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ABSTRACT 
 
 

Multi-functional miniature RF devices play an important role in meeting challenging 

future demands within the modern communication industry. This in turn creates the 

need to design microwave dielectric materials with superior electrical and mechanical 

properties such as dielectric tunability, miniaturization, flexibility, and low loss. 

Although many ceramic-polymer composite substrates are presently available for RF 

applications, no simple manufacturing process exists today capable of producing 

composite substrates satisfying both high dielectric constant and low loss for 

miniaturization and the desired mechanical property such as flexibility for conformal 

applications. In order to compromise between high dielectric constant and flexibility, 

ceramics (MCT powders) and organic binders (polymer solution) are mixed and 

fabricated as films through a process called tape casting in this thesis. Prior to 

optimizing the process, several studies are carried out: MCT spray dried powders with 

k=70 and k=20 were analyzed as pressed and produced into a tape cast film. Dielectric 

behaviors of the samples are measured by the Agilent 16451B impedance analyzer, their 

microscopic behavior is examined by scanning electron microscopy. Results 

demonstrate that a dielectric constant 21 and 9, respectively can be achieved for non-

sintered films that are deformable. Fabrication of spatially variable conformal substrates 

is investigated next where mosaic structures are fabricated using tape cast films and 

three different methods. In order to demonstrate the performance of the resulting 

substrates, these substrates are used to construct patch antennas and their return loss 

performance is measured with an Agilent Network Analyzer. For possible future design 

studies, antennas are also simulated using COMSOL Multiphysics 3.5a software. 
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ÖZET 
 

Çok fonksiyonlu minyatür RF cihazlar, modern iletişim endüstrisinden  gelecek talepleri 

karşılamada önemli bir rol oynar. Bu da, dielektrik özelliklerinin kontrol edilebilirliği, 

minyatürleştirme, esneklik ve düşük dielektrik kayıp gibi üstün elektrik ve mekanik 

özelliklere sahip mikrodalga dielektrik malzemelerinin tasarımını gerektirir. Her ne 

kadar RF uygulamalar için birçok seramik-polimer kompozit tabakalar halihazırda 

bulunsa da, günümüzde basit üretim süreciyle üretilmiş bükülebilirlik gerektiren 

uygulamalarda kullanılabilecek minyatürleştirme için gerekli olan hem yüksek 

dielektrik sabiti ve düşük kayıp hem de esneklik gibi istenen mekanik özelliklerin 

hepsini birden tatmin edebilen seramik-polimer kompozit malzeme tabakaları mevcut 

değildir. Bu çalışmada istenen yüksek dielektrik sabit ve esneklik özelliklerinin ikisini 

birden elde etmek için, seramik (MCT tozlar) ve organik bağlayıcı (polimer çözeltisi) 

karıştırılarak şerit döküm denilen yöntemle şerit filmler halinde üretilirler. Öncesinde 

süreci optimize etmek için, çeşitli çalışmalar yürütülmüştür: MCT70, MCT20 tozları 

hem disk hem de şerit film olarak üretilip dielektrik özellikleri incelenmiştir. Örneklerin 

dielektrik davranışları Agilent 16451B empedans analizörü ile, mikroskobik 

davranışları ise taramalı elektron mikroskobu kullanılarak karakterize edilmiştir. Elde 

edilen sonuçlara göre MCT70 tozundan hazırlanan kompozit filmlerin dielektrik sabiti 

21, MCT20 tozundan hazırlanan kompozit filmlerin ise dielektrik sabiti 9 olarak 

ölçülmüştür. Diğer bir adımda ise iki boyutta değişken dielektrik özelliklere sahip 

bükülebilir malzeme tabakaların imalatı incelenmiştir. Mozaik yapısı denilen bu yapılar 
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üç yöntem kullanılarak üretilmiş ve bu mozaik tabakalar daha sonra mikroşerit anten 

yapımında kullanılmıştır. Anten performansları Agilent network analizörü kullanılarak 

ölçülmüştür. Olası tasarım çalışmalarına destek vermek ve ölçülen performansları 

karşılaştırmak amacı ile anten yapıları COMSOL Multiphysics 3.5a yazılımı 

kullanılarak simüle edilmiştir.  

 



ix 
 

 

TABLE OF CONTENTS 
ABSTRACT................................................................................................................ vi 

ÖZET......................................................................................................................... vii 

TABLE OF CONTENTS ............................................................................................ ix 

LIST OF FIGURES..................................................................................................... xi 

LIST OF TABLES .....................................................................................................xvi 

1. INTRODUCTION..................................................................................................1 

1.1. Motivation.......................................................................................................1 

1.2. Literature Review............................................................................................2 

1.3. Goals and Contributions of the Thesis .............................................................5 

2. BACKGROUND ...................................................................................................7 

2.1. Background on Basic Dielectric Phenomena in Materials ................................7 

2.1.1. Dielectric constant vs. capacitance ...........................................................7 

2.1.2. Dielectric constant in the perspective of field vectors and polarization .....9 

2.1.3. Frequency dependency of the dielectric constant ....................................11 

2.2. Antenna Performance: Miniaturization and Bandwidth..................................13 

2.3. Magnesium Calcium Titanate (MCT) Dielectric Ceramics ............................14 

3. EXPERIMENTAL STUDY .................................................................................16 

3.1. Ceramic Raw Material Characterization ........................................................17 

3.2. Fabrication of Tape Cast Films via Tape Casting Process ..............................18 

3.3. Characterization of Tape Cast Films..............................................................20 

3.4. Fabrication of Mosaic Film Substrates...........................................................20 

3.5. Antenna Fabrication via 2D and 3D Spatially Variable Substrates using Tape 

Cast Films................................................................................................................24 

4. CHARACTERIZATION RESULTS ....................................................................28 

4.1. Analysis of Dielectric Ceramic Properties .....................................................28 

4.2. Analysis of Tape Cast Polymer Properties.....................................................32 



x 
 

4.3. Analysis of Tape Cast Ceramic-Polymer Film Properties ..............................42 

4.4. Microstructural Analysis of Ceramic Powders and Tape Cast Films ..............47 

4.5. Antenna Performance Measurements.............................................................50 

4.6. Antenna Performance Simulations.................................................................62 

5. CONCLUSIONS & FUTURE WORK .................................................................68 

6. BIBLIOGRAPHY................................................................................................70 

7. APPENDIX..........................................................................................................75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

 

 
LIST OF FIGURES 

 
Figure 2.1 A parallel-plate capacitor when a vacuum is present .....................................8 

Figure 2.2 A parallel-plate capacitor when a dielectric material is present .....................9 

Figure 2.3 Schematic representation of an electric dipole generated by two electric 

charges (of magnitude q) separated by the distance d; the associated polarization vector 

is depicted as P. .............................................................................................................9 

Figure 2.4 (a) Imposed forces (torque) acting on a dipole by an electric field. (b) Final 

dipole alignment with the field ....................................................................................10 

Figure 2.5 Dipole orientations for (a) one polarity of an alternating electric field and (b) 

for the reversed polarity...............................................................................................11 

Figure 2.6 Variation of dielectric constant with frequency of an alternating electric field. 

Electronic, ionic, and orientation polarization contributions to the dielectric constant are 

indicated......................................................................................................................12 

Figure 3.1 Holes drilling process within the substrate using CNC................................17 

Figure 3.2 Ball milling process....................................................................................19 

Figure 3.3 Tape casting process...................................................................................19 

Figure 3.4 Multiple tape cast films...............................................................................19 

Figure 3.5 Resulting substrates after pressing ..............................................................19 

Figure 3.6 Uniaxial pressing device.............................................................................19 

Figure 3.7  Agilent 16451B impedance analyzer..........................................................20 

Figure 3.8 Mosaic substrate made of MCT 20 and MCT 70 material ...........................21 

Figure 3.9 Mosaic substrate in Figure 3.8 in deformed state.........................................21 

Figure 3.10 a) 2D spatially variable flexible substrate made of MCT 20, MCT70, b) 

MCT15 by the dice and assembly method. ..................................................................21 

Figure 3.11 Machined mosaic substrates which are made from MCT70 (left), MCT20 

(center) and MCT15 (right) ceramic-polymer tapes. ....................................................22 

Figure 3.12 Resulting  3D spatially variable substrates after pressing three machined 

material layers  with different dielectric constant and material layout (as shown in 

Figure 3.11).................................................................................................................22 

Figure 3.13 Drilled film with εεεε=15 is mounted into another tape cast film of a) εεεε=20; b) 

These holes are then filled with ground tape cast film of εεεε=70. ....................................23 



xii  
 

Figure 3.14 Tape cast film of εεεε=15 is drilled with tip diameter of 1mm (outer rows) and 

0.5 mm (inner square rows). ........................................................................................23 

Figure 3.15 a) 2D mosaic green tape substrate and b) resulting probe fed patch antenna 

printed on the substrate................................................................................................24 

Figure 3.16 a) Flexible substrate with patch on it and b) patch antenna with ground 

plane ...........................................................................................................................24 

Figure 3.17 a) Patch antenna on mosaic substrate in Figure 3.10  with b) flexible coaxial 

cable and aluminum ground plane ...............................................................................25 

Figure 3.18 a) Patch antenna on mosaic substrate in Figure 3.12  with b) flexible coaxial 

cable and aluminum ground plane ...............................................................................25 

Figure 3.19 Patch antenna on mosaic substrate shown  a) in Figure 3.13  and (b) in 

Figure 3.14. .................................................................................................................26 

Figure 3.20 Agilent E5062A Series Network Analyzer................................................26 

Figure 3.21 Agilent E5062A Series Network Analyzer measuring antenna in 

undeformed (left) and deformed states (right) ..............................................................27 

Figure 4.1 Dielectric constant vs. frequency (Hz) of MCT70 powder pressed pellets 

produced via three different processes .........................................................................29 

Figure 4.2 Loss tangent vs. frequency (Hz) of MCT70 powder pressed pellets produced 

via three different processes ........................................................................................30 

Figure 4.3 Dielectric constant vs. frequency (Hz) of MCT20 powder pressed pellets 

produced via three different processes .........................................................................31 

Figure 4.4 Dielectric loss tangent vs. frequency  of MCT20 powder pressed pellets 

produced via three different processes .........................................................................32 

Figure 4.5 13C NMR measurement of the tape cast polymer solution ..........................33 

Figure 4.6 75-MHz 13C NMR spectrum of a 5% solution of PVB in Me2DSO-d6. The 

spectrum was obtained with broad-band proton decoupling at a temperature of 100 oC.33

....................................................................................................................................34 

Figure 4.7 100 MHz 13C- NMR spectra of PVA in D2O. 34 ........................................34 

Figure 4.8 FT-IR spectra of tape cast polymer solution................................................35 

