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Abstract

We introduce a copula-based simulation model for supply portfolio risk in

the presence of dependent breaches of contracts. We demonstrate our method

for a supply chain contract portfolio of commodity metals traded at the London

Metal Exchange (LME). The analysis of spot price data of six LME commod-

ity metals gives us the motive to use a t-copula dependence structure with

t and generalized hyperbolic marginals for the log-returns. We also provide

efficient simulation algorithms using importance sampling for the normal and

t-copula dependence structure to quantify risk measures, supply-at-risk (SaR)

and conditional supply-at-risk (cSaR). Numerical examples on a portfolio of
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six commodity metals demonstrate that our proposed method succeeds in de-

creasing the variance of the simulations. A numerical sensitivity analysis for

the choice of the copula function is also provided. To our knowledge, this is

the first paper proposing efficient simulation algorithms on a supply chain con-

tract portfolio having a copula-based dependence structure with generalized

hyperbolic marginals.

Keywords: Breach of contract risk, Supply chain contracts, Procurement,

Copula, Dependence, Importance sampling, Commodity metals
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1 Introduction

Managing risks in global supply chains is getting more difficult due to in-

creasing volatility and interdependence. Commodity price risk is significantly

important for firms that consume various commodity metals in their opera-

tions. A recent McKinsey CEO survey report by Gyorey et al. (2010) notes

that 37% of the CEO respondents state that in the next five year period, they

would not be prepared for the increasing volatility of commodity prices. More-

over, commodity price risk is exacerbated in the presence of breach of contract

risk (Haksöz and Şimşek (2010)). A breach of contract risk is a fundamental

operational risk classified under “Clients, Products, and Business Processes”

as well as the “Execution, Delivery, and Process Management” categories of

the Basel II framework (See for example Cruz (2002), Chernobai et al. (2002),

Haksöz and Kadam (2009) and Haksöz and Şimşek (2010) for details on this

type of operational risk). A breach of contract may occur due to several rea-

sons. It may be intentional such that a supplier may prefer to take advantage

of favorable spot market price instead of selling via fixed-price contract. Surely,

firms do pay penalty charges in case they breach contracts, which may some-

what compensate the financial loss for the other party. Yet, reputations are

tarnished and strategic alliances are broken. There is certainly a need to assess

the potential severity of breach of contract risk.

In contrast to the interest of the practice, there is scant amount of research

activity in this area of operational risk that addresses the breach of contract

risk and methods to assess and hedge it. In a single buyer-single supplier

model, Haksöz and Seshadri (2007) valued an American type abandonment

option, which models the breach of contract for a supplier, written in a long

term contract with a fixed penalty. To assess the portfolio risk of various com-

modity supply chain contracts, Haksöz and Kadam (2009) provided a supply

portfolio risk measurement tool based on the celebrated CreditRisk+ model.

Haksöz and Kadam (2009) coined the term supply-at-risk (SaR) and also pre-
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sented risk metric computations for a supplier portfolio of petrochemicals. In

Haksöz and Kadam (2009), breach of contract was due to spot price evolu-

tion. However, Haksöz and Kadam (2009) has not addressed the dependency

issue among multiple breach of contracts in the portfolio. On the other hand,

Wagner et al. (2009) presented a model for correlated supplier defaults (due to

many financial-economic factors, not only breach of contracts) with a copula

dependence structure. Most recently, Haksöz and Şimşek (2010) provided a

model to price bundled options (abandonment and price renegotiation option)

in a supply chain contract. This type of bundled option is shown to be valuable

to mitigate the breach of contract risk.

In this paper, building on the setting of Haksöz and Kadam (2009), we con-

tribute by providing an efficient simulation method for supply portfolio risk

assessment, where the supply chain contracts in the portfolio have a depen-

dence structure. The efficient simulation method is borrowed from Sak et al.
(2010) and it is modified for our problem. Moreover, the given algorithm in

Sak. et. al. (2010) is designed for the t-copula dependence structure, we mod-

ify it so that it works for the normal copula as well. To demonstrate the value

of our method, we study in detail a supply contract portfolio with a copula

dependence structure, which is composed of a number of commodity metals

that are traded at London Metal Exchange (LME). We further provide effi-

cient algorithms in order to compute risk metrics such as supply-at-risk (SaR)

and conditional supply-at-risk (CSaR).

