node and interaction among them as edges [5]. These networks

are based on protein structure data obtained from the Protein Data Bank [34]. Each

residue in the structure is represented as a node centered on Cβ atoms spatial position.

In the case of Glycine, Cα represents the coordinates of the node. These nodes are then

considered as connected if they are positioned within the first coordination shell of each

other, which is 6.7 Å [5]. This procedure enables us to generate the NxN adjacency

matrix for each protein, where N is the number of residues. The elements of these

matrices have the values zero or one depending if there exist a contact between residues

or not. This can be mathematically expressed as

Aij =

 H(rc − rij) i 6= j

0 i = j
(1)

where rij is the distance between the ith and jth nodes, H(x) is the Heavyside step

function given by H(x) = 1 for x > 0 and H(x) = 0 for x ≤ 0, and rc is the given cut-

off distance, which is an upper limit for the separation between two residues in contact.

Since proteins are linear polymers of 20 different amino acids, chain connectivity is also

conserved and mathematically expressed as:

Aij = 1 if i = j ± 1 (2)

An example network representation of the protein D-Ribulose-5-Phosphate 3-Epimerase

from Solanum Tuberosum Chloroplasts (PDB code:1RPX) shown in Figure 2.1 for
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rc = 6.7 Å.

(a) Protein structure of 1RPX (Tube represen-
tation)

(b) Derived network structure of 1RPX

Figure 2.1: Protein and derived network structure of 1RPX

The networks are classified by local and global parameters, all of which can be derived

from the adjacency matrix. The most general descriptor of the network structure is

the average connectivity of a node. The connectivity ki is the number of neighboring

residues of residue i which is given as;

ki =
N∑
j=1

Aij (3)

The average shortest path through the network is another widely used network de-

scriptor. Dijkstra algorithm is used to compute the shortest paths, i.e. the number of

minimum steps between a pair of residues [35]. The shortest path lengths of a homo-

geneous network, where the edges have no weight, is termed as Homogeneous Average

Path Length (HAPL) in this study.

Constructed residue-residue networks can also be represented as weighted networks

once we assign weights to the edges. We use residue-residue interaction potentials of

Miyazawa - Jernigan (MJ) and Thomas - Dill (TD) as attributes of edges; data given in
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Appendix A [1,2]. These two potentials have been extensively tested in threading algo-

rithms, protein stability and designability studies, folding and binding energetics and

amino acid clasification [30,36–38]. In these weighted networks, we use two definations

to calculate shortest paths: Weak average path lengths (WAPL), and strong average

path lengths (SAPL). In the former, the optimal path connecting residues i and j is

the length of the path that minimizes the sum of the weights along the path. Dijkstra

algorithm for the weighted graphs is used to compute the WAPL [35]. Minimization of

the sum of the weights along the path requires weights to be positive, thus a positive

value is added to residue-residue potentials. This value is set as three for Thomas - Dill

and as eight for Miyazawa - Jernigan interaction potentials . For calculating SAPL,

we sort the attributes of edges in descending order and systematically remove the con-

nection beginning with the highest weight until a bottleneck value is reached, whose

removal results in loss the of connection between nodes i and j. Below we represent

both HAPL, WAPL and SAPL and bottleneck edge on a toy model constructed by a

3x3 grid structure. On Figure 2.2 each node is considered as a residue; thus, to each

edge attributes (TD potetials) are assigned. In this toy model both HAPL, WAPL and

SAPL are shown with a different color scheme connecting the start and target nodes.

We use blue, yellow and red lines to represent paths for HAPL, WAPL and SAPL

respectively. Note that the edge MET8 ⇔ HIS13 is the bottleneck edge and whose

removal result in loss of connection as shown on Figure 2.3.
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Figure 2.2: HAPL, WAPL AND SAPL on a 3x3 grid

Figure 2.3: Reduced network structure on a 3x3 grid structure

The characteristic path length of the network is the average

L† =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

L†ij (4)

where the dagger symbol, †, represents the homogeneous, weak or strong paths. Note

that L† is the measure of the global properties under the imposed constraints.

In this work, we systematically compare the HAPL, WAPL and SAPL in selected single

proteins and pairs of interacting protein to derive relationships between their structure

and function.

11



3 Protein Structures of Residue Networks and Pro-

tein Functionality

3.1 Paths in Single Chains

We first conduct a systematic study of the paths on TIM barrels. TIM barrel family

is chosen owing to several reasons. The members of this protein family exhibit high

structural similarity, whereas they lack sequence similarity. They have the most com-

mon tertiary fold observed in high resolution protein crystal structures; approximately

10 % of all known enzymes have this domain [39]. 584 structural hits were observed

among the 55546 protein structures in PDB [34]. The members of this large family of

proteins catalyze very different reactions, including five of the six primary classes of en-

zymes [40]. As the evolutionary history of TIM barrels is still being unrevealed, the fact

that such a variety of sequences acquire the same fold puts them under scrunity [40–42].

TIM barrels acquire a canonical (β/α)8-barrel fold consisting of inner eight parallel

β-strands wrapped by an outer wheel comprising eight α-helices. They vary in size

from 200 to 400 amino acids. TIM barrels have phosphate binding sites formed by

loop 7, loop 8 and a small helix (helix-8́) [40]. They also bear other active sites of

metal-binding located on β-sheet5 α-helix5, a catalytic site on β-sheet5 α-helix5 and

β-sheet1 α-helix1, as shown in Figure 3.1 [40]. Residues located on these sites will be

used as starting and destination nodes for constructing paths, in this study.

We select two different superfamilies of this fold, namely Ribulose-phosphate-binding

TIM barrels and TIM barrel glycosyl hydrolases according to SCOP classification to

further investigate information pathways within the structure. We first seek structurally

highly aligned proteins within and between the superfamilies. We use MultiProt to align

pairs of proteins [43].The multiple alignments are achieved by simultaneous structural

superposition of input molecules in all possible ways under the condition that at least
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Figure 3.1: Active site residues at the eight β/α motifs.

short contiguous fragments (three amino acids or more) of the backbone chains should

be structurally similar. The method computes the best scoring structural alignments,

which can be either according to a sequence order, like in sequence alignment, or be

sequence-order independent in order to seek geometric patterns which do not follow the

sequence order [43].

Results indicate that structural alignment of Ribulose-phosphate-binding TIM barrels

vary between 54% and 90% identity with an average value of 69%. Onthe other hand

intersuperfamily aligment of proteins yield an average value of 29%. We then compute

HAPL and SAPL for proteins whose alignment within and between superfamilies show

good agrement. We use two parameters to select proteins for further examination.

First root mean square deviation (RMSD) values are compared, second the numbers

of residues aligned is taken into acount by defining a match ratio, the latter is the

ratio of aligned residues to the total number of residues of the smaller protein. The

protein pairs selected are 1PII and 1RPX of Ribulose-phosphate-binding TIM barrels

and 1CWY, 1BAG and 1CEO of TIM barrel glycosyl hydrolases. In Table 3.1 we show

RMSD values and match ratios of selected proteins belonging to different superfamilies.

Further data related are given in Appendix B.
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``````````````̀Match Ratio
RMSD

1PII 1RPX 1CWY 1BAG 1CEO

1PII 1.71 1.76 1.84 1.78
1RPX 0.7 1.79 1.79 1.79
1CWY 0.54 0.54 2.05 1.87
1BAG 0.22 0.54 0.48 1.90
1CEO 0.33 0.60 0.40 0.41

Table 3.1: RMSD (Å, upper diagonal) and match ratio (lower diagonal) of proteins
1PII, 1RPX, 1CWY, 1BAG, 1CEO

We select residues from the phosphate binding site of each protein as starting node,

residue no. 236, 207 and 451 for 1pii, 1rpx and 1cwy, respectively. We compute paths

to every secondary structure of the considered proteins to verify differences in terms

of node selection and secondary structure usage. If structural data are not available,

those from the structurally aligned counterpart is chosen. The process flowchart is given

Appendix B.