Figure 4.9 FT-IR spectra of Methyl Ethyl Ketone 35 ....................................................35 

Figure 4.10 FT-IR spectra of Polyvinyl butyral 36........................................................36 

Figure 4.11 FT-IR spectrum of Polyethylene glycol Mw. 1500 37 ................................37 

Figure 4.12 DSC thermogram of the tape cast polymer solution with isothermal steps.38 



xiii  
 

Figure 4.13 DSC thermogram of the tape cast polymer solution from room temperature 

up to 450oC. ................................................................................................................38 

Figure 4.14 TGA measurement of the tape cast polymer solution from room temperature 

up to 450 oC. ...............................................................................................................39 

Figure 4.15 EDS measurement of the dry tape cast polymer solution...........................40 

Figure 4.16 Dielectric constant vs. frequency (Hz) of tape cast polymer film made of 

pure polymer solution..................................................................................................41 

Figure 4.17 Loss tangent vs. frequency (Hz) of tape cast polymer film made of  pure 

polymer solution..........................................................................................................41 

Figure 4.18 Dielectric constant vs. frequency (Hz) of MCT70 ceramic powders 

produced via three different processes and made into tape cast films ...........................42 

Figure 4.19 Loss tangent vs. frequency of MCT70 ceramic powder made tape cast films 

in four different process...............................................................................................43 

Figure 4.20 Dielectric constant vs. frequency (Hz) of MCT20 ceramic powders 

produced via two different processes and made into tape cast films .............................44 

Figure 4.21 Loss tangent vs. frequency of MCT20 ceramic powder made tape cast films 

in two different processes ............................................................................................45 

Figure 4.22 Dielectric constant vs. frequency (Hz.) of MCT15 and magnetic ceramic 

powders tape cast films................................................................................................46 

Figure 4.23 Loss tangent vs. frequency of MCT15 and magnetic ceramic powder tape 

cast film ......................................................................................................................46 

Figure 4.24 SEM image of MCT70 ceramic powder and MCT20 ceramic powder.......47 

Figure 4.25 a) SEM image of MCT20 ceramic powder as in pressed pellet from, b) post- 

heat treated pellet at 550oC (polymer burn-out temperature) c) pre-heat treated powder 

pellet at 550oC (polymer burn-out temperature) for 1 hr ..............................................48 

Figure 4.26 a) MCT20 ceramic- polymer composite tape cast films as in the green state, 

b) as made from the heat treated powder at 550oC (polymer burn-out temperature) for 1 

hr, and c) as post-heat treated tape cast film at 550oC polymer burn-out temperature)  

for 1 hr ........................................................................................................................49 

Figure 4.27 a) SEM image of MCT70/polymer composite as it is in green state, b) tape 

cast film made from pre-heat treated powder at 550oC polymer burn-out temperature) 

for 1 hr. and c) post-heat treated tape cast film at 550oC polymer burn-out temperature) 

for 1hr .........................................................................................................................50 

Figure 4.28 Antenna on substrate fabricated using the dice and assembly method........51 



xiv 
 

Figure 4.29 S11 (dB) vs. frequency (Hz) for the antenna made of the substrate in Figure 

4.28.............................................................................................................................51 

Figure 4.30 Antenna on substrate in Figure 3.10 fabricated using the dice and assembly 

method ........................................................................................................................53 

Figure 4.31 S11 (dB) vs. frequency (Hz) response for the antenna made of the substrate 

in Figure 4.30 as in the undeformed state.....................................................................54 

Figure 4.32 S11 (dB) vs. frequency (Hz) response for the antenna made of the substrate 

in Figure 4.19 as in the deformed state.........................................................................54 

Figure 4.33 Antenna on substrate in Figure 3.11 fabricated using the second fabrication 

method ........................................................................................................................55 

Figure 4.34 S11 (dB) vs. frequency (Hz) response of the antenna in Figure 4.33 as in the 

undeformed state .........................................................................................................55 

Figure 4.35 S11 (dB) vs. frequency (Hz) response of antenna in Figure 4.33 as in the 

deformed state. ............................................................................................................56 

Figure 4.36 Agilent 8720ES Network Analyzer...........................................................56 

Figure 4.37 Antenna on substrate in Figure 3.14 fabricated using the drill and fill 

method ........................................................................................................................57 

Figure 4.38 S11 (dB) vs. frequency (Hz) response of the antenna in Figure 4.37 as in the 

undeformed (flat) state ................................................................................................57 

Figure 4.39 S11 (dB) vs. frequency (Hz) response of the antenna in Figure 4.37 as in the 

horizontal bended position according to feed location in the patch...............................58 

Figure 4.40 S11 (dB) vs. frequency (Hz) response of the antenna in Figure 4.37 as in the 

vertical bended position according to feed location in the patch...................................58 

Figure 4.41 Antenna on substrate in Figure 3.13 (b) fabricated using the drill and fill 

method ........................................................................................................................59 

Figure 4.42 S11 (dB) vs. frequency (Hz) response of the antenna in Figure 4.41 as in the 

undeformed state .........................................................................................................59 

Figure 4.43 S11 (dB) vs. frequency (Hz) response of the antenna in Figure 4.41 as in the 

horizontal bended position...........................................................................................60 

Figure 4.44 S11 (dB) vs. frequency (Hz) response of the antenna in Figure 4.41 as in the 

vertical bended position...............................................................................................60 

Figure 4.45 Antenna on fabricated spatially variable substrate (size=40 mm) left and on 

standard FR4 substrate (right) (size=200 mm) .............................................................61 



xv 
 

Figure 4.46 S11 (dB) vs. frequency (Hz) response of an antenna on a standard substrate 

FR4, shown in Figure 4.45 right ..................................................................................61 

Figure 4.47 CAD Model, 3D Mesh of CAD, resulting field distribution for antenna in 

Figure 4.28..................................................................................................................63 

Figure 4.48 P1/PPort distribution simulations of antenna on substrateshown in Figure 

4.28.............................................................................................................................63 

Figure 4.49 Return loss S11 (dB) vs. frequency (Hz) simulations of antenna printed on 

substrate shown in Figure 4.28 ....................................................................................64 

Figure 4.50 CAD Model, 3D Mesh of CAD, resulting field distribution for antenna in 

Figure 4.30..................................................................................................................65 

Figure 4.51 P1/PPort distribution of the antenna on substrate in Figure 4.30................66 

Figure 4.52 Return loss S11 (dB) vs. frequency (Hz) simulation result for antenna 

printed on substrate in Figure 4.30...............................................................................67 

 

 

 

 

 

 

 

 

 



xvi 
 

 
LIST OF TABLES 

 

Table 2-1 Dielectric constants and dielectric strengths for some materials17.................12 

Table 4-1 Mesh statistics for the antenna simulation on the substrate shown in Figure 

4.28.............................................................................................................................62 

Table 4-2 Mesh statistics for the antenna simulation on the substrate shown in Figure 

4.30.............................................................................................................................65 

 



1 
 

 

 

 

CHAPTER 1 

1. INTRODUCTION 

1.1. Motivation 

The telecommunication industry has been expanding in the last decade or so along 

with the demand for miniaturized and low loss microwave devices. The high demand 

for making these devices smaller more integrated and cheaper automatically implies use 

of high dielectric constant substrates for multi-functional devices, such as broadband 

miniaturized antennas1,2. On top of these requirements, conformability is also desired 

for applications where the mounting surface is not flat because antennas on 

conformal/pliable substrates fit easily with the curvature and contour of various 

geometries, such as aircrafts, missiles, and vehicles. In order to meet both the desired 

electromagnetic performance such as bandwidth and miniaturization coupled with good 

mechanical properties such as durability and flexibility, polymer- ceramic composite 

substrates have been intensively studied3,4.  

The expanding telecommunications industry has increased the demand for high 

dielectric constant/low loss microwave substrates applied in RF devices, such as 

antennas, capacitors, ultrasonic resonators, high-power transducer, actuators, and so on. 

Traditionally, RF (Radio Frequency) devices exploit geometry and energy feeds to 

maximize their performance. New strategies are exploiting 3-dimensional (3D) 

engineered magneto-dielectric and polymer composites to improve performance such as 

high efficiency and size reduction2. Their realization is extremely important to the next 

generation of RF integrated and electronic devices such as miniaturized broadband 

antennas, smart sensors, and high magnetic-energy storage devices. Standard 

miniaturized low-loss device substrates are commonly restricted to off-the-shelf 

ceramics with composite forms also made available recently but these materials lack 

deformability so they cannot be easily and economically formed into desired complex 

structures for the proper microwave behavior control5. Specifically, for applications 

where the device has to be mounted on a curved base conformality also becomes a 
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bottleneck. However, ceramics naturally lack flexibility. Therefore, polymer-ceramic 

composites have been intensively studied with major work primarily focusing on their 

dielectric tunability and easy processing capability. 

Because ceramics offer good electromagnetic properties (high dielectric constant 

that is needed for miniaturization) and polymers offer desired mechanical properties 

such as flexibility and easy manufacturing polymer-ceramic composite substrates are 

investigated in this thesis. In particular, three properties are of prime importance for RF 

applications: tunability of dielectric constants, which is achieved by spatially variable 

ceramic composite materials, low dielectric loss and its controllability and lastly 

flexibility of substrates via low temperature processing characteristics of polymers. 

1.2. Literature Review 

In literature, polymeric composites have been primarily studied due to their excellent 

properties, such as high dielectric constants and good electrical activity property, which 

are very useful characteristics for dielectric materials desired in capacitors, ultrasonic 

resonators, high-power transducer, actuators, and so on. It is well known that smart 

materials can be prepared by combining the excellent toughness of polymer materials 

with the electric activity property of ceramics. Since ceramics have a characteristic high 

dielectric performance and polymers have low cost and are easily processed, polymer–

ceramic materials have aroused much attention for uses in microelectronics 

applications6. However, the focus in literature is mostly on one aspect of the desired 

characteristics of polymer-ceramic composites with no focus at all on the spatial 

variation of the dielectric constant as desired in many RF devices. Below examples of 

studies with a target falling within three categories of high dielectric constant and low-

loss, tunability and processing based on tape-casting are discussed.  

High dielectric constant low loss polymer ceramic composites: 

For ceramic polymer composites, the highest dielectric constant is recorded as 140 for 

the polyvinyl butyral/lead zirconate titanates composites7. In this study, authors 

investigated the effect of frequency and polymer content to the dielectric constant by 

varying the polymer volume fraction and measuring the dielectric constant at various 

range of frequencies and various polymer volume fractions. 
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Another research has been done on the dielectric constant properties of the three 

different ceramic-epoxy composites; besides, effects of the filler ratio and testing 

temperature and frequency on the dielectric properties of these three composites were 

investigated. Its 40%-filler composite had a dielectric constant of 44, which was higher 

than those of 27 and 24 for the commercial BaTiO3 and Pb(Mg1/3Nb2/3)O3 composites4, 

which is very similar to our obtained dielectric constant values, which is 19 and 21 with 

the ceramics MCT (Magnesium Calcium Titanates). 