Our paper is organized as follows. Section 2 presents the mathematical

details on the supply portfolio model. Section 3 conducts the marginal distri-

bution and copula fitting to commodity metal data. Sections 4 and 5 present

the efficient simulation algorithms with importance sampling for tail loss prob-

abilities and conditional expectations which are used for calculating SaR and

CSaR respectively. Then, we present our numerical results and managerial

insights on the commodity metal portfolio in Section 6. Finally, we conclude

in Section 7.
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2 The Model

We assume that a buyer procures a variety of metal commodities from different

global suppliers using long term fixed price contracts. These commodity metals

are also traded at London Metal Exchange (LME). The market prices are

known and there are liquid spot markets. During the contract duration, the

suppliers can breach their supply contracts for any reason. Actual breach of

contract event is exogenous and not modeled in this paper.1 Moreover, multiple

dependent breaches of contracts can occur at the same time. We also assume

that the buyer has to go to the spot market in case there is breach of contract

by the suppliers. That is, the buyer does not have alternative suppliers for the

specific commodities purchased in this portfolio apart from the spot market

option. Even if there are potential backup suppliers, the price quoted for such

emergency orders would closely follow the spot market price at that particular

time. To that end, the buyer will be exposed to multiple spot market price

risks under several dependent breaches of contracts. Hence, the buyer needs

to assess the supply-at-risk (SaR) and conditional supply-at-risk (CSaR) for

such supply contract portfolios in order to better manage its breach of contract

risks.
Following the mathematical setting of Haksöz and Kadam (2009), we as-

sume that the long term contract price is equal to the median metal spot price

in this supply portfolio without loss of generality. Besides, we also assume

that there is a fixed penalty paid by the suppliers in case of breach of contract

and this penalty covers the transaction costs required to purchase commodi-

ties from the spot market for the buyer.2 Basically, these assumptions help

1In practice, one also may need to determine the explicit breach of contract probabilities. These

probabilities may be affected by internal and external factors. Environmental disruptions such as

earthquakes, floods, hurricanes may cause suppliers breach their contracts. On the other hand, a

firm may go bankrupt and cannot fulfill the contract, thus has to breach it. This nontrivial problem

is left for future research.
2As pointed out by a referee, buyers can also design floating penalty contracts that may mitigate
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us delineate the impact of spot price risk in a portfolio of contracts without

considering the actual penalty and transaction cost data. Thus, we can write

the individual risk exposure for the buyer at breach of contract as follows:

εi = max{0, Qi(Pi − P̄i)}, (1)

where Qi is the contracted quantity of the metal i, Pi is the spot price for

metal i, and P̄i is the median spot price for metal i. We use the median spot

price as a proxy for the long term contract price of the metal procured.

For a number of contracts in the portfolio, i = 1, ..., n, the total risk expo-

sure for a number of potential breach of contracts can be expressed as follows:

R =
n∑

i=1

εi, (2)

where εi is given in (1).

In this expression, we only have the financial impact at breach, that is

the severity of the breach events. Note that this severity is driven only by

the spot price risks. We assume that the log-returns of n metals over a day

follow an elliptical copula and its dependence structure is described by the

positive definite matrix Σ; L denotes the (lower triangular) Cholesky factor of

Σ satisfying LL′ = Σ. We consider only the normal and t-copula alternatives

for the elliptical copula function. We give the model, algorithms and numerical

results for the normal and t-copula together for saving space. While writing

the model and algorithms, we only give the differences between the normal

and the t-copula. Classical random return vector generation algorithm from

the normal and t-copula starts with a vector Z of d iid. standard normal

variates that is then transformed into the correlated normal vector Z̃ = LZ

(for a different generation algorithm for the t-copula, see Hörmann and Sak

(2010)). For the t-copula, we obtain the vector T from the multivariate t-

distribution by generating a random variate Y from chi-square distribution

the price risk. However enforcing such a contract would be harder.
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with ν degrees of freedom (χ2
ν) and calculating T = Z̃/

√
Y/ν. The log-return

vector S = (S1, S2, . . . , Sn)′ is then the result of the component-wise transform

Si = ci G
−1
i (F (Vi)), (3)

where F denotes the cumulative distribution function (CDF) of standard nor-

mal distribution for the normal copula and CDF of t-distribution with ν de-

grees of freedom for the t-copula. We have Vi = Z̃i for the normal copula and

Vi = Ti for the t-copula. Gi denotes the CDF of the marginal distribution of

the return of the i-th metal and ci the volatility scaling parameter of the i-th

metal defined in (5) below. Then, given that Pi0 is the spot price for metal i

at time 0, spot price of metal i at the end of time horizon of m days is

Pi = Pi0

m∏

j=1

eS
(j)
i with S

(j)
i = ci G

−1
i (F (V (j)

i )) , j = 1, ..., m, (4)

where ci denotes a scaling factor related to the daily volatility σi and the

variance vari of the i-th marginal distribution by the formula

ci = σi

√
1

vari
. (5)

First, we are interested in the supply-at-risk (SaR) which is the quantile of

the total risk exposure given in (2) for a probability level. To compute SaR

for a time horizon, we require an efficient simulation algorithm to compute

P (R > x) for different values of x (may be simultaneously). Then inversion

of tail loss probability distribution can be used to compute SaR. Second, we

also provide an algorithm to compute the conditional expectations which can

be used to compute supply-at-risk (CSaR) given that we have SaR.
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3 Marginal Distribution and Copula Fit-

ting to Commodity Metal Data

We use Inference Functions for Margins method to fit a dependence structure

between log-returns of LME daily metal cash price data3 as it is a simple

and efficient method (for other parametric and nonparametric possibilities,

see Malevergne and Sornette (2006) and Karadağ (2008)). In this method, as

the first step, the parameters for marginal distributions are estimated using

likelihood maximization, then the parameters of the copula are estimated using

again maximum likelihood method and the estimated marginal distributions

in the first step.