We find that distinguishing features are captured by SAPL and not WAPL. We

therefore present results from the former only. The bottleneck edges, i.e. those having

highest weight in paths constructed by SAPL, are listed for 1RPX in Appendix B. They

have a weighted average Thomas Dill (TD) potential of −0.31kBT . We select top 50

bottleneck edges in order of percent usage, which represent % 46 of total bottleneck

edges, and characterize their proximity to the surface of the protein structure. We

show percent usage of bottleneck edges on Figure 3.2. Also, the top three bottleneck

edges, whose total usage adds up to %5.8, shown on as balls Figure 3.3. 1PII and

1RPX,the two members of Ribulose-phosphate-binding TIM barrels, differ in terms of

residue usage in these paths, whereas 1PII and 1CWY have common nodes in terms

of spatial positions of nodes used. Having such a difference between members of the

same superfamily or similarity between different superfamily members signify the effect

of bottleneck edges to direct information pathways.

Our first observation is the excessive use of β-sheet secondary structures within SAPL

computed. This kind of path behavior is the result of two important features of this fold.

14



Figure 3.2: Percent usage of bottleneck edges for 1RPX

Although the protein has a donut like structure, interactions between residues, resid-

ing on β-sheets grant passages between distantly located residues. Adding to this, the

number of interactions between adjacent α-helices are limited owing to spatial positions

of these secondary structures. The other important factor is the residue distribution

within the tertiary structure of the fold. The core region, mostly formed of hydropho-

bic residues, valine, leucine, and isoleucine, comprise about 40% of the total residues,

favoring paths in SAPL once the bottleneck edge is reached [44]. Thus, the spatial

positon of the bottleneck edge and its residue-residue interaction potential determine

constructed paths, hence are the residues used for information passage. A sample path

from phosphate binding site of each protein to a distantly located loop on structurally

aligned protein structure is given in Figure 3.4 (a). Usage of each node on calculated

paths are normalized and visualized by nodes having different diameters owing to the

existance of more than one path to connect these residue pairs. 1RPX, 1PII, 1CWY

are represented by different color scheme green, brown and blue respectively.

For each protein, path characteristics differ in terms of nodes visited and the bottle-

neck edges used. 1RPX and 1PII, being members of Ribulose-phosphate-binding TIM

barrels, are expected to have similar pathways. Although spatial position of bottleneck

edges for these proteins are aligned, which are [Gly-207↔ Val-210] for 1RPX and [Gly-

236↔ Ala-238] for 1PII, the pathways connecting start and destination residues differ.

Considering these three pathways, similarity arises only in the usage of core residues for

communication. Another constructed path is also given in Figure 3.4(b) where start

and destination nodes are phosphate binding site and catalytic residue located and
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(a) Network representation of
TIM Barrel fold

(b) Edges with TD potential less
then average value −0.31kBT

(c) Top 50 Bottleneck edges on
protein structure

(d) Superimposed network structures of Figures
(a),(b),(c)). Top three bottleneck edges represented
with purple nodes.

Figure 3.3: TIM Barrel fold and bottleneck edges represented on the TIM Barrel fold
for the protein 1RPX
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(a) Phosphate binding site to loop formed by α2

and β3 secondary structure
(b) Phosphate binding site to loop formed by α1

and β2 secondary structure

Figure 3.4: Paths starting from phosphate binding site of each protein to distant nodes

aligned on α1 and β2 secondary structure for each protein. The pathways constructed

for 1RPX and 1PII , shown in blue and red respectively, have the same bottleneck edge

as in paths to α2andβ3 secondary structure and also uses more nodes which are also

aligned, yet the path constructed for 1CWY differs in terms of the aligned node usage.

17



3.2 Paths In Complex Structures

We have further studied a data set of nine proteins clustered according to the simi-

larities of the global structure of the chains [45]. Hence, interfaces derived from these

proteins also have similar structures [46]. These nine calcium binding proteins belong

to the superfamily EF-hand, has EF hand like fold, forming all alpha proteins according

to SCOP definition.

In this data set, we applied both homogeneous average path length (HAPL) and strong

average path length (SAPL) methodologies to investigate paths which are favored for

information transfer within the two chains of the proteins [5]. All paths starting from

chain A and ending at chain B were computed for every residue of each chain and

statistical data were gathered. We display the top six residue pairs that appear in the

HAPL and SAPL, in the Appendix C, where residue pairs that are structurally aligned

are marked with X and nearly aligned pairs with I. The amount of the match between

these protein pairs vary, but in general interface edges that appear in SAPL match more

often. For reference, we also list the sequence dissimilarities, which yield the proportion

of amino acids that are different in both sequences, of these nine proteins in the whole

structure and along the interface in Table 3.2, as calculated by the structural alignment

of STRAP program [47]. In this Table, the upper right triangle contains data for the

whole protein, whereas the data for the the aligment of only the interface residues are

displayed in the lower triangle.

Of these nine proteins, we select three of them for detailed analysis. These three pro-

teins are 1KSO, 1B4C and 1BT6. The overall sequence dissimilarities differ from that

of the interface, especially for 1KSO-1BT6 and 1KSO-1B4C given in bold numbers in

Table 3.2. In other words, these three proteins are more alike considering interface

alignment. Note that the number of aligned residues for the pairs 1KSO-1B4C, 1KSO-

1BT6 and 1BT6-1B4C are 22, 28 and 25 respectively.
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XXXXXXXXXXXXInterface
Protein

1E8A 1MR8 1BT6 1YUT 1PSR 1B4C 1A03 1KSO 1NSH

1E8A 0.60 0.69 0.67 0.74 0.69 0.70 0.95 0.94
1MR8 0.56 0.74 0.78 0.76 0.69 0.77 0.95 0.96
1BT6 0.68 0.75 0.74 0.81 0.76 0.74 0.92 0.97
1YUT 0.69 0.78 0.75 0.80 0.80 0.75 0.96 0.91
1PSR 0.73 0.71 0.74 0.75 0.81 0.79 0.94 0.94
1B4C 0.66 0.63 0.71 0.84 0.73 0.63 0.93 0.95
1A03 0.71 0.74 0.77 0.79 0.81 0.68 0.94 0.95
1KSO 0.69 0.78 0.77 0.69 0.85 0.70 0.70 0.75
1NSH 0.71 0.66 0.68 0.71 0.66 0.63 0.75 0.69

Table 3.2: Dissimilarity scores of whole (upper right triangle) and interface (lower right
triangle) structures of nine calcium binding family proteins

In the residue networks, edges whose connecting nodes reside on separate chains of the

dimers are termed as interface edges. They are considered to play a significant role for

information transfer between the two chains. Bottlenecks of SAPL are separately la-

beled to determine how paths, and in particular interface edge usages differ with respect

to the methodology used. Frequencies of interface edges used in both methodologies

for selected proteins are listed in Table 3.3, in Table C.1, the same data for the whole

data set is given. The results for HAPL and WAPL display the same top pairs and

hence are not listed separately.