Some other study has been done on the epoxy-AIN ceramic composites and the effects 

of the content of AlN filler on the physical and dielectric properties of epoxy/AlN 

composites were investigated and it was found out that as the content of AlN powder in 

the epoxy/AlN composites increases from 5 to 40 wt%, the dielectric constant increases 

from 6.52 to 7.28 (measured at 1 MHz). The loss tangent of epoxy/AlN composites was 

slightly increased as the measured frequency increases8. 

None of the mosaic structures were deformable, so one past research made by 

Kolouridis et al. focused on producing flexible ceramic- polymer (PDMS) composites. 

These examples show that indeed high dielectric constant and flexibility of polymers 

were able to deliver miniaturized filters and antenna substrates that were flexible9.  

Tunability: 

The large electrical field dependent dielectric constant can be used for tunable 

microwave devices, such as phase shifters, tunable oscillators, tunable filters and 

varactors. In such devices, it is desirable to have a high dielectric tunability over a given 

electric field range, a low dielectric loss. One of the studies has been done on the BZT 

thin films deposited on LaNiO3/Pt/Ti/SiO2/Si substrates10. Specifically in this study, 

compositionally graded and homogeneous Ba(ZrxTi1-x)O3 (BZT) thin films were 

fabricated on LaNiO3 (LNO) buffered Pt/Ti/SiO2/Si and Pt/Ti/SiO2/Si substrates by a 

sol–gel deposition method, respectively. These films crystallized into a single 

perovskite phase. The compositionally graded thin films from BaTiO3 to 

BaZr0.35Ti0.65O3 were fabricated on LNO/Pt/Ti/SiO2/Si substrates. The tunability 

behavior of compositionally graded films was analyzed in order to produce optimum 

effective dielectric properties. 
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Another research has been on the dielectric tunability of bismuth-based pyrochlore 

dielectric thick films on alumina substrates11. Authors have fabricated metal–insulator–

metal capacitors structures, employing the cubic pyrochlore Bi1.5Zn1.0Nb1.5O7 (BZN) 

thick films by screenprinting techniques on alumina substrates. The films displayed a 

dielectric constant up to 130, which is a relatively high value according to our results 

and the dielectric loss was reported as a value lower than 0.005 at 1 MHz. Also 

dielectric tunabilities of the films were compared at different temperatures as part of the 

same study. 

Tape Cast Process: 

Tape casting is a material shaping process used to make flat ceramic sheets having a 

thickness up to about 1 mm. The principle of the process is essentially identical to 

spreading plaster on a wall, icing on a cake, or painting. Thickness of the deposited 

layer is determined by the height of the doctor blade above the polymer sheet. Very 

uniform thickness can be achieved by the doctor blade process12.    

One of the recent studies in tape casting is about the tape casting of piezo 

ceramic/polymer composites. The aim was to obtain a flexible, low cost process for 

medium quantities used in ultrasonic transducers for naval sonar devices, medical 

diagnostic systems, and non-destructive materials testing. Tape casting being a very 

adaptable method to produce composites, allowed a detection of signals even with low 

intensity13. 

Another study has been done on the electrical properties of multilayer ZnO varistors 

with water-based tape casting14. In this study, authors prepared multilayer ZnO varistors 

by water-based tape casting with water-soluble acrylic as binders and investigated the 

viscosity properties of the tape casting slurry. 

Another recent study is about processing and mechanical properties of textured 

mullite/zirconia composites by tape casting process, which is very similar to our process 

in terms of the tape cast polymer solution15. In this study, they have prepared textured 

mullite/zirconia (ZrO2) composites were prepared from a reactive mixture of alumina 

(Al2O3) and zircon (ZrSiO4) powders together with acicular aluminum borate templates 

to nucleate and texture mullite grains in the [0 0 1]. Effect of texturing on Young’s 

modulus and strength was investigated by fabricating samples with varying degree of 
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grain orientation by templated grain growth (TGG). It is found that both Young’s 

modulus and strength increases with a better orientation control of mullite grains in the 

longitudinal direction. The increase in strength is attributed to the fact that pores are 

smaller and elongated in the texture direction resulting in smaller defect size.  

 

1.3.  Goals and Contributions of the Thesis 

As evident in literature, composites of dielectrics, magnetic ceramics and polymers 

offer the possibility of tunability, flexibility and possibly low-loss. Also, as shown in 

literature they permit 2D or 3D variations of material properties in space and hence 

control the return loss of antennas. In this thesis, the objective is to analyze dielectric 

tunability of flexible susbtrates in 2D with a possible extension to 3D high dielectric 

constant materials for miniaturization purposes. This concept will be investigated using 

three methods by controlling spatial porosity of tape cast films. These base films, the 

process based on tape casting capable of producing flexible polymer-ceramic magneto-

dielectric composites is proposed and analyzed. It basically involves the dispersion of 

ceramic powders into the polymer matrix followed by the addition of organic binders 

and plasticizers to increase the final product properties of green tapes, such as high 

strength and flexibility of tapes after casting and drying.  

Specifically, in addition to their known characteristics of deformability and low-

temperature processing capability, resulting substrates are analyzed targeting the 

following features concurrently and constitute the contributions of the thesis: 

1) Miniaturization is obtained by maintaining high dielectric constant 

2) Tunability is obtained by using several different materials having different 

dielectric constants in any desired distribution of the material substrate  

3) Complete 2D material variations are demonstrated using 3 methods:  

1) Machining pores in tape cast green films to deliver spatial variation of 

material properties which are then stacked to result in a 2D variation  

2) Mosaic warm binding of square pixels, which are green tapes of multi 

MCT/ferrite powder systems.  
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3) Drilling the substrates with desired diameter holes and filling these holes with 

an inclusion material resulting in the desired overall dielectric constant. 

c) drilling the substrates into desired diameter holes and and filling these holes 

with the material giving the desired overall dielectric constant. 

4) Flexibility is a result of the tape casting process used to manufacture thin and flat 

sheets of MCT/ferrite ceramic based polymers.  

The combination of powerful engineered designs with the proposed fabrication 

technique for unique possibly low-loss flexible substrate materials will serve as a 

general example for a new approach: To produce a 3D arrangement of magneto-

dielectric material cells according to a particular engineered design creating novel 

flexible material systems, useful for many other multi-functional electronic and RF 

devices. 
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CHAPTER 2 

2. BACKGROUND 
 

2.1. Background on Basic Dielectric Phenomena in Materials 

Dielectrics play a very important role in the performance of electromagnetic devices. 

They are present in capacitors, resonators, stabilizers, and antenna substrates. The set of 

current ceramic dielectrics consists of a finite range of properties. New device designs 

are becoming increasingly aggressive in terms of the material properties required and 

their spatial variation in properties. Although designers and theorists can validate their 

designs computationally, realization of an actual design is often thwarted by nonexistent 

materials/properties and the lack of manufacturability16.  

Dielectric materials are generally non-metallic, are electrically insulating and depict 

behavior of separation of electrically positive and negative charged entities on a 

molecular or atomic level in a nature or in a synthetic way.    

2.1.1. Dielectric constant vs. capacitance: 

When a voltage is applied across a capacitor, one plate becomes positively 

charged, the other negatively charged, with the corresponding electric field directed 

from the positive to the negative. The capacitance C is related to the quantity of charge 

stored on either plate Q by17 

V

Q
C =          (1) 

where V is the voltage applied across the capacitor. The units of capacitance are 

coulombs per volt, or farads (F).  

For a parallel-plate capacitor with a vacuum in the region between the plates (Figure 

2.1), the capacitance may be computed from the relationship; 
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l

A
C oε=                 (2) 

where A represents the area of the plates and  is the distance between them. The 

parameter , called the permittivity of a vacuum, is a universal constant having the 

value of 8.85x1012 F/m. 

 

Figure 2.1 A parallel-plate capacitor when a vacuum is present 

 

If a dielectric material is inserted into the region within the plates (Figure 2.2) then  

        

l

A
C ε=                 (3) 
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Figure 2.2 A parallel-plate capacitor when a dielectric material is present 

 

2.1.2. Dielectric constant in the perspective of field vectors and polarization 

One of the best approach for explaining the dielectric constant phenomenon is in terms 

of field vectors and polarization for every electric dipole there is a separation between a 

positive and a negative electric charge as demonstrated in Figure 2.2. 

An electric dipole moment P is associated with each dipole as follows: 

                            dqP .=              (4)   

where q is the magnitude of each dipole charge and d is the distance of separation 
between them.  

 

Figure 2.3 Schematic representation of an electric dipole generated by two electric 
charges (of magnitude q) separated by the distance d; the associated polarization vector 

is depicted as P. 
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In reality, a dipole moment is a vector that is directed from the negative to the positive 

charge, as indicated in Figure 2.3. In the presence of an electric field, which is also a 

vector quantity, a force (or torque) will come to bear on an electric dipole to orient it 

with the applied field; this phenomenon is illustrated in Figure 2.4. The process of 

dipole alignment is termed polarization. 

 

Figure 2.4 (a) Imposed forces (torque) acting on a dipole by an electric field. (b) Final 
dipole alignment with the field 

 

To return to the capacitor, the surface charge density D, or quantity of charge per unit 

area of capacitor plate (C/m2), is proportional to the electric field. When a vacuum is 

present, then 

             ED oo ε=                  (5)  

the constant of proportionality being oε . Furthermore, an analogous expression exists 

for the dielectric case; that is, 

      ED oo ε=                         (6) 

 

Sometimes, D is also called the dielectric displacement. 
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2.1.3. Frequency dependency of the dielectric constant 

In many practical situations the current is alternating (ac); that is, an applied voltage or 

electric field changes direction with time. When a dielectric material is subjected to 

polarization by an ac electric field, with each direction reversal, the dipoles attempt to 

reorient with the field, as illustrated in Figure 2.5, in a process requiring some finite 

time.  

 

Figure 2.5 Dipole orientations for (a) one polarity of an alternating electric field and (b) 
for the reversed polarity 

 

For each polarization type, some minimum reorientation time exists, which depends on 

the ease with which the particular dipoles are capable of realignment. A relaxation 

frequency is taken as the reciprocal of this minimum reorientation time. A dipole cannot 

keep shifting orientation direction when the frequency of the applied electric field 

exceeds its relaxation frequency and, therefore, will not make a contribution to the 

dielectric constant. The dependence of εr on the field frequency is represented 

schematically in Figure 2.6 for a dielectric medium that exhibits all three types of 

polarization; note that the frequency axis is scaled logarithmically. As indicated in 

Figure 2.6, when a polarization mechanism ceases to function, there is an abrupt drop in 

the dielectric constant; otherwise, εr is virtually frequency independent. 
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Figure 2.6 Variation of dielectric constant with frequency of an alternating electric 
field. Electronic, ionic, and orientation polarization contributions to the dielectric 

constant are indicated. 