Given that T daily log-returns are available for metal i, the log-likelihood

maximization problem for the first step is

max
βi

T∑

t=1

ln(fi(xt
i; βi)), i = 1, . . . , n, (6)

where fi is the probability density function and βi is the parameter vector

for candidate distribution. As candidate distributions, we try three different

alternatives: Gaussian, t distribution with location and scale, and the gener-

alized hyperbolic distribution. The number of parameters that needs to be

estimated for these continuous distributions are 2, 3, and 5 in the given order.

t distribution is a natural candidate distribution as it is a simple extension of

Gaussian distribution. On the other hand, our motive to try the generalized

hyperbolic distribution comes from the field of finance where the most flexible

and best fitting distribution to financial data seems to be generalized hyper-

bolic distribution (See Aas and Haff (2006), Behr and Pötter (2009), Prause

(1997)).

3LME historical metal price data for the current year is freely available at www.lme.com.
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For the second step, the log-likelihood function of the copula is

max
α

T∑

t=1

ln c(F1(xt
1; β̂1), . . . , Fn(xt

n; β̂n);α), (7)

where Fi is the cumulative distribution function of marginal distribution for

metal i, c is the density of copula function and α is the parameter vector for

the copula. We consider only the normal and t-copula alternatives as Kole

et al. (2007) conclude that the t-copula is the best fitting copula for the risk

management of linear asset portfolios in finance among other alternatives such

as the normal and Gumbel copula.

We use R (R Development Core Team, 2008) as a convenient working en-

vironment for solving (6) and (7), and for carrying out our simulations in the

next sections. We use R packages fitdistrplus Marie Laure Delignette-Muller

and Dutang (2010) for fitting Gaussian and t distribution, ghyp Breymann and

Lüthi (2008) for fitting the generalized hyperbolic distribution and copula Yan

and Kojadinovic (2010) for fitting copulas.

The best fitting criteria for marginal distributions and copulas is the mag-

nitude of log-likelihood values. However, since it does not account for the

estimated number of parameters, we also look at AKAIKE Information Cri-

terion (AIC) values. The higher the log-likelihood value and the smaller the

AIC value, the better the fit is. AIC value is calculated in fitdistrplus, and ghyp

package as in Matteis (2001):

AIC = −2× LogLik + 2×NE, (8)

where LogLik denotes the log-likelihood value and NE denotes the number of

estimated parameters.

We use daily LME spot prices of Copper (Cu), Aluminum (Al), Nickel (Ni),

Zinc (Zn), Lead (Pb) and Tin (Sn) for the year 2010 given in Figure 1. First

eleven months of the data were used to fit the dependence structure and

marginal distributions. Last month’s data are used for measuring the goodness
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Figure 1: Commodity metal spot prices in 2010.

of fit of the marginal distributions. The correlation matrix of the log-returns

is given in Table 1. The maximum linear correlation is 0.844, which is between

Copper and Zinc. The minimum one is 0.496, which is between Lead and Tin.

We should note that the number of metals and duration of the data is quite

limited to derive conclusions for all of the metal spot markets. In this section,

our aim is to see whether there is a tendency of metal data to deviate from

normal distribution. If so, what may be the best distribution fit? And, is the

t-copula dependence structure fitting well?

Shapiro-Francia (SF), Anderson-Darling (AD), Cramer-Von Mises (CVM),

Lilliefors, and Pearsons chi-square tests are applied to test the normality of

metal data using built-in functions in nortest Gross (2006) R package (see,

Ricci (2005)). The estimated p-values of the test statistics are given in Table

2. Based on a significance level of 0.05 null hypothesis stating that data comes

from normal distribution is rejected in most of the tests. Shapiro-Francia,
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Anderson-Darling, and Cramer-Von Mises tests give more weight to the tails

than does Lilliefors, and Pearsons chi-square tests. p-values suggest that

log-returns for Copper could be assumed normal although Shapiro-Francia,

Anderson-Darling, Cramer-Von Mises oppose this. However, semi-heavy tails

of log-returns of the other metals assert that the log-returns do not follow

normal distribution.