For each protein, the most frequently used interface edges are common in both HAPL

and SAPL. However, observed frequencies differ significantly for some of the interface

edges whereas others remain relatively unchanged. Moreover, as in the case of 1KSO

the interface edge [A77 ↔ B77] which has 10.5% usage in HAPL totally vanishes in

SAPL. This kind of behavior of interface edges can be attributed to the effect of global

structure and residue-residue interaction potential on protein-protein interaction. We

may thus have two types of interface edges: Those that are structurally strategically

positioned appear with high usage both in HAPL and SAPL. Others that are kineti-

cally important in information communication between chains appear with high usage

in SAPL.
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Strong APL Homogeneous APL
Interface Edge % Usage Interface Edge % Usage

1B4C

A70-B82 14.6 A70-B82 13.2
A82-B70 11.7 A3-B39 8.7
A78-B74 10.6 A78-A71 8.1
A3 -B39 10.0 A39-B3 8.1
A39-B3 9.9 A82-B70 6.8
A11-B87 6.2 A78-B74 6.1

1BT6

A76-B72 12.5 A4 -B38 8.0
A4 -B38 11.0 A38-B4 8.0
A38-B4 10.7 A4 -A37 7.8
A72-B76 8.5 A80-B68 5.0
A80-B68 7.8 A68-B80 3.8
A12-B82 7.3 A76-B72 3.8

1KSO

A80-B72 9.7 A77-B77 10.5
A72-B83 8.7 A80-B72 7.0
A76-B76 6.7 A72-A83 6.7
A73-B77 6.3 A27-B93 5.3
A27-B93 5.6 A76-B76 5.1
A76-B79 4.6 A76-B79 4.1

Table 3.3: Percent usage of top five interface edges in SAPL and HAPL

We also used two different structure comparison algorithms to locate and compare

interface edges and bottlenecks within the protein complex. MultiProt, a sequence

order independent structural comparison algorithm, and STRAP (ClustalW 3D), a

structural comparison algorithm which takes into account both sequence identity and

protein structure [43]. Both result in the same structural alignment owing to the nature

of cluster between selected proteins [43]. This approach enables us to identify edges

which are located at the same spatial position. In Figure 3.5, most frequently used

interface edges that are positioned at common sites are shown for HAPL and SAPL,

respectively, above and below the two arrow headed lines.

Considering each of these proteins has higher similarity along their interface then the

global structure, each protein pair can be further analyzed. For pair 1B4C and 1BT6,

interface edges [A3 ↔ B39 and A4 ↔ B38] and [A39 ↔ B3 and A38 ↔ B4] are not
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Figure 3.5: Aligned interface edges for both SAPL and HAPL

only structurally aligned, they also have approximately the same percentage usage for

both methodologies, on the other hand [A78 ↔ B74 and A76 ↔ B72] and [A82 ↔

B70 and A80 ↔ B68] only appear in SAPL. For pair 1BT6 and 1KSO, interface edges

[A72↔ B76 and A75↔ B79] are only seen with SAPL where no substitution for these

edges appears with HAPL. For pair 1B4C and 1KSO, interface edges [A70 ↔ B82 and

A72 ↔ B83] are located with both methodologies where usage percentage with SAPL

is slightly reduced by 1.4 % and 2.1 %, respectively. Finally, for the protein pair 1BT6

and 1KSO, only one common interface edge appears in SAPL and none in HAPL. The

procedure followed is given as a flowchart in Appendix C (Figure B.1.

The phenomenon can better be visualized if paths using these interfaces are shown on

the three dimensional structures. Since our algorithm outputs a vast amount of path-

ways (e.g. for 1KSO the number of all paths in SAPL exceeds 97700) only some of

the paths bearing the above characteristics are shown in Figure 3.6. Starting nodes

are chosen from the cluster of conserved residues of each protein and structural align-

ment of these residues are also taken into consideration. Ending nodes are chosen from
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amongst residues that are either on the surface or close to the surface of the opposite

chain. Paths starting from residue Leu62 of Chain A of 1KSO connect to the residues

B46-B47-B56-B88 and B92 through the interface edge A72↔ B83. Structurally aligned

counterparts of these residues are Leu60 of Chain A of 1B4C and residues B45-B50 and

B54, whereas residues B55-B58-B62 and B81 also use the same interface to connect

starting residue. In Figure 3.6, paths between Leu62 to B46 and B56 for 1KSO (pink

and red) and Leu60 to B45 and B54 (blue and light blue) and also the nodes which are

not structurally aligned, but using same interface edge to connect to the destination

node; of each residue network are shown. Note that this interface edge is the common

one in the two proteins and appear with a large frequency in the statistics of all SAPL

and HAPL paths.

Figure 3.6: SAPL using the same interface edge and structurally aligned residues of
proteins 1KSO and 1B4C

The same approach for homogeneous paths result in different characteristics. Paths

starting from Leu62 of Chain A of 1KSO and ending at residue B46 resulted in al-

most the same kind of path behavior with one of the six different paths connecting

these residues, differing only slightly at the interface region whereas paths starting
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from Leu62 of Chain A of 1KSO and ending at residue B56 differs significantly from

SAPL methodology. Of the 27 different paths connecting these residues, only four of

them uses the same interface, but are shorter in terms of the number of steps.

In Figure 3.6 having listed some example paths between structurally aligned regions

of these selected protein, we next study the overall placement of the important in-

terface edges on the three selected proteins. We present the top five frequently used

interface edges and their spatial positions on these proteins along with the interface

residues. The whole structure is represented in ice blue, whereas the interface residues

are marked with the red and blue ribbon structures on chain A and B respectively. The

important interface edges that appear in the top five of the SAPLs are shown in the

different colored atomic clusters (ice-blue, yellow, tan, silver, and green in the order of

decreasing percent usage). We find that these residue pairs emerge on both faces of the

interface for 1BT6 and 1B4C, whereas they are clustered along one side in 1KSO. In

Figure 3.2, we display the interface and the frequently used pairs only, in a view where

the interface is rotated by 90o along the z-axis.

These three proteins, 1KS0, 1BT6 and 1B4C have 52, 36 and 40 interface residues re-

spectively and structural alignment of these interface residues are given in Table 3.3. As

it is shown in Figure 3.7, each three of the top five interface edges are located between

the fourth α-helix structure of each chain. The remaining two interface edges have the

same characteristic for 1BT6 and 1B4C; they connect each chain to each other by the

interaction between their first and second α-helix structures. In the case of 1KSO the

loop structure between the first and the second α-helices of chain A and the fourth

α-helix of chain B connect the two chains with high percentage usage in constructed

paths. Even though 1KSO bears more interface residues, hence interface edges, polar

and charged residues residing on the surface structure act as bottlenecks. This kind of

replacement of bottleneck edges close to the surface, away from the interface result in
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(a) Interface edges of 1BT6 (b) Interface edges of 1BT6 on protein
structure

(c) Interface edges of 1KSO (d) Interface edges of 1KSO on protein
structure

(e) Interface edges of 1B4C (f) Interface edges of 1B4C on protein
structure

Figure 3.7: Top five interface edges connecting different chains of proteins 1B4C-1KSO-
1BT6
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following nearly shortest paths within the core and less hydrophobic regions of the pro-

tein once they are reached. Disappearance of the highest used interface edge of HAPL,

[A-77 ↔ B-77], for 1KSO happens because paths previously using this edge in HAPL

have bottlenecks close to the surface and have residue-residue interaction potentials

lower than that of [A-77 ↔ B-77]. Also the percent usage of interface edge [A-5 ↔

B-41] of 1KSO, which is neither aligned nor has significant usage in terms of appear-

ance , but reside at the same secondary structures as [A-3 ↔ B-39] of 1B4C and [A-4

↔ B-38] of 1BT6 have higher percent usage in SAPL. This kind of SAPL data signi-

fies how bottlenecks orient or control the information paths within the protein structure.