 

Table 2.1 presents values of the dielectric constant at 60 Hz and 1 MHz; these provide 

an indication of this frequency dependence at the low end of the frequency spectrum. 

The absorption of electrical energy by a dielectric material that is subjected to an 

alternating electric field is termed dielectric loss. This loss may be important at electric 

field frequencies in the vicinity of the relaxation frequency for each of the operative 

dipole types for a specific material. A low dielectric loss is desired at the frequency of 

utilization. 

 

Table 2-1 Dielectric constants and dielectric strengths for some materials17 
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2.2. Antenna Performance: Miniaturization and Bandwidth 

 

The main advantage of using high εr materials is to provide miniaturization of devices. 

Size reduction is of primary importance in aerospace applications where satellite 

communication (SATCOM) antennas may operate at 200-600 MHz. At these 

frequencies, the free space wavelength is on the order of 1 meter. Actual antenna size is 

typically quite large (0.38-0.76 m) providing a large impetus for smaller designs. 

Additional advantages of smaller designs include weight savings and portability. The 

use of dielectrics in antennas is not new. It is known that the use of high εr materials 

tend to reduce antenna performance via decreases in bandwidth and gain9. New designs 

are evolving that utilize high εr dielectrics that are spatially variable. Dielectric 

“texture” is developed by varying material properties in 3-dimensional space. Using this 

approach, miniaturization is achieved while maintaining performance. 

 

Two major factors associated with radio antenna design are the antenna resonant point 

or centre operating frequency and the antenna bandwidth or the frequency range over 

which the antenna design can operate. These two factors are naturally very important 

features of any antenna design and as such they are mentioned in specifications for 

particular RF antennas. Whether the RF antenna is used for broadcasting, WLAN, 

cellular telecommunications, PMR or any other application, the performance of the RF 

antenna is paramount, and the antenna resonant frequency and the antenna bandwidth 

are of great importance18. 

 

The second important antenna performance metric is the bandwidth. Most RF antenna 

designs are operated around the resonant point. This means that there is only a limited 

bandwidth over which an RF antenna design can operate efficiently. Outside this the 

levels of reactance rise to levels that may be too high for satisfactory operation. Other 

characteristics of the antenna may also be impaired away from the centre operating 

frequency19. 

 

The antenna bandwidth is particularly important where radio transmitters are concerned 

as damage may occur to the transmitter if the antenna is operated outside its operating 
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range and the radio transmitter is not adequately protected. In addition to this the signal 

radiated by the RF antenna may be less for a number of reasons20. 

 

For receiving purposes the performance of the antenna is less critical in some respects. 

It can be operated outside its normal bandwidth without any fear of damage to the set. 

Even a random length of wire will pick up signals, and it may be possible to receive 

several distant stations. However for the best reception it is necessary to ensure that the 

performance of the RF antenna design is optimum21. 

 

2.3. Magnesium Calcium Titanate (MCT) Dielectric Ceramics 

Titanium Dioxide (titania) exists in 3 naturally occurring crystallographic forms: 

brookite, anatase, and rutile. Anatase and rutile are the phases of technological 

importance due to their thermodynamic stability. Rutile is the more common phase as 

anatase irreversibly converts to rutile around 900±C. Titania is a widely used metal 

oxide. Its most common use is as a white pigment due to its high index of refraction. 

Other applications include gas sensors, catalysts, and self cleaning coatings on 

windows. In single crystal form, its dielectric properties are very anisotropic. Parallel to 

the c-axis k=170 and perpendicular to the c-axis k=85.20 In polycrystalline sample, the 

relative permittivity is around 100.3,4 TiO2 is technologically interesting because of its 

high k. 

Calcium Magnesium Titanates are also of interest for microwave applications. They 

consist of the high k Ca-titanate and low k Mg-titanates. This occurs by a partial 

substitution of Mg by Ca. Compositions within the CaTiO3-MgTiO3-Mg2TiO4 (CT-MT-

M2T) phase system are of technological interest due to the wide range of dielectric 

constants available. CaTiO3 (perovskite) is a high k material (k=170). MgTiO3 

(Giekielite) has a low k (17). Mg2TiO4 (Qandilite) also has a low k (12). 

Several authors (22, 23–29) investigated the effect of glass addition in MgTiO3– CaTiO3 

(MCT) ceramics. Chen et al. 22, 23 studied the densification and microwave dielectric 

properties of RBS-(Mg, Ca)TiO3, R=MgO, CaO, SrO, BaO, B=B2O3, S=SiO2. The 

BaO–B2O3–SiO2 (BBS) – (Mg0.95Ca0.05)TiO3 (MCT) (1:1 volume ratio) composite 

exhibited the highest εr and quality factor. Zhang et al. 24 reported that Bi2O3–V2O5 
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addition in MgTiO3 lowered sintering temperature from 1400oC to 875oC due to liquid-

phase effect. With increasing V2O5 the εr decreased and the quality factor increased. 

This effect was attributed to the variation of the amount of different secondary phases 

such as Bi2Ti2O7, Bi4V1.5Ti0.5O10.85 and BiVO4. At 875oC, MgTiO3 ceramics with 

5mol% Bi2O3+ 7mol% V2O5 gave excellent microwave dielectric properties such as 

εr=20.6, Qf=10 420GHz. However, Shin et al.25 found that MgTiO3-based dielectric 

decompose to MgTi2O5 and Mg2TiO4 during liquid-phase sintering using lithium 

borosilicate glass. However, this decomposition does not adversely affect the dielectric 

properties since MgTi2O5 has εr=17.4 with Qf=47 000GHz and Mg2TiO4 has εr=14.4 

and Qf=55 000GHz. Jantunen et al. (26–29) made a detailed study of the effects of 

different glass compositions on the tape casting and the microwave dielectric properties. 

They 28 also investigated the sintering behavior and dielectric properties of mixtures of 

MMT-20 (MCT) with ZSB (ZnO–SiO2–B2O3, 60.3:27.1:12.6) and BSB glasses (BaO–

SiO2–B2O3, 35:55:10). Jantunen et al. 26 prepared LTCC by mixing 30 wt% MCT 

(MMT-20) ceramic powder with 70 wt% of glass-forming oxides ZnO, SiO2 and B2O3 

in 60.3:12.6:27.1mol%. The mixtures were ball-milled, dried and the cylindrical pucks 

made by sintering at 900oC. The samples prepared in this method was found to have 

better properties than prepared by mixing glass with ceramic powder. Hu et al. 29 

reported that if the MgTiO3–CaTiO3 powders contain free B2O3, then tape preparation is 

difficult regardless of the slurry system, whereas powders containing pre-reacted B2O3 

did not cause any problem in making dense tapes with excellent properties. Choi et al. 30 

reported that addition of lithium borosilicate glass to CaZrO3–CaTiO3 system lowered 

sintering temperature from 1450oC to 900oC. In this study we will use MCT based 

ceramic spray-dried powders commercially available at Transtech Inc. due to their large 

range of available dielectric constants (18-140) and cited low-loss behavior (loss 

tangents around 0.001), which were also employed earlier to produce spatially variable 

dielectric substrates31.  
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CHAPTER 3 

 
3. EXPERIMENTAL STUDY 

 

Microwave dielectric materials play an important role in designing devices with 

enhanced performance for a wide range of Radio Frequency applications. In order to 

meet the stringent needs of these systems such as conformability, low-loss and 

miniaturization, improved or novel microwave components based on dielectric 

materials and their new designs are required. The constant need for miniaturization 

provides a driving force for the development of existing and invention of sophisticated 

materials to perform the same or improved function with decreased size and weight. 

Dielectric materials can be either organic as in the example of polymers or inorganic 

like ceramics. With its wave guiding ability the choice of material directly impacts 

device performance because the propagation speed is indirectly proportional to the 

permittivity of the material, and the characteristic impedance is affected by the 

dielectric thickness.  

There are some applications where the dielectric material is desired to have a low 

dielectric constant; however, miniaturized RF devices like antennas operating at low 

frequencies rely on the use of high dielectric constants for miniaturization. In the 

current study, we try to achieve a high dielectric constant by producing composite 

materials composed of both ceramics with high dielectric constant and deformable 

polymers in order to achieve both miniaturization and deformability. A high dielectric 

constant will essentially reduce guided wavelength so that the physical dimensions of 

the antenna on that substrate can be reduced as well for the same operating frequency. A 

high dielectric constant of the final composite is achieved by using ceramic materials, 

such as Mg-Ca-TiO2 (MCT ceramics) in this study. These ceramics are mixed with 

polymers to obtain desired deformability of the resulting composite substrate due to 

polymers’ low curing temperature, their ease of handling, and low cost properties. In the 
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present study, ceramic polymer composites films are produced via tape casting process. 

These films are characterized by measuring their dielectric behavior using a network 

analyzer and their microstructures are investigated through scanning electron 

microscopy. Towards the final goal of achieving monolithic conformal substrates with a 

dielectric spatial distribution, three methods are used for the final tunable substrates. 

The first one is the warm binding of substrates produced using the dice and assembly 

method. In this method, square pixels made of MCT green tapes are assembled resulting 

in 2D spatially variable mosaic substrates. The second method refers to machining of 

substrates via a CNC milling machine as shown in Figure 3.1. Machined substrates are 

then stacked onto each other resulting in 2D spatially variable mosaic substrates. The 

last method used refers to the drill and fill process where tape cast films were machined 

with 0.5 mm and 1mm diameter drill tips and resulting holes were filled with ceramic-

polymer composite films ground into powder form. To test the resulting conformal 

substrates, a simple patch antenna was constructed using the resulting mosaic substrates 

of each method. 

 

Figure 3.1 Hole drilling process within the substrate using CNC 

 

3.1. Ceramic Raw Material Characterization:  

Before producing and characterizing polymer-ceramic composite tape cast films, pellets 

of constituent ceramic powders were made of MCT70 and characterized to assess their 

dielectric constant behavior. To analyze MCT’s dielectric tunability and loss 

controllability, pellets were produced by three different processes: 1) pressing them at 6 

MPa using available spray-dried ceramic powders to understand the dielectric constant 

limit of the available spray dried powders; 2) heat treating the pellets produced at step 1 
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up to burn-out temperature at 550oC for 1 hr in order to analyze the effect of heat 

treatment on the dielectric constant of  the ceramic pellets at the polymer burnout 

temperature, and 3) pre-heat treatment of the powder itself at the burnout temperature 

550oC for 1hr and  then pressing them into pellets at 6 MPa to analyze if the dielectric 

constant of ceramics increases before the tape casting process so that no additional heat 

treatement has to take place to increase the dielectric constant further. Sintering to 

higher temperatures is avoided in order to maintain the flexibility of the ceramic 

polymer composite films.  