Table 1: Correlation matrix of the metal log-returns

Cu Al Ni Zn Pb Sn
Cu 1.000 0.785 0.697 0.844 0.595 0.678
Al 0.785 1.000 0.685 0.753 0.606 0.621
Ni 0.697 0.685 1.000 0.664 0.553 0.583
Zn 0.844 0.753 0.664 1.000 0.679 0.657
Pb 0.595 0.606 0.553 0.679 1.000 0.496
Sn 0.678 0.621 0.583 0.657 0.496 1.000

Table 2: p-values for five normality tests for metal log-returns

Metal SF AD CVM Lilliefors Pearson
Cu 0.043 0.026 0.028 0.093 0.241
Al 0.001 0.010 0.020 0.118 0.408
Ni 0.000 0.002 0.002 0.011 0.067
Zn 0.002 0.001 0.001 0.003 0.130
Pb 0.000 0.000 0.000 0.002 0.509
Sn 0.000 0.001 0.002 0.002 0.179

Motivated by the non-normality of the log-returns, we fit t and generalized

hyperbolic distributions. Log-likelihood and AIC values for Gaussian, t and the

generalized hyperbolic distribution fits are given in Table 3. In all the cases, the

generalized hyperbolic distribution produces the highest log-likelihood value.

However, it is a five-parameter distribution. Thus, AIC values are not always

the minimum. It is better to use the generalized hyperbolic distribution for

first the four metals (Cu, Al, Ni, Zn) and for the last two (Pb, Sn), it is better
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to use t distribution. Estimated parameters of the fitted marginal distribu-

tions for the log-returns and p-values for Kolmogorov-Smirnov test (denoted

as KS) for measuring the goodness of fits are given in Table 4. We use log-

return data for the month December to compute Kolmogorov-Smirnov test

statistics since it can not be used when parameters of the distributions need to

be estimated from the data. Anderson-Darling, Cramer-Von Mises, and Lil-

liefors are all modifications of Kolmogorov-Smirnov test. Computed p-values

for Kolmogorov-Smirnov test are greater than 0.05 which leads to the conclu-

sion that we cannot reject the null hypothesis that log-returns in December

come from those marginal distributions. We use alpha/delta parametrization

(see Breymann and Lüthi (2008)) for the generalized hyperbolic distribution

to print the estimated parameters as we use this parametrization in our simu-

lation functions. For t distribution, there are three parameters estimated, i.e.,

location, scale and degrees of freedom (df).

The histograms of the log-returns with the fitted t and generalized hyper-

bolic distributions, and Q-Q plots for only Copper and Aluminum are given

in the Appendix.4 Log-returns for Copper seems to be quite close to normal

distribution. This visual observation is consistent with the tabulated p-values

in Table 2. However, for the other five metals, t and the generalized hyperbolic

distribution capture the high kurtosis and fat tails of the data.

We fit elliptical copulas, the normal and t-copula, to the log-returns of the

metal data using the estimated marginals. As the dimension of the portfolio in-

creases, the expression of the probability density functions for the Archimedean

copulas become more complex and thus the probability density function is not

available due to intensive computing involved in differentiating the cumulative

distribution function (see Yan (2007) and Karadağ (2008)). Moreover, the

t-copula is preferred to Gaussian and Gumbel copulas because of capturing

the dependence better in the non-extremes and extremes (tails) of financial

returns.
4Plots for the rest of the commodity metals are available from the authors upon request.
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Table 3: Log-likelihood (LogLik) and AIC values for Gaussian, t and generalized

hyperbolic (GH) distributions for metals.

Metal Gaussian t GH Which to use?
LogLik AIC LogLik AIC LogLik AIC

Cu 606.93 −1209.86 607.14 −1208.28 610.24 −1210.49 GH
Al 615.82 −1227.65 619.04 −1232.08 622.57 −1235.15 GH
Ni 543.16 −1082.33 549.12 −1092.24 555.03 −1100.05 GH
Zn 544.95 −1085.90 545.79 −1085.59 551.08 −1092.15 GH
Pb 525.11 −1046.21 539.64 −1073.28 541.25 −1072.49 t
Sn 587.92 −1171.84 592.63 −1179.25 594.51 −1179.02 t

Table 4: Parameters of the fitted marginal distributions for metal log-returns and

p-values for Kolmogorov-Smirnov test (KS).

Metal GH t KS
λ α δ β µ Location Scale df

Cu 7.1683 254.62 0.0002 −83.39 0.0212 0.051
Al −2.8473 121.55 0.0399 −62.05 0.0146 0.365
Ni 0.6901 269.48 0.0421 −188.01 0.0479 0.630
Zn 1.5894 123.22 0.0259 −48.81 0.0192 0.532
Pb 0.00084 0.0187 4.69 0.148
Sn 0.00228 0.0154 5.46 0.294
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For copula fitting we use built-in functions in copula Yan and Kojadinovic

(2010) R package. Fitting results are summarized in Table 5. The correlation

matrix and standard error of the point estimates are given for normal and t-

copulas in Tables 6 and 7 in the given order. Numerical results given in Table 5

suggest that the t-copula is better than the normal copula in capturing the

dependence structure of metal log-returns.