Thus, a close examination of these protein pairs shows that for some proteins, edges that

are structurally positioned along the interface are used for cross-talk between the two

chains. The three residue pairs that appear between the fourth α-helices are examples

of such cases. These appear with high usage percentage in both HAPL and SAPL.

However, there are other residue pairs that emerge in alternative locations. Such shifts

in positioning is due to the lowering in the overall energy cost during cross-talk. The

structure directs the communication along longer paths in exchange of lower barrier-

crossing energies.
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4 Biased Random Walks on Residue Networks

Residue network paths; that we have been examining; are based on protein structure

data derived from PDB. All methodologies we utilize stem from adjacency matrices cal-

culated for the proteins and residue interaction potentials (see Chapter 2). Thus, these

approaches are all global approaches and can be derived once related data are available.

In principle, most information traveling on a network has access to ‘local’knowledge;

i.e the identities of the direct neighbors. In addition, ‘global’knowledge may also be

available, such as the location of the final destination. The later scenario is particularly

plausible if there is a gradient towards the destination node.

In this chapter we systematically investigate how local structure affects information

sharing on residue networks and how this information determines paths between dis-

tantly located residues. We therefore begin by a random walk procedure where all

neighbors are treated equally. On this model, we then superpose modified probability

distributions on neighbors using local potentials (TD or MJ) and directionality of the

target node. We analyze the relative contribution of each factor by monitoring how

close the procedure mimics the calculated HAPL, WAPL and SAPL.

4.1 Random walks

Our first approach is to perform random walks on the protein structure with the

following criteria:

1. Generate a random number between zero and one.

2. Assign the k nearest neighbors in order of appearance in the adjacency matrix for

the selected node.

3. Generate intervals of size 1
k

for each nearest neighbor by normalizing with the

total number of neighboring residues.
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4. Select the appropriate node to move to, based on the generated random number.

5. Repeat the above procedure for the newly arrived node until the destination node

is reached.

This kind of random walks with no self avoidance result in a distribution of paths each

with number of steps varying between HAPL, which is very seldom, to thousands. This

is evidently not suitable for effective information transfer mechanism within proteins.

It is also known that the number of nodes crossed during a random walk is propor-

tional to the number of neighbors [7]. We have verified that this limit is reached in

our numerical results. In Figure 4.1 we show how this procedure runs for a selected node.

Figure 4.1: An example of random walk by simple projection next step selection. Each
link has equal selection probability of 0.25

4.2 Simple Projections

A more complicated approach is to set a destination node as an anchor and orient each

step according to the relative positioning of this node with the current location. To

achieve this, we used the the cosine of the angle formed between two vectors ~rij and ~rik.

These vectors are reconstructed at every step. The criteria for simple projection also

starts with random number generation, but probabilities of selecting the next steps are
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derived from Boltzmann distribution ;

P (j) =
e−Ej/kBT∑
i=1,k e

−Ei/kBT
(5)

where the summation runs over the neighbors of nj, kB is the Boltzmann constant, T

is a characteristic temperature parameter that affects the efficiency, Ej is the energy

assigned to the link between ni and its neighbor nj and P (j) is the probability assigned

to that link. We consider Ej as the cosine of angle between the vector rij and the

vector rik and assign kBT as unity. Thus, the nodes closer in space to the destination

node have higher probabilities owing to the exponential dependence of the Boltzmann

distribution. In Figure 4.2, a path from the protein 1RPX with starting and destination

residues (ni = 1) and (nk = 22), respectively, are shown. The red line represents the

path between nodes 1 and 22, yellow lines represent the constructed direction vectors

connecting destination nodes and current steps in path. The different colored nodes

connected to each red node are the nearest neighbors.

This kind of approach to calculate paths by connecting distant nodes significantly re-

duces the step size. However, the global structure sometimes prohibits reaching the des-

tination node, especially for closely located node pairs and for those nodes located at the

surface of the proteins. In Figure 4.2 this phenomenon is also shown. The path between

Ser1↔ Phe22 which is Ser1↔ Arg2↔ Pro70↔ Leu71↔ Leu63↔ V al59↔ Ile55

does not converge to destination node Phe22, the latter resides on an adjacent loop to

the alpha helix secondary structure on which Val59 and Ile55 appear. This structural

restriction forms a trap where the consecutive moves are stuck in a region and the

destination node is never reached. In our calculations, we omit such trapped pathways

which constitute 42 % of all paths.
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Figure 4.2: Path in 1RPX starting residue ni=1 , ending residue nk=55 with destination
residue 22 generated by simple projection

4.3 Interaction potentials (TD-MJ)

We also studied residue-residue interaction potentials to achieve global destinations

from local properties only. A similar procedure to simple projections in section 4.2 is

followed, but here we use interaction potentials of TD or MJ as explained in section

2.1 as the energy assigned to each edge [1, 2]. Resulting paths of this approach are

also shorter than average random walks in terms of the number of steps but, since no

directionality is taken into account, path size is strictly determined by residue types at

the spatial position. Traps within the paths are also observed in 64 . An important note

about potentials is, there is no observable difference in the overall results obtained by

TD or MJ thus, we present TD potentials in all the calculations, following our previous

work.
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Node Interaction Potential (kBT ) Probability
Phe6 0.14 0.2208
Lys8 0.18 0.2121
Ser9 -0.13 0.2892

Asp10 -0.09 0.2779

Table 4.1: An example of random walk next step selection by simple projection

4.4 Simple Projection + Interaction potentials

We lastly studied paths derived by both simple projection and interaction potentials.

In this case the probability assigned to a link is formulated as;

Ei = A ∗ (EProjection) +B ∗ (EPotential) (6)

where A and B, varying between zero and five (0 ≤ A,B ≤ 5), are the constants to be

optimized. In this formulation A∗(EProjection)i represents the global knowledge whereas

B ∗ (EPotential)i represents the local knowledge and A and B are amplification factors to

be determined to mimic HAPL, WAPL and SAPL. We used (EProjection)i as the cosine

of the angle between the vector rij and vector rik and TD residue-residue interaction

potentials as (EPotential)i. as both described in Section 4.2 and 4.3. Note that we get

similar results with MJ potentials.

We run the algorithm for a data set of 76 proteins having folds α , β, α/β and α + β.

The proteins used and the corresponding fold types with C and L values are listed

in Appendix D. For each protein, L matrices (equation 4) are calculated for different

values of A both in the range of 0.0 and 1.0 with increment 0.05. These L matrices are

then compared to those L matrices calculated by HAPL, WAPL and SAPL.

In order to determine the extent of similarity between the actual and constructed L ma-

trices, we compare their eigenvalue structures. The eigenvalue distribution of a sample

protein (1RPX) is given in Figure 4.3 for HAPL, WAPL and SAPL. We find that the

eigenvalue distributions of HAPL and WAPL are very similar, each having a distantly
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located eigenvalue at 1173.2 and 1135.7 and the next two at 9.00 and 8.00 for HAPL and

11.6 and 11.3 for WAPL. For SAPL, the largest eigenvalue is more separate, appearing

at 1355.1, and the following eigenvalues are at 59.2 and 31.0. Thus, the eigenvalue

structure of SAPL is quite distinct from that of HAPL, whereas that of WAPL is very

similar to the latter.