 

3.2. Fabrication of Tape Cast Films via Tape Casting Process: 

A ceramic tape casting slurry based on magnesium-calcium-titanate (MCT70) was 

prepared.  In the first step the MCT powder, the polymer solution composed of organic 

solvents, binder and the dispersant were ball-milled with zirconia balls (76% polymer 

solution, 24% MCT70 powder) for 12 h at 175 rpm speed to obtain a uniform mixture 

(Figure 3.2). After degassing the slurry in the magnetic stirrer for 5 hours, the slurry 

was cast on the glass layer to form a 130 µ- thick ceramic layer using doctor blade 

process (Figure 3.3). Multiple cast films (Figure 3.4) are then stacked onto each other, 

as shown in Figure 3.5 and pressed uniaxially (Figure 3.6) at 9 MPa to obtain a laminar 

structure shown in Figure 3.5. 



19 
 

 

Figure 3.2 Ball milling process 

 

Figure 3.3 Tape casting process 

      

Figure 3.4 Multiple tape cast films 

 

Figure 3.5 Resulting substrates after 
pressing 

                 

 

Figure 3.6 Uniaxial pressing device 
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3.3. Characterization of Tape Cast Films: 

Knowing the dielectric constant and loss limitation of the constituent ceramic powder as 

explained in Section 3.1. and the effect of pre- heat treatment on the powder pressed 

pellets, similar analysis was made for tape cast films made from 1) as-is powders, 2) 

pre-heat treated powders at 550oC (polymer burn-out temperature) and 3) pre-sintered 

powders at 1360oC tape cast  after ball-milling (uniform) or pounding in a mortar (non-

uniform).  

Dielectric constant and dielectric loss measurements were carried out using the Agilent 

16451B Material Analysis kit with the 4294A network analyzer (Figure 3.7) between 

frequencies 40 Hz- 30 MHz using the specific electrode B with a diameter of 5mm. 

 

Figure 3.7  Agilent 16451B impedance analyzer 

 

3.4. Fabrication of Mosaic Film Substrates:  

After producing ceramic polymer tape cast films, the next step was to fabricate the 

spatially variable conformal substrates using these films. Three different methods have 

been used for this goal. The first method is the “dice and assembly” method. In this 

method, a simple mosaic substrate as depicted in Figure 3.8 is produced via two shades 

of polymer tapes, namely MCT 20 and MCT 70,-via machining and assembly. 

Resulting layout is pressed at 3 MPa to form the conformal substrate as shown in Figure 

3.9 of a patch antenna to be tested for miniaturization purposes.  
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Figure 3.8 Mosaic substrate made of MCT 20 and 
MCT 70 material 

 

 

Figure 3.9 Mosaic substrate in Figure 3.8 
in deformed state 

 

With the help of the dice and assembly method, a more complex mosaic substrate with 

2D material variation is produced using the same three base materials with dielectric 

constants of MCT 70, MCT20 and MCT15. The resulting 2D spatially variable 

conformal substrate is shown in its undeformed state and deformed state in Figure 3.10 

(a) and (b), respectively. 

 

Figure 3.10 a) 2D spatially variable flexible substrate made of MCT 20, MCT70, b) 
MCT15 by the dice and assembly method. 
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The second method used for fabrication of spatially variable conformal substrates refers 

to stacking layers of tape cast films that were machined to desired 2D material 

distribution as shown in Figure 3.11 to obtain the final mosaic substrate shown in Figure 

3.12. In this type of fabrication, conformal substrates are made using three different 

dielectric constant materials: MCT20, MCT70, and MCT15. Each layer is machined 

into desired configuration as dictated by the design using a 1 mm drill tip with 0.5 mm 

radius curvature. The resulting three layers are pressed on top of each other with a 

pressure of 6 MPa in order to achieve the final material variation in the substrate. 

 

Figure 3.11 Machined mosaic substrates which are made from MCT70 (left), 
MCT20 (center) and MCT15 (right) ceramic-polymer tapes. 

 

In addition to the dice and assembly method, via this technique substrates made from 

stacking 2D tape cast films on top of each other have the potential to deliver 3D 

spatially variable substrates. 

 

Figure 3.12 Resulting  3D spatially variable substrates after pressing three machined 
material layers  with different dielectric constant and material layout (as shown in 

Figure 3.11) 
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Finally, the third method is capable of delivering 2D spatially variable substrates via the 

‘drill and fill’ process. As can be seen in Figure 3.13 (a) and (b), tape cast film made 

from ceramic powder having a dielectric constant of 15 were drilled with a drill tip 

diameter of 1 mm using  a CNC milling machine. These drilled square pixels are then 

cut from the ε=15 film and assembled into the ε=20 film as shown in Figure 3.13 (a). 

These air holes are filled with tape cast materials of ε=70 which are grinded into powder 

form to increase the dielectric constant of the overall resulting substrate as depicted in 

Figure 3.13 (b). 

 

 

Figure 3.13 Drilled film with ε=15 is mounted into another tape cast film of a) ε=20; b) 
These holes are then filled with ground tape cast film of ε=70. 

 

Another substrate is fabricated from the tape cast film of ε=15. As can be seen from 

Figure 3.14., the outer perimeter of the substrate is drilled with a drill tip diameter of 1 

mm in the form of two rows via CNC drilling machine. The internal part of the 

perimeter is drilled with a drill tip diameter of 0.5 mm. Resulting holes are left empty 

with air of ε=1 

 

Figure 3.14 Tape cast film of ε=15 is drilled with tip diameter of 1mm (outer rows) and 
0.5 mm (inner square rows) 
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3.5. Antenna Fabrication via 2D and 3D Spatially Variable Substrates using 

Tape Cast Films 

After producing flexible substrates using ceramic-polymer tape cast films with spatial 

variation, the next step was to test their performance as antenna substrates. Therefore, to 

produce the radiating antenna, copper tape was mounted on resulting substrates such as 

the 2D mosaic green tape produced using two shades in Figure 3.15 (a) to produce the 

patch antenna as shown in Figure 3.15 (b). Patch antenna was fed by a coaxial cable and 

a ground plane was used at the back surface of the substrate to complete the antenna. 

Measurements were carried out both in undeformed and deformed states (as shown in 

Figure 3.15 and Figure 3.16) using the Agilent E8362B PNA network analyzer. 

 

Figure 3.15 a) 2D mosaic green tape substrate and b) resulting probe fed patch antenna 
printed on the substrate 

 

 

 

Figure 3.16 a) Flexible substrate with patch on it and b) patch antenna with ground 
plane 
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The second antenna measurement was carried out using the substrates in Figure 3.10. 

As can be seen from Figure 3.17, copper patch is mounted onto the substrate at the back 

surface of which the aluminum ground plane was attached. Feeding was achieved via a 

flexible coaxial cable as seen in the backview of the antenna in Figure 3.17 (b). 

 

Figure 3.17 (a) Patch antenna on mosaic substrate in Figure 3.10  with (b) flexible 
coaxial cable and aluminum ground plane 

igue 

The same procedure is also applied to the substrates in Figures 3.12, 3.13 (b), and 3.14. 

as can be seen from Figures 3.18, 3.19 a) and b). 

 

Figure 3.18 a) Patch antenna on mosaic substrate in Figure 3.12  with b) flexible 
coaxial cable and aluminum ground plane 
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Figure 3.19 Patch antenna on mosaic substrate shown  a) in Figure 3.13 b)  and b) in 
Figure 3.14 

 

These substrates were then measured with the Agilent E5062A Series Network 

Analyzer as shown in Figure 3.20 in the frequency range from 300 KHz to 3 GHz.  

 

Figure 3.20 Agilent E5062A Series Network Analyzer 

 

Antenna performance measurements are carried out for both the undeformed and 

deformed states as shown in Figures 3.21.  
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Figure 3.21 Agilent E5062A Series Network Analyzer measuring antenna in 
undeformed (left) and deformed states (right)
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CHAPTER 4 
 

4. CHARACTERIZATION RESULTS 
 

In this chapter, measurement and characterization results are presented for the following 

four groups of materials produced and discussed in Chapter 3: Dielectric ceramics, tape 

cast polymer, tape cast ceramic-polymer films and antennas made of mosaic substrates. 

For characterization purposes, measurements comprise of dielectric measurements, 

scanning electron microscopy, and extensive polymer analysis including NMR FT-IR, 

TGA, DSC and EDS in addition to antenna measurements and simulations. 

 

4.1. Analysis of Dielectric Ceramic Properties 

In order to understand the general dielectric behavior of the dielectric powders used in 

the tape cast process, dielectric measurements are carried out using the Agilent 16451B 

Impedance Analyzer. Dielectric measurements results are presented as a function of 

frequency for pellets made of two basic constituents, namely MCT 70 and MCT20 

dielectric powders using three different processes: firstly as pure ceramic powder 

pressed into pellet form, in the pellet form made from ceramic powders which are heat 

treated at the polymer burnout temperature 550oC, and finally pellets which are heat 

treated at the polymer burnout temperature 550oC. MCT15 ceramic powders cannot be 

measured with the material impedance analyzer which uses the capacitance method, 

because the pellets from the MCT15 powder are too brittle such that samples cannot be 

held between the conductive plates of the material impedance analyzer. 

 

 



29 
 

 

Figure 4.1 Dielectric constant vs. frequency (Hz) of MCT70 powder pressed pellets 
produced via three different processes 

 

According to the measurements for MCT 70 powder shown in Figure 4.1, it is observed 

that the highest dielectric constant, ε~ 16.5 corresponds to pellets made from available 

spray-dried powder. This is attributed to the burn-out temperature of 550oC not being 

the actual full dense sintering temperature of the MCT ceramic pellets, i.e. they are only 

partially dense, hence a porous microstructure results in lower dielectric constant. 

However, powders were not fully sintered to 1360oC and heat treatments at higher 

temperatures were avoided to maintain flexibility of resulting films. Also, post-heat 

treated ceramic pellets indicate a slightly higher dielectric constant than pellets 

produced via pre-heat treated ceramic powders due to higher ceramic density. 
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Figure 4.2 Loss tangent vs. frequency (Hz) of MCT70 powder pressed pellets produced 
via three different processes 

 

In Figure 4.2, dielectric loss tangent measurements of the same pellets are given. The 

lowest possible dielectric loss value is achieved for sintered ceramic pellets, around a 

value of ~ 0.0025.  This is attributed to the fact that the amount of pores decreases 

during the firing process, as a result, loss value decreases. Also, loss behavior of 

ceramic pellets improves slightly via pre-heat treating of powders from 0.016 to 0.012.  