Table 5: Results of copula fitting for a portfolio consisting of all metals

Copula Parameter(s) SE LogLik AIC
Normal ρnorm SEρnorm 505.64 −981.28

Student-t ρt, υ=11.53 SEρt , SEυ=2.45 523.86 −1015.72

Table 6: Correlation matrix of the fitted normal copula (ρnorm) for metal log-returns.

Standard errors (SEρnorm) are given in parentheses.

Cu Al Ni Zn Pb Sn
Cu 1.000 0.774(0.021) 0.683(0.029) 0.834(0.015) 0.619(0.034) 0.670(0.030)
Al 0.774 1.000 0.667(0.030) 0.741(0.023) 0.620(0.034) 0.611(0.034)
Ni 0.683 0.667 1.000 0.641(0.032) 0.569(0.038) 0.573(0.037)
Zn 0.834 0.741 0.641 1.000 0.703(0.027) 0.657(0.031)
Pb 0.619 0.620 0.569 0.703 1.000 0.524(0.041)
Sn 0.670 0.611 0.573 0.657 0.524 1.000

To conclude this section, according to the empirical results from the limited

data, the t-copula with t and the generalized hyperbolic marginals seems to be

an adequate model to capture the dependencies and explain the semi heavy

tails of the returns of commodity metal data.
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Table 7: Correlation matrix of the fitted t-copula (ρt) for metal log-returns. Standard

errors (SEρt) are given in parentheses.

Cu Al Ni Zn Pb Sn
Cu 1.000 0.779(0.023) 0.700(0.030) 0.833(0.017) 0.675(0.033) 0.659(0.034)
Al 0.779 1.000 0.672(0.032) 0.741(0.026) 0.662(0.033) 0.602(0.039)
Ni 0.700 0.672 1.000 0.653(0.034) 0.599(0.039) 0.574(0.041)
Zn 0.833 0.741 0.653 1.000 0.747(0.026) 0.647(0.035)
Pb 0.747 0.662 0.599 0.747 1.000 0.559(0.042)
Sn 0.659 0.602 0.574 0.647 0.559 1.000

4 Simulating Tail Loss Probabilities with

Importance Sampling (IS)

Algorithm 1 gives all the details of the naive simulation algorithm necessary

to evaluate the tail loss probability P (R > x) for time horizon of m days.

We modify the importance sampling (IS) technique described in Sak et al.

(2010) for our problem. To summarize the technique: we add a mean shift

vector with positive entries to the normal vector Z for the normal copula

and additionally use a scale parameter θ less than two for the Gamma (scale

parameter two corresponds to chi-square distribution) random variate Y in

order to increase the probability of very high returns for the t-copula. The main

practical problem in the application of IS is the choice of the parameters of the

IS distribution. We only give the algorithms here. For a better understanding

of the technique refer to Sak et al. (2010).

We use R package Runuran Leydold and Hörmann (2008) for evaluating

quantiles from the generalized hyperbolic distribution (see, Section 3 of Sak

et al. (2010)). Runuran uses a numerical inversion algorithm that requires only

the probability density function instead of the cumulative density function

(see, Derflinger et al. (2010) and Derflinger et al. (2009)).

Algorithm 3 returns the optimal mean-shift µ for the normal copula and
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also the optimal mode y0 of the IS density for Y for the t-copula. Note that

function R() used in Step 2 of Algorithm 2 denotes for the total risk exposure

defined in (2). Following equation gives the optimal scale parameter θ of the

gamma IS density for Y

θ =
y0

ν/2− 1
. (9)

The likelihood ratio for the normal copula is

Wµ(Z) = exp
(−µ′Z + µ′µ/2

)
, (10)

and for the t-copula it is

Wµ,θ(Z, Y ) = exp
(−µ′Z + µ′µ/2− Y/2 + Y/θ + log(θ/2)ν/2

)
, (11)

where exp(−µ′Z + µ′µ/2) accounts for the mean shift we have added to the

normal vector and the term exp(−Y/2+Y/θ+log(θ/2)ν/2) relates the density

of chi-square distribution with degrees of freedom ν to that of gamma distribu-

tion with shape parameter ν/2 and scale parameter θ. The final IS algorithm

is presented as Algorithm 4.

The SaR associated with probability 1− α is the quantile

SaRα = inf{x : P (R > x) ≤ α}. (12)

Algorithm 4 can be used to simulate tail loss probabilities for various thresh-

old levels to derive probability distribution of total risk exposure. Then a

regression algorithm can be used to calculate SaRα.