For each distribution, the three highest valued eigenvalues are selected and the overlap

of their eigenvectors with those of the L matrices, constructed for each A and B combi-

nation, are calculated. We set different similarity scores for each APL as 0.8 for HAPL,

0.7 for WAPL and 0.3 for SAPL and distribution of A and B combinations having dot

product higher values then these previously set similarity scores are calculated. For

cases where dot products does not exceed predefined set values, top three dot products

and their A and B combination are taken into consideration. Results are presented in

Figure 4.4.a, 4.4.b, 4.4.c for HAPL, WAPL and SAPL respectively. Distribution of A

and B indicates that when A = 3.75 and B = 4.75 the proposed algorithm best fits

SAPL when path lengths are taken into consideration. Values of A and B fitting HAPL

and WAPL calculated to be A = 5.0 and B = 1.0 ± 0.5 for HAPL and A = 4.5 and

B = 1.0± 0.5 for WAPL.

The difference between HAPL, WAPL and SAPL signifies the effect of residue-residue

interaction potentials on determining path length, hence the paths connecting two dis-

tantly separated residues. Although WAPL uses residue-residue interaction potentials,

its characteristics is almost same as HAPL in terms of the number of steps. Since both

methodologies show good agreement with simple projection + interaction potentials

approach for A = 5.0 and B = 1.0 values, these two methodologies show almost fully

projection characteristics, thats is paths are forced to follow certain direction between

two nodes.
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Figure 4.3: Eigenvalue distribution of L matrices of HAPL, WAPL and SAPL

On the other hand the observed A and B values for SAPL data fitting signifies that

even directionality is taken into account by higher percentage there exists an effect

of residue-residue interaction potentials on paths and this effect appears especially if

residue-residue interaction potentials are enhanced with relatively high B values.
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(a) Significant Similarity Scores for HAPL (b) Significant Similarity Scores for WAPL

(c) Significant Similarity Scores for SAPL

Figure 4.4: Frequency Distribution of Significant Similarity Scores for Various A and

B values.
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5 Conclusions and Future Work

In this study we have systematically investigated paths along residue networks to un-

cover structurally and functionally important residues. The paths that are constructed

according to three different criteria: (i) HAPL connect a pair of nodes in the shortest

number of edges; (ii)WAPL are the ones that minimize the total cost of navigating

between a pair of nodes; (iii) SAPL minimize the most costly single link occurring on

all paths connecting the pair of nodes. For (ii) and (iii) the cost of navigation between

directly connected nodes is taken as the residue interaction potentials.

We find that weak paths converge to the homogeneous paths due to the special distri-

bution of contact energies that have evolved along the protein structure. There is a

hierarchical distribution of link weights in the protein whereby the mainly hydropho-

bic, low cost contacts are located in the core of the structure and high energy contacts

progressively occur towards the surface.

By studying two families of proteins, TIM barrels for single chain systems and Ca-

binding proteins for interacting pairs of chains, we find that key locations in the struc-

ture may be located by scrutinizing the strong paths. For single chains, bottleneck edges

determine evolutionary important hot regions that are located on paths connecting the

active site to distantly located secondary structural units. For interacting proteins,

interface edges that are most frequently used in strong paths while navigating between

chains are found to be affected by the identity of residues that are far from the interface.

To determine the factors that derive the usage of strong versus weak paths in the struc-

ture, we have used a biased random walk scheme where the probability of edge selection

is based on local and/or global knowledge of structure. We find that a combined local

contact/global destination approach may be optimized to generate the strong paths,

while solely local knowledge is enough to mimic paths.
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Allosteric communication in proteins necessitates gradients for information flows in the

structure. It is then plausible to assume that strong paths appear due to the competi-

tion between local and global knowledge at a given node in the structure. Homogeneous

or weak paths are not likely to point to evolutionary/functionally important residues

along the structure, since they are only the product of the general network structure.

In our study with protein we continuously seek characteristic features of paths between

two nodes. These features in the case of a single chain are, start and destined nodes,

bottleneck edge or edges and paths passing through these features with minimum num-

ber of steps. We also seek interface edges for protein complexes. We used PDB codes

of proteins to construct residue network which require full knowledge of the protein

structure. We can apply same other algorithms to achieve same goals. This algorithm

may include not only nearest neighbors but also second or even third nearest neighbors

and their cost of navigation to archive same pathways as SAPL.

As future work, it is of interest to find alternative ”smarter” approaches that combine lo-

cal and global features of the network to efficiently locate distantly located destinations

on the network. One candidate is the Battleship algorithm where the aim is to locate

occupied locations by ships of different classes on a confined surface with the minimum

number of tries. These use the global features of the system. The maze algorithms,

on the other hand, are based on traversing graphs with obstacles, and operate on local

information. In the protein case the problem turns into finding the same features with

less computational time or even with less knowledge about global structure. Maze and

battleship algorithms combined will not only try to find these structural features, but

will also target finding paths connecting these features.
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A The residue interaction potentials used in this work

Cys Met Phe Ile Leu Val Trp Tyr Ala Gly Thr Ser Gln Asn Glu Asp His Arg Lys Pro
Cys -1.79 -1.23 -0.98 -0.48 -0.69 -0.94 -0.3 -0.96 -0.3 -0.42 -0.38 -0.2 -0.49 -0.32 0.04 0.55 -0.82 -0.4 0 0.07
Met -1.23 0.36 -1.03 -0.41 -0.31 -0.94 -0.07 -1.1 0.05 0 0.06 -0.47 -0.54 0.31 0.02 1.07 -0.35 -0.43 0.55 -0.25
Phe -0.98 -1.03 -0.61 -0.66 -1.02 -0.78 -0.89 -0.82 -0.05 0.21 -0.19 0.14 0.1 -0.02 0.19 0.2 -0.75 -0.22 -0.17 -0.43
Ile -0.4 -0.41 -0.66 -0.71 -1.04 -0.98 -0.89 -0.87 -0.64 0.4 -0.29 -0.13 -0.39 0.39 -0.2 0.04 -0.52 -0.08 -0.26 0.25
Leu -0.69 -0.31 -1.02 -1.04 -1.14 -1.03 -0.97 -0.6 -0.57 -0.08 -0.39 -0.07 -0.13 -0.1 -0.05 0.5 -0.36 -0.1 0.1 0.09
Val -0.94 -0.94 -0.78 -0.98 -1.03 -1.15 -0.6 -0.7 -0.6 -0.2 0.06 -0.31 -0.09 -0.24 -0.02 0.25 -0.35 -0.48 -0.08 -0.08
Trp -0.3 -0.07 -0.89 -0.89 -0.97 -0.6 0.02 -0.99 -0.08 -0.14 0.07 -0.2 0.4 -0.68 0.32 0.24 -0.41 -0.78 -0.3 -0.44
Tyr -0.9 -1.1 -0.82 -0.87 -0.6 -0.7 -0.99 0.35 -0.37 -0.32 -0.23 0.25 -0.39 -0.74 0.22 0.11 -0.67 0.21 -0.2 -0.45
Ala -0.3 0.05 -0.05 -0.64 -0.57 -0.6 -0.08 -0.37 -0.08 -0.09 -0.22 -0.01 -0.11 -0.14 0.03 0.1 -0.15 0.07 0 0.41
Gly -0.42 0 0.21 0.4 -0.08 -0.2 -0.14 -0.32 -0.09 0.04 0.13 -0.04 0.12 -0.18 0.4 -0.06 0 -0.15 0.1 0.4
Thr -0.38 0.06 -0.19 -0.29 -0.39 0.06 0.07 -0.23 -0.22 0.13 0.26 0.05 -0.17 -0.27 0.15 -0.03 -0.27 -0.17 0.09 0.36
Ser -0.2 -0.47 0.14 -0.13 -0.07 -0.31 -0.2 0.25 -0.01 -0.04 0.05 -0.13 0.4 0.37 0.3 -0.09 -0.59 0.61 0.18 0.44
Gln -0.4 -0.54 0.1 -0.39 -0.13 -0.09 0.4 -0.39 -0.11 0.12 -0.17 0.4 -0.08 -0.05 0.62 0.46 0.05 0.62 0.04 -0.21
Asn -0.32 0.31 -0.02 0.39 -0.1 -0.24 -0.68 -0.74 -0.14 -0.18 -0.27 0.37 -0.05 -0.86 -0.25 -0.12 0.06 0.04 0.18 0.11
Glu 0.04 0.02 0.19 -0.2 -0.05 -0.02 0.32 0.22 0.03 0.4 0.15 0.3 0.62 -0.25 0.21 0.68 -0.53 -0.26 -0.09 0.33
Asp 0.5 1.07 0.2 0.04 0.5 0.25 0.24 0.11 0.1 -0.06 -0.03 -0.09 0.46 -0.12 0.68 0.6 -0.06 -0.15 -0.09 0.84
Arg -0.4 -0.43 -0.22 -0.08 -0.1 -0.48 -0.78 0.21 0.07 -0.15 -0.17 0.61 0.62 0.04 -0.26 -0.15 -0.01 0.23 0.3 -0.02
Lys 0 0.55 -0.17 -0.26 0.1 -0.08 -0.3 -0.2 0 0.1 0.09 0.18 0.04 0.18 -0.09 -0.09 0.14 0.3 1.45 0.51
Pro 0.07 -0.25 -0.43 0.25 0.09 -0.08 -0.44 -0.45 0.41 0.4 0.36 0.44 -0.21 0.11 0.33 0.84 -0.22 -0.02 0.51 0.28