Same dielectric constant and loss tangent measurements are performed on the MCT20 

powder pellets. Referring to Figure 4.3., dielectric constant of the powder pellets made 

of spray dried powder is on the order of ε ~ 9, whereas post-heat treated powder pellet 

has a dielectric constant of ε ~ 8 and pre-heat treated powder pellet has a dielectric 

constant of ε ~ 7. The higher dielectric constant of the pellets made of spray-dried 

powder than the post heat treated and pre- heat treated powder pellets can be explained 

similarly as in the case of the MCT70 powders. Without heat treatment ceramic 

powders are denser and as a result their dielectric constant is relatively high (although in 

the case of MCT 20 they show a low dielectric value very close to each other) in these 

samples. However, when heat treatment takes place, air is coming into play since air has 
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relatively low dielectric constant, i.e. ~1. For example, in the post heat treated powder 

pellets, the effect of air induced by the process of sintering after the powders are pressed 

into pellets is obviously seen by the fact that particle size increases when heat treatment 

occurs. As for the pre heat treatment case, which displays the lowest dielectric constant, 

the effect of heat treatment on obtaining the low dielectric constant is higher since while 

heat treatment, moisture between the ceramic powder particles and some other 

compounds used in the spray dry process of ceramic powder particles is evaporated. In 

addition to the air resulting from the evaporation of moisture and other relatively low 

evaporation point products, there are also air gaps resulting from the size increase of 

particles during heat treatment. While pressing, the air gaps are not fully minimized and 

as a result of that dielectric constant decreases since it basically displays also the low 

dielectric constant of air.  

As for the loss tangent properties of the samples made of MCT20 shown in Figure 4.4, 

similar trend as in the case of the MCT70 dielectric ceramic powders is observed.  

Dielectric loss values are on the order of 0.003 for the pure ceramic powder pellets, 

however, as heat treatment takes place loss tangent values are seen to drop down to 

0.001 -0.002. 

 

Figure 4.3 Dielectric constant vs. frequency (Hz) of MCT20 powder pressed pellets 
produced via three different processes 
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Figure 4.4 Dielectric loss tangent vs. frequency  of MCT20 powder pressed pellets 
produced via three different processes 

 

4.2. Analysis of Tape Cast Polymer Properties: 

For the production of flexible substrates, tape cast films were produced using a polymer 

based solution and different spray dried ceramic constituents. Within the tape cast 

process, in order to obtain a homogenous tape cast slurry, a mixture of binders, 

dispersants and plasticizers which are found in solvents of methyl ethyl ketone/ethanol 

based polymer solution was used. This tape cast polymer solution was not synthesized 

in-house but was purchased from the MSE Tech. Co. and is listed as the product “TC-

S1 Binder Organic Solution”.   

The primary objective of the characterization of the tape cast solution is to identify the 

binder and dispersant chemicals so that these ingredients can be modified in the future 

to be able to tune and control the resulting tape cast film properties such as dielectric 

constant, loss, and uniformity according to the type of the different ceramic materials 

used in the tape cast process.  

Therefore, the organic polymer solution is characterized focusing primarily on its 

composition with an initial estimation that the solution mainly consists of two standard 
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constituents such as PVB (poly vinyl butyral) and PEG (poly ethylene glycol). Each of 

these ingredients has a primary role within the slurry. Majority of the organics are in 

single phase, where the solvent provides the base strength, the dispersant helps 

deagglomerate ceramics, and the plasticizer improves flexibility and lamination32.  

In order to analyze the solution composition, some characterization measurements were 

carried out including NMR,FT-IR, TGA, DSC and EDS characterizations followed by 

the dielectric measurement of the polymer solution.  The NMR measurement in Figure 

4.5 shows that peaks at 10, 40, 70 and 100 ppm refer to the Polyvinyl butyral, as these 

values are in agreement with its published NMR spectrum shown in Figure 4.6.33 

 

 

Figure 4.5 13C NMR measurement of the tape cast polymer solution 
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Figure 4.6 75-MHz 13C NMR spectrum of a 5% solution of PVB in Me2DSO-d6. The 
spectrum was obtained with broad-band proton decoupling at a temperature of 100 oC.33 

 

Considering NMR spectra results of Figure 4.7., which shows the 13C-NMR spectrum 

of PVA, peaks around 65 ppm are consistent with the existence of Polyvinyl alcohol 

(PVA), which is very similar to the Poly vinyl glycol according to resonance structure 

in the NMR spectra. 

 

Figure 4.7 100 MHz 13C- NMR spectra of PVA in D2O. 34 
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As for the FT-IR measurement shown in Figure 4.8., when compared to the existing FT-

IR spectrum of the methyl ethyl ketone35 shown in Figure 4.9., similar peaks are 

observed around 1200, 1400 and 1700 cm-1. 

 

 

Figure 4.8 FT-IR spectra of tape cast polymer solution 

 

 

 

Figure 4.9 FT-IR spectra of Methyl Ethyl Ketone 35 
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In Figure 4.10, FT-IR spectrum of Polyvinyl butyral can be seen. When compared with 

the FT-IR measurement of the tape cast polymer solution in Figure 4.8, common peaks 

around 3000 cm-1, 2000 cm-1  are observed proving that  these peaks in the tape cast 

polymer sample belong to Polyvinyl butyral.  

 

Figure 4.10 FT-IR spectra of Polyvinyl butyral 36 

 

From Figure 4.11. displaying the FT-IR spectrum of Polyethylene glycol, very dense 

resonance peaks around 1200 cm-1 are observed, proving the existence of polyethylene 

glycol in the tape cast polymer solution.  
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Figure 4.11 FT-IR spectrum of Polyethylene glycol Mw. 1500 37 

 

 

Analyzing the DSC measurement results in Figure 4.12 and Figure 4.13, since there is 

more than one component in the tape cast polymer solution, existence of peaks in the 

DSC measurements was inconclusive.  
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Figure 4.12 DSC thermogram of the tape cast polymer solution with isothermal steps 

 

 

Figure 4.13 DSC thermogram of the tape cast polymer solution from room temperature 
up to 450oC. 
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In Figure 4.14, TGA measurement of the pure polymer solution is depicted. It is 

observed from the measurements that polymer begins to burn at the temperature of 

270oC and looses around 90% of its mass at the temperature of 470oC. 

 

 

Figure 4.14 TGA measurement of the tape cast polymer solution from room 
temperature up to 450 oC. 

 

From the EDS measurements shown in Figure 4.15, although precise information about 

the components could not be deferred, clear C and O peaks are observed prompting for 

the existence of polymer in the solution.  
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Figure 4.15 EDS measurement of the dry tape cast polymer solution 

 

As for the dielectric measurements of the tape cast polymer solution, the same tape 

casting steps applied for the ceramic-polymer mixture films throughout the thesis were 

followed for the pure polymer solution itself. After stirring same amount of tape cast 

polymer solution in a magnetic stirrer in order to evaporate the excess solvent until the 

desired viscosity was obtained for the tape casting, slurry was cast with the same 

thickness as used earlier, i.e., on the order of 130 µm, for tape cast ceramic-polymer 

films. After obtaining tape cast films of the polymer, it was pressed with the same 

pressure in order to get rid of possible air bubbles trapped between the layer of films.  

Dielectric constant measurements were carried out using the Agilent 16451B 

Impedance Analyzer. Results are shown in Figure 4.16 and Figure 4.17. It is observed 

that the dielectric constant of the polymer in the ceramic polymer composite tape cast 

film is approximately ~ 5.5 within the 15 MHz to 30 MHz frequency range with an 

average loss tangent of almost 0.12.  
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Figure 4.16 Dielectric constant vs. frequency (Hz) of tape cast polymer film made of 
pure polymer solution 

 

 

Figure 4.17 Loss tangent vs. frequency (Hz) of tape cast polymer film made of  pure 
polymer solution 

 



42 
 

4.3.  Analysis of Tape Cast Ceramic-Polymer Film Properties: 

Knowing the dielectric constant and loss limitation of the constituent ceramic powder 

and the effect of pre-heat treatment on the powder pressed pellets, similar analyses were 

made for tape cast films produced using four different processes of the MCT 70 and 

MCT20 powders: 1) as-is powders, 2) pre-heat treated powders at 550oC (burn-out 

temperature) and 3) pre-sintered powders at 1360oC tape cast a) after ball-milling 

(uniform) or b) pounding in a mortar (non-uniform) to analyze the effect of partial or 

full sintering conditions on the ceramic constituent and hence the ceramic-polymer 

films. 

 

Figure 4.18 Dielectric constant vs. Frequency (Hz) of MCT70 ceramic powders 
produced via three different processes and made into tape cast films 

 

Dielectric constant measurement is shown in Figure 4.18 for MCT70 material. As 

shown in Figure 4.18, dielectric constant value reaches ~24 for films made from spray 

dried ceramic powder and decreases to ~17 for films made from powder pre-sintered at 

1360oC. Also, pre-heat treatment temperature and powder processing have a tuning 

effect on the resulting dielectric constant of the composite film with a non-uniform 
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powder processing combined with pre-heat treatment yielding an increase in dielectric 

constant. 

As for the loss tangents measurements shown in Figure 4.10, it is observed that a film 

with a high dielectric constant in Figure 4.9 is accompanied with a high loss tangent 

value with the lowest loss tangent value observed for films made from 1360oC sintered 

powders which were ball-milled before tape cast. The only exception is observed for 

non-uniform powder films which are pre-sintered at high temperatures. Therefore, the 

effect of pre-heat treatment and powder processing before tape casting needs further 

investigation. What is meant by uniformity is that after sintering the MCT powders up 

to 1360oC, powders become so dense such that some grinding and ball milling took 

place to make it powder again before the tape casting process. As a result, after two 

times of ball milling, uniform tape cast films were obtained. As sintering of MCT’s is 

observed to reduce the grain size and produce a more uniform microstructure, loss value 

decreases, but the same deduction is not valid for the dielectric constant value. Based on 

comparison of powder pellets and tape cast film behavior in Figure 4.4 and Figure 4.19, 

respectively, there is an overall increase of loss tangent value by a factor of 10.  

 

Figure 4.19 Loss tangent vs. frequency of MCT70 ceramic powder made tape cast films 
in four different process 
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As for the MCT20 ceramic powders, shown in Figure 4.20, dielectric constant value 

reaches ~10 for films made from spray dried ceramic powder and increases to ~12 for 

films made from powder pre-heat treated at 550oC (polymer burn-out temperature). 