5 Simulating Conditional Expectations with

Importance Sampling (IS)

In this section, we tackle the problem of simulating conditional expectation

E[R|R > x].
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If we assume that P (R > x) > 0, E[R|R > x] can be written as

r = E[R|R > x] =
E [R 1{R > x}]

P (R > x)
, (13)

where 1{} is an indicator function.

The naive simulation estimate for this ratio is

r̂naive =
∑N

k=1 R(k)1{R(k) > x}∑N
k=1 1{R(k) > x} . (14)

To estimate the accuracy of (14), we use δ% confidence interval (see,

Glasserman (2005) and Glasserman (2004))

r̂naive ± zδ/2
σ̂naive

√
N

(15)

where

σ̂naive =


N

∑N
k=1

(
R(k) − r̂naive

)2
1{R(k) > x}

(∑N
k=1 1{R(k) > x}

)2




1/2

(16)

and zδ/2 denotes the quantile of the standard normal distribution for the prob-

ability level of δ/2.

Algorithm 1 gives all the details of how to use the naive simulation estimate.

Following Glasserman (2005) and Sak and Hörmann (2011), we use the

importance sampling distribution computed for the problem (P (R > x)) in

simulating E[R|R > x]. The IS simulation estimate and its δ% confidence

interval (see, Glasserman (2005) and Glasserman (2004)) is as follows:

r̂IS =
∑N

k=1 R(k)W (k)1{R(k) > x}∑N
k=1 W (k)1{R(k) > x} (17)

and

r̂IS ± zδ/2
σ̂IS

√
N

(18)
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where

σ̂IS =


N

∑N
k=1

(
R(k)W (k) − r̂ISW (k)

)2
1{R(k) > x}

(∑N
k=1 W (k)1{R(k) > x}

)2




1/2

(19)

and zδ/2 denotes the quantile of the standard normal distribution for the prob-

ability level of δ/2.

The details of how to use this estimate are presented as Algorithm 4. Using

this algorithm we can compute cSaRα = E[R|R > SaRα].

6 Numerical Results

We use the importance sampling algorithms given in Sections 4 and 5 for

simulating the total risk exposure of the metal portfolio analyzed in Section

3. The log-returns following the t-copula with generalized hyperbolic or t-

marginals is the dependence structure the data suggest. We use the fitting

results summarized in Tables 5 and 7 for the t-copula. The correlation matrices

(Σ that we use in simulation algorithms) for the normal and t-copula are given

in Tables 6 and 7. For the numerical results presented we use Qi = 1, i =

1, ..., n.

The efficiency of a simulation method is inversely proportional to the prod-

uct of the sampling variance and the required simulation time. We therefore

report as a main result of our comparison efficiency ratio (E.R.), the ratio of

the product of the sampling variance and the execution time of the naive (NA)

and the importance sampling method (IS).

We use IS algorithm given in Algorithm 4 to compute tail loss probabilities

for various threshold levels. Then we fit a cubic smoothing spline to tail loss

probabilities versus thresholds data in order to compute SaRα for a number

of α values in Table 8. We use R package fields Furrer et al. (2010) for fitting a

cubic smoothing spline to the data. We also provide cSaRα values and the half
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length of the 95% confidence intervals in percent (95% C.I.) for cSaRα. E.R.’s

indicate the relative efficiency of the IS with respect to the naive simulation

in computing cSaRα values. E.R.’s increase as the event simulated becomes

rarer. This is an attribute of importance sampling. Execution times are 17.0,

19.7 seconds for naive (NA) and the IS in the given order for computing cSaRα

values for N = 100, 000. Furthermore, efficiency of the IS in computing tail

loss probabilities with respect to the naive simulation is quite similar to the

presented E.R.’s for cSaRα.

Table 8: Over a one day horizon SaRα, cSaRα values and cSaRα’s 95% confidence

interval as percentage of the point estimates for the naive and the IS.

α SaRα cSaRα 95% C.I.(NA) 95% C.I.(IS) E.R.
0.05 9, 839.5 10, 341.6 ±0.14% ±0.04% 10
0.01 10, 635.7 11, 182.3 ±0.34% ±0.05% 46
0.005 10, 989.1 11, 573.8 ±0.48% ±0.05% 75
0.002 11, 489.6 12, 147.0 ±0.74% ±0.06% 148
0.001 11, 902.7 12, 638.7 ±1.31% ±0.06% 382

It is important to asses the sensitivity of the numerical results given in

Table 8 to the choice of the copula function while keeping the marginal dis-

tributions and the correlation matrix the same as suggested in Johnson and

Tenenbein (1981) for a similar problem. We use different degrees of freedom for

the t-copula and normal copula to see how the choice of the copula-based joint

distribution affects the simulated results for the SaRα and cSaRα measures.