Table A.1: TD residue-residue interaction potential [1]

Cys Met Phe Ile Leu Val Trp Tyr Ala Gly Thr Ser Gln Asn Glu Asp His Arg Lys Pro
Cys -5.44 -4.99 -5.8 -5.5 -5.83 -4.96 -4.95 -4.16 -3.57 -3.16 -3.11 -2.86 -2.85 -2.59 -2.27 -2.41 -3.6 -2.57 -1.95 -3.07
Met -4.99 -5.46 -6.56 -6.02 -6.41 -5.32 -5.55 -4.91 -3.94 -3.39 -3.51 -3.03 -3.3 -2.95 -2.89 -2.57 -3.98 -3.12 -2.48 -3.45
Ph -5.8 -6.56 -7.26 -6.84 -7.28 -6.29 -6.16 -5.66 -4.81 -4.13 -4.28 -4.02 -4.1 -3.75 -3.56 -3.48 -4.77 -3.98 -3.36 -4.25
Ile -5.5 -6.02 -6.84 -6.54 -7.04 -6.05 -5.78 -5.25 -4.58 -3.78 -4.03 -3.52 -3.67 -3.24 -3.27 -3.17 -4.14 -3.63 -3.01 -3.76
Leu -5.83 -6.41 -7.28 -7.04 -7.37 -6.48 -6.14 -5.67 -4.91 -4.16 -4.34 -3.92 -4.04 -3.74 -3.59 -3.4 -4.54 -4.03 -3.37 -4.2
Val -4.96 -5.32 -6.29 -6.05 -6.48 -5.52 -5.18 -4.62 -4.04 -3.38 -3.46 -3.05 -3.07 -2.83 -2.67 -2.48 -3.58 -3.07 -2.49 -3.32
Trp -4.95 -5.55 -6.16 -5.78 -6.14 -5.18 -5.06 -4.66 -3.82 -3.42 -3.22 -2.99 -3.11 -3.07 -2.99 -2.84 -3.98 -3.41 -2.69 -3.73
Tyr -4.16 -4.91 -5.66 -5.25 -5.67 -4.62 -4.66 -4.17 -3.36 -3.01 -3.01 -2.78 -2.97 -2.76 -2.79 -2.76 -3.52 -3.16 -2.6 -3.19
Ala -3.57 -3.94 -4.81 -4.58 -4.91 -4.04 -3.82 -3.36 -2.72 -2.31 -2.32 -2.01 -1.89 -1.84 -1.51 -1.7 -2.41 -1.83 -1.31 -2.03
Gly -3.16 -3.39 -4.13 -3.78 -4.16 -3.38 -3.42 -3.01 -2.31 -2.24 -2.08 -1.82 -1.66 -1.74 -1.22 -1.59 -2.15 -1.72 -1.15 -1.87
Thr -3.11 -3.51 -4.28 -4.03 -4.34 -3.46 -3.22 -3.01 -2.32 -2.08 -2.12 -1.96 -1.9 -1.88 -1.74 -1.8 -2.42 -1.9 -1.31 -1.9
Ser -2.86 -3.03 -4.02 -3.52 -3.92 -3.05 -2.99 -2.78 -2.01 -1.82 -1.96 -1.67 -1.49 -1.58 -1.48 -1.63 -2.11 -1.62 -1.05 -1.57
Gln -2.85 -3.3 -4.1 -3.67 -4.04 -3.07 -3.11 -2.97 -1.89 -1.66 -1.9 -1.49 -1.54 -1.71 -1.42 -1.46 -1.98 -1.8 -1.29 -1.73
Asn -2.59 -2.95 -3.75 -3.24 -3.74 -2.83 -3.07 -2.76 -1.84 -1.74 -1.88 -1.58 -1.71 -1.68 -1.51 -1.68 -2.08 -1.64 -1.21 -1.53
Glu -2.27 -2.89 -3.56 -3.27 -3.59 -2.67 -2.99 -2.79 -1.51 -1.22 -1.74 -1.48 -1.42 -1.51 -0.91 -1.02 -2.15 -2.27 -1.8 -1.26
Asp -2.41 -2.57 -3.48 -3.17 -3.4 -2.48 -2.84 -2.76 -1.7 -1.59 -1.8 -1.63 -1.46 -1.68 -1.02 -1.21 -2.32 -2.29 -1.68 -1.33
His -3.6 -3.98 -4.77 -4.14 -4.54 -3.58 -3.98 -3.52 -2.41 -2.15 -2.42 -2.11 -1.98 -2.08 -2.15 -2.32 -3.05 -2.16 -1.35 -2.25
Arg -2.57 -3.12 -3.98 -3.63 -4.03 -3.07 -3.41 -3.16 -1.83 -1.72 -1.9 -1.62 -1.8 -1.64 -2.27 -2.29 -2.16 -1.55 -0.59 -1.7
Lys -1.95 -2.48 -3.36 -3.01 -3.37 -2.49 -2.69 -2.6 -1.31 -1.15 -1.31 -1.05 -1.29 -1.21 -1.8 -1.68 -1.35 -0.59 -0.12 -0.97
Pro -3.07 -3.45 -4.25 -3.76 -4.2 -3.32 -3.73 -3.19 -2.03 -1.87 -1.9 -1.57 -1.73 1.53 -1.26 -1.33 -2.25 -1.7 -0.97 -1.75

Table A.2: MJ residue-residue interaction potential [2]
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B Structural alignment between selected TIM Barrel proteins and other mem-

bers of the TIM barrel family.