Again, it is observed that pre-heat treatment temperature and powder processing have a 

tuning effect on the resulting dielectric constant of the composite film with a non-

uniform powder processing combined with pre-heat treatment yielding an increase in 

dielectric constant value. 

 

Figure 4.20 Dielectric constant vs. frequency (Hz) of MCT20 ceramic powders 
produced via two different processes and made into tape cast films 

 

As for the loss tangent values shown in Figure 4.21, it is observed that a film with a 

high dielectric constant as shown in Figure 4.20 is accompanied with a high loss tangent 

value where the lowest loss tangent value was exhibited by films made from 550oC heat 

treated powders. 
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Figure 4.21 Loss tangent vs. frequency of MCT20 ceramic powder made tape cast films 
in two different processes 

 

Before these tape cast films were used in making mosaic substrates, dielectric 

measurements were carried out for tape cast films made of spray dried k=15 and 

magnetic powder as shown in Figure 4.22. The permittivity of k=15 is observed to 

display the maximum permittivity of about 20 due to its carbon content. The carbon 

content corresponds to commercially available Sigradur K glossy Carbon microspheres, 

with an average particle size of 20 microns. As for magnetic flakes, permittivity of tape 

cast films were observed to be lower around k=9 with much lower loss tangent values 

for the magnetic tape cast films than for the k=15 films as depicted in Figure 4.23.  

Since commercially MCT powders were not available with a dielectric constant less 

than 20 and carbon evaporates at low temperatures, the k=15 material was one of the 

base materials used earlier for producing a mixture with k=15 using carbon tat was to be 

evaporated and k=20. The resulting powder was then used for in Dry Powder 

Processing of sintered mosaic substrates. Similar to the other existing powders, the 
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approximate agglomerate size of the magnetic powders (Ni based ferrites) is around 20 

to 100 microns. 

 

Figure 4.22 Dielectric constant vs. frequency (Hz.) of MCT15 and magnetic ceramic 
powders tape cast films 

 

 

Figure 4.23 Loss tangent vs. frequency of MCT15 and magnetic ceramic powder tape 
cast film 
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4.4. Microstructural Analysis of Ceramic Powders and Tape Cast Films 

Microstructures of two basic constituents namely spray dried MCT 20 and MCT 70 

powders were analyzed via scanning electron microscopy and powder particles were 

observed to have a distribution as shown in Figure 4.24 with their particle size ranging 

from 20 to 100 µm. 

 

Figure 4.24 SEM image of MCT70 ceramic powder and MCT20 ceramic powder 

 

Second, the microstructure of the ceramic powders, both MCT20 and MCT70, pellets 

were investigated. The microstructure images support their dielectric measurement 

behavior. As it can be seen from Figure 4.25, the highest dielectric constant sample has 

the densest microstructure with less air gaps between the particles. While the 

microstructure is becoming less dense, the dielectric constant decreases due to the air 

induced into the microstructure.  
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Figure 4.25 (a) SEM image of MCT20 ceramic powder as in pressed pellet from, (b) 
post-heat treated pellet at 550oC (polymer burn-out temperature) (c) pre-heat treated 
powder pellet at 550oC (polymer burn-out temperature) for 1 hr 

 

As for the microstructure of the tape cast films made of MCT20, shown in Figure 4.26, 

SEM revealed good adhesion between the polymer (binder) and the ceramic particles 

for tape cast green films. Although some agglomerations were observed, in general it 

was noted that there was a uniform distribution of ceramic particles in the polymer 

matrix. When the same sample was heat treated to the polymer burn-out temperature of 

550oC for 1 hr, polymer evaporated partially and ceramic agglomerates were observed. 
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Figure 4.26 (a) MCT20 ceramic- polymer composite tape cast films as in the green 
state, (b) as made from the heat treated powder at 550oC (polymer burn-out 
temperature) for 1 hr, and (c) as post-heat treated tape cast film at 550oC polymer burn-
out temperature)  for 1 hr 

 

In addition to the MCT20 ceramic polymer composite films, tape cast films made from 

MCT70 dielectric ceramics were also investigated. As it can be seen in Figure 4.27, for 

tape cast films as in its green state, ceramic particles dispersed in the polymer matrix 

uniformly. When the ceramic particles were heat treated up to the polymer burn-out 

temperature at 550oC before the tape cast process, since the ceramic particles are in 

spray dried form, at this temperature spray dried polymer also volatilized so that 

ceramic particles did not maintain their uniform spherical structure anymore as shown 

in Figure 4.27 (b). As the tape cast films were heat treated up to polymer burn-out 

temperature of 550oC, solvent volatilized leaving only the ceramic agglomeration 

behind as observed in Figure 4.27 (c).  
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Figure 4.27 (a) SEM image of MCT70/polymer composite as it is in green state, (b) 
tape cast film made from pre-heat treated powder at 550oC polymer burn-out 
temperature) for 1 hr. and (c) post-heat treated tape cast film at 550oC polymer burn-out 
temperature) for 1hr 

 

4.5. Antenna Performance Measurements 

After the tape cast films made from different dielectric constant ceramic powders were 

produced, three different processes were used to create spatially variable substrates for 

antennas as explained in Section 3.5.  

In this section measurement results for four different antennas made using the resulting 

spatially variable substrates are presented. For each antenna, copper tape is coated on 

the substrate to produce the radiating patch and the antenna is fed by a coaxial cable. 

To test the performance of the fabricated antennas, their return loss performances were 

measured using an Agilent E8362B Network Analyzer yielding a resonance of 4.5 GHz 

and 5.7 GHz for the antenna fabricated by the dice and assembly method shown in 

Figure 4.28. Even for an antenna that is not optimized for performance (patch, feed 

location should be designed for desired application), the patch delivered sharp 
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resonances at 4.5 and 5.7 GHz as shown in Figure 4.29. Specifically resonances are 

observed at 4.3 GHz, 5.0 GHz, and 5.7 GHz. 

 

 

Figure 4.28 Antenna on substrate fabricated using the dice and assembly method 

 

 

 

Figure 4.29 S11 (dB) vs. frequency (Hz) for the antenna made of the substrate in Figure 
4.28 

 

 

Although the data around 2 GHz could not be recorded, the measurements for the 

resulting frequencies are in agreement with simulations with a shift about 300 MHz as 
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shown later in Figure 4.49 and Figure 4.50. This shift is most likely a result of the patch 

and substrate dimension inaccuracies during fabrication. 

The second antenna which was measured was produced from the substrate fabricated by 

the dice and assembly method to yield a conformal substrate in 2D with three shades of 

tape cast films as shown in Figure 4.30. 

The theoretical resonance frequency of the substrate can be estimated to compare it to 

the simulated and measured results using the following formulas based on the 

volumetric mixture rule for the effective dielectric constants of multi-material dielectric 

substrates: 

total
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b
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Where Aa, Ab, Ac represent the area of the material a, b, c (having dielectric constants of 

21, 19 and 9 for the three shades of MCT70, MCT15 and MCT20, respectively) and 

A total represents the total substrate area. It is noted that areas are used instead of volume 

ratios since the material inclusions in the substrate are of equal thickness. 
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From the definition of wavelength in guided media, the resonance frequency of the 

antenna can be calculated based on the effective dielectric constant εeff and wavelength 

corresponding to twice of the patch length of the antenna at resonance as the following: 
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                  .efff

c

ε
λ =         (10) 

 

Where c is the speed of light= 3x108 m/s. 

Resonance wavelength  can be approximated by two times the patch length as: 

    m050.0)025.0(2 =×=λ                   (11) 

Hence, 

GHzf 59.11059.1
2.14050.0

103 9
8

=×=×=      (12) 

 

From these results, it is concluded that theoretical results are in agreement with 

measurements shown in Figure 4.31. 

 

 

Figure 4.30 Antenna on substrate in Figure 3.10 fabricated using the dice and assembly 
method 
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Figure 4.31 S11 (dB) vs. frequency (Hz) response for the antenna made of the substrate 
in Figure 4.30 as in the undeformed state 

 

The same antenna was also measured in deformed state and it was observed that the 

matching changes about 10 dB, with the antenna still resonating at the same frequency 

of 1.60 GHz, as shown in Figure 4.32. 

 

Figure 4.32 S11 (dB) vs. frequency (Hz) response for the antenna made of the substrate 
in Figure 4.19 as in the deformed state 
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The third antenna measurement was done for an antenna on the 2D spatially variable 

conformal substrate produced using the second fabrication method and is shown in 

Figure 4.33.  

 

Figure 4.33 Antenna on substrate in Figure 3.11 fabricated using the second fabrication 
method 

 

The measurement results of the antenna in undeformed and deformed states are shown 

in Figure 4.33 and Figure 4.35, respectively. It is observed that the antenna resonates at 

a frequency of 1.5 GHz, and has a S11 value of -20 dB. 

 

 

Figure 4.34 S11 (dB) vs. frequency (Hz) response of the antenna in Figure 4.33 as in the 
undeformed state 
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The same antenna but in the deformed state was measured and found that only the 

resonance matching does not change and the antenna still resonates at the same 

frequency of 1.50 GHz.  

 

 

Figure 4.35 S11 (dB) vs. frequency (Hz) response of antenna in Figure 4.33 as in the 
deformed state. 

 

Another measurement was carried out with the antenna on the substrate shown in Figure 

4.37. Since the size of the patch and substrate s very small compared to other substrates, 

the resonance frequency was expected to be much higher than the previous substrates, 

so another network analyzer, namely Agilent 8720ES was used and is shown in Figure 

4.36. 

 

Figure 4.36 Agilent 8720ES Network Analyzer 
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Figure 4.37 Antenna on substrate in Figure 3.14 fabricated using the drill and fill 
method 

 

The same antenna was also measured in the deformed positions with horizontal and 

vertical bending positions (according to feed location) in order to understand the effect 

of bending direction on the antenna performance outputs such as matching and 

resonance frequency values and respective results are shown in Figure 4.39 and Figure 

4.40. 

 

 

Figure 4.38 S11 (dB) vs. frequency (Hz) response of the antenna in Figure 4.37 as in the 
undeformed (flat) state 
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Figure 4.39 S11 (dB) vs. frequency (Hz) response of the antenna in Figure 4.37 as in the 
horizontal bended position according to feed location in the patch 

 

 

 

 

Figure 4.40 S11 (dB) vs. frequency (Hz) response of the antenna in Figure 4.37 as in the 
vertical bended position according to feed location in the patch 
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As can be seen from Figures 4.38, 4.39 and 4.40, deformation of the antenna did not 

have an effect on the resonance frequency but on the resonance matching. Vertical 

bending of the patch antenna according to the feed location on the patch improved the 

matching ability where in all cases the resonance frequency stayed the same. Resonance 

frequencies were observed at the following values: 3.24 GHz, 5.73 GHz and 7.52 GHz. 