Over a one day horizon, SaRα and cSaRα values for sets of α and degrees of

freedom of the t-copula (ν = ∞ is the normal copula case) are provided in

Table 9. In particular simulated results change very little; the maximum dif-

ference in these results is 3.2% for the ten cases considered. The fact that these
results change very little adds credibility to the measures that we developed.

As the degrees of freedom for the t-copula increase (approaching to the

normal copula), SaRα and cSaRα decrease for the tails (α < 0.05). This is
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an expected result since the tail dependence between contracts is lessening

(probability distribution of total risk is less fat). However, as we approach

to the center of the distribution, SaRα and cSaRα values increase as the

dependence structure gets stronger. This is observed for SaRα=0.05.

To give a rough idea about how the tail loss probabilities and cSaRα change

in time, we draw tail loss probabilities and cSaRα of total exposures for time

horizons of one day and one week simultaneously in Figures 2 and 3. We use

the IS and naive simulation for one day horizon and only the IS for one week

horizon in computing the tail loss probabilities, cSaRα’s, and their confidence

intervals. Efficiency of IS for one day horizon could be easily observed when

we compare it with the naive simulation. Although we use greater number of

replications for naive simulation, it gives wider confidence intervals and stops

giving sensible confidence intervals for thresholds greater than 12, 500.
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Figure 2: Tail loss probabilities of total risk exposure for time horizons of one day and

one week using the IS (using 1, 000 replications) and naive (using 10, 000 replications).

The three curves show the sample mean and its 95% confidence interval.

When we compare the tail loss probabilities for one day and one week hori-

20



Table 9: Over a one day horizon SaRα and cSaRα values for sets of α and degrees

of freedom of the t-copula (ν = ∞ is the normal copula case).

α ν SaRα cSaRα

0.05

3 9, 826.7 10, 374.5
5 9, 833.4 10, 362.8
10 9, 837.7 10, 349.6
15 9, 839.6 10, 345.2
∞ 9, 840.0 10, 326.1

0.01

3 10, 688.9 11, 287.2
5 10, 666.7 11, 247.4
10 10, 640.1 11, 194.8
15 10, 630.1 11, 167.1
∞ 10, 602.1 11, 109.6

0.005

3 11, 078.3 11, 715.9
5 11, 039.4 11, 660.8
10 10, 998.2 11, 588.1
15 10, 979.6 11, 559.2
∞ 10, 933.5 11, 475.7

0.002

3 11, 619.2 12, 322.2
5 11, 567.3 12, 260.6
10 11, 499.1 12, 160.4
15 11, 470.5 12, 118.3
∞ 11, 397.0 12, 007.9

0.001

3 12, 065.3 12, 845.7
5 12, 000.5 12, 766.7
10 11, 914.4 12, 662.8
15 11, 876.2 12, 591.3
∞ 11, 774.6 12, 448.6
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Figure 3: cSaRα’s for time horizons of one day and one week using the IS (using

1, 000 replications) and naive (using 10, 000 replications). The three curves show the

sample mean and its 95% confidence interval.

zons, we observe that the tail loss probabilities increase as we increase the time

horizon. For time horizon of one day, we use m = 1 in Algorithm 4. For one

week horizon, we use m = 5 (five working days is equivalent to 1 week). Due

to the complicated return function in Step 2 of Algorithm 2, as we extend the

time horizon, the efficiency of the IS decreases as it can be observed in Figures

2 and 3. Although the wideness of confidence intervals for time horizons of

one day and one week seem to be nearly the same in Figure 2, the tail loss

probability axis is given in logarithmic scale in Figure 2. Indeed, the correct

way of simulating the tail loss probabilities and conditional expectations for

long horizons like one week horizon is to fit marginal distributions and copula

for weekly instead of daily log-returns. Then, after adjusting the scaling factor

(σi should be this time weekly volatility), presented algorithms could be used

to simulate the tail loss probabilities and conditional expectations of total risk

exposures for one week time horizon using m = 1.
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For the same α level, one week horizon cSaRα is greater than for one day

horizon cSaRα as in line with our observations in Figure 2. Furthermore,

confidence intervals get worse in computing one day and one week horizons

cSaRα’s as α decreases as it can be observed in Figure 3. As α decreases, the

likelihood ratios for the IS decrease to make the losses equal to the threshold

on average. This decrease in the likelihood ratios is responsible for degradation

in the quality of confidence intervals for the IS.

7 Conclusion

In this paper, we introduced an efficient simulation model for quantifying the

risk measures for supply portfolio risk in the presence of dependent breaches

of contracts. The model is based on a copula dependence structure. For

assessing model parameters, we analyzed a limited data set of London Metal

Exchange commodity metal spot prices. This process revealed a better fit for

the t-copula dependence structure with t or generalized hyperbolic marginal

distributions for the log-returns of the metals. Furthermore, we adopted the

importance sampling strategy given in Sak et al. (2010) to compute SaR and

cSaR under the normal and t-copula dependence structure. Our numerical

results showed that the proposed method is much more efficient than naive

simulation for computing tail loss probabilities and conditional expectations.