Figure B.1: Flowdiagram of procedure followed for TIM barrels
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Super Family PDB Code Aligment Size RMSD #ofatoms Match Ratio

Ribulose phosphate binding TIM barrels

1PII ———— ———– 452
1igs 222 1.22 247 0.90
1nsj 179 1.26 205 0.87
1dv7 149 1.68 212 0.70
1dqx 144 1.92 267 0.54
1dbt 142 1.95 237 0.60
1ubs 147 1.72 257 0.57
1rpx 161 1.71 230 0.70

TIM barrel glycosyl hydrolases

1cyg 132 1.96 257 0.51
1ciu 133 1.97 452 0.29
1cwy 92 1.76 452 0.20
1vjs 131 2.00 452 0.29

1aqm 119 1.92 452 0.26
1bag 95 1.84 425 0.22

1dhkA 111 2.05 452 0.25
1smd 130 1.93 452 0.29
1jae 120 1.80 452 0.27
2aaa 113 1.93 452 0.25
7taa 105 1.89 452 0.23
1ava 128 1.95 452 0.28
1uok 119 1.95 452 0.26
2amg 127 1.91 415 0.31
1bf2 114 2.13 452 0.25
1sma 131 1.95 452 0.29
1bvz 140 1.95 452 0.31
1byb 141 1.97 452 0.31
1b1y 142 1.91 452 0.31
1b9z 111 1.98 452 0.25
1qba 140 1.88 452 0.31
1cbg 111 2.00 452 0.25
1bgg 140 1.97 452 0.31
1gow 109 2.09 452 0.24
1qvb 116 1.95 452 0.26
1pbg 52 2.17 452 0.12
2myr 106 2.10 452 0.23
1ceo 111 1.78 332 0.33
1edg 105 2.02 380 0.28

1eceA 118 2.01 358 0.33
7a3hA 116 2.04 300 0.39
1egzA 125 2.10 291 0.43
1cz1A 96 2.02 394 0.24
1ex1A 92 1.89 452 0.20
1bqcA 119 2.06 302 0.39
1xyzA 121 2.05 320 0.38
1clxA 123 1.92 345 0.36
1bg4 119 1.98 302 0.39
1gok 130 2.08 301 0.43
1exp 127 2.04 312 0.41
1bglA 120 2.02 452 0.27
1bhgA 126 2.10 452 0.28
1ghsA 105 2.08 306 0.34
1aq0A 110 2.09 306 0.36

Table B.1: Structural Alignment of 1PII inter and intra superfamilies
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Super Family PDB Code Aligment Size RMSD #ofatoms Match Ratio

Ribulose phosphate binding TIM barrels

1RPX ———— ———– 230
1igs 163 1.58 230 0.71
1nsj 148 1.87 205 0.72
1dv7 149 1.79 212 0.70
1dqx 155 1.78 230 0.67
1dbt 153 1.95 230 0.67
1ubs 142 1.92 230 0.62
1pii 161 1.71 230 0.70

TIM barrel glycosyl hydrolases

1cyg 114 2.10 230 0.50
1ciu 108 2.18 230 0.47
1cwy 124 1.79 230 0.54
1vjs 109 1.91 230 0.47

1aqm 112 1.96 230 0.49
1bag 112 1.75 230 0.49

1dhkA 133 2.10 230 0.58
1smd 110 1.99 230 0.48
1jae 109 2.06 230 0.47
2aaa 126 2.06 230 0.55
7taa 123 2.06 230 0.53
1ava 130 2.08 230 0.57
1uok 103 1.90 230 0.45
2amg 108 2.13 230 0.47
1bf2 115 2.03 230 0.50
1sma 142 2.07 230 0.62
1bvz 143 2.17 230 0.62
1byb 117 2.03 230 0.51
1b1y 112 1.99 230 0.49
1b9z 108 1.84 230 0.47
1qba 130 2.01 230 0.57
1cbg 117 1.98 230 0.51
1bgg 116 1.96 230 0.50
1gow 114 1.97 230 0.50
1qvb 124 2.02 230 0.54
1pbg 119 1.95 230 0.52
2myr 118 2.02 230 0.51
1ceo 138 1.79 230 0.60
1edg 108 1.86 230 0.47

1eceA 107 1.93 230 0.47
7a3hA 107 1.99 230 0.47
1egzA 123 2.10 230 0.53
1cz1A 111 1.85 230 0.48
1ex1A 72 2.04 230 0.31
1bqcA 114 2.01 230 0.50
1xyzA 105 1.99 230 0.46
1clxA 116 2.03 230 0.50
1bg4 104 1.96 230 0.45
1gok 100 2.20 230 0.43
1exp 110 1.98 230 0.48
1bglA 155 2.11 230 0.67
1bhgA 123 2.08 230 0.53
1ghsA 133 2.17 230 0.58
1aq0A 131 2.15 230 0.57

Table B.2: Structural Alignment of 1RPX inter and intra superfamilies
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C Data for the interacting Calcium binding proteins

Figure C.1: Flowdiagram of procedure followed for Ca-Binding Protein Data set
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Figure C.2: Structurally aligned interface edges for HAPL (upper diagonal) and SAPL
(lower diagonal). Outer axis represents edges calculated by HAPL, inner axis represents
edges calculated by SAPL
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Strong APL Homogeneous APL

Interface Edge % Usage Interface Edge % Usage

1B4C

A70-B82 14.6 A70-B82 13.2

A82-B70 11.7 A3-B39 8.7

A78-B74 10.6 A78-A71 8.1

A3 -B39 10.0 A39-B3 8.1

A39-B3 9.9 A82-B70 6.8

A11-B87 6.2 A78-B74 6.1

1BT6

A76-B72 12.5 A4 -B38 8.0

A4 -B38 11.0 A38-B4 8.0

A38-B4 10.7 A4 -A37 7.8

A72-B76 8.5 A80-B68 5.0

A80-B68 7.8 A68-B80 3.8

A12-B82 7.3 A76-B72 3.8

1KSO

A80-B72 9.7 A77-B77 10.5

A72-B83 8.7 A80-B72 7.0

A76-B76 6.7 A72-A83 6.7

A73-B77 6.3 A27-B93 5.3

A27-B93 5.6 A76-B76 5.1

A76-B79 4.6 A76-B79 4.1

1A03

A76-B72 12.1 A4-B38 8.0

A4 -B38 11.0 A38-B4 8.0

A38-B4 10.7 A4-A37 7.8

A72-B76 8.4 A80-B68 5.0

A80-B68 7.7 A68-B80 3.8

A12-B82 7.3 A76-B72 3.8

1E8A

A78-B74 13.4 A74-B78 11.7

A74-B78 9.2 A78-B74 8.4

A81-B74 7.7 A81-A74 6.4

A84-B11 7.1 A77-B81 5.7

A3 -B39 6.6 A85-B70 5.7

A77-B81 6.5 A74-B81 5.2

1YUT

A77-B81 12.7 A77-B81 11.9

A81-B74 6.5 A81-B74 7.8

A73-B88 5.8 A85-A74 6.3

A9 -B16 5.2 A73-B85 4.1

A9 -B46 4.9 A13-B80 3.8

A87-B3 4.6 A74-B85 3.8

1MR8

A72-B76 12.5 A72-B76 12.1

A76-B72 9.9 A76-B72 10.9

A9 -B78 6.6 A9 -A78 5.8

A5 -B42 6.6 A68-B83 4.9

A78-B9 6.2 A5 -B42 4.9

A5 -B41 8.3 A83-B68 4.6

1NSH

A77-B81 8.3 A74-B82 6.9

A6 -B73 7.2 A82-B74 6.1

A77-B77 6.6 A28-A94 5.4

A43-B6 5.9 A10-B80 4.4

A28-B94 5.7 A77-B77 4.2

A81-B77 5.4 A77-B81 3.8

1PSR

A82-B75 9.4 A75-B79 15.5

A75-B79 9.0 A79-B75 13.9

A75-B82 8.7 A71-A86 5.5

A5 -B39 6.3 A82-B12 5.1

A8 -B8 5.9 A9 -B81 4.6

A86-B71 5.6 A13-B85 4.4

Table C.1: Percent usage of top six interface edges in SAPL and HAPL
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D Data set of proteins with different fold types and their network parameters