Finally, an antenna on the substrate which was fabricated by the drill and fill process 

was measured and is shown in Figure 4.41 yielding a first resonance around 3.32 GHz.  

 

Figure 4.41 Antenna on substrate in Figure 3.13 (b) fabricated using the drill 
and fill method 

 

 

Figure 4.42 S11 (dB) vs. frequency (Hz) response of the antenna in Figure 4.41 as in 
the undeformed state 
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Figure 4.43 S11 (dB) vs. frequency (Hz) response of the antenna in Figure 4.41 as in the 
horizontal bended position 

 

 

 

Figure 4.44 S11 (dB) vs. frequency (Hz) response of the antenna in Figure 4.41 as in the 
vertical bended position 
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To compare the performance of the antennas made on flexible spatially variable 

substrates of relatively high dielectric constants (higher than 10) discussed above with a 

patch antenna performance mounted on a standard uniform substrate of FR4 shown in 

Figure 4.45, similar return loss measurements were carried out for the latter. It is noted 

that the antennas on spatially variable substrates were smaller in size, specifically 1/5 th 

of an antenna printed on a standard FR4 substrate. This antenna exhibits a major 

resonance at around 1.5 GHz shown in Figure 4.46 similar to resonances of produced 

flexible mosaic substrates (such as shown in Figure 4.31 and Figure 4.32) proving the 

miniaturization capability of produced flexible substrates.  

 

Figure 4.45 Antenna on fabricated spatially variable substrate (size=40 mm) left and on 
standard FR4 substrate (right) (size=200 mm) 

 

 

Figure 4.46 S11 (dB) vs. frequency (Hz) response of an antenna on a standard substrate 
FR4, shown in Figure 4.45 right 
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4.6. Antenna Performance Simulations 

Antenna simulations were carried out for antennas shown in Figure 4.28 and Figure 

4.30 using COMSOL Multiphysics version 3.5a. To simulate the performance of these 

antennas, a simple patch model was created on these substrates according to real 

physical dimensions and composition and their return loss response was simulated. 

Parametric solver type was used throughout the simulations, where the parameter was 

selected as the frequency. As the linear solver, direct solver type, specifically 

UMFPACK type solver was selected. For the antenna in Figure 4.28, mesh statistics 

were as tabulated in Table 4.1.  

 
Table 4-1 Mesh Statistics for the antenna simulation on the substrate shown in Figure 

4.28 

Number of degrees of freedom 334696 

Number of mesh points 9791 

Number of elements 49678 

  Tetrahedral 48430 

  Prism 1248 

  Heaxahedral 0 

Number of boundary elements 8133 

  Triangular 7909 

  Quadrilateral 224 
Number of edge 

elements  1123 

Number of vertex elements 156 

Minimum element quality 0.0388 

Element volume ratio 2.97E-07 
 

For the antenna printed on the substrate as shown in Figure 4.28, the CAD model, 3D 

mesh and resulting field distribution is shown in Figure 4.47. Its transmitted power ratio 

(ratio of the radiated power to the input power) and return loss performances are shown 

in Figure 4.48 and Figure 4.49, respectively. The response indicated a resonance of 

~2.2. GHz as expected for an effective epsilon of 9.9 proving the simulation’s 

reliability. 
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Figure 4.47 CAD Model, 3D Mesh of CAD, resulting field distribution for antenna in 
Figure 4.28 

 

 

Figure 4.48 P1/PPort distribution simulations of antenna on substrateshown in Figure 
4.28 
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Figure 4.49 Return loss S11 (dB) vs. frequency (Hz) simulations of antenna printed on 
substrate shown in Figure 4.28 

 

Although the data around 2 GHz could not be recorded during measurements and hence 

a one to one comparison for the first resonance was not possible with simulations, the 

resulting higher order mode frequencies of 4.6 GHz and 5.2 GHz for simulations and 

4.3 GHz and 5.0 GHz for measurements close to simulations with a shift about 300 

MHz. This shift is most likely the result of the patch and substrate dimension 

inaccuracies during fabrication and the inexact drawing capabilities in a simulation 

environment. 

For the antenna in Figure 4.30, mesh statistics are given in Table 4.2. Simulation was 

carried out using COMSOL version 3.5a. Parametric solver type was used throughout 

the simulations, where the parameter was selected as the frequency. As the linear solver, 

direct solver type, specifically UMFPACK type solver was selected. Solution took 

approximately 12 hours using a Dell workstation with 64 GB memory and a 3.20 GHz 

CPU processor. 

For the antenna printed on the substrate as shown in Figure 4.30, the CAD model, 3D 

mesh and resulting field distribution is shown in Figure 4.50. Its transmitted power ratio 
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(ratio of the radiated power to the input power) and return loss performances are shown 

in Figure 4.51 and Figure 4.52, respectively. 

Table 4-2 Mesh Statistics for the antenna simulation on the substrate shown in Figure 
4.30 

Number of degrees of freedom 714606 

Number of mesh points 20443 

Number of elements 106806 

   Tetrahedral 103846 

   Prism 2960 

   Heaxahedral 0 

Number of boundary elements 17003 

   Triangular 16587 

    Quadrilateral 416 
Number of edge 
elements   2276 

Number of vertex elements 308 

Minumum element quality 2.72E-04 

Element volume ratio 5.68E-11 
 

 
 

 

 

Figure 4.50 CAD Model, 3D Mesh of CAD, resulting field distribution for antenna in 
Figure 4.30 
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The response predicted a resonance of ~1.35 GHz as expected for an effective epsilon 

of 9.9 but with an underprediction by 250 MHz when compared with measurements in 

Figure 4.31. 

 

 

Figure 4.51 P1/PPort distribution of the antenna on substrate in Figure 4.30 
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Figure 4.52 Return loss S11 (dB) vs. frequency (Hz) simulation result for antenna 
printed on substrate in Figure 4.30 
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CHAPTER 5 
 

5. CONCLUSIONS & FUTURE WORK 
 

In this thesis, flexible ceramic polymer composite substrates were fabricated using tape 

casting process, with the objective of producing relatively high dielectric constant and 

low-loss substrates to achieve miniaturization and flexibility for Radio Frequency 

applications. These substrate materials are characterized mainly based on measurements 

of dielectric constant, loss tangent and microstructure investigation using scanning 

electron microscope.  

To achieve tunability, a heat treatment scheme of constituent powders prior to tape 

casting was investigated to analyze the effect on dielectric constant and loss. More 

specifically, various tape cast films were obtained through the process using ceramic 

powders sintered up to the full sintering temperature of 1360oC. These composite films 

were also heat treated to the burn-out temperature (550oC) to get rid of the binder to 

achieve high dielectric constant. Further sintering is not followed to attain a 

considerable amount of flexibility. Results show that the dielectric constant of MCT-70 

polymer films can be tuned in the range of 12 to 23 with no sacrifice in dielectric loss. 

Similarly, MCT20 polymer films can be tuned in the range of 10.5 to 12 with dielectric 

loss tangent value of 0.040-0.055 and MCT15 polymer films can be tuned in the range 

of 19 to 21 with dielectric loss tangent value of 0.070. 

Spatially variable conformal mosaic structure using tape cast film base materials are 

obtained using three methods: 1) Dice and Assembly method 2) Machining pores at 

desired locations per the spatial variation in tape cast green films and stacking them 

onto each other and 3) Drill and fill process. 

Eventually, the fabricated substrates have been used to construct patch antennas and 

their resonance behavior was measured using Agilent network analyzers. In order to 

validate the measurements, antenna simulations were carried out and compared to 
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theoretical predictions. Antenna simulations were carried out using COMSOL 

Multiphysics 3.5a. Despite an 200 MHz to 300 MHz shift between measurements and 

simulations, results are very promising and prove the miniaturization and tuning 

capability of fabricated conformal substrates. Agreements of the measured effective 

permittivity and calculated results proves earlier measurement results of tape cast films 

and motivates further design studies where the substrate could be actually designed not 

only for miniaturization but also bandwidth and efficiency improvements.  

Future work consists of the fabrication of mosaic substrates according to a specific 

design model, obtaining a complete 3D material variation using three methods stated 

above and fabrication of magnetic tape cast films. Remaining challenges constitute 

reducing loss factor by methods such as controlling particle size of ceramic powder. If 

successful, it has the potential to open up new paths in the production of miniaturized 

heterogeneous RF structures made of ceramic polymers composites integrated possibly 

with conductors as entire monolithic structures. 
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7. APPENDIX 
 

Materials Impedance Analyzer Measurement Error Types 

1. Gap Error 

This error consists of two factors as following: Measurement Error of Test Material's 

Thickness (Error caused by Micrometer) : Thickness measurement of the test material 

depends on accuracy of the micrometer used. To reduce this error, measure the 

thickness at several points of the measured area of the test material using an accurate 

micrometer. Do not use the micrometer equipped with the 16451B. Parallelism and 

Flatness of Electrodes and Test Material : When contacting the MUT directly with the 

electrodes, an airgap is formed between the MUT and the electrodes. No matter how  

at and parallel both sides of the MUT is fabricated, an airgap will still form. This airgap 

is the cause for measurement error because the measured capacitance will be the sum of 

the capacitance of the dielectric material and the airgap. The relationship between the 

airgap's thickness and measurement error is determined by the equation shown in Figure 

below. Measurement error is a function of the relative permittivity (er') of the MUT, 

thickness of the MUT (d), and the airgap's thickness (t). Sample results of measurement 

error have been calculated in Table 1. Notice that the effect is greater with thin materials 

and materials with high permittivity 

This airgap effect can be eliminated, by applying a thin film electrode to the surfaces of 

the dielectric material. An extra step is required for material preparation (fabricating a 

thin film electrode), but the most accurate measurements can be performed. 

 

Table 1. Measurement Error caused by Airgap 
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Figure 1. Airgap effects 

 

2. Tolerance of Guarded Electrode Diameter  

This error depends on the electrodes mechanical accuracy. The typical error for 
Electrode-A (-38 mm electrode) and Electrode-B (-5 mm electrode) are given in Table 
2, below. 

 

Table.2. Tolerance of Electrode Diameter 

 

 

Calculation of the dielectric constant from the capacitance value:  
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where; 

: Dielectric constant (permittivity) [F/m] 

: Space Permittivity =8.854x10-12  [F/m] 

: Relative Dielectric Constant (Relative permittivity of test material) of test material 

: Equivalent Parallel Capacitance Value [F] 

t: Thickness of test material [m] 

 

 

 

 

 

 