We also provided a numerical sensitivity analysis for the choice of the copula

function.
We think that the method proposed in this paper could very well assist

supply chain, procurement, and operational risk executives while assessing

supply portfolio risk with dependence structure. Surely, future research is

needed in developing models with explicit breach of contract probabilities and

more sophisticated dependence structures. Furthermore, using real life penalty

and transaction cost data would be useful to quantify the aggregate supply risk.

We hope that our paper motivates more research in this growing field.
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Algorithm 1 Computation of P (R > x) and E[R|R > x] using naive simulation for

the normal and t-copula.

0. Initialization.

(a) Compute Cholesky factor L of Σ, i.e., LL′ = Σ.

(b) Compute ci, for i = 1, . . . , n using (5).

1. Repeat for replications k = 1, . . . , N :

(a) Repeat for replications j = 1, . . . , m:

(i) Generate independent standard normal variates Z then compute Z̃ =

LZ.

(ii) Generate Y from χ2
ν distribution for the t-copula.

(iii) Vi = Z̃i for the normal copula and Vi = Z̃i/
√

Y/ν for the t-copula, for

i = 1, . . . , n.

(iv) Calculate S
(j)
i , for i = 1, . . . , n using using (3).

(b) Calculate Pi, for i = 1, . . . , n using (4) then total risk exposure R(k) using

(2).

2. Return 1
N

N∑
k=1

1{R(k) > x} for computing P (R > x) and return r̂naive using (14)

for computing E[R|R > x].
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Figure 5: Histogram and Q-Q plot for the log-returns of Aluminum.

Algorithm 2 Computation of z0, y0, and of for a given direction zd.

1. Set z1
d = zd/||zd||.

2. Compute r0 by solving (R(z = r0z
1
d)− (x+∆) = 0) numerically (Use, e.g., ∆ =

10−5) for the normal copula and by solving (R(z = r0z
1
d, y = ν)− (x + ∆) = 0)

for the t-copula.

3. Return vector z0 = r0 z1
d, and objective function value of = −r2

0 for the normal

copula and vector z0 = r0

√
y0/ν z1

d, y0 = (ν − 2)/(1 + r2
0/ν), and objective

function value of = (ν/2− 1)(log(y0)− 1) for the t-copula.
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Algorithm 3 Computation of the mean shift vector µ and y0.

0. Initialization.

(a) Compute Cholesky factor L of Σ, i.e., LL′ = Σ.

(b) Compute ci, for i = 1, . . . , n using (5).

1. Compute zd = L′c.

2. Call an optimization algorithm with starting direction zd, objective function

as given in Algorithm 2, and non-negativity constraints for all components of

zd (we used a quasi-Newton method with constraints). Get optimal direction

optzd.

3. Call Algorithm 2 with direction optzd and get the optimal vector z0 for the

normal copula, z0 and y0 for the t-copula.

4. Return the optimal mean shift µ = z0 for the normal copula and µ = z0 and

optimal mode y0 for Y for the t-copula.
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Algorithm 4 Computation of P (R > x) and E[R|R > x] using importance sampling

for the normal and t-copula.

0. Initialization.

(a) Compute Cholesky factor L of Σ, i.e., LL′ = Σ.

(b) Compute ci, for i = 1, . . . , n using (5).

(c) Compute µ for the normal copula and µ and y0 for the t-copula using

Algorithm 3.

(d) Compute θ = y0/(ν/2− 1) for the t-copula.

1. Repeat for replications k = 1, . . . , N :

(a) Repeat for replications j = 1, . . . , m:

(i) Generate Zi ∼ N(µi, 1), i = 1, .., n, independently then compute Z̃ =

LZ.

(ii) Generate Y from gamma distribution with shape parameter ν/2 and

scale parameter θ for the t-copula.

(iii) Calculate W
(j)
µ for the normal copula as in (10) and W

(j)
µ,θ as in (11) for

the t-copula.

(iv) Vi = Z̃i for the normal copula and Vi = Z̃i/
√

Y/ν for the t-copula, for

i = 1, . . . , n.

(v) Calculate S
(j)
i , for i = 1, . . . , n using using (3).

(b) Calculate Pi, for i = 1, . . . , n using (4) then total risk exposure R(k) using

(2).

(c) Calculate W (k) =
∏m

j=1 W
(j)
µ for the normal copula and W (k) =

∏m
j=1 W

(j)
µ,θ

for the t-copula.

2. Return 1
N

N∑
k=1

W (k)1{R(k) > x} for computing P (R > x) and return r̂IS using

(17) for computing E[R|R > x].
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