Pr Length Type C L Pr Length Type C L

1aep 153 α 0.41 4.24 1amp 291 α/β 0.4 4.8

1ash 146 α 0.41 4.3 1chd 198 α/β 0.41 4.19

1bcf 158 α 0.42 4.46 1cnv 283 α/β 0.4 5.13

1bip 122 α 0.43 4.43 1cse 63 α/β 0.41 3.17

1bmt 246 α 0.43 5.32 1ctt 294 α/β 0.43 5.25

1bp2 123 α 0.43 4.11 1cus 197 α/β 0.43 4.26

1ccr 111 α 0.41 3.99 1cyd 242 α/β 0.41 4.78

1cmb 104 α 0.4 4.38 1dea 266 α/β 0.4 5.02

1dsb 188 α 0.42 4.89 1dhr 236 α/β 0.39 4.81

1etc 106 α 0.44 3.99 1dih 272 α/β 0.42 6.04

1fc2 206 α 0.42 6.13 1din 233 α/β 0.41 4.63

1hrc 104 α 0.43 3.77 1dpb 243 α/β 0.41 5.94

1hrz 73 α 0.4 4.52 1dyr 205 α/β 0.4 4.91

1hul 108 α 0.42 5.35 1ecp 237 α/β 0.41 4.68

1irl 133 α 0.37 4.4 1ede 310 α/β 0.37 5.16

1lfb 77 α 0.39 3.58 1eny 268 α/β 0.42 5.03

1lis 131 α 0.38 4.52 1eri 261 α/β 0.41 5.64

1lki 172 α 0.37 4.54 1erw 105 α/β 0.4 3.52

1lpe 144 α 0.41 4.61 1esc 302 α/β 0.42 5.11

1mse 105 α 0.41 4.39 1hjr 158 α/β 0.4 4.33

2sas 185 α 0.41 4.93 1hsl 238 α/β 0.39 5.04

1abr 267 β 0.4 5.83 1lau 228 α/β 0.37 4.89

1arb 263 β 0.43 4.65 1nar 289 α/β 0.39 5.19

1bpl 179 β 0.41 5.71 3chy 128 α/β 0.41 3.83

1bw4 125 β 0.43 4.05 3dfr 162 α/β 0.4 4.5

1cau 184 β 0.4 5.5 5p21 166 α/β 0.42 4.17

1cfb 205 β 0.42 6.54 153l 185 α + β 0.42 4.29

1cid 177 β 0.4 5.13 1aps 98 α + β 0.4 3.56

1ctm 250 β 0.42 6.3 1atl 200 α + β 0.41 4.53

1cyx 158 β 0.39 4.24 1bri 107 α + β 0.43 3.93

1dlh 180 β 0.43 5.34 1cew 108 α + β 0.43 4.07

1dup 136 β 0.44 4.75 1chk 238 α + β 0.41 5.37

1dyn 113 β 0.44 3.86 1cks 78 α + β 0.34 8.13

1exg 110 β 0.48 3.8 1cns 243 α + β 0.42 5.04

1fnf 368 β 0.41 10.37 1com 118 α + β 0.41 3.88

1gpr 158 β 0.42 4.1 1cyu 98 α + β 0.46 3.86

1hbq 176 β 0.4 4.74 1doi 128 α + β 0.41 3.84

1hce 118 β 0.44 3.88 1esl 157 α + β 0.42 4.95

1hng 175 β 0.41 6.08 1fim 102 α + β 0.42 3.78

1hvk 99 β 0.37 3.83 1huc 205 α + β 0.44 5.39

1knb 186 β 0.42 4.6 1ikl 69 α + β 0.44 3.68

1len 181 β 0.43 5.4 1mol 94 α + β 0.44 3.75

1lxa 262 β 0.44 5.66 1msc 129 α + β 0.44 6.17

2ncm 99 β 0.44 3.84 1mut 129 α + β 0.42 4.27

2prd 174 β 0.43 4.38 2aak 150 α + β 0.39 4.46

2stv 184 β 0.42 4.86 2phy 125 α + β 0.41 3.81

4fgf 124 β 0.44 3.75 7rsa 124 α + β 0.4 4.12

9pap 212 α + β 0.42 4.54

9rnt 104 α + β 0.42 3.68

Table D.1: Data set of 76 proteins having folds α , β, α/β and α + β, their clustering

coefficients (C) and shortest paths lengths (L) computed at a cut of distance of 6.7 Å.
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Rank Bottleneck Edge # of occurance TD potential % Usage Rank Bottleneck Edge # of occurance TD potential % Usage
1 194 ↔ 228 666 0.21 2.17 26 67 ↔ 68 205 -0.03 0.67
2 30 ↔ 33 594 -0.09 1.94 27 81 ↔ 110 205 -0.03 0.67
3 10 ↔ 12 542 0.04 1.77 28 157 ↔ 187 203 -0.04 0.66
4 27 ↔ 30 397 -0.09 1.29 29 116 ↔ 117 202 -0.07 0.66
5 16 ↔ 19 363 -0.13 1.18 30 50 ↔ 51 201 -0.08 0.66
6 75 ↔ 97 354 -1.03 1.15 31 84 ↔ 85 201 -0.08 0.66
7 40 ↔ 41 306 -0.52 1 32 124 ↔ 147 201 -0.94 0.66
8 165 ↔ 168 286 -0.09 0.94 33 14 ↔ 38 198 -0.09 0.65
9 73 ↔ 75 261.5 -1.03 0.85 34 14 ↔ 72 198 -0.09 0.65
10 106 ↔ 107 255 -0.36 0.83 35 16 ↔ 43 198 -0.09 0.65
11 146 ↔ 184 239 -0.98 0.78 36 24 ↔ 27 198 -0.09 0.65
12 81 ↔ 82 226 0.46 0.74 37 118 ↔ 119 198 -0.09 0.65
13 213 ↔ 214 225 0.41 0.73 38 120 ↔ 142 198 -0.09 0.65
14 101 ↔ 102 224 0.4 0.73 39 148 ↔ 185 198 -0.09 0.65
15 190 ↔ 223 223 0.25 0.73 40 149 ↔ 156 198 -0.09 0.65
16 22 ↔ 23 219 0.14 0.71 41 164 ↔ 168 198 -0.09 0.65
17 154 ↔ 156 217 0.12 0.71 42 212 ↔ 213 198 -0.09 0.65
18 155 ↔ 156 217 0.12 0.71 43 218 ↔ 221 198 -0.09 0.65
19 139 ↔ 140 216 0.1 0.7 44 219 ↔ 222 198 -0.09 0.65
20 189 ↔ 191 216 0.1 0.7 45 29 ↔ 32 189 -0.98 0.62
21 130 ↔ 131 213 0.09 0.69 46 19 ↔ 208 181 -0.13 0.59
22 225 ↔ 226 212 0.05 0.69 47 25 ↔ 28 181 -0.13 0.59
23 64 ↔ 65 208 -0.02 0.68 48 102 ↔ 103 181 -0.13 0.59
24 78 ↔ 79 208 -0.02 0.68 49 159 ↔ 161 181 -0.13 0.59
25 150 ↔ 153 208 -0.02 0.68 50 20 ↔ 21 175 -0.14 0.57

Table D.2: Bottleneck data for protein 1RPX (top 50 of 617 given)
